以下に添付図面を参照して、本発明に係る船舶の摩擦低減装置の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
[第1実施形態]
図1は、第1実施形態の船舶の摩擦低減装置を搭載した船舶の概略側面図、図2は、船舶の摩擦低減装置を搭載した船舶の概略底面図、図3は、空気供給系統を表す概略図である。
第1実施形態の船舶の摩擦低減装置を搭載した船舶は、図1及び図2に示すように、例えば、旅客船(カーフェリー)であって、船体10は、船首11と、船尾12と、船底13と、左舷(船側)14と、右舷(船側)15を有している。本実施形態では、船体10の船長方向(前後方向)をX方向、船幅方向(幅方向)をY方向、船高方向(上下方向)をZ方向として表している。そして、CLは、船体10のセンターラインを表し、WLは、船体10の満載喫水線を表している。
船体10は、船尾12側に隔壁16により機関室17が区画され、この機関室17に主機関(例えば、ディーゼルエンジン)18が配置されている。この主機関18は、推進力を伝達するプロペラ19が駆動連結されている。また、船体10は、船尾12に船体10の方向を制御する舵20が設けられている。
また、船体10は、空気供給機器室21と、船倉22と、車両甲板23と、ランプ24と、甲板暴露部25と、隔壁26と、船底外板27と、船側外板28,29とを有している。空気供給機器室21は、船倉22より船首11側に配置されている。空気供給機器室21と船倉22は、隔壁26により仕切られている。車両甲板23は、空気供給機器室21及び船倉22の床面を形成している。ランプ24は、自動車(図示略)が船倉22に乗り降りするために使用される。甲板暴露部25は、例えば、船首11の上甲板であり、空気供給機器室21の上方に配置される。
摩擦低減装置31は、空気供給装置32と、エアクーラ33と、通風筒34と、空気吸い込み口35と、空気吹き出し部36と、空気吹き出し部37と、海水取入部38と、ポンプ39とを有している。空気吹き出し部36は、左舷14(船側外板28)と、右舷15(船側外板29)に配置されている。空気吹き出し部37及び海水取入部38は、船首11側の船底13(船底外板27)に配置されている。空気供給装置32及びエアクーラ33は、空気供給機器室21に設置されている。通風筒34及び空気吸い込み口35は、甲板暴露部25に配置されている。通風筒34は、空気供給機器室21に連通され、空気供給機器室21を換気するために用いられる。空気吸い込み口35は空気供給装置32に接続されている。空気供給装置32は、エアクーラ33を介して空気吹き出し部36,37に接続されている。海水取入部38は、ポンプ39を介してエアクーラ33に接続されている。
海水取入部38と空気吹き出し部37は、例えば、船体10のセンターラインCL上に配置され、船底13における船底外板27の平坦な部分に配置されている。海水取入部38は、空気吹き出し部37より船首11側に配置されている。空気吹き出し部36は、船首11側における左舷14と右舷15の各船側外板28,29に配置されている。各空気吹き出し部36は、センターラインCLに対して対称に配置され、船首11側が接近するように斜めに配置されている。海水取入部38は、両舷14,15に設けられた空気吹き出し部36の間に配置されている。
空気供給装置32は、空気吸い込み口35から吸い込んだ空気を加圧し、その加圧された圧縮空気をエアクーラ33から空気吹き出し部36,37に供給する。ポンプ39は、海水取入部38から取り入れられた海水をエアクーラ33に供給する。エアクーラ33は、海水を用いて圧縮空気を冷却する。エアクーラ33は、例えば、圧縮空気と海水を熱交換する熱交換器である。また、エアクーラ33は、圧縮空気中に海水を散布して圧縮空気を冷却するように構成してもよく、海水中に圧縮空気を吹き出して圧縮空気を冷却するように構成してもよい。空気吹き出し部36,37は、空気供給装置32から供給された圧縮空気を水中に吹き出す。即ち、船体10の空気吹き出し部36,37から水中に空気が吹き出され、この吹き出された空気により形成される気泡が船底13の平坦部に送り出され、この気泡により船体10が覆われることで船体10の摩擦抵抗が低減される。
また、船首11側の船底13に配置された空気吹き出し部37は、図3に示すように、船体10の内部に設けられる複数の気体室41と、この各気体室41内と船体10の外方とを仕切る仕切壁としての船底外板27と、船底外板27に設けられる複数の空気吹き出し口42とを有している。気体室41は、密閉された空間であって、エアクーラ33を介して空気供給装置32が接続されている。複数の空気吹き出し口42は、気体室41から船底外板27を貫通して船体10の外方、つまり、水中に流通する通路である。この複数の空気吹き出し口42は、船底13の船長方向(X方向)に沿うと共に、船幅方向(Y方向)に所定間隔を空けて配置されている。そのため、複数の空気吹き出し口42から水中に吹き出された圧縮空気は、気泡となり、船底13の平坦部を後方に流れると共に幅方向に拡散する。
空気供給装置32は、気体室41と、空気吹き出し口42と、圧縮機43と、主空気供給配管44と、メインチャンバ45と、複数の副空気供給配管(空気供給通路)46とを有している。圧縮機43は、空気取り込み配管47を介して空気吸い込み口35が接続されている。また、圧縮機43は、主空気供給配管44を介してメインチャンバ45が接続されている。この圧縮機43は、例えば、取り込んだ空気を500kPa以上(望ましくは、700kPa〜1300kPa)に加圧することができる。主空気供給配管44は、開閉弁48、流量計49、圧力計50が設けられている。
メインチャンバ45は、圧縮機43により加圧供給された圧縮空気を所定圧の状態で、所定量だけ貯留することができる。このメインチャンバ45は、主空気供給配管44の下流端部が接続されると共に、複数の副空気供給配管46の各上流側他端部がそれぞれ接続されている。この各副空気供給経路46は、下流側端部がそれぞれ気体室41に接続されている。副空気供給経路46は、流量調整弁51と遮断弁52が設けられている。
そのため、開閉弁48を開放して圧縮機43を駆動すると、圧縮機43は、取り込んだ空気を所定圧まで加圧し、主空気供給配管44を通してメインチャンバ45に送り、メインチャンバ45は、圧縮空気を所定圧の状態で貯留する。ここで、流量調整弁51と遮断弁52を開放すると、メインチャンバ45の圧縮空気が各副空気供給配管46を介して各気体室41にそれぞれ供給され、各気体室41に供給された圧縮空気が複数の空気吹き出し口42から水中に吹き出され、気泡となって船底13の平坦部に沿って船体10の後方に流れる。
ここで、第1実施形態の気体室41について詳細に説明する。図4は、気体室を模式的に表した斜視図、図5は、気体室を表す縦断面図、図6は、図5のVI−VI断面図、図7は、図5のVII−VII断面図、図8は、気体室を表す分解図である。
気体室41は、図4から図7に示すように、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。天井部61は、船底外板27(船底13)に対向して平行をなして配置され、複数(本実施形態では、5個)の空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第1側壁部62は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第2側壁部63は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に直交する方向に沿って長い矩形の平板形状をなしている。そして、一対の第1側壁部62と一対の第2側壁部63が矩形状をなす枠体を構成し、各側壁部62,63が船底外板27と天井部61を連結している。
気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。この副空気供給経路46は、接続部46aが5個の空気吹き出し口42のうちの中央部の空気吹き出し口42に対向する位置の天井部61に設定されている。
気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、各空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板64は、船底外板27(船底13)と天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。被覆板64は、複数の空気吹き出し口42の全てに対向して配置され、被覆板64と各空気吹き出し口42との最短距離は、全て同寸法に設定されている。
被覆板64は、上面部が気体室41の天井部61と所定間隔を空けて配置されると共に、外周の端面部が気体室41の各側壁部62,63と所定間隔を空けて配置されている。そして、被覆板64は、副空気供給経路46の接続部46aが対向して配置されている。
また、被覆板64は、外周部の下面と船底外板27の上面との間に連通路Pが設けられている。即ち、被覆板64と船底外板27とは、この連通路Pとして船高方向Zに沿って所定隙間が確保されており、この所定隙間(連通路P)は、被覆板の厚さより小さい寸法(例えば、2mm〜5mm)に設定されている。そのため、副空気供給経路46は、船高方向Zに沿って配置され、各連通路Pは、船長方向X及び船幅方向Yに沿って形成され、各空気吹き出し口42は、船高方向Zに沿って配置されることとなる。
そして、本実施形態にて、副空気供給経路46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積は、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、副空気供給経路46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。
なお、各空気吹き出し口42は、真円形状であり、全て同形状で、且つ、同開口面積に設定されている。但し、空気吹き出し口42の形状は、真円形状に限らず、楕円形状、長円形状、小判型形状、角丸四角形状、四角形状、ひし形状、三角形状などとしてもよい。
そして、各空気吹き出し口42を全て同形状、同開口面積としたが、例えば、形状を変更し、副空気供給経路46の接続部46aから遠い位置の空気吹き出し口42の開口面積を大きくしてもよい。この場合、副空気供給経路46における接続部46aの通路面積が、最も大きい空気吹き出し口42の開口面積より小さい面積に設定される。
なお、副空気供給経路46は、接続部46aが気体室41の天井部61に接続され、この接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。この場合、副空気供給経路46は、長手方向のどの位置であってもほぼ同径であり、接続部46aが直接天井部61に接続されているが、この構成に限定されるものではない。例えば、副空気供給経路46の接続部46aと気体室41との間に拡径部を設けた構成でもよく、この構成であっても、拡径部に接続される接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。
ところで、図8に示すように、気体室41や被覆板64は、メンテナンス性を考慮し、分解可能な構成となっている。気体室41にて、天井部61は、外周部に複数の取付孔71が形成され、各側壁部62,63のフランジ部72に複数の取付孔73が形成されている。そして、天井部61が各側壁部62,63のフランジ部72に載置された状態で、ボルト74が各取付孔71,73を貫通し、ナット75に螺合することで、天井部61が各側壁部62,63に締結されている。同様に、被覆板64は、外周部に複数のねじ孔76が形成され、船底外板27に貫通しない複数のねじ穴77が形成されている。そして、固定ボルト65が各ねじ孔76に螺合し、ねじ穴77に螺合することで、被覆板64が船底外板27に所定隙間を空けて固定されている。
そのため、気体室41にて、図3から図7に示すように、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板64の上面に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板64の外周部との間の隙間に流れ込み、各連通路Pを通して被覆板64の下方の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第1実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給通路46と、船底外板27との間に連通路Pを介して空気吹き出し口42に対向して配置される被覆板64とを設けている。
従って、副空気供給通路46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給通路46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。
即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給通路46を細径化することができる。この副空気供給通路46を細径化することができると、副空気供給通路46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。
第1実施形態の船舶の摩擦低減装置では、前記被覆板64と船底外板27との間に連通路Pとして所定隙間を設け、この所定隙間を被覆板64の厚さより小さい寸法に設定している。従って、気体室41から連通路Pを通る空気量が制限されることとなり、気体室41内での空気の圧力のばらつきを減少して各空気吹き出し口42を通過する空気量を均一化することができる。
第1実施形態の船舶の摩擦低減装置では、被覆板64を複数の空気吹き出し口42の全てに対向して配置し、被覆板64と複数の空気吹き出し口42との最短距離を全て同寸法に設定している。従って、各空気吹き出し口42を通過する空気量を均一化することができる。
第1実施形態の船舶の摩擦低減装置では、被覆板64を気体室41内に配置し、外周部を船底外板27に固定ボルトにより固定している。従って、被覆板64と船底外板27との間の連通路Pを通る空気量を規定することとなり、気体室41内での空気の圧力のばらつきを減少して各空気吹き出し口42を通過する空気量を均一化することができる。
第1実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42が船幅方向Yに沿って設けられ、被覆板64は、船幅方向Yに沿った長尺形状をなし、複数の空気吹き出し口42に対向して配置されている。従って、被覆板64の構造の簡素化を図ることができる。
第1実施形態の船舶の摩擦低減装置では、圧縮機43が500kPa以上の圧縮空気を気体室41に供給可能としている。従って、副空気供給配管46の構造を簡素化して配設スペースの縮小化を図ることができる。
[第2実施形態]
図9は、第2実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図10は、図9のX−X断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第2実施形態の船舶の摩擦低減装置において、図9及びに示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように被覆板81が対向して配置されている。被覆板81は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板81と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
被覆板81は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板81は、全ての空気吹き出し口42を被覆するような湾曲形状をなす湾曲部82と、湾曲部82の外周部に設けられるフランジ部83とから構成されている。この被覆板81は、フランジ部83が固定ボルト65により船底外板27に所定隙間(連通路P)を介して固定されている。
そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板81の湾曲部82に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板81との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第2実施形態の船舶の摩擦低減装置にあっては、被覆板81は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板81は、各空気吹き出し口42を被覆する湾曲部82と、湾曲部82の外周部に設けられるフランジ部83とから構成されている。
従って、被覆板81を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板81に衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。
[第3実施形態]
図11は、第3実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第3実施形態の船舶の摩擦低減装置において、図11に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように被覆板91が対向して配置されている。被覆板91は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板91と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板91は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
被覆板91は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板91は、各空気吹き出し口42を個別に被覆するような湾曲形状をなす湾曲部92,93と、湾曲部92,93の外周部に設けられるフランジ部94とから構成されている。この場合、被覆板91は、副空気供給経路46の接続部46aに対向する1個の湾曲部93の高さが、接続部46aに対向しないその他の4個の湾曲部92の高さより高く設定されている。なお、被覆板91にて、副空気供給経路46の接続部46aに対向する1個の湾曲部93における水平方向の広さを、接続部46aに対向しないその他の4個の湾曲部92における水平方向の広さを広く設定してもよい。そして、この被覆板91は、フランジ部94が固定ボルト65により船底外板27に所定隙間(連通路P)を介して固定されている。
そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板91の各湾曲部92,93に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板91との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第3実施形態の船舶の摩擦低減装置にあっては、被覆板91は、各空気吹き出し口42から離間する方向に個別に膨らむ凸形状をなしている。即ち、被覆板91は、各空気吹き出し口42を被覆する複数の湾曲部92,93と、湾曲部92,93の外周部に設けられるフランジ部94とから構成されている。
従って、被覆板91を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板91に衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。また、被覆板91にて、副空気供給経路46の接続部46aに対向する湾曲部93をその他の4個の湾曲部92より大きくすることで、副空気供給経路46の接続部46aから気体室41に供給された空気を効率良く分散することができる。
[第4実施形態]
図12は、第4実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図13は、図12のX111−X111断面図、図14は、図12のXIV−XIV断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第4実施形態の船舶の摩擦低減装置において、図12から図14に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
気体室41は、天井部61と被覆板64との間に拡散部材101が設けられている。拡散部材101は、拡散板102と、2個の取付板103とから構成されている。2個の取付板103は、天井部61と被覆板64との間における各第2側壁部63の内壁面に固定されている。拡散板102は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、各取付板103に架け渡されるように、長手方向の各端部がこの各取付板103上に載置され、複数の固定ボルト104により固定されている。また、拡散部材101は、各空気吹き出し口42の直列方向の全域にわたって設けられると共に、各空気吹き出し口42の直列方向に直交する水平方向(船長方向X)の幅(長さ)が、被覆板64における各空気吹き出し口42の直列方向に直交する水平方向(船長方向X)の幅(長さ)より短く設定されている。
そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、まず、拡散部材101に衝突することで、気体室41内の幅方向(船長方向X)に沿って向きを変えて流れ、この気体室41内に分散される。この拡散部材101で分散された空気は、次に、被覆板64に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板64との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第4実施形態の船舶の摩擦低減装置にあっては、気体室41の天井部61と被覆板64との間に拡散部材101を設けている。
従って、気体室41に供給された圧縮空気は、まず、拡散部材101に衝突して拡散され、次に、被覆板64に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
第4実施形態の船舶の摩擦低減装置では、拡散部材101の幅を被覆板64の幅より短くしている。従って、気体室41に供給された圧縮空気が拡散部材101に衝突から被覆板64に衝突することとなり、拡散部材101及び被覆板64を効率的に利用して空気を気体室内に均一に分散することができる。
[第5実施形態]
図15は、第5実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第5実施形態の船舶の摩擦低減装置において、図15に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
副空気供給経路46は、中途部から分岐して主通路としての副空気供給経路46と、副通路53が設けられている。そして、副空気供給経路46と副通路53は、気体室41に接続されると共に、開閉弁54,55がそれぞれ設けられている。
そのため、副空気供給経路46は、開閉弁54が開放されて使用可能となっており、副通路53は、開閉弁55が閉止されて使用不能となっている。副空気供給経路46は、空気が流通するだけでなく、摩擦低減装置の不使用時には、海水が流入する。すると、海洋生物が付着して副空気供給経路46を閉塞してしまうおそれがある。また、副空気供給経路46に海水が付着することから、錆が発生する可能性がある。副空気供給経路46に海洋生物や錆などの異物が付着すると、この異物が通路を閉塞してしまうことがある。船体10のメンテナンス時に、異物による副空気供給経路46の閉塞が見つかると、副空気供給経路46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とする。
このように第5実施形態の船舶の摩擦低減装置にあっては、副空気供給経路46の中途部から分岐して主通路としての副空気供給経路46と副通路52を設け、副空気供給経路46と副通路53を気体室41に接続すると共に、開閉弁54,55をそれぞれ設けている。従って、使用中の副空気供給経路46が海洋生物などの異物により閉塞したとき、副空気供給経路46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とすることで、装置を長期間にわたって使用することができる。
[第6実施形態]
図16は、第6実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図、図17は、気体室を表す縦断面図、図18は、図17のXVIII−XVIII断面図、図19は、気体室を表す分解図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第6実施形態の船舶の摩擦低減装置において、図16から図18に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板111対向して配置されている。各被覆板111は、各空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板111と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。各被覆板111は、円板形状をなし、船底外板27(船底13)と天井部61の間で各空気吹き出し口42に個別に対向して平行をなして配置され、複数の固定ボルト112により船底外板27に固定されている。
各被覆板111は、上面部が気体室41の天井部61と所定間隔を空けて配置されると共に、外周の端面部が各被覆板111同士または気体室41の各側壁部62,63と所定間隔を空けて配置されている。そして、長手方向の中央部に配置された被覆板111は、副空気供給経路46の接続部46aが対向して配置されている。
また、各被覆板111は、外周部の下面と船底外板27の上面との間に連通路Pが設けられている。即ち、被覆板111と船底外板27とは、この連通路Pとして船高方向Zに沿って所定隙間が確保されており、この所定隙間(連通路P)は、被覆板の厚さより小さい寸法(例えば、2mm〜5mm)に設定されている。
そして、本実施形態にて、副空気供給経路46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積は、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、副空気供給経路46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。
ところで、図19に示すように、気体室41や被覆板111は、メンテナンス性を考慮し、分解可能な構成となっている。被覆板111は、外周部に複数のねじ孔113が形成され、船底外板27に貫通しない複数のねじ穴114が形成されている。そして、固定ボルト112が各ねじ孔113に螺合し、ねじ穴114に螺合することで、被覆板111が船底外板27に所定隙間を空けて固定されている。
そのため、気体室41にて、図16から図18に示すように、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、各被覆板111の上面に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と各被覆板111の外周部との間の隙間に流れ込み、各連通路Pを通して被覆板111の下方の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第6実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給通路46と、船底外板27との間に連通路Pを介して空気吹き出し口42に対向して配置される被覆板111とを設けている。
従って、副空気供給通路46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給通路46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。
即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給通路46を細径化することができる。この副空気供給通路46を細径化することができると、副空気供給通路46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。
第6実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42を船幅方向Yに沿って設け、複数の被覆板を空気吹き出し口42ごとに対向して配置している。従って、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
[第7実施形態]
図20は、第7実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図21は、抵抗板を表す斜視図、図22は、抵抗板の第1変形例を表す斜視解図、図23は、抵抗板の第2変形例を表す斜視図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第7実施形態の船舶の摩擦低減装置において、図20及び図21に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板121が対向して配置されている。各被覆板121は、全ての空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板121と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板121は、円板形状をなし、船底外板27(船底13)と天井部61の間で各空気吹き出し口42に個別に対向して平行をなして配置され、複数の固定ボルト112により船底外板27に固定されている。
各被覆板121は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板121は、湾曲形状(半円形状)をなす湾曲部122と、湾曲部122の外周部に設けられるフランジ部123とから構成されている。この場合、副空気供給経路46の接続部46aに対向する1個の湾曲部122の大きさをその他の湾曲部122の大きさより大きく設定してもよい。
そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、各被覆板121の湾曲部122に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板121との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
なお、上述した実施形態では、被覆板121が空気吹き出し口42から離間する方向に膨らむ湾曲形状としたが、この形状に限定されるものではない。例えば、図22に示すように、被覆板124を、三角錐形状をなす三角錐部125と、三角錐部125の外周部に設けられるフランジ部126とから構成したり、図23に示すように、被覆板127を、台形形状をなす台形部128と、台形部128の外周部に設けられるフランジ部129とから構成したりしてもよい。
このように第7実施形態の船舶の摩擦低減装置にあっては、被覆板121(124,127)は、各空気吹き出し口42から離間する方向に個別に膨らむ凸形状をなしている。即ち、被覆板121(124,127)は、各空気吹き出し口42を被覆する複数の湾曲部122(三角錐部125、台形部128)と、湾曲部122の外周部に設けられるフランジ部123(126,129)とから構成されている。
従って、被覆板121(124,127)を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板121(124,127)衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。
[第8実施形態]
図24は、第8実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第8実施形態において、図24に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
船底外板27(船底13)は、気体室41の外側に各空気吹き出し口42を被覆するように被覆板131が対向して配置されている。被覆板131は、空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、被覆板131と船底外板27との間に空気流通空間S3が形成され、空気流通空間S3と外部との間に連通路Pが設けられている。
被覆板131は、円板形状をなし、船底外板27(船底13)の外側に平行をなして配置され、複数の固定ボルト132により船底外板27の外面に固定されている。被覆板131は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板131は、湾曲形状(半円形状)をなす湾曲部133と、湾曲部133の外周部に設けられるフランジ部134とから構成されている。
そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、空気吹き出し口42を通って空気流通空間S3に進入する。このとき、空気流通空間S2に進入した圧縮空気は、被覆板131の湾曲部133に衝突することで、空気吹き出し口42を通って空気供給空間S1の戻るように向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、再び空気吹き出し口42を通って空気流通空間S3に流入し、連通路Pを通して船底外板27の外部の水中に吹き出される。
このように第8実施形態の船舶の摩擦低減装置にあっては、船底外板27(船底13)の外側に被覆板131を配置して固定ボルト132により船底外板27に固定している。
従って、船底外板27の外側に配置した被覆板131により空気吹き出し口42を通過する空気量を制限することで、気体室41内での空気の圧力のばらつきを減少して空気吹き出し口42を通過する空気量を均一化することができる。
[第9実施形態]
図25は、第9実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第9実施形態において、図25に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
船底外板27(船底13)は、気体室41の外側に各空気吹き出し口42を被覆するように被覆板141が対向して配置されている。被覆板141は、空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、被覆板141と船底外板27との間に空気流通空間S3が形成され、空気流通空間S3と外部との間に連通路Pが設けられている。
被覆板141は、円板形状をなし、船底外板27(船底13)の外側に平行をなして配置されている。気体室41は、天井部61と船底外板27との間に平行をなす拡散部材142が固定され、この拡散部材142から船底外板27側に延出する取付ロッド143が設けられ、この取付ロッド143の先端部に被覆板141が固定されている。この拡散部材142は、第4実施形態で説明したように、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、長手方向の各端部が第2側壁部63に固定されている。そして、この被覆板141は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。
そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、空気吹き出し口42を通って空気流通空間S3に進入する。このとき、空気流通空間S3に進入した圧縮空気は、被覆板141に衝突することで、空気吹き出し口42を通って空気供給空間S1の戻るように向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、再び空気吹き出し口42を通って空気流通空間S3に流入し、連通路Pを通して船底外板27の外部の水中に吹き出される。
このように第9実施形態の船舶の摩擦低減装置にあっては、船底外板27(船底13)の外側に被覆板141を配置し、取付ロッド143を介して気体室41内の拡散部材142に固定している。
従って、船底外板27の外側に配置した被覆板141により空気吹き出し口42を通過する空気量を制限することで、気体室41内での空気の圧力のばらつきを減少して空気吹き出し口42を通過する空気量を均一化することができる。
[第10実施形態]
図26は、第10実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
第10実施形態の船舶の摩擦低減装置において、図26に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給経路46の先端部が接続されている。
気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板121が対向して配置されている。各被覆板121は、全ての空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板121と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板121は、円板形状で、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしており、複数の固定ボルト112により船底外板27に固定されている。また、気体室41は、天井部61と中央部の被覆板121との間に拡散部材151が設けられている。拡散部材151は、幅方向の各端部が第1側壁部62に固定されている。
そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、まず、拡散部材151に衝突することで、気体室41内の水平方向(船幅方向Y)に沿って向きを変えて流れ、この気体室41内に分散される。この拡散部材151で分散された空気は、次に、被覆板121に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各連通路Pを通して空気流通空間S2に進入し、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
このように第10実施形態の船舶の摩擦低減装置にあっては、気体室41の天井部61と被覆板121との間に拡散部材151を設けている。
従って、気体室41に供給された圧縮空気は、まず、拡散部材151に衝突して拡散され、次に、被覆板121に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
なお、上述した各実施形態にて、四角い箱型形状をなす気体室41を説明したが、この気体室41の形状に限定されるものではなく、船体10内の配置場所などに応じて適宜設定すればよいものである。