WO2018142805A1 - 船舶の摩擦低減装置 - Google Patents

船舶の摩擦低減装置 Download PDF

Info

Publication number
WO2018142805A1
WO2018142805A1 PCT/JP2017/046309 JP2017046309W WO2018142805A1 WO 2018142805 A1 WO2018142805 A1 WO 2018142805A1 JP 2017046309 W JP2017046309 W JP 2017046309W WO 2018142805 A1 WO2018142805 A1 WO 2018142805A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas chamber
ship
friction reducing
reducing device
Prior art date
Application number
PCT/JP2017/046309
Other languages
English (en)
French (fr)
Inventor
真一 ▲高▼野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020187037844A priority Critical patent/KR102190553B1/ko
Publication of WO2018142805A1 publication Critical patent/WO2018142805A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a ship friction reducing device that reduces frictional resistance acting on the ship hull.
  • the blower provided in the ship is driven, the air sucked from the outside is supplied to the gas chamber from the gas supply pipe, and the air diffused by colliding with the baffle plate is supplied to each air. It is ejected from the spout into the water in an almost uniform state.
  • a plurality of gas chambers are provided at predetermined positions on the ship bottom, and it is necessary to dispose a plurality of gas supply pipes from the blower to each gas chamber.
  • the space for disposing the gas supply pipe is limited.
  • This invention solves the subject mentioned above, and aims at providing the friction reduction apparatus of the ship which aims at the simplification of a structure and the improvement of a frictional resistance reduction effect.
  • a ship friction reducing device of the present invention for achieving the above object is provided in a gas chamber provided inside a hull, a partition wall partitioning the gas chamber from the outside of the hull, and the partition wall.
  • a cover plate disposed opposite to the air outlet through a communication passage between the partition wall and the partition wall.
  • the compressed air generated by the compressor is supplied to the gas chamber through the air supply passage.
  • the compressed air supplied to the gas chamber is uniformly dispersed in the gas chamber by colliding with the covering plate, It enters between the covering plate and the partition wall through the communication passage, and blows out into the water outside the hull through each air outlet.
  • the flow area of the compressed air supplied from the air supply passage to the gas chamber and the flow rate per unit time are set so that the passage area to the gas chamber in the air supply passage is smaller than the opening area of the air outlet. Therefore, the frictional resistance reduction effect can be improved by uniformizing the amount of air blown from each air outlet and covering the surface of the hull with air bubbles. Further, by reducing the diameter of the air supply passage, the structure can be simplified and the arrangement space can be reduced.
  • the plurality of air outlets are provided along a width direction of the hull, and a passage area of the air supply passage is smaller than an opening area of one air outlet. It is characterized by being set to an area.
  • the amount of air ejected from the air can be made uniform.
  • the covering plate and the partition wall are provided with a predetermined gap as the communication path, and the predetermined gap is set to a size smaller than a thickness of the covering plate. is doing.
  • the gap between the cover plate and the partition wall is smaller than the thickness of the cover plate, the amount of air passing through the communication path from the gas chamber is limited, and variation in the air pressure in the gas chamber is reduced.
  • the amount of air passing through each air outlet can be made uniform.
  • the covering plate is disposed to face all of the plurality of air blowing ports, and the shortest distance between the covering plate and the plurality of air blowing ports is all the same size. It is characterized by being set.
  • the amount of air passing through each air outlet can be made uniform by disposing the covering plate facing all the air outlets and making the distance between the covering plate and the plurality of air outlets the same. it can.
  • the covering plate has a convex shape that swells in a direction away from the air outlet.
  • the convex shape of the cover plate improves the air diffusibility in the gas chamber, so that the compressed air supplied to the gas chamber collides with the cover plate having the convex shape so that it is uniform in the gas chamber.
  • the amount of air ejected from each air outlet can be made uniform.
  • the covering plate is disposed in the gas chamber, and an outer peripheral portion is fixed to the partition wall by a fixing member.
  • the covering plate in the gas chamber and fixing the outer peripheral portion to the partition wall, the amount of air passing through the communication path between the covering plate and the partition wall is defined, and the air pressure in the gas chamber Thus, the amount of air passing through each air outlet can be made uniform.
  • the covering plate is disposed outside the partition wall and is fixed to the partition wall.
  • the covering plate outside the partition wall and fixing it to the partition wall, by limiting the amount of air passing through each air outlet, the variation in the air pressure in the gas chamber is reduced and each The amount of air passing through the air outlet can be made uniform.
  • the plurality of air outlets are provided along a width direction of the hull, and the covering plate has an elongated shape along the width direction of the hull, It is characterized by being arranged facing the air outlet.
  • the structure of the covering plate can be simplified by arranging the covering plate having a long shape so as to face the plurality of air outlets.
  • the plurality of air outlets are provided along the width direction of the hull, the plurality of covering plates are provided, and are arranged facing each of the plurality of air outlets. It is characterized by being.
  • the amount of air blown into the water from each air outlet can be made uniform by disposing the covering plate facing each air outlet.
  • the gas chamber has a ceiling portion that faces the partition wall, and a side wall portion that connects the partition wall and the ceiling portion, and the ceiling portion and the cover plate A diffusion member is provided between the two.
  • the compressed air supplied to the gas chamber first collides with the diffusion member and diffuses, and then collides with the cover plate.
  • the air is uniformly dispersed in the gas chamber, and the amount of air blown into the water from each air outlet can be made uniform.
  • the diffusion member has a length in a direction orthogonal to the arrangement direction of the plurality of air outlets in a direction orthogonal to the arrangement direction of the plurality of air outlets in the covering plate. It is characterized in that it is set shorter than the length of.
  • the compressed air supplied to the gas chamber collides with the covering plate from the collision with the diffusion member, and the diffusion member and the covering plate are used efficiently.
  • air can be uniformly dispersed in the gas chamber.
  • the air supply passage is branched from a midway portion to be provided with a main passage and a sub-passage, and the main passage and the sub-passage are respectively connected to the gas chamber, An on-off valve is provided.
  • the main passage and the sub-passage are provided as the air supply passage, the main passage is opened by the on-off valve and the sub-passage is closed, and the main passage in use is blocked by marine organisms, the on-off valve By opening the sub passage and making it usable, the apparatus can be used for a long period of time.
  • the compressor is capable of supplying compressed air of 500 kPa or more to the gas chamber.
  • the structure can be simplified and the installation space can be reduced.
  • the structure can be simplified and the frictional resistance reducing effect can be improved.
  • FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment.
  • FIG. 2 is a schematic bottom view of a ship equipped with a ship friction reduction device.
  • FIG. 3 is a schematic diagram showing an air supply system.
  • FIG. 4 is a perspective view schematically showing the gas chamber.
  • FIG. 5 is a longitudinal sectional view showing the gas chamber.
  • 6 is a cross-sectional view taken along the line VI-VI in FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is an exploded view showing the gas chamber.
  • FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment.
  • 10 is a cross-sectional view taken along the line XX of FIG. FIG.
  • FIG. 11 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the third embodiment.
  • FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment.
  • 13 is a cross-sectional view taken along the line X111-X111 in FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG.
  • FIG. 15 is a longitudinal cross-sectional view showing the gas chamber in the friction reducing apparatus of the ship of 5th Embodiment.
  • FIG. 16 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the sixth embodiment.
  • FIG. 17 is a longitudinal sectional view showing a gas chamber.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII in FIG.
  • FIG. 19 is an exploded view showing a gas chamber.
  • FIG. 20 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment.
  • FIG. 21 is a perspective view showing a resistance plate.
  • FIG. 22 is a perspective view illustrating a first modification of the resistance plate.
  • FIG. 23 is a perspective view illustrating a second modification of the resistance plate.
  • FIG. 24 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment.
  • FIG. 25 is a cross-sectional view of a ship equipped with the ship friction reducing device of the ninth embodiment.
  • FIG. 26 is a cross-sectional view of a ship equipped with the ship friction reducing device of the tenth embodiment.
  • FIG. 1 is a schematic side view of a ship equipped with the ship friction reducing device of the first embodiment
  • FIG. 2 is a schematic bottom view of the ship equipped with the ship friction reducing device
  • FIG. 3 represents an air supply system.
  • the ship equipped with the ship friction reducing device of the first embodiment is, for example, a passenger ship (car ferry), and the hull 10 includes a bow 11, a stern 12, and a ship bottom. 13, port (ship side) 14 and starboard (ship side) 15.
  • the ship length direction (front-rear direction) of the hull 10 is represented as the X direction, the ship width direction (width direction) as the Y direction, and the ship height direction (up and down direction) as the Z direction.
  • CL represents the center line of the hull 10
  • WL represents the full load water line of the hull 10.
  • the hull 10 has an engine room 17 defined by a partition wall 16 on the stern 12 side, and a main engine (for example, a diesel engine) 18 is disposed in the engine room 17.
  • the main engine 18 is drivingly connected to a propeller 19 that transmits propulsive force.
  • the hull 10 is provided with a rudder 20 for controlling the direction of the hull 10 at the stern 12.
  • the hull 10 includes an air supply equipment room 21, a hold 22, a vehicle deck 23, a lamp 24, a deck exposure part 25, a partition wall 26, a ship bottom skin 27, and ship side skins 28 and 29.
  • the air supply device room 21 is arranged on the bow 11 side from the hold 22.
  • the air supply equipment room 21 and the hold 22 are partitioned by a partition wall 26.
  • the vehicle deck 23 forms the floor surfaces of the air supply equipment room 21 and the hold 22.
  • the ramp 24 is used for an automobile (not shown) to get on and off the hold 22.
  • the deck exposure unit 25 is, for example, the upper deck of the bow 11 and is disposed above the air supply device room 21.
  • the friction reduction device 31 includes an air supply device 32, an air cooler 33, a ventilation cylinder 34, an air suction port 35, an air blowing portion 36, an air blowing portion 37, a seawater intake portion 38, and a pump 39. is doing.
  • the air blowing portions 36 are disposed on the port 14 (ship side skin 28) and the starboard 15 (ship side skin 29).
  • the air blowing part 37 and the seawater intake part 38 are arranged on the ship bottom 13 (the ship bottom outer plate 27) on the bow 11 side.
  • the air supply device 32 and the air cooler 33 are installed in the air supply device chamber 21.
  • the ventilation tube 34 and the air suction port 35 are disposed in the deck exposure unit 25.
  • the ventilation tube 34 communicates with the air supply device chamber 21 and is used to ventilate the air supply device chamber 21.
  • the air suction port 35 is connected to the air supply device 32.
  • the air supply device 32 is connected to the air blowing portions 36 and 37 via the air cooler 33.
  • the seawater intake unit 38 is connected to the air cooler 33 via the pump 39.
  • the seawater intake part 38 and the air blowing part 37 are, for example, arranged on the center line CL of the hull 10 and are arranged on the flat part of the ship bottom skin 27 on the ship bottom 13.
  • the seawater intake unit 38 is disposed closer to the bow 11 than the air blowing unit 37.
  • the air blowing portions 36 are disposed on the ship side skins 28 and 29 of the port 14 and starboard 15 on the bow 11 side. Each air blowing portion 36 is arranged symmetrically with respect to the center line CL, and is arranged obliquely so that the bow 11 side approaches.
  • the seawater intake part 38 is disposed between the air blowing parts 36 provided in both the cages 14 and 15.
  • the air supply device 32 pressurizes the air sucked from the air suction port 35 and supplies the pressurized compressed air from the air cooler 33 to the air blowing portions 36 and 37.
  • the pump 39 supplies seawater taken from the seawater intake unit 38 to the air cooler 33.
  • the air cooler 33 cools the compressed air using seawater.
  • the air cooler 33 is a heat exchanger that exchanges heat between compressed air and seawater, for example.
  • the air cooler 33 may be configured to cool the compressed air by spraying seawater into the compressed air, or may be configured to cool the compressed air by blowing the compressed air into the seawater.
  • the air blowing portions 36 and 37 blow out the compressed air supplied from the air supply device 32 into the water.
  • the air blowing portion 37 disposed on the ship bottom 13 on the bow 11 side includes a plurality of gas chambers 41 provided inside the hull 10, and the inside of each gas chamber 41 and the outside of the hull 10. And a plurality of air outlets 42 provided on the ship bottom outer plate 27.
  • the gas chamber 41 is a sealed space, and an air supply device 32 is connected via an air cooler 33.
  • the plurality of air outlets 42 are passages that penetrate from the gas chamber 41 through the ship bottom outer plate 27 to the outside of the hull 10, that is, in water.
  • the plurality of air outlets 42 are arranged along the ship length direction (X direction) of the ship bottom 13 and at predetermined intervals in the ship width direction (Y direction). Therefore, the compressed air blown out into the water from the plurality of air outlets 42 becomes bubbles, and flows rearward through the flat portion of the ship bottom 13 and diffuses in the width direction.
  • the air supply device 32 includes a gas chamber 41, an air outlet 42, a compressor 43, a main air supply pipe 44, a main chamber 45, and a plurality of sub air supply pipes (air supply passages) 46. ing.
  • the compressor 43 is connected to an air suction port 35 via an air intake pipe 47.
  • the compressor 43 is connected to a main chamber 45 via a main air supply pipe 44.
  • the compressor 43 can pressurize the taken-in air to 500 kPa or more (desirably, 700 kPa to 1300 kPa).
  • the main air supply pipe 44 is provided with an on-off valve 48, a flow meter 49, and a pressure gauge 50.
  • the main chamber 45 can store a predetermined amount of compressed air supplied under pressure by the compressor 43 at a predetermined pressure.
  • the main chamber 45 is connected to the downstream end of the main air supply pipe 44 and to the other upstream end of each of the plurality of sub air supply pipes 46.
  • Each sub air supply pipe 46 has a downstream end connected to the gas chamber 41.
  • the auxiliary air supply pipe 46 is provided with a flow rate adjustment valve 51 and a shutoff valve 52.
  • the compressor 43 pressurizes the taken-in air to a predetermined pressure and sends it to the main chamber 45 through the main air supply pipe 44.
  • the main chamber 45 is compressed air. Is stored at a predetermined pressure.
  • the flow regulating valve 51 and the shutoff valve 52 are opened, the compressed air in the main chamber 45 is supplied to each gas chamber 41 via each sub air supply pipe 46, and the compressed air supplied to each gas chamber 41. Are blown out into the water from a plurality of air outlets 42 and flow into the rear of the hull 10 along the flat portion of the bottom 13 as bubbles.
  • FIG. 4 is a perspective view schematically showing the gas chamber
  • FIG. 5 is a longitudinal sectional view showing the gas chamber
  • FIG. 6 is a sectional view taken along the line VI-VI in FIG. 5
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG. Sectional drawing
  • FIG. 8 are exploded views showing a gas chamber.
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63, and together with the ship bottom skin 27 (the ship bottom 13).
  • An air supply space S1 having a box-shaped sealed shape is formed.
  • the ceiling portion 61 is arranged in parallel to the ship bottom outer plate 27 (the ship bottom 13), and is a rectangular plate shape that is long along the series direction of a plurality (five in the present embodiment) of the air outlets 42. I am doing.
  • the pair of first side wall parts 62 are arranged so as to be parallel to each other and orthogonal to the ship bottom outer plate 27, and have a long rectangular flat plate shape along the series direction of the air outlets 42.
  • the pair of second side wall parts 63 are arranged so as to be parallel to each other and perpendicular to the ship bottom outer plate 27 and have a long rectangular flat plate shape along the direction perpendicular to the series direction of the air outlets 42. ing. And a pair of 1st side wall part 62 and a pair of 2nd side wall part 63 comprise the frame which makes
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the auxiliary air supply pipe 46 of the air supply device 32.
  • the sub air supply pipe 46 is set in the ceiling portion 61 at a position where the connecting portion 46 a faces the air outlet 42 at the center of the five air outlets 42.
  • a covering plate 64 is disposed so as to face each air outlet 42.
  • the covering plate 64 is arranged opposite to the ship bottom outer plate 27 including the air outlets 42, so that an air circulation space S2 partitioned from the air supply space S1 is formed between the covering plate 64 and the ship bottom outer plate 27.
  • a communication path P is formed between the air supply space S1 and the air circulation space S2.
  • the covering plate 64 is arranged between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposite to the both, and has a long flat plate shape along the series direction of each air outlet 42. None, fixed to the ship bottom skin 27 by a plurality of fixing bolts 65.
  • the covering plate 64 is disposed so as to face all of the plurality of air blowing ports 42, and the shortest distances between the covering plate 64 and the air blowing ports 42 are all set to the same size.
  • the covering plate 64 has an upper surface portion arranged at a predetermined interval from the ceiling portion 61 of the gas chamber 41, and an outer peripheral end surface portion arranged at a predetermined interval from the side wall portions 62 and 63 of the gas chamber 41. Yes. And the coating
  • the cover plate 64 is provided with a communication path P between the lower surface of the outer peripheral portion and the upper surface of the ship bottom outer plate 27. That is, the covering plate 64 and the ship bottom outer plate 27 have a predetermined gap along the ship height direction Z as the communication path P, and the predetermined gap (communication path P) is smaller than the thickness of the covering plate. (For example, 2 mm to 5 mm). Therefore, the auxiliary air supply pipe 46 is disposed along the ship height direction Z, each communication path P is formed along the ship length direction X and the ship width direction Y, and each air outlet 42 is connected to the ship height direction Z. It will be arranged along.
  • the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42. .
  • a plurality of air outlets 42 are provided along the ship width direction Y, and the passage area of the connecting portion 46 a in the sub air supply pipe 46 is smaller than the opening area of one air outlet 42. Is set.
  • each air blowing port 42 is a perfect circle shape, is all the same shape, and is set to the same opening area.
  • the shape of the air outlet 42 is not limited to a perfect circle shape, and may be an elliptical shape, an oval shape, an oval shape, a rounded square shape, a square shape, a rhombus shape, a triangular shape, or the like.
  • Each air outlet 42 has the same shape and the same opening area.
  • the shape is changed to increase the opening area of the air outlet 42 at a position far from the connecting portion 46a of the sub air supply pipe 46. Also good.
  • the passage area of the connection portion 46 a in the sub air supply pipe 46 is set to an area smaller than the opening area of the largest air outlet 42.
  • the auxiliary air supply pipe 46 has a connection portion 46 a connected to the ceiling portion 61 of the gas chamber 41, and the passage area of the connection portion 46 a is set to an area smaller than the opening area of the air outlet 42.
  • the auxiliary air supply pipe 46 has substantially the same diameter at any position in the longitudinal direction, and the connection portion 46a is directly connected to the ceiling portion 61, but is not limited to this configuration.
  • a configuration in which a large-diameter portion is provided between the connection portion 46a of the auxiliary air supply pipe 46 and the gas chamber 41 may be used. Even in this configuration, the passage area of the connection portion 46a connected to the large-diameter portion is small. An area smaller than the opening area of the air outlet 42 is set.
  • the gas chamber 41 and the covering plate 64 are configured to be disassembled in consideration of maintainability.
  • the ceiling portion 61 has a plurality of attachment holes 71 formed in the outer peripheral portion, and a plurality of attachment holes 73 formed in the flange portions 72 of the side wall portions 62 and 63. Then, in a state where the ceiling portion 61 is placed on the flange portion 72 of each side wall portion 62, 63, the bolt 74 passes through each mounting hole 71, 73 and is screwed into the nut 75, so that the ceiling portion 61 is Fastened to the side wall portions 62 and 63.
  • the cover plate 64 has a plurality of screw holes 76 formed in the outer peripheral portion, and a plurality of screw holes 77 that do not penetrate the ship bottom outer plate 27.
  • the fixing bolt 65 is screwed into each screw hole 76 and screwed into the screw hole 77, whereby the covering plate 64 is fixed to the ship bottom outer plate 27 with a predetermined gap.
  • the compressed air pressurized by the compressor 43 (see FIG. 1) is supplied to the air supply space S1 of the gas chamber 41 through the auxiliary air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction along the horizontal radial direction in the gas chamber 41 by colliding with the upper surface of the covering plate 64, and flows into the gas chamber 41. Almost uniformly distributed.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62 and 63 and the outer peripheral portion of the covering plate 64, and the air circulation space below the covering plate 64 through each communication path P. Enter S2.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the gas chamber 41 provided inside the hull 10, the ship bottom skin plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom
  • a plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42
  • a cover plate 64 is provided between the sub-air supply pipe 46 set to 1 and the ship bottom outer plate 27 via the communication path P so as to face the air outlet 42.
  • the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed.
  • the air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
  • the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
  • a predetermined gap is provided as a communication path P between the covering plate 64 and the ship bottom outer plate 27, and the predetermined gap is set to a size smaller than the thickness of the covering plate 64. Yes. Therefore, the amount of air passing from the gas chamber 41 through the communication path P is limited, and the variation in the air pressure in the gas chamber 41 is reduced, and the amount of air passing through each air outlet 42 is made uniform. Can do.
  • the covering plate 64 is disposed so as to face all of the plurality of air blowing ports 42, and the shortest distance between the covering plate 64 and the plurality of air blowing ports 42 is all the same. It is set. Therefore, the amount of air passing through each air outlet 42 can be made uniform.
  • the covering plate 64 is disposed in the gas chamber 41, and the outer peripheral portion is fixed to the ship bottom outer plate 27 with fixing bolts. Accordingly, the amount of air passing through the communication path P between the covering plate 64 and the ship bottom outer plate 27 is defined, and the variation in the air pressure in the gas chamber 41 is reduced and the air passes through each air outlet 42. The amount of air can be made uniform.
  • a plurality of air outlets 42 are provided along the ship width direction Y, and the covering plate 64 has an elongated shape along the ship width direction Y, and a plurality of air It is arranged to face the outlet 42. Therefore, the structure of the cover plate 64 can be simplified.
  • the compressor 43 can supply compressed air of 500 kPa or more to the gas chamber 41. Therefore, the structure of the sub air supply pipe 46 can be simplified and the arrangement space can be reduced.
  • FIG. 9 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the second embodiment
  • FIG. 10 is a sectional view taken along line XX of FIG.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63.
  • the air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a covering plate 81 is disposed so as to face each other so as to cover each air outlet 42.
  • the covering plate 81 is arranged opposite to the ship bottom outer plate 27 including all the air outlets 42, so that the air circulation space S2 partitioned from the air supply space S1 between the covering plate 81 and the ship bottom outer plate 27. Is formed, and the communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 81 is disposed between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposite to the both, and has a long flat plate shape along the series direction of each air outlet 42. None, fixed to the ship bottom skin 27 by a plurality of fixing bolts 65.
  • the covering plate 81 has a convex shape that swells in a direction away from each air outlet 42.
  • the cover plate 81 includes a curved portion 82 having a curved shape that covers all the air outlets 42, and a flange portion 83 provided on the outer peripheral portion of the curved portion 82.
  • the cover plate 81 has a flange portion 83 fixed to the ship bottom outer plate 27 by a fixing bolt 65 via a predetermined gap (communication path P).
  • the compressed air pressurized by the compressor 43 (see FIG. 1) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S ⁇ b> 1 flows in a direction that changes in the horizontal radial direction in the gas chamber 41 by colliding with the curved portion 82 of the covering plate 81. It is distributed almost uniformly within.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62 and 63 and the cover plate 81 and enters the air circulation space S2 through the communication paths P. Then, the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the covering plate 81 has a convex shape that swells in a direction away from each air outlet 42. That is, the cover plate 81 is configured by a curved portion 82 that covers each air outlet 42 and a flange portion 83 provided on the outer peripheral portion of the curved portion 82.
  • the covering plate 81 convex, by improving the air diffusibility in the gas chamber 41, the compressed air supplied to the gas chamber 41 collides with the convex covering plate 81.
  • the air is uniformly dispersed in the gas chamber 41, and the amount of air ejected from each air outlet 42 can be made uniform.
  • FIG. 11 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the third embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a cover plate 91 is disposed so as to face each other so as to cover each air outlet 42.
  • the covering plate 91 is disposed so as to face the ship bottom outer plate 27 including all the air outlets 42, so that the air circulation space S2 partitioned from the air supply space S1 between the covering plate 91 and the ship bottom outer plate 27. Is formed, and the communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 91 is arranged between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 and in parallel with and opposite to the both, and has a long flat plate shape along the series direction of the air outlets 42. None, fixed to the ship bottom skin 27 by a plurality of fixing bolts 65.
  • the covering plate 91 has a convex shape that swells in a direction away from each air outlet 42. That is, the covering plate 91 is composed of curved portions 92 and 93 having a curved shape so as to individually cover each air outlet 42, and a flange portion 94 provided on the outer peripheral portion of the curved portions 92 and 93. . In this case, the covering plate 91 is set such that the height of one bending portion 93 facing the connection portion 46a of the auxiliary air supply pipe 46 is higher than the heights of the other four bending portions 92 not facing the connection portion 46a. Has been.
  • the horizontal width of one curved portion 93 facing the connection portion 46 a of the sub air supply pipe 46 is set to be horizontal in the other four curved portions 92 not facing the connection portion 46 a.
  • the width of the direction may be set wide.
  • the cover plate 91 has a flange portion 94 fixed to the ship bottom outer plate 27 by a fixing bolt 65 via a predetermined gap (communication path P).
  • the compressed air pressurized by the compressor 43 (see FIG. 1) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S1 flows in different directions along the horizontal radial direction in the gas chamber 41 by colliding with the curved portions 92 and 93 of the covering plate 91,
  • the gas chamber 41 is dispersed almost uniformly.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62, 63 and the cover plate 91, and enters the air circulation space S2 through the communication paths P.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the covering plate 91 has a convex shape that swells individually in a direction away from each air outlet 42. That is, the covering plate 91 is composed of a plurality of curved portions 92 and 93 that cover each air outlet 42 and a flange portion 94 that is provided on the outer periphery of the curved portions 92 and 93.
  • the covering plate 91 convex, by improving the air diffusibility in the gas chamber 41, the compressed air supplied to the gas chamber 41 collides with the convex covering plate 91.
  • the air is uniformly dispersed in the gas chamber 41, and the amount of air ejected from each air outlet 42 can be made uniform.
  • the gas chamber is connected to the connecting portion 46a of the auxiliary air supply piping 46. The air supplied to 41 can be efficiently dispersed.
  • FIG. 12 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the fourth embodiment
  • FIG. 13 is a sectional view taken along X111-X111 in FIG. 12
  • FIG. 14 is a sectional view taken along XIV-XIV in FIG. .
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • the air supply space S1 which is configured and forms a box-shaped hermetic shape together with the ship bottom outer plate 27 (the ship bottom 13) is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a covering plate 64 is disposed so as to face each air outlet 42.
  • the covering plate 64 is disposed so as to face the ship bottom outer plate 27 including all the air outlets 42, so that the air circulation space S2 partitioned from the air supply space S1 between the covering plate 64 and the ship bottom outer plate 27. Is formed, and the communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 81 has a long flat plate shape along the series direction of the air outlets 42, and is fixed to the ship bottom outer plate 27 by a plurality of fixing bolts 65.
  • a diffusion member 101 is provided between the ceiling 61 and the cover plate 64.
  • the diffusing member 101 includes a diffusing plate 102 and two mounting plates 103.
  • the two mounting plates 103 are fixed to the inner wall surface of each second side wall portion 63 between the ceiling portion 61 and the covering plate 64.
  • the diffusing plate 102 has a long flat plate shape along the series direction of the air outlets 42, and each end in the longitudinal direction is placed on each mounting plate 103 so as to be spanned over each mounting plate 103. These are fixed by a plurality of fixing bolts 104.
  • the diffusing member 101 is provided over the entire area of each air outlet 42 in the series direction, and the width (length) in the horizontal direction (the ship length direction X) orthogonal to the series direction of each air outlet 42 is a covering plate. 64 is set shorter than the width (length) in the horizontal direction (the ship length direction X) orthogonal to the series direction of the air outlets 42.
  • the compressed air pressurized by the compressor 43 (see FIG. 1) is supplied to the air supply space S 1 of the gas chamber 41 through the sub air supply pipe 46.
  • the compressed air supplied to the air supply space S1 firstly collides with the diffusing member 101, thereby changing its direction along the width direction (the ship length direction X) in the gas chamber 41, and this gas chamber. 41.
  • the air dispersed by the diffusion member 101 collides with the cover plate 64 and flows in a direction that changes in the horizontal radial direction in the gas chamber 41, and almost uniformly in the gas chamber 41. Distributed.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62, 63 and the cover plate 64, and enters the air circulation space S2 through the communication paths P. Then, the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the diffusion member 101 is provided between the ceiling 61 of the gas chamber 41 and the covering plate 64.
  • the compressed air supplied to the gas chamber 41 first collides with the diffusion member 101 and is diffused, and then collides with the covering plate 64 to be uniformly dispersed in the gas chamber.
  • the amount of air blown out into the water from the mouth 42 can be made uniform.
  • the width of the diffusion member 101 is shorter than the width of the cover plate 64. Therefore, the compressed air supplied to the gas chamber 41 collides with the covering plate 64 from the collision with the diffusion member 101, and the air is uniformly dispersed in the gas chamber by efficiently using the diffusion member 101 and the covering plate 64. be able to.
  • FIG. 15 is a longitudinal cross-sectional view showing the gas chamber in the friction reducing apparatus of the ship of 5th Embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a covering plate 64 is disposed so as to face each air outlet 42.
  • the covering plate 64 is disposed so as to face the ship bottom outer plate 27 including all the air outlets 42, so that the air circulation space S2 partitioned from the air supply space S1 between the covering plate 64 and the ship bottom outer plate 27. Is formed, and the communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 81 has a long flat plate shape along the series direction of the air outlets 42, and is fixed to the ship bottom outer plate 27 by a plurality of fixing bolts 65.
  • the sub air supply pipe 46 is branched from the middle portion, and is provided with a sub air supply pipe 46 as a main passage and a sub passage 53.
  • the auxiliary air supply pipe 46 and the auxiliary passage 53 are connected to the gas chamber 41 and provided with on-off valves 54 and 55, respectively.
  • the secondary air supply pipe 46 can be used with the open / close valve 54 opened, and the secondary passage 53 cannot be used because the open / close valve 55 is closed.
  • the auxiliary air supply pipe 46 not only allows air to flow, but also allows seawater to flow in when the friction reducing device is not used. Then, marine organisms may adhere and block the auxiliary air supply pipe 46. Further, since seawater adheres to the auxiliary air supply pipe 46, rust may be generated. If foreign matter such as marine organisms or rust adheres to the auxiliary air supply pipe 46, the foreign matter may block the passage.
  • the on / off valve 54 of the auxiliary air supply pipe 46 is closed to disable the use, and the on / off valve 55 of the auxiliary passage 53 is opened to be used. To do.
  • the auxiliary air supply pipe 46 and the auxiliary passage 53 are provided as a main passage branched from the middle portion of the auxiliary air supply pipe 46, and the auxiliary air supply pipe is provided.
  • 46 and the sub-passage 53 are connected to the gas chamber 41, and on-off valves 54 and 55 are provided, respectively. Therefore, when the sub air supply pipe 46 in use is blocked by foreign matter such as marine organisms, the on / off valve 54 of the sub air supply pipe 46 is closed to disable use, and the on / off valve 55 of the sub passage 53 is opened for use. By making it possible, the device can be used over a long period of time.
  • FIG. 16 is a perspective view schematically showing a gas chamber in the ship friction reducing device of the sixth embodiment
  • FIG. 17 is a longitudinal sectional view showing the gas chamber
  • FIG. 18 is a sectional view taken along the line XVIII-XVIII in FIG.
  • FIG. 19 is an exploded view showing a gas chamber.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • the air supply space S1 which is configured and forms a box-shaped hermetic shape together with the ship bottom outer plate 27 (the ship bottom 13) is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the gas chamber 41 is disposed so as to face the plurality of cover plates 111 so as to cover each air outlet 42 inside.
  • Each covering plate 111 is arranged to face each air outlet 42 and the ship bottom outer plate 27 in the periphery thereof, thereby partitioning from the air supply space S1 between each covering plate 111 and the ship bottom outer plate 27.
  • An air circulation space S2 is formed, and a communication path P is provided between the air supply space S1 and the air circulation space S2.
  • Each of the cover plates 111 has a disk shape, and is arranged between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 so as to individually face and parallel to each air outlet 42, and a plurality of fixing bolts 112 are provided. It is being fixed to the ship bottom outer plate 27 by.
  • Each cover plate 111 is arranged such that the upper surface portion is spaced apart from the ceiling portion 61 of the gas chamber 41 by a predetermined distance, and the outer peripheral end surface portion is predetermined between the cover plates 111 or the side wall portions 62 and 63 of the gas chamber 41. They are spaced apart.
  • the covering plate 111 disposed at the center in the longitudinal direction is disposed so that the connecting portion 46a of the auxiliary air supply pipe 46 is opposed to the covering plate 111.
  • each cover plate 111 is provided with a communication path P between the lower surface of the outer peripheral portion and the upper surface of the ship bottom outer plate 27. That is, the covering plate 111 and the ship bottom outer plate 27 have a predetermined gap as the communication path P along the ship height direction Z, and the predetermined gap (communication path P) is smaller than the thickness of the covering plate. (For example, 2 mm to 5 mm).
  • the passage area of the connection part 46a where the sub air supply piping 46 communicates with the gas chamber 41 (air supply space S1) is set to an area smaller than the opening area of each air outlet 42. .
  • a plurality of air outlets 42 are provided along the ship width direction Y, and the passage area of the connecting portion 46 a in the sub air supply pipe 46 is smaller than the opening area of one air outlet 42. Is set.
  • the gas chamber 41 and the covering plate 111 are configured to be disassembled in consideration of maintainability.
  • the cover plate 111 has a plurality of screw holes 113 formed on the outer peripheral portion, and a plurality of screw holes 114 that do not penetrate the ship bottom outer plate 27. Then, the fixing bolt 112 is screwed into each screw hole 113 and screwed into the screw hole 114, whereby the covering plate 111 is fixed to the ship bottom outer plate 27 with a predetermined gap.
  • the compressed air supplied to the air supply space S1 of the gas chamber 41 through the auxiliary air supply pipe 46 collides with the upper surface of each covering plate 111.
  • the flow is changed along the horizontal radiation direction in the gas chamber 41, and the gas chamber 41 is distributed almost uniformly.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62 and 63 and the outer peripheral portion of each covering plate 111, and the air flows below the covering plate 111 through each communication path P. Enter the space S2.
  • the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the gas chamber 41 provided inside the hull 10, the ship bottom outer plate 27 that partitions the inside of the gas chamber 41 and the outside of the hull 10, and the ship bottom A plurality of air outlets 42 provided in the outer plate 27, a compressor 43, a passage area connecting the compressor 43 and the gas chamber 41 and communicating with the gas chamber 41 is smaller than the opening area of the air outlet 42
  • a cover plate 111 is provided between the auxiliary air supply pipe 46 set to 1 and the ship bottom outer plate 27 so as to face the air outlet 42 via the communication path P.
  • the passage area to the gas chamber 41 in the sub air supply pipe 46 is set to an area smaller than the opening area of one air outlet 42, so that the compression supplied from the sub air supply pipe 46 to the gas chamber 41 is performed.
  • the air flow rate and the flow rate per unit time will be defined, and the amount of air jetted from each air outlet 42 will be made uniform, and the surface of the hull will be properly covered with bubbles to improve the frictional resistance reduction effect. Can do.
  • the compressor 43 as an air supply source, the compressed air obtained by pressurizing the air is supplied to the gas chamber 41, so that the auxiliary air supply pipe 46 can be reduced in diameter. If the diameter of the auxiliary air supply pipe 46 can be reduced, the workability of the auxiliary air supply pipe 46 can be improved and the routing property in the hull 10 can be improved. As a result, the manufacturability is improved, the structure can be simplified, and the arrangement space in the hull 10 can be reduced.
  • a plurality of air outlets 42 are provided along the ship width direction Y, and a plurality of cover plates are arranged facing each air outlet 42. Accordingly, the amount of air blown out from each air outlet 42 into the water can be made uniform.
  • FIG. 20 is a longitudinal sectional view showing a gas chamber in the ship friction reducing device of the seventh embodiment
  • FIG. 21 is a perspective view showing a resistance plate
  • FIG. 22 is a perspective view showing a first modification of the resistance plate
  • FIG. 23 is a perspective view showing a second modification of the resistance plate.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63.
  • the air supply space S1 which is configured and forms a box-shaped hermetic shape together with the ship bottom outer plate 27 (the ship bottom 13) is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a plurality of cover plates 121 are arranged to face each other so as to cover each air outlet 42.
  • Each covering plate 121 is arranged to face all the air outlets 42 and the ship bottom outer plate 27 in the periphery thereof, thereby partitioning from the air supply space S1 between each covering plate 121 and the ship bottom outer plate 27.
  • An air circulation space S2 is formed, and a communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 121 has a disc shape, and is arranged between the ship bottom outer plate 27 (the ship bottom 13) and the ceiling portion 61 so as to face and individually face each air outlet 42, and by a plurality of fixing bolts 112. It is fixed to the ship bottom skin 27.
  • Each covering plate 121 has a convex shape that swells in a direction away from each air outlet 42. That is, the cover plate 121 includes a curved portion 122 having a curved shape (semicircular shape) and a flange portion 123 provided on the outer peripheral portion of the curved portion 122. In this case, the size of one bending portion 122 facing the connection portion 46 a of the auxiliary air supply pipe 46 may be set larger than the sizes of the other bending portions 122.
  • the gas flows in a different direction and is dispersed almost uniformly in the gas chamber 41.
  • the compressed air dispersed almost uniformly in the gas chamber 41 flows into the gaps between the side wall portions 62, 63 and the cover plate 121, and enters the air circulation space S2 through the communication paths P. Then, the compressed air that has entered the air circulation space S ⁇ b> 2 is blown out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the cover plate 121 has a curved shape that swells in a direction away from the air outlet 42, but is not limited to this shape.
  • the cover plate 124 may be composed of a triangular pyramid portion 125 having a triangular pyramid shape and a flange portion 126 provided on the outer peripheral portion of the triangular pyramid portion 125, or as shown in FIG. 23.
  • the covering plate 127 may be formed of a trapezoidal portion 128 having a trapezoidal shape and a flange portion 129 provided on the outer peripheral portion of the trapezoidal portion 128.
  • the covering plate 121 (124, 127) has a convex shape that swells individually in a direction away from each air outlet 42. That is, the covering plate 121 (124, 127) includes a plurality of curved portions 122 (triangular pyramid portion 125, trapezoidal portion 128) covering each air outlet 42 and a flange portion 123 (provided on the outer peripheral portion of the curved portion 122). 126, 129).
  • the covering plate 121 (124, 127) convex, the air diffusion in the gas chamber 41 is improved, so that the compressed air supplied to the gas chamber 41 has a convex shape. (124, 127) By colliding, the gas chamber 41 is uniformly dispersed, and the amount of air ejected from each air outlet 42 can be made uniform.
  • FIG. 24 is a cross-sectional view of a ship equipped with the ship friction reducing device of the eighth embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63. 13) and an air supply space S1 having a box-shaped sealed shape is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the ship bottom outer plate 27 (the ship bottom 13) is arranged with a cover plate 131 facing the outside of the gas chamber 41 so as to cover each air outlet 42.
  • the covering plate 131 is disposed so as to face the air outlet 42 and the ship bottom outer plate 27 in the periphery thereof, thereby forming an air circulation space S3 between the covering plate 131 and the ship bottom outer plate 27.
  • a communication path P is provided between the space S3 and the outside.
  • the covering plate 131 has a disc shape, is arranged in parallel to the outside of the ship bottom outer plate 27 (the ship bottom 13), and is fixed to the outer surface of the ship bottom outer plate 27 by a plurality of fixing bolts 132.
  • the covering plate 131 has a convex shape that swells in a direction away from each air outlet 42. That is, the cover plate 131 includes a curved portion 133 having a curved shape (semicircular shape) and a flange portion 134 provided on the outer peripheral portion of the curved portion 133.
  • the compressed air supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46 enters the air circulation space S3 through the air outlet 42.
  • the compressed air that has entered the air circulation space S2 collides with the curved portion 133 of the covering plate 131, and flows in a direction that returns to the air supply space S1 through the air blowing port 42. Dispersed almost uniformly in the chamber 41.
  • the compressed air dispersed almost uniformly in the gas chamber 41 again flows into the air circulation space S ⁇ b> 3 through the air outlet 42, and is blown out into the water outside the ship bottom outer plate 27 through the communication path P.
  • the cover plate 131 is disposed outside the ship bottom skin 27 (the ship bottom 13) and fixed to the ship bottom skin 27 by the fixing bolts 132.
  • FIG. 25 is a cross-sectional view of a ship equipped with the ship friction reducing device of the ninth embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling portion 61, a pair of first side wall portions 62, and a pair of second side wall portions 63. 13) and an air supply space S1 having a box-shaped sealed shape is formed.
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • the ship bottom outer plate 27 (the ship bottom 13) is arranged with a cover plate 141 facing the outside of the gas chamber 41 so as to cover each air outlet 42.
  • the covering plate 141 is arranged to face the air outlet 42 and the ship bottom outer plate 27 in the periphery thereof, so that an air circulation space S3 is formed between the covering plate 141 and the ship bottom outer plate 27.
  • a communication path P is provided between the space S3 and the outside.
  • the covering plate 141 has a disc shape and is arranged in parallel to the outside of the ship bottom outer plate 27 (the ship bottom 13).
  • the gas chamber 41 is provided with a diffusion member 142 which is parallel between the ceiling 61 and the ship bottom skin 27, and is provided with a mounting rod 143 extending from the diffusion member 142 to the ship bottom skin 27 side.
  • a cover plate 141 is fixed to the tip of the rod 143.
  • the diffusion member 142 has a long flat plate shape along the series direction of the air outlets 42, and each end in the longitudinal direction is fixed to the second side wall 63. .
  • the covering plate 141 has a convex shape that swells in a direction away from each air outlet 42.
  • the compressed air supplied to the air supply space S1 of the gas chamber 41 through the sub air supply pipe 46 enters the air circulation space S3 through the air outlet 42.
  • the compressed air that has entered the air circulation space S3 flows into the gas chamber 41 by changing its direction so as to return to the air supply space S1 through the air outlet 42 by colliding with the covering plate 141. Almost uniformly distributed.
  • the compressed air dispersed almost uniformly in the gas chamber 41 again flows into the air circulation space S ⁇ b> 3 through the air outlet 42, and is blown out into the water outside the ship bottom outer plate 27 through the communication path P.
  • the covering plate 141 is disposed outside the ship bottom outer plate 27 (the ship bottom 13), and the diffusion member 142 in the gas chamber 41 via the mounting rod 143. It is fixed to.
  • the cover plate 141 arranged outside the ship bottom outer plate 27 By restricting the amount of air passing through the air blowing port 42 by the cover plate 141 arranged outside the ship bottom outer plate 27, the variation in the air pressure in the gas chamber 41 is reduced and the air blowing port 42 is The amount of air passing through can be made uniform.
  • FIG. 26 is a cross-sectional view of a ship equipped with the ship friction reducing device of the tenth embodiment.
  • symbol is attached
  • the gas chamber 41 includes a ceiling part 61, a pair of first side wall parts 62, and a pair of second side wall parts 63, An air supply space S1 having a box-shaped sealed shape is formed together with the ship bottom outer plate 27 (ship bottom 13).
  • the gas chamber 41 is connected to the ceiling 61 at the tip of the sub air supply pipe 46 of the air supply device 32.
  • a plurality of cover plates 121 are arranged to face each other so as to cover each air outlet 42.
  • Each covering plate 121 is arranged to face all the air outlets 42 and the ship bottom outer plate 27 in the periphery thereof, thereby partitioning from the air supply space S1 between each covering plate 121 and the ship bottom outer plate 27.
  • An air circulation space S2 is formed, and a communication path P is provided between the air supply space S1 and the air circulation space S2.
  • the covering plate 121 has a disc shape, has a convex shape that swells in a direction away from each air outlet 42, and is fixed to the ship bottom outer plate 27 by a plurality of fixing bolts 112.
  • a diffusion member 151 is provided between the ceiling portion 61 and the central cover plate 121. Each end of the diffusion member 151 in the width direction is fixed to the first side wall 62.
  • the compressed air supplied to the air supply space S ⁇ b> 1 of the gas chamber 41 through the sub air supply pipe 46 first collides with the diffusion member 151, thereby along the horizontal direction (ship width direction Y) in the gas chamber 41.
  • the direction of flow is changed and the gas chamber 41 is dispersed.
  • the air dispersed by the diffusion member 151 collides with the covering plate 121 and flows in a direction that changes in the horizontal radial direction in the gas chamber 41, and almost uniformly in the gas chamber 41.
  • the compressed air dispersed almost uniformly in the gas chamber 41 enters the air circulation space S ⁇ b> 2 through each communication path P, and blows out into the water outside the ship bottom outer plate 27 through each air outlet 42.
  • the diffusion member 151 is provided between the ceiling 61 of the gas chamber 41 and the covering plate 121.
  • the compressed air supplied to the gas chamber 41 first collides with the diffusion member 151 and is diffused, and then collides with the cover plate 121 to be uniformly dispersed in the gas chamber.
  • the amount of air blown out into the water from the mouth 42 can be made uniform.
  • the gas chamber 41 having a square box shape has been described.
  • the gas chamber 41 is not limited to the shape of the gas chamber 41, and is appropriately set according to the arrangement location in the hull 10 or the like. What should I do?

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

本発明は、構造の簡素化を図ると共に摩擦抵抗低減効果の向上を図る船舶の摩擦低減装置を提供する。 船舶の摩擦低減装置(31)において、船体(10)の内部に設けられる気体室(41)と、気体室(41)内と船体(10)の外方とを仕切る船底外板(27)と、船底外板(27)に設けられる複数の空気吹き出し口(42)と、圧縮機(43)と、圧縮機(43)と気体室(41)とを接続して気体室(41)へ連通する通路面積が空気吹き出し口(42)の開口面積より小さい面積に設定される副空気供給通路(46)と、船底外板(27)との間に連通路(P)を介して空気吹き出し口(42)に対向して配置される被覆板(64)とを設ける。

Description

船舶の摩擦低減装置
 本発明は、船舶の船体に作用する摩擦抵抗を低減する船舶の摩擦低減装置に関するものである。
 船舶の船体に作用する摩擦抵抗を低減する技術として、空気(気泡)を水中に吹き出して船体の表面を気泡で覆うものが知られている。この船体摩擦抵抗低減装置は、気体室(エアチャンバ)に気体供給管が接続されると共に、気体室における船底の外板部に複数の空気噴出口が設けられ、気体室の気体供給管の接続部と各空気噴出口との間にバッフルプレートを配設してものとなっている。そのため、気体供給管から気体室に供給された空気がバッフルプレートに衝突して拡散され、各空気噴出口から水中へほぼ一様な状態で噴出される。このような船体摩擦抵抗低減装置としては、例えば、下記特許文献1,2に記載されている。
特開2008-143345号公報 特開2010-120609号公報 特開2015-081043号公報
 上述した従来の摩擦抵抗低減型船舶では、船内に設けられたブロアを駆動し、外部から吸い込んだ空気を気体供給管から気体室に供給し、バッフルプレートに衝突して拡散された空気を各空気噴出口から水中へほぼ一様な状態で噴出している。この場合、気体室は、船底における所定の位置に複数設けられており、ブロアから各気体室に複数の気体供給管を配設する必要がある。ところが、船内は、多数の構造物や隔壁があることから、気体供給管の配設スペースが限られてしまう。そこで、ブロアに代えてコンプレッサを用いると共に、気体供給管の配管径を小さくすることで、気体供給管自体を小型化して配設スペースの縮小化を図ることが考えられる。しかし、コンプレッサを用いて気体供給管の配管径を小さくすると、気体供給管から気体室に供給される空気の流速が増加し、バッフルプレートに衝突した空気を気体室内に一様に拡散することが困難となる。すると、気体室内の空気の圧力分布が不均一となり、各空気噴出口から水中へ噴出される空気量にばらつきが生じ、船体の摩擦抵抗を十分に低減することが困難となる。
 本発明は上述した課題を解決するものであり、構造の簡素化を図ると共に摩擦抵抗低減効果の向上を図る船舶の摩擦低減装置を提供することを目的とする。
 上記の目的を達成するための本発明の船舶の摩擦低減装置は、船体の内部に設けられる気体室と、前記気体室内と前記船体の外方とを仕切る仕切壁と、前記仕切壁に設けられる複数の空気吹き出し口と、圧縮機と、前記圧縮機と前記気体室とを接続して前記気体室へ連通する通路面積が前記空気吹き出し口の開口面積より小さい面積に設定される空気供給通路と、前記仕切壁との間に連通路を介して前記空気吹き出し口に対向して配置される被覆板と、を備えることを特徴とするものである。
 従って、圧縮機により生成された圧縮空気は、空気供給通路を通して気体室に供給され、このとき、気体室に供給された圧縮空気は、被覆板に衝突することで気体室内に均一に分散され、連通路を通して被覆板と仕切壁の間に進入し、各空気吹き出し口を通って船体外部の水中に吹き出される。このとき、空気供給通路における気体室への通路面積が空気吹き出し口の開口面積より小さい面積に設定されることで、空気供給通路から気体室に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。また、空気供給通路を細径化することで、構造を簡素化して配設スペースの縮小化を図ることができる。
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記空気供給通路の通路面積は、1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴としている。
 従って、空気供給通路から気体室に供給されて、被覆板に衝突することで、拡散した空気が空気供給通路の通路面積より大きい各空気吹き出し口から水中に吹き出されることで、各空気吹き出し口からの空気の噴出量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記被覆板と前記仕切壁とは、前記連通路として所定隙間が設けられ、前記所定隙間は、前記被覆板の厚さより小さい寸法に設定されることを特徴している。
 従って、被覆板と前記仕切壁との隙間を被覆板の厚さより小さく設定することで、気体室から連通路を通る空気量が制限されることとなり、気体室内での空気の圧力のばらつきを減少して各空気吹き出し口を通過する空気量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記被覆板は、前記複数の空気吹き出し口の全てに対向して配置され、前記被覆板と前記複数の空気吹き出し口との最短距離は、全て同寸法に設定されることを特徴としている。
 従って、被覆板を全ての空気吹き出し口に対向して配置し、被覆板と複数の空気吹き出し口との距離を同じにすることで、各空気吹き出し口を通過する空気量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記被覆板は、前記空気吹き出し口から離間する方向に膨らむ凸形状をなすことを特徴としている。
 従って、被覆板を凸形状とすることで、気体室での空気の拡散性を向上することで、気体室に供給された圧縮空気が凸形状をなす被覆板に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口からの空気の噴出量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記被覆板は、前記気体室内に配置され、外周部が前記仕切壁に固定部材により固定されることを特徴としている。
 従って、被覆板を気体室内に配置して外周部を仕切壁に固定することで、被覆板と仕切壁との間の連通路を通る空気量を規定することとなり、気体室内での空気の圧力のばらつきを減少して各空気吹き出し口を通過する空気量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記被覆板は、前記仕切壁の外側に配置され、前記仕切壁に固定されることを特徴としている。
 従って、被覆板を仕切壁の外側に配置して仕切壁に固定することで、各空気吹き出し口を通過する空気量を制限することで、気体室内での空気の圧力のばらつきを減少して各空気吹き出し口を通過する空気量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記被覆板は、前記船体の幅方向に沿った長尺形状をなし、前記複数の空気吹き出し口に対向して配置されることを特徴としている。
 従って、長尺形状をなす被覆板を複数の空気吹き出し口に対向して配置することで、被覆板の構造の簡素化を図ることができる。
 本発明の船舶の摩擦低減装置では、前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記被覆板は、複数設けられ、前記複数の空気吹き出し口ごとに対向して配置されることを特徴としている。
 従って、被覆板を空気吹き出し口ごとに対向して配置することで、各空気吹き出し口から水中に吹き出される空気の噴出量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記気体室は、前記仕切壁に対向する天井部と、前記仕切壁と前記天井部とを連結する側壁部とを有し、前記天井部と前記被覆板との間に拡散部材が設けられることを特徴としている。
 従って、気体室の天井部と被覆板との間に拡散部材を設けることで、気体室に供給された圧縮空気は、まず、拡散部材に衝突して拡散され、次に、被覆板に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口から水中に吹き出される空気の噴出量を均一化することができる。
 本発明の船舶の摩擦低減装置では、前記拡散部材は、前記複数の空気吹き出し口の配列方向に直交する方向の長さが、前記被覆板における前記複数の空気吹き出し口の配列方向に直交する方向の長さより短く設定されることを特徴としている。
 従って、拡散板の長さを被覆板の長さより短くすることで、気体室に供給された圧縮空気が拡散部材に衝突から被覆板に衝突することとなり、拡散部材及び被覆板を効率的に利用して空気を気体室内に均一に分散することができる。
 本発明の船舶の摩擦低減装置では、前記空気供給通路は、中途部から分岐して主通路と副通路が設けられ、前記主通路と前記副通路は、それぞれ前記気体室に接続されると共に、開閉弁が設けられることを特徴としている。
 従って、空気供給通路として主通路と副通路を設けられ、開閉弁により主通路を開放して副通路を閉塞して使用するとき、使用中の主通路が海洋生物などにより閉塞したとき、開閉弁により副通路を開放して使用可能とすることで、装置を長期間にわたって使用することができる。
 本発明の船舶の摩擦低減装置では、前記圧縮機は、500kPa以上の圧縮空気を前記気体室に供給可能であることを特徴としている。
 従って、空気供給通路を細径化することで、構造を簡素化して配設スペースの縮小化を図ることができる。
 本発明の船舶の摩擦低減装置によれば、構造の簡素化を図ることができると共に摩擦抵抗低減効果の向上を図ることができる。
図1は、第1実施形態の船舶の摩擦低減装置を搭載した船舶の概略側面図である。 図2は、船舶の摩擦低減装置を搭載した船舶の概略底面図である。 図3は、空気供給系統を表す概略図である。 図4は、気体室を模式的に表した斜視図である。 図5は、気体室を表す縦断面図である。 図6は、図5のVI-VI断面図である。 図7は、図5のVII-VII断面図である。 図8は、気体室を表す分解図である。 図9は、第2実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。 図10は、図9のX-X断面図である。 図11は、第3実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。 図12は、第4実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。 図13は、図12のX111-X111断面図である。 図14は、図12のXIV-XIV断面図である。 図15は、第5実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。 図16は、第6実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図である。 図17は、気体室を表す縦断面図である。 図18は、図17のXVIII-XVIII断面図である。 図19は、気体室を表す分解図である。 図20は、第7実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。 図21は、抵抗板を表す斜視図である。 図22は、抵抗板の第1変形例を表す斜視解図である。 図23は、抵抗板の第2変形例を表す斜視図である。 図24は、第8実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。 図25は、第9実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。 図26は、第10実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。
 以下に添付図面を参照して、本発明に係る船舶の摩擦低減装置の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
[第1実施形態]
 図1は、第1実施形態の船舶の摩擦低減装置を搭載した船舶の概略側面図、図2は、船舶の摩擦低減装置を搭載した船舶の概略底面図、図3は、空気供給系統を表す概略図である。
 第1実施形態の船舶の摩擦低減装置を搭載した船舶は、図1及び図2に示すように、例えば、旅客船(カーフェリー)であって、船体10は、船首11と、船尾12と、船底13と、左舷(船側)14と、右舷(船側)15を有している。本実施形態では、船体10の船長方向(前後方向)をX方向、船幅方向(幅方向)をY方向、船高方向(上下方向)をZ方向として表している。そして、CLは、船体10のセンターラインを表し、WLは、船体10の満載喫水線を表している。
 船体10は、船尾12側に隔壁16により機関室17が区画され、この機関室17に主機関(例えば、ディーゼルエンジン)18が配置されている。この主機関18は、推進力を伝達するプロペラ19が駆動連結されている。また、船体10は、船尾12に船体10の方向を制御する舵20が設けられている。
 また、船体10は、空気供給機器室21と、船倉22と、車両甲板23と、ランプ24と、甲板暴露部25と、隔壁26と、船底外板27と、船側外板28,29とを有している。空気供給機器室21は、船倉22より船首11側に配置されている。空気供給機器室21と船倉22は、隔壁26により仕切られている。車両甲板23は、空気供給機器室21及び船倉22の床面を形成している。ランプ24は、自動車(図示略)が船倉22に乗り降りするために使用される。甲板暴露部25は、例えば、船首11の上甲板であり、空気供給機器室21の上方に配置される。
 摩擦低減装置31は、空気供給装置32と、エアクーラ33と、通風筒34と、空気吸い込み口35と、空気吹き出し部36と、空気吹き出し部37と、海水取入部38と、ポンプ39とを有している。空気吹き出し部36は、左舷14(船側外板28)と、右舷15(船側外板29)に配置されている。空気吹き出し部37及び海水取入部38は、船首11側の船底13(船底外板27)に配置されている。空気供給装置32及びエアクーラ33は、空気供給機器室21に設置されている。通風筒34及び空気吸い込み口35は、甲板暴露部25に配置されている。通風筒34は、空気供給機器室21に連通され、空気供給機器室21を換気するために用いられる。空気吸い込み口35は空気供給装置32に接続されている。空気供給装置32は、エアクーラ33を介して空気吹き出し部36,37に接続されている。海水取入部38は、ポンプ39を介してエアクーラ33に接続されている。
 海水取入部38と空気吹き出し部37は、例えば、船体10のセンターラインCL上に配置され、船底13における船底外板27の平坦な部分に配置されている。海水取入部38は、空気吹き出し部37より船首11側に配置されている。空気吹き出し部36は、船首11側における左舷14と右舷15の各船側外板28,29に配置されている。各空気吹き出し部36は、センターラインCLに対して対称に配置され、船首11側が接近するように斜めに配置されている。海水取入部38は、両舷14,15に設けられた空気吹き出し部36の間に配置されている。
 空気供給装置32は、空気吸い込み口35から吸い込んだ空気を加圧し、その加圧された圧縮空気をエアクーラ33から空気吹き出し部36,37に供給する。ポンプ39は、海水取入部38から取り入れられた海水をエアクーラ33に供給する。エアクーラ33は、海水を用いて圧縮空気を冷却する。エアクーラ33は、例えば、圧縮空気と海水を熱交換する熱交換器である。また、エアクーラ33は、圧縮空気中に海水を散布して圧縮空気を冷却するように構成してもよく、海水中に圧縮空気を吹き出して圧縮空気を冷却するように構成してもよい。空気吹き出し部36,37は、空気供給装置32から供給された圧縮空気を水中に吹き出す。即ち、船体10の空気吹き出し部36,37から水中に空気が吹き出され、この吹き出された空気により形成される気泡が船底13の平坦部に送り出され、この気泡により船体10が覆われることで船体10の摩擦抵抗が低減される。
 また、船首11側の船底13に配置された空気吹き出し部37は、図3に示すように、船体10の内部に設けられる複数の気体室41と、この各気体室41内と船体10の外方とを仕切る仕切壁としての船底外板27と、船底外板27に設けられる複数の空気吹き出し口42とを有している。気体室41は、密閉された空間であって、エアクーラ33を介して空気供給装置32が接続されている。複数の空気吹き出し口42は、気体室41から船底外板27を貫通して船体10の外方、つまり、水中に流通する通路である。この複数の空気吹き出し口42は、船底13の船長方向(X方向)に沿うと共に、船幅方向(Y方向)に所定間隔を空けて配置されている。そのため、複数の空気吹き出し口42から水中に吹き出された圧縮空気は、気泡となり、船底13の平坦部を後方に流れると共に幅方向に拡散する。
 空気供給装置32は、気体室41と、空気吹き出し口42と、圧縮機43と、主空気供給配管44と、メインチャンバ45と、複数の副空気供給配管(空気供給通路)46とを有している。圧縮機43は、空気取り込み配管47を介して空気吸い込み口35が接続されている。また、圧縮機43は、主空気供給配管44を介してメインチャンバ45が接続されている。この圧縮機43は、例えば、取り込んだ空気を500kPa以上(望ましくは、700kPa~1300kPa)に加圧することができる。主空気供給配管44は、開閉弁48、流量計49、圧力計50が設けられている。
 メインチャンバ45は、圧縮機43により加圧供給された圧縮空気を所定圧の状態で、所定量だけ貯留することができる。このメインチャンバ45は、主空気供給配管44の下流端部が接続されると共に、複数の副空気供給配管46の各上流側他端部がそれぞれ接続されている。この各副空気供給配管46は、下流側端部がそれぞれ気体室41に接続されている。副空気供給配管46は、流量調整弁51と遮断弁52が設けられている。
 そのため、開閉弁48を開放して圧縮機43を駆動すると、圧縮機43は、取り込んだ空気を所定圧まで加圧し、主空気供給配管44を通してメインチャンバ45に送り、メインチャンバ45は、圧縮空気を所定圧の状態で貯留する。ここで、流量調整弁51と遮断弁52を開放すると、メインチャンバ45の圧縮空気が各副空気供給配管46を介して各気体室41にそれぞれ供給され、各気体室41に供給された圧縮空気が複数の空気吹き出し口42から水中に吹き出され、気泡となって船底13の平坦部に沿って船体10の後方に流れる。
 ここで、第1実施形態の気体室41について詳細に説明する。図4は、気体室を模式的に表した斜視図、図5は、気体室を表す縦断面図、図6は、図5のVI-VI断面図、図7は、図5のVII-VII断面図、図8は、気体室を表す分解図である。
 気体室41は、図4から図7に示すように、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。天井部61は、船底外板27(船底13)に対向して平行をなして配置され、複数(本実施形態では、5個)の空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第1側壁部62は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に沿って長い矩形の平板形状をなしている。一対の第2側壁部63は、互いに平行をなすと共に船底外板27に対して直交するように配置され、各空気吹き出し口42の直列方向に直交する方向に沿って長い矩形の平板形状をなしている。そして、一対の第1側壁部62と一対の第2側壁部63が矩形状をなす枠体を構成し、各側壁部62,63が船底外板27と天井部61を連結している。
 気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。この副空気供給配管46は、接続部46aが5個の空気吹き出し口42のうちの中央部の空気吹き出し口42に対向する位置の天井部61に設定されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、各空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板64は、船底外板27(船底13)と天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。被覆板64は、複数の空気吹き出し口42の全てに対向して配置され、被覆板64と各空気吹き出し口42との最短距離は、全て同寸法に設定されている。
 被覆板64は、上面部が気体室41の天井部61と所定間隔を空けて配置されると共に、外周の端面部が気体室41の各側壁部62,63と所定間隔を空けて配置されている。そして、被覆板64は、副空気供給配管46の接続部46aが対向して配置されている。
 また、被覆板64は、外周部の下面と船底外板27の上面との間に連通路Pが設けられている。即ち、被覆板64と船底外板27とは、この連通路Pとして船高方向Zに沿って所定隙間が確保されており、この所定隙間(連通路P)は、被覆板の厚さより小さい寸法(例えば、2mm~5mm)に設定されている。そのため、副空気供給配管46は、船高方向Zに沿って配置され、各連通路Pは、船長方向X及び船幅方向Yに沿って形成され、各空気吹き出し口42は、船高方向Zに沿って配置されることとなる。
 そして、本実施形態にて、副空気供給配管46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積は、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、副空気供給配管46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。
 なお、各空気吹き出し口42は、真円形状であり、全て同形状で、且つ、同開口面積に設定されている。但し、空気吹き出し口42の形状は、真円形状に限らず、楕円形状、長円形状、小判型形状、角丸四角形状、四角形状、ひし形状、三角形状などとしてもよい。
 そして、各空気吹き出し口42を全て同形状、同開口面積としたが、例えば、形状を変更し、副空気供給配管46の接続部46aから遠い位置の空気吹き出し口42の開口面積を大きくしてもよい。この場合、副空気供給配管46における接続部46aの通路面積が、最も大きい空気吹き出し口42の開口面積より小さい面積に設定される。
 なお、副空気供給配管46は、接続部46aが気体室41の天井部61に接続され、この接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。この場合、副空気供給配管46は、長手方向のどの位置であってもほぼ同径であり、接続部46aが直接天井部61に接続されているが、この構成に限定されるものではない。例えば、副空気供給配管46の接続部46aと気体室41との間に拡径部を設けた構成でもよく、この構成であっても、拡径部に接続される接続部46aの通路面積が空気吹き出し口42の開口面積より小さい面積に設定している。
 ところで、図8に示すように、気体室41や被覆板64は、メンテナンス性を考慮し、分解可能な構成となっている。気体室41にて、天井部61は、外周部に複数の取付孔71が形成され、各側壁部62,63のフランジ部72に複数の取付孔73が形成されている。そして、天井部61が各側壁部62,63のフランジ部72に載置された状態で、ボルト74が各取付孔71,73を貫通し、ナット75に螺合することで、天井部61が各側壁部62,63に締結されている。同様に、被覆板64は、外周部に複数のねじ孔76が形成され、船底外板27に貫通しない複数のねじ穴77が形成されている。そして、固定ボルト65が各ねじ孔76に螺合し、ねじ穴77に螺合することで、被覆板64が船底外板27に所定隙間を空けて固定されている。
 そのため、気体室41にて、図3から図7に示すように、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板64の上面に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板64の外周部との間の隙間に流れ込み、各連通路Pを通して被覆板64の下方の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第1実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給配管46と、船底外板27との間に連通路Pを介して空気吹き出し口42に対向して配置される被覆板64とを設けている。
 従って、副空気供給配管46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給配管46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。
 即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給配管46を細径化することができる。この副空気供給配管46を細径化することができると、副空気供給配管46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。
 第1実施形態の船舶の摩擦低減装置では、前記被覆板64と船底外板27との間に連通路Pとして所定隙間を設け、この所定隙間を被覆板64の厚さより小さい寸法に設定している。従って、気体室41から連通路Pを通る空気量が制限されることとなり、気体室41内での空気の圧力のばらつきを減少して各空気吹き出し口42を通過する空気量を均一化することができる。
 第1実施形態の船舶の摩擦低減装置では、被覆板64を複数の空気吹き出し口42の全てに対向して配置し、被覆板64と複数の空気吹き出し口42との最短距離を全て同寸法に設定している。従って、各空気吹き出し口42を通過する空気量を均一化することができる。
 第1実施形態の船舶の摩擦低減装置では、被覆板64を気体室41内に配置し、外周部を船底外板27に固定ボルトにより固定している。従って、被覆板64と船底外板27との間の連通路Pを通る空気量を規定することとなり、気体室41内での空気の圧力のばらつきを減少して各空気吹き出し口42を通過する空気量を均一化することができる。
 第1実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42が船幅方向Yに沿って設けられ、被覆板64は、船幅方向Yに沿った長尺形状をなし、複数の空気吹き出し口42に対向して配置されている。従って、被覆板64の構造の簡素化を図ることができる。
 第1実施形態の船舶の摩擦低減装置では、圧縮機43が500kPa以上の圧縮空気を気体室41に供給可能としている。従って、副空気供給配管46の構造を簡素化して配設スペースの縮小化を図ることができる。
[第2実施形態]
 図9は、第2実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図10は、図9のX-X断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第2実施形態の船舶の摩擦低減装置において、図9及びに示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように被覆板81が対向して配置されている。被覆板81は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板81と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
 被覆板81は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板81は、全ての空気吹き出し口42を被覆するような湾曲形状をなす湾曲部82と、湾曲部82の外周部に設けられるフランジ部83とから構成されている。この被覆板81は、フランジ部83が固定ボルト65により船底外板27に所定隙間(連通路P)を介して固定されている。
 そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板81の湾曲部82に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板81との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第2実施形態の船舶の摩擦低減装置にあっては、被覆板81は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板81は、各空気吹き出し口42を被覆する湾曲部82と、湾曲部82の外周部に設けられるフランジ部83とから構成されている。
 従って、被覆板81を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板81に衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。
[第3実施形態]
 図11は、第3実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第3実施形態の船舶の摩擦低減装置において、図11に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように被覆板91が対向して配置されている。被覆板91は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板91と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板91は、船底外板27(船底13)及び天井部61の間で、且つ、両者に対向して平行をなして配置され、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
 被覆板91は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板91は、各空気吹き出し口42を個別に被覆するような湾曲形状をなす湾曲部92,93と、湾曲部92,93の外周部に設けられるフランジ部94とから構成されている。この場合、被覆板91は、副空気供給配管46の接続部46aに対向する1個の湾曲部93の高さが、接続部46aに対向しないその他の4個の湾曲部92の高さより高く設定されている。なお、被覆板91にて、副空気供給配管46の接続部46aに対向する1個の湾曲部93における水平方向の広さを、接続部46aに対向しないその他の4個の湾曲部92における水平方向の広さを広く設定してもよい。そして、この被覆板91は、フランジ部94が固定ボルト65により船底外板27に所定隙間(連通路P)を介して固定されている。
 そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、被覆板91の各湾曲部92,93に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板91との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第3実施形態の船舶の摩擦低減装置にあっては、被覆板91は、各空気吹き出し口42から離間する方向に個別に膨らむ凸形状をなしている。即ち、被覆板91は、各空気吹き出し口42を被覆する複数の湾曲部92,93と、湾曲部92,93の外周部に設けられるフランジ部94とから構成されている。
 従って、被覆板91を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板91に衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。また、被覆板91にて、副空気供給配管46の接続部46aに対向する湾曲部93をその他の4個の湾曲部92より大きくすることで、副空気供給配管46の接続部46aから気体室41に供給された空気を効率良く分散することができる。
[第4実施形態]
 図12は、第4実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図13は、図12のX111-X111断面図、図14は、図12のXIV-XIV断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第4実施形態の船舶の摩擦低減装置において、図12から図14に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
 気体室41は、天井部61と被覆板64との間に拡散部材101が設けられている。拡散部材101は、拡散板102と、2個の取付板103とから構成されている。2個の取付板103は、天井部61と被覆板64との間における各第2側壁部63の内壁面に固定されている。拡散板102は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、各取付板103に架け渡されるように、長手方向の各端部がこの各取付板103上に載置され、複数の固定ボルト104により固定されている。また、拡散部材101は、各空気吹き出し口42の直列方向の全域にわたって設けられると共に、各空気吹き出し口42の直列方向に直交する水平方向(船長方向X)の幅(長さ)が、被覆板64における各空気吹き出し口42の直列方向に直交する水平方向(船長方向X)の幅(長さ)より短く設定されている。
 そのため、圧縮機43(図1参照)が加圧した圧縮空気が副空気供給配管46を通して気体室41の空気供給空間S1に供給される。ここで、空気供給空間S1に供給された圧縮空気は、まず、拡散部材101に衝突することで、気体室41内の幅方向(船長方向X)に沿って向きを変えて流れ、この気体室41内に分散される。この拡散部材101で分散された空気は、次に、被覆板64に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板64との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第4実施形態の船舶の摩擦低減装置にあっては、気体室41の天井部61と被覆板64との間に拡散部材101を設けている。
 従って、気体室41に供給された圧縮空気は、まず、拡散部材101に衝突して拡散され、次に、被覆板64に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
 第4実施形態の船舶の摩擦低減装置では、拡散部材101の幅を被覆板64の幅より短くしている。従って、気体室41に供給された圧縮空気が拡散部材101に衝突から被覆板64に衝突することとなり、拡散部材101及び被覆板64を効率的に利用して空気を気体室内に均一に分散することができる。
[第5実施形態]
 図15は、第5実施形態の船舶の摩擦低減装置における気体室を表す縦断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第5実施形態の船舶の摩擦低減装置において、図15に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように被覆板64が対向して配置されている。被覆板64は、全ての空気吹き出し口42を含む船底外板27と対向して配置されることで、被覆板64と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板81は、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、複数の固定ボルト65により船底外板27に固定されている。
 副空気供給配管46は、中途部から分岐して主通路としての副空気供給配管46と、副通路53が設けられている。そして、副空気供給配管46と副通路53は、気体室41に接続されると共に、開閉弁54,55がそれぞれ設けられている。
 そのため、副空気供給配管46は、開閉弁54が開放されて使用可能となっており、副通路53は、開閉弁55が閉止されて使用不能となっている。副空気供給配管46は、空気が流通するだけでなく、摩擦低減装置の不使用時には、海水が流入する。すると、海洋生物が付着して副空気供給配管46を閉塞してしまうおそれがある。また、副空気供給配管46に海水が付着することから、錆が発生する可能性がある。副空気供給配管46に海洋生物や錆などの異物が付着すると、この異物が通路を閉塞してしまうことがある。船体10のメンテナンス時に、異物による副空気供給配管46の閉塞が見つかると、副空気供給配管46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とする。
 このように第5実施形態の船舶の摩擦低減装置にあっては、副空気供給配管46の中途部から分岐して主通路としての副空気供給配管46と副通路53を設け、副空気供給配管46と副通路53を気体室41に接続すると共に、開閉弁54,55をそれぞれ設けている。従って、使用中の副空気供給配管46が海洋生物などの異物により閉塞したとき、副空気供給配管46の開閉弁54を閉止して使用不能とし、副通路53の開閉弁55を開放して使用可能とすることで、装置を長期間にわたって使用することができる。
[第6実施形態]
 図16は、第6実施形態の船舶の摩擦低減装置における気体室を模式的に表した斜視図、図17は、気体室を表す縦断面図、図18は、図17のXVIII-XVIII断面図、図19は、気体室を表す分解図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第6実施形態の船舶の摩擦低減装置において、図16から図18に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板111対向して配置されている。各被覆板111は、各空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板111と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。各被覆板111は、円板形状をなし、船底外板27(船底13)と天井部61の間で各空気吹き出し口42に個別に対向して平行をなして配置され、複数の固定ボルト112により船底外板27に固定されている。
 各被覆板111は、上面部が気体室41の天井部61と所定間隔を空けて配置されると共に、外周の端面部が各被覆板111同士または気体室41の各側壁部62,63と所定間隔を空けて配置されている。そして、長手方向の中央部に配置された被覆板111は、副空気供給配管46の接続部46aが対向して配置されている。
 また、各被覆板111は、外周部の下面と船底外板27の上面との間に連通路Pが設けられている。即ち、被覆板111と船底外板27とは、この連通路Pとして船高方向Zに沿って所定隙間が確保されており、この所定隙間(連通路P)は、被覆板の厚さより小さい寸法(例えば、2mm~5mm)に設定されている。
 そして、本実施形態にて、副空気供給配管46が気体室41(空気供給空間S1)に連通する接続部46aの通路面積は、各空気吹き出し口42の開口面積より小さい面積に設定されている。具体的に、各空気吹き出し口42は、船幅方向Yに沿って複数設けられ、副空気供給配管46における接続部46aの通路面積が、1個の空気吹き出し口42の開口面積より小さい面積に設定されている。
 ところで、図19に示すように、気体室41や被覆板111は、メンテナンス性を考慮し、分解可能な構成となっている。被覆板111は、外周部に複数のねじ孔113が形成され、船底外板27に貫通しない複数のねじ穴114が形成されている。そして、固定ボルト112が各ねじ孔113に螺合し、ねじ穴114に螺合することで、被覆板111が船底外板27に所定隙間を空けて固定されている。
 そのため、気体室41にて、図16から図18に示すように、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、各被覆板111の上面に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と各被覆板111の外周部との間の隙間に流れ込み、各連通路Pを通して被覆板111の下方の空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第6実施形態の船舶の摩擦低減装置にあっては、船体10の内部に設けられる気体室41と、気体室41内と船体10の外方とを仕切る船底外板27と、船底外板27に設けられる複数の空気吹き出し口42と、圧縮機43と、圧縮機43と気体室41とを接続して気体室41へ連通する通路面積が空気吹き出し口42の開口面積より小さい面積に設定される副空気供給配管46と、船底外板27との間に連通路Pを介して空気吹き出し口42に対向して配置される被覆板111とを設けている。
 従って、副空気供給配管46における気体室41への通路面積が1個の空気吹き出し口42の開口面積より小さい面積に設定されることで、副空気供給配管46から気体室41に供給される圧縮空気の流速と単位時間当たりの流量が規定されることとなり、各空気吹き出し口42からの空気の噴出量を均一化して船体の表面を気泡により適正に覆うことで摩擦抵抗低減効果を向上させることができる。
 即ち、空気供給源として圧縮機43を用いることで、空気を加圧した圧縮空気を気体室41に供給することから、副空気供給配管46を細径化することができる。この副空気供給配管46を細径化することができると、副空気供給配管46の加工性を向上することができると共に、船体10内への配索性を向上することができる。その結果、製作性が良くなって構造を簡素化することができ、船体10内の配設スペースの縮小化を図ることができる。
 第6実施形態の船舶の摩擦低減装置では、複数の空気吹き出し口42を船幅方向Yに沿って設け、複数の被覆板を空気吹き出し口42ごとに対向して配置している。従って、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
[第7実施形態]
 図20は、第7実施形態の船舶の摩擦低減装置における気体室を表す縦断面図、図21は、抵抗板を表す斜視図、図22は、抵抗板の第1変形例を表す斜視解図、図23は、抵抗板の第2変形例を表す斜視図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第7実施形態の船舶の摩擦低減装置において、図20及び図21に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板121が対向して配置されている。各被覆板121は、全ての空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板121と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板121は、円板形状をなし、船底外板27(船底13)と天井部61の間で各空気吹き出し口42に個別に対向して平行をなして配置され、複数の固定ボルト112により船底外板27に固定されている。
 各被覆板121は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板121は、湾曲形状(半円形状)をなす湾曲部122と、湾曲部122の外周部に設けられるフランジ部123とから構成されている。この場合、副空気供給配管46の接続部46aに対向する1個の湾曲部122の大きさをその他の湾曲部122の大きさより大きく設定してもよい。
 そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、各被覆板121の湾曲部122に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各側壁部62,63と被覆板121との間の隙間に流れ込み、各連通路Pを通して空気流通空間S2に進入する。そして、空気流通空間S2に進入した圧縮空気は、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 なお、上述した実施形態では、被覆板121が空気吹き出し口42から離間する方向に膨らむ湾曲形状としたが、この形状に限定されるものではない。例えば、図22に示すように、被覆板124を、三角錐形状をなす三角錐部125と、三角錐部125の外周部に設けられるフランジ部126とから構成したり、図23に示すように、被覆板127を、台形形状をなす台形部128と、台形部128の外周部に設けられるフランジ部129とから構成したりしてもよい。
 このように第7実施形態の船舶の摩擦低減装置にあっては、被覆板121(124,127)は、各空気吹き出し口42から離間する方向に個別に膨らむ凸形状をなしている。即ち、被覆板121(124,127)は、各空気吹き出し口42を被覆する複数の湾曲部122(三角錐部125、台形部128)と、湾曲部122の外周部に設けられるフランジ部123(126,129)とから構成されている。
 従って、被覆板121(124,127)を凸形状とすることで、気体室41での空気の拡散性を向上することで、気体室41に供給された圧縮空気が凸形状をなす被覆板121(124,127)衝突することで気体室41内に均一に分散されることとなり、各空気吹き出し口42からの空気の噴出量を均一化することができる。
[第8実施形態]
 図24は、第8実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第8実施形態において、図24に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 船底外板27(船底13)は、気体室41の外側に各空気吹き出し口42を被覆するように被覆板131が対向して配置されている。被覆板131は、空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、被覆板131と船底外板27との間に空気流通空間S3が形成され、空気流通空間S3と外部との間に連通路Pが設けられている。
 被覆板131は、円板形状をなし、船底外板27(船底13)の外側に平行をなして配置され、複数の固定ボルト132により船底外板27の外面に固定されている。被覆板131は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。即ち、被覆板131は、湾曲形状(半円形状)をなす湾曲部133と、湾曲部133の外周部に設けられるフランジ部134とから構成されている。
 そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、空気吹き出し口42を通って空気流通空間S3に進入する。このとき、空気流通空間S2に進入した圧縮空気は、被覆板131の湾曲部133に衝突することで、空気吹き出し口42を通って空気供給空間S1の戻るように向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、再び空気吹き出し口42を通って空気流通空間S3に流入し、連通路Pを通して船底外板27の外部の水中に吹き出される。
 このように第8実施形態の船舶の摩擦低減装置にあっては、船底外板27(船底13)の外側に被覆板131を配置して固定ボルト132により船底外板27に固定している。
 従って、船底外板27の外側に配置した被覆板131により空気吹き出し口42を通過する空気量を制限することで、気体室41内での空気の圧力のばらつきを減少して空気吹き出し口42を通過する空気量を均一化することができる。
[第9実施形態]
 図25は、第9実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第9実施形態において、図25に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 船底外板27(船底13)は、気体室41の外側に各空気吹き出し口42を被覆するように被覆板141が対向して配置されている。被覆板141は、空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、被覆板141と船底外板27との間に空気流通空間S3が形成され、空気流通空間S3と外部との間に連通路Pが設けられている。
 被覆板141は、円板形状をなし、船底外板27(船底13)の外側に平行をなして配置されている。気体室41は、天井部61と船底外板27との間に平行をなす拡散部材142が固定され、この拡散部材142から船底外板27側に延出する取付ロッド143が設けられ、この取付ロッド143の先端部に被覆板141が固定されている。この拡散部材142は、第4実施形態で説明したように、各空気吹き出し口42の直列方向に沿って長い平板形状をなし、長手方向の各端部が第2側壁部63に固定されている。そして、この被覆板141は、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしている。
 そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、空気吹き出し口42を通って空気流通空間S3に進入する。このとき、空気流通空間S3に進入した圧縮空気は、被覆板141に衝突することで、空気吹き出し口42を通って空気供給空間S1の戻るように向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、再び空気吹き出し口42を通って空気流通空間S3に流入し、連通路Pを通して船底外板27の外部の水中に吹き出される。
 このように第9実施形態の船舶の摩擦低減装置にあっては、船底外板27(船底13)の外側に被覆板141を配置し、取付ロッド143を介して気体室41内の拡散部材142に固定している。
 従って、船底外板27の外側に配置した被覆板141により空気吹き出し口42を通過する空気量を制限することで、気体室41内での空気の圧力のばらつきを減少して空気吹き出し口42を通過する空気量を均一化することができる。
[第10実施形態]
 図26は、第10実施形態の船舶の摩擦低減装置を搭載した船舶の断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 第10実施形態の船舶の摩擦低減装置において、図26に示すように、気体室41は、天井部61と、一対の第1側壁部62と、一対の第2側壁部63とから構成され、船底外板27(船底13)と共に箱形密閉形状をなす空気供給空間S1を形成している。気体室41は、天井部61に空気供給装置32の副空気供給配管46の先端部が接続されている。
 気体室41は、内部に各空気吹き出し口42を被覆するように複数の被覆板121が対向して配置されている。各被覆板121は、全ての空気吹き出し口42及びその周辺部の船底外板27と対向して配置されることで、各被覆板121と船底外板27との間に空気供給空間S1から区画する空気流通空間S2が形成され、空気供給空間S1と空気流通空間S2との間に連通路Pが設けられている。被覆板121は、円板形状で、各空気吹き出し口42から離間する方向に膨らむ凸形状をなしており、複数の固定ボルト112により船底外板27に固定されている。また、気体室41は、天井部61と中央部の被覆板121との間に拡散部材151が設けられている。拡散部材151は、幅方向の各端部が第1側壁部62に固定されている。
 そのため、副空気供給配管46を通して気体室41の空気供給空間S1に供給された圧縮空気は、まず、拡散部材151に衝突することで、気体室41内の水平方向(船幅方向Y)に沿って向きを変えて流れ、この気体室41内に分散される。この拡散部材151で分散された空気は、次に、被覆板121に衝突することで、気体室41内の水平な放射方向に沿って向きを変えて流れ、この気体室41内にほぼ均一に分散される。この気体室41でほぼ均一に分散された圧縮空気は、各連通路Pを通して空気流通空間S2に進入し、各空気吹き出し口42を通って船底外板27の外部の水中に吹き出される。
 このように第10実施形態の船舶の摩擦低減装置にあっては、気体室41の天井部61と被覆板121との間に拡散部材151を設けている。
 従って、気体室41に供給された圧縮空気は、まず、拡散部材151に衝突して拡散され、次に、被覆板121に衝突することで気体室内に均一に分散されることとなり、各空気吹き出し口42から水中に吹き出される空気の噴出量を均一化することができる。
 なお、上述した各実施形態にて、四角い箱型形状をなす気体室41を説明したが、この気体室41の形状に限定されるものではなく、船体10内の配置場所などに応じて適宜設定すればよいものである。
 10 船体
 11 船首
 12 船尾
 13 船底
 14 左舷(船側)
 15 右舷(船側)
 21 空気供給機器室
 27 船底外板
 28,29 船側外板
 31 摩擦低減装置
 32 空気供給装置
 33 エアクーラ
 34 通風筒
 35 空気吸い込み口
 36,37 空気吹き出し部
 38 海水取入部
 39 ポンプ
 41 気体室
 42 空気吹き出し口
 43 圧縮機
 44 主空気供給配管
 45 メインチャンバ
 46 副空気供給配管(空気供給通路)
 61 天井部
 62 第1側壁部
 63 第2側壁部
 64,81,91,111,121,124,127,131,141 被覆板
 65,112,132 固定ボルト
 82,92,93,122 湾曲部
 83,94,123,126,129 フランジ部
 101,142,151 拡散部材
 102 拡散板
 103 取付板
 125 三角錐部
 128 台形部
 143 取付ロッド
 P 連通路
 S1 空気供給空間
 S2,S3 空気流通空間
 X 船長方向
 Y 船幅方向
 Z 船高方向

Claims (13)

  1.  船体の内部に設けられる気体室と、
     前記気体室内と前記船体の外方とを仕切る仕切壁と、
     前記仕切壁に設けられる複数の空気吹き出し口と、
     圧縮機と、
     前記圧縮機と前記気体室とを接続して前記気体室へ連通する通路面積が前記空気吹き出し口の開口面積より小さい面積に設定される空気供給通路と、
     前記仕切壁との間に連通路を介して前記空気吹き出し口に対向して配置される被覆板と、
     を備えることを特徴とする船舶の摩擦低減装置。
  2.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記空気供給通路の通路面積は、1個の前記空気吹き出し口の開口面積より小さい面積に設定されることを特徴とする請求項1に記載の船舶の摩擦低減装置。
  3.  前記被覆板と前記仕切壁とは、前記連通路として所定隙間が設けられ、前記所定隙間は、前記被覆板の厚さより小さい寸法に設定されることを特徴とする請求項1または請求項2に記載の船舶の摩擦低減装置。
  4.  前記被覆板は、前記複数の空気吹き出し口の全てに対向して配置され、前記被覆板と前記複数の空気吹き出し口との最短距離は、全て同寸法に設定されることを特徴とする請求項1から請求項3のいずれか一項に記載の船舶の摩擦低減装置。
  5.  前記被覆板は、前記空気吹き出し口から離間する方向に膨らむ凸形状をなすことを特徴とする請求項1から請求項4のいずれか一項に記載の船舶の摩擦低減装置。
  6.  前記被覆板は、前記気体室内に配置され、外周部が前記仕切壁に固定部材により固定されることを特徴とする請求項1から請求項5のいずれか一項に記載の船舶の摩擦低減装置。
  7.  前記被覆板は、前記仕切壁の外側に配置され、前記仕切壁に固定されるとする請求項1から請求項5のいずれか一項に記載の船舶の摩擦低減装置。
  8.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記被覆板は、前記船体の幅方向に沿った長尺形状をなし、前記複数の空気吹き出し口に対向して配置されることを特徴とする請求項1から請求項7のいずれか一項に記載の船舶の摩擦低減装置。
  9.  前記複数の空気吹き出し口は、前記船体の幅方向に沿って設けられ、前記被覆板は、複数設けられ、前記複数の空気吹き出し口ごとに対向して配置されることを特徴とする請求項1から請求項7のいずれか一項に記載の船舶の摩擦低減装置。
  10.  前記気体室は、前記仕切壁に対向する天井部と、前記仕切壁と前記天井部とを連結する側壁部とを有し、前記天井部と前記被覆板との間に拡散部材が設けられることを特徴とする請求項1から請求項9のいずれか一項に記載の船舶の摩擦低減装置。
  11.  前記拡散部材は、前記複数の空気吹き出し口の配列方向に直交する方向の長さが、前記被覆板における前記複数の空気吹き出し口の配列方向に直交する方向の長さより短く設定されることを特徴とする請求項10に記載の船舶の摩擦低減装置。
  12.  前記空気供給通路は、中途部から分岐して主通路と副通路が設けられ、前記主通路と前記副通路は、それぞれ前記気体室に接続されると共に、開閉弁が設けられることを特徴とする請求項1から請求項11のいずれか一項に記載の船舶の摩擦低減装置。
  13.  前記圧縮機は、500kPa以上の圧縮空気を前記気体室に供給可能であることを特徴とする請求項1から請求項12のいずれか一項に記載の船舶の摩擦低減装置。
PCT/JP2017/046309 2017-01-31 2017-12-25 船舶の摩擦低減装置 WO2018142805A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187037844A KR102190553B1 (ko) 2017-01-31 2017-12-25 선박의 마찰 저감 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016150 2017-01-31
JP2017016150A JP6655564B2 (ja) 2017-01-31 2017-01-31 船舶の摩擦低減装置

Publications (1)

Publication Number Publication Date
WO2018142805A1 true WO2018142805A1 (ja) 2018-08-09

Family

ID=63039543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046309 WO2018142805A1 (ja) 2017-01-31 2017-12-25 船舶の摩擦低減装置

Country Status (3)

Country Link
JP (1) JP6655564B2 (ja)
KR (1) KR102190553B1 (ja)
WO (1) WO2018142805A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058613A1 (ja) * 2008-11-21 2010-05-27 三菱重工業株式会社 船体摩擦抵抗低減装置
WO2011052337A1 (ja) * 2009-10-26 2011-05-05 三菱重工業株式会社 船舶の抵抗低減装置
WO2012133625A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 摩擦抵抗低減型船舶、及び、船舶の摩擦抵抗低減装置
WO2013002181A1 (ja) * 2011-06-28 2013-01-03 三菱重工業株式会社 摩擦抵抗低減型船舶及びその製造方法
WO2013002182A1 (ja) * 2011-06-28 2013-01-03 三菱重工業株式会社 船舶の空気潤滑システム、摩擦抵抗低減型船舶及びその製造方法
WO2013094226A1 (ja) * 2011-12-21 2013-06-27 三菱重工業株式会社 気体潤滑船の製造方法及び気体吹出チャンバーの製造方法
WO2014058008A1 (ja) * 2012-10-12 2014-04-17 三菱重工業株式会社 船体抵抗低減システムおよび船体の抵抗低減方法
WO2014080690A1 (ja) * 2012-11-20 2014-05-30 日本郵船株式会社 空気潤滑装置
WO2015060217A1 (ja) * 2013-10-23 2015-04-30 三菱重工業株式会社 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109684A (ja) * 1996-10-07 1998-04-28 Ishikawajima Harima Heavy Ind Co Ltd マイクロバブル発生装置
JP2000128064A (ja) * 1998-10-27 2000-05-09 Ishikawajima Harima Heavy Ind Co Ltd 摩擦抵抗低減船及び船体の摩擦低減方法
JP4953296B2 (ja) 2006-12-08 2012-06-13 独立行政法人海上技術安全研究所 船体摩擦抵抗低減装置
KR101552586B1 (ko) * 2008-12-02 2015-09-14 실버스트림 테크놀러지스 비.브이. 양압 초미세 기포 발생기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058613A1 (ja) * 2008-11-21 2010-05-27 三菱重工業株式会社 船体摩擦抵抗低減装置
WO2011052337A1 (ja) * 2009-10-26 2011-05-05 三菱重工業株式会社 船舶の抵抗低減装置
WO2012133625A1 (ja) * 2011-03-31 2012-10-04 三菱重工業株式会社 摩擦抵抗低減型船舶、及び、船舶の摩擦抵抗低減装置
WO2013002181A1 (ja) * 2011-06-28 2013-01-03 三菱重工業株式会社 摩擦抵抗低減型船舶及びその製造方法
WO2013002182A1 (ja) * 2011-06-28 2013-01-03 三菱重工業株式会社 船舶の空気潤滑システム、摩擦抵抗低減型船舶及びその製造方法
WO2013094226A1 (ja) * 2011-12-21 2013-06-27 三菱重工業株式会社 気体潤滑船の製造方法及び気体吹出チャンバーの製造方法
WO2014058008A1 (ja) * 2012-10-12 2014-04-17 三菱重工業株式会社 船体抵抗低減システムおよび船体の抵抗低減方法
WO2014080690A1 (ja) * 2012-11-20 2014-05-30 日本郵船株式会社 空気潤滑装置
WO2015060217A1 (ja) * 2013-10-23 2015-04-30 三菱重工業株式会社 摩擦抵抗低減装置、これを備えている船舶、船舶の摩擦抵抗低減方法

Also Published As

Publication number Publication date
KR102190553B1 (ko) 2020-12-14
JP6655564B2 (ja) 2020-02-26
JP2018122718A (ja) 2018-08-09
KR20190013953A (ko) 2019-02-11

Similar Documents

Publication Publication Date Title
US8402906B2 (en) Device for reducing frictional resistance of ship body
JP5022344B2 (ja) 船体摩擦抵抗低減装置
JP5022346B2 (ja) 船体摩擦抵抗低減装置
WO2012042947A1 (ja) 船舶の空気潤滑システム
WO2018142805A1 (ja) 船舶の摩擦低減装置
WO2018142825A1 (ja) 船舶の摩擦低減装置
EP3315396B1 (en) Frictional resistance-reducing device and ship including same
JP2017165386A (ja) 船体摩擦抵抗低減装置
JP2006273213A (ja) 船艇の排気装置
KR20180106904A (ko) 선박
JP5138804B1 (ja) 船舶
JP6133805B2 (ja) 船舶の摩擦低減装置
WO2018168585A1 (ja) 船舶
JP2004535331A (ja)
JP2023148982A (ja) 摩擦低減装置
JP2018122717A5 (ja)
JP2000296796A (ja) 摩擦抵抗低減船および気体噴出装置
JP2018122718A5 (ja)
KR20180106871A (ko) 선박의 마찰 저감 장치
JPH11180380A (ja) 摩擦低減船及び船体の摩擦低減方法
JPH11301570A (ja) 摩擦抵抗低減船の空気吹き出し器
TW202317430A (zh) 橫向水層流系統
IT9012499A1 (it) Impianto antincendio per navi o simili, in particolare per cacciamine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894714

Country of ref document: EP

Kind code of ref document: A1