JP6643104B2 - 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム - Google Patents

放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム Download PDF

Info

Publication number
JP6643104B2
JP6643104B2 JP2016010870A JP2016010870A JP6643104B2 JP 6643104 B2 JP6643104 B2 JP 6643104B2 JP 2016010870 A JP2016010870 A JP 2016010870A JP 2016010870 A JP2016010870 A JP 2016010870A JP 6643104 B2 JP6643104 B2 JP 6643104B2
Authority
JP
Japan
Prior art keywords
unit
alignment
imaging apparatus
radiation
radiation imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010870A
Other languages
English (en)
Other versions
JP2017130891A (ja
JP2017130891A5 (ja
Inventor
可菜子 佐藤
可菜子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016010870A priority Critical patent/JP6643104B2/ja
Priority to US15/398,917 priority patent/US10422890B2/en
Publication of JP2017130891A publication Critical patent/JP2017130891A/ja
Publication of JP2017130891A5 publication Critical patent/JP2017130891A5/ja
Application granted granted Critical
Publication of JP6643104B2 publication Critical patent/JP6643104B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Description

本発明は、放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システムに関する。
放射線を検出する複数のセンサあるいは画素を二次元状に配列した放射線撮像装置が知られている。特許文献1に記載された放射線撮像装置は、シンチレータと、シンチレータからの光を検出するフラットパネルセンサと、フラットパネルセンサからの信号をアナログ・デジタル変換するAD変換器と、AD変換器からのデジタル信号を処理する画像処理部とを有する。
特開2014−030130号公報 特表2010−541101号公報
特許文献1に記載されたような放射線撮像装置において、AD変換器から画像処理部へのデジタル信号の伝送には、例えば、シリアルデータ伝送が採用されうる。シリアルデータ伝送では、データの区切りを検出するためにヘッダがシリアルデータに付加されうる(例えば、特許文献2)。しかしながら、伝送すべきデータにヘッダを付加すると、その分だけデータの伝送において遅れが生じる。
一方、ヘッダを設けることなく、転送されたシリアルデータをパラレルデータに変換し続ける方法も考えられる。この場合、シリアルデータの転送の開始前に一度だけアライメントを行えばよい。しかし、このような方法では、動作撮像中に静電気等のノイズの影響によってビットずれが起こると、その状態から復帰できないという問題がある。
本発明は、上記の課題認識を契機としてなされたものであり、データの伝送の遅れを抑えつつ、ビットずれが起こった場合にその状態からの復帰を可能にするために有利な技術を提供することを目的とする。
本発明の1つの側面は、複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置であって、放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力するAD変換部と、前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列をパラレルデータに変換するシリアルパラレル変換部と、前記処理部が前記放射線撮像装置から前記複数のフレームの放射線画像の信号を正しく受信するように前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント部と、を備え、前記アライメント部は前記複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間において前記アライメントを行う。
本発明によれば、データの伝送の遅れを抑えつつ、ビットずれが起こった場合にその状態からの復帰を可能にするために有利な技術が提供される。
実施形態の放射線撮像装置の画素の構成を示す図。 実施形態の放射線撮像装置の撮像ブロックの構成を示す図。 実施形態の放射線撮像装置の読出回路を示す図。 実施形態の放射線撮像システムの構成を示す図。 実施形態の放射線撮像装置の動作を例示する図。 実施形態の放射線撮像装置の動作を例示する図。 実施形態の放射線撮像装置におけるアライメント方法を示す図。 比較例を示す図。 実施形態の放射線撮像装置の第1動作例を示す図。 実施形態の放射線撮像装置の第1動作例を示す図。 実施形態の放射線撮像装置の第2動作例を示す図。 実施形態の放射線撮像装置の第2動作例の変形例を示す図。 実施形態の放射線撮像装置の第3動作例を示す図。 実施形態の放射線撮像装置の制御の構成を示す図。 実施形態の放射線撮像装置の読出回路のAD変換部の構成を示す図。 AD変換部から出力されるシリアルデータを示す図。 実施形態の放射線撮像装置におけるアライメント方法を示す図。 実施形態の放射線撮像装置におけるアライメント方法を示す図。 実施形態の放射線撮像装置の制御部のシリアルパラレル変換部におけるシリアルパラレル変換の例を示す図。 実施形態の放射線撮像システムの適用例を示す図。
以下、図面を参照しながら本発明をその例示的な実施形態を通して説明する。
図4は、本発明の一実施形態の放射線撮像システムSYSの構成を示す図である。放射線撮像システムSYSは、放射線撮像装置100と、処理部101と、表示部102と、曝射制御部103と、放射線源104とを備えうる。放射線撮像装置100は、撮像部105と、読出部106と、制御部109とを備えうる。撮像部105は、複数の撮像ブロック120を含みうる。読出部106は、複数の撮像ブロック120からそれぞれ信号を読み出す複数の読出回路20を含みうる。図2は、1つの撮像ブロック120の構成を示す図である。図1は、撮像ブロック120あるいは撮像部105の複数の画素Pのうちの1つの画素Pの構成を示す図である。図3は、1つの読出回路20の構成を示す図である。
図1を参照しながら画素Pの構成を説明する。画素Pは、放射線を検出するセンサである。図1には示されていないが、撮像ブロック120あるいは撮像部105は、放射線を光に変換するシンチレータ(波長変換体)を有しうる。該シンチレータは、複数の画素Pによって共有されうる。画素Pは、変換部CPと、増幅部APと、リセット部RPと、第1保持部SH1と、第2保持部SH2と、第3保持部SH3と、第1出力部OP1と、第2出力部OP2と、第3出力部OP3とを含みうる。変換部CPは、フォトダイオードPDと、トランジスタM1と、フローティングディフュージョン容量CFD(以下、FD容量CFD)と、感度を切り替えるための付加容量CFD’とを有しうる。フォトダイオードPDは光電変換素子であり、照射された放射線に応じてシンチレータが発生した光を電荷に変換する。ここで、フォトダイオード(光電変換素子)PDが放射線を直接に電荷に変換するように構成されてもよく、この場合には、シンチレータは不要である。
フォトダイオードPDで光電変換によって発生した電荷は、FD容量CFDによって電圧に変換され、この電圧が増幅部APに提供される。容量CFD’は、放射線に対する画素Pの感度を切り替えるために用いられ、トランジスタM1(スイッチ素子)を介してフォトダイオードPDに接続されている。WIDE信号が活性化されることによってトランジスタM1が導通状態になり、FD容量CFDと容量CFD’とが並列さ接続され、容量値が増加する。これにより、フォトダイオードPDで光電変換によって発生した電荷が電圧に変換される際の変換係数、即ち感度が変更される。トランジスタM1の導通/非導通を制御することにより、第1感度の変換部CPで変換された電荷に応じた電圧である第1信号と、第1感度とは異なる第2感度の変換部で変換された電荷に応じた電圧である第2信号と、を増幅部APに提供することができる。
増幅部APは、第1制御トランジスタM3と、第1増幅トランジスタM4と、クランプ容量CCLと、第2制御トランジスタM6とm第2増幅トランジスタM7と、2つの定電流源CCS1、CCS2とを有しうる。第1制御トランジスタM3、第1増幅トランジスタM4および定電流源CCS1は、1つの電流経路を形成するように直列に接続されている。第1制御トランジスタM3のゲートに供給されるイネーブル信号ENが活性化されることによって、変換部CPからの電圧を受ける第1増幅トランジスタM4が動作状態となる。このようにしてソースフォロワ回路が形成され、変換部CPからの電圧を増幅した電圧が第1増幅トランジスタM4から出力される。第1増幅トランジスタM4から出力された電圧は、クランプ容量CCLを介して第2増幅トランジスタM7に供給される。
第2制御トランジスタM6、第2増幅トランジスタM7および定電流源CCS2は、1つの電流経路を形成するように直列に接続されている。第2制御トランジスタM6のゲートに供給されるイネーブル信号ENが活性化されることによって、第1増幅トランジスタM4からの電圧を受ける第1増幅トランジスタM4が動作状態となる。このようにしてソースフォロワ回路が形成され、第1増幅トランジスタM4からの電圧を増幅した電圧が第2増幅トランジスタM7から出力される。クランプ容量CCLは、第1増幅トランジスタM4と第2増幅トランジスタM7の間に直列に配置されている。クランプ容量CCLによるクランプ動作については、後に説明するリセット部RPと併せて説明する。
リセット部RPは、第1リセットトランジスタM2と第2リセットトランジスタM5とを含む。第1リセットトランジスタM2は、PRES信号が活性化されることによってフォトダイオードPDに所定の電圧を供給してフォトダイオードPDの電荷を初期化し、増幅部APに出力される電圧をリセットする。第2リセットトランジスタM5は、クランプ容量CCLと第2増幅トランジスタM7との間の接続ノードに所定の電圧を供給することにより、第2増幅トランジスタM7から出力される電圧をリセットする。第1リセットトランジスタM2によるリセット時の変換部CPからの電圧に応じた電圧がクランプ容量CCLの端子n1に供給される。また、クランプ信号PCLが活性化されることにより第2リセットトランジスタM5が導通状態になり、所定の電圧であるクランプ電圧VCLがクランプ容量CCLの端子n2に供給される。このようにして、クランプ容量CCLの両端子n1−n2間で生じた電位差をノイズ成分としてクランプし、その後のフォトダイオードPDでの電荷の発生および蓄積に伴う電圧の変化分を信号成分として出力する。これがクランプ容量CCLを用いたクランプ動作であり、クランプ動作により変換部CPで生じるkTCノイズや第1増幅トランジスタM4のオフセット等のノイズ成分が抑制される。
第1保持部SH1は、第1感度の変換部CPで変換された電荷が増幅部APで増幅された第1信号をサンプリングしホールディングするサンプルホールド回路である。第1保持部SH1は、第1転送トランジスタM8と、第1保持容量CS1とを含みうる。制御信号TS1によって第1転送トランジスタM8の状態(導通状態または非導通状態)を切り替えることにより、第1感度の変換部CPで変換された電荷に対応する電圧が増幅部APで増幅された第1信号が容量CS1に転送され保持される。第1出力部OP1は、第1信号増幅トランジスタM10と、第1出力スイッチSW9とを含みうる。第1信号増幅トランジスタM10は、第1保持容量CS1に保持された電圧を増幅した信号を出力するためのトランジスタであり、第1出力スイッチSW9は、第1信号増幅トランジスタM10によって出力された信号を転送するスイッチである。第1出力スイッチSW9に供給される制御信号VSRによって第1出力スイッチSW9が導通状態となることにより、後段の定電流源(不図示)と第1信号増幅トランジスタM10とによってソースフォロワ回路が形成される。このような動作を通して、第1出力部OP1によって、第1保持容量CS1によって保持された第1信号に対応する第1出力信号が出力される。
第2保持部SH2は、第1感度と異なる第2感度の変換部CPで変換された電荷が増幅部APで増幅された第2信号をサンプリングし保持するサンプルホールド回路である。第2保持部SH2は、第2転送トランジスタM11と、第2保持容量CS2とを含みうる。制御信号TS2によって第2転送トランジスタM11の状態(導通状態または非導通状態)を切り替えることにより、第2感度の変換部CPで変換された電荷に対応する電圧が増幅部APで増幅された第2信号を容量CS2に転送され保持される。第2出力部OP2は、第2信号増幅トランジスタM13と、第2出力スイッチSW12とを含みうる。第2信号増幅トランジスタM13は、第2保持容量CS2に保持された電圧を増幅した信号を出力するためのトランジスタであり、第2出力スイッチSW12は、第2信号増幅トランジスタM13によって出力された信号を転送するスイッチである。第2出力スイッチSW12に供給される制御信号VSRによって第2出力スイッチSW12が導通状態となることにより、後段の定電流源(不図示)と第2信号増幅トランジスタM13とによってソースフォロワ回路が形成される。このような動作を通して、第2出力部OP2によって、第2保持容量CS2によって保持された第2信号に対応する第2出力信号が出力される。
第3保持部SH3は、増幅部APのオフセット信号をサンプリングし保持するサンプルホールド回路である。第3保持部SH3は、第3転送トランジスタM14と、第3保持容量CNとを含みうる。制御信号TS3によって第3転送トランジスタM14の状態(導通状態または非導通状態)を切り替えることにより、増幅部APのオフセット信号が容量CNに転送され保持される。第3出力部OP3は、第3信号増幅トランジスタM16と、第3出力スイッチSW15とを含みうる。第3信号増幅トランジスタM16は、第3保持容量CNに保持された電圧を増幅した信号を出力するためのトランジスタであり、第3出力スイッチSW15は、第3信号増幅トランジスタM16によって出力された信号を転送するスイッチである。第3出力スイッチSW15に供給される制御信号VSRによって第3出力スイッチSW15が導通状態となることにより、後段の定電流源(不図示)と第3信号増幅トランジスタM16とでソースフォロワ回路が形成される。このような動作を通して、第3出力部OP3によって、画素Pからオフセット信号に基づく第3出力信号が出力される。
図2に示されているように、撮像ブロック120は、複数(m)の行および複数(n)の列が構成されるように複数の画素Pが配列されたアレイを含む。撮像ブロック120は、複数の画素Pと、複数の画素Pを行単位で選択するための垂直走査回路(行選択部)403と、垂直走査回路403によって選択された行における列を選択する水平走査回路(列選択部)404とを含みうる。垂直走査回路403および水平走査回路404は、例えば、シフトレジスタで構成され、制御部109からの制御信号に基づいて動作する。垂直走査回路403は、制御線405を介して複数の画素Pに制御信号VSRを供給し、制御信号VSRに基づいて複数の画素Pを行単位で選択する。行選択部(垂直走査回路403)の動作周波数は、列選択部(水平走査回路404)の動作周波数に比べて大きい。即ち、行選択部(垂直走査回路403)は列選択部(水平走査回路404)に比べて動作が遅い。
撮像ブロック120は、各画素Pの容量CS1に保持された第1信号を読み出すための端子ES1と、各画素Pの容量CS2に保持された第2信号を読み出すための端子ES2と、各画素Pの容量CNに保持された電圧を読み出すための端子Eとを有する。また、撮像ブロック120は、セレクト端子ECSをさらに有し、端子ECSが受ける信号が活性化されることによって、当該撮像ブロック120の各画素Pの信号が、端子ES1、ES2及びEを介して読み出されうる。
各画素Pの端子S1、S2及びNは、各端子に対応する列信号線406〜408に接続されている。列信号線406〜408は、水平走査回路404からの制御信号に応答して導通状態になるスイッチSWを介して、アナログ出力線409〜411に接続されている。アナログ出力線409〜411の信号は、端子ECSが受ける信号に応答して導通状態になるスイッチSWCSを介して、端子ES1、ES2及びEから出力される。
また、撮像ブロック120は、垂直走査回路403および水平走査回路404を制御するための制御信号を制御部109から受ける端子HST、CLKH、VSTおよびCLKVをさらに有する。端子HSTは、制御部109から水平走査回路404に供給されるスタートパルスHSTを受ける。端子CLKHは、制御部109から水平走査回路404に供給されるクロック信号CLKHを受ける。端子VSTは、制御部109から垂直走査回路403に供給されるスタートパルスVSTを受ける。端子CLKVは、制御部109から垂直走査回路403に供給されるクロック信号CLKVを受ける。水平走査回路404は、供給されたスタートパルスHSTとクロック信号CLKHとに基づいて制御信号HSRを生成して出力し、垂直走査回路403は、供給されたスタートパルスVSTとクロック信号CLKVとに基づいて制御信号VSRを生成して出力する。これにより、第1信号又は第1出力信号、第2出力信号、及び、第3出力信号が、各画素からX-Yアドレス方式で順次に読み出される。
次に、図3を参照しながら信号読出部106を構成する複数の読出回路20の構成を説明する。ここで、1つの撮像ブロック120からは、1つの読出回路20によって信号が読み出されうる。図3には、1つの読出回路20が示されている。読出回路20は、例えば、差動アンプ等を含む信号増幅部107と、AD変換を行うAD変換部108とを含みうる。端子ES1からの信号は、制御部109から端子TRO1に供給される制御信号に応答して導通状態になるスイッチM50を介して、信号増幅部107の反転入力端子に供給される。端子ES2からの信号は、制御部109から端子TRO2に供給される制御信号に応答して導通状態になるスイッチM51を介して、信号増幅部107の当該反転入力端子に供給される。スイッチM50及びM51は、端子ES1及び端子ES2の一方の信号が当該反転入力端子に供給されるように制御される。なお、スイッチM50及びM51並びに信号増幅部107は、信号ADCLKの周期に追従可能な応答特性を有するように設計される。
端子Eからの信号は、信号増幅部107の非反転入力端子に入力される。信号増幅部107は、端子ES1からの信号と端子Eからの信号との差分、又は端子ES2からの信号と端子Eからの信号との差分を増幅してアナログ信号(アナログ画像信号)ASを生成し、これを出力する。AD変換部108は、信号増幅部107から出力されるアナログ信号ASを、ADCLK端子を介して供給されるクロック信号ADCLKに従ってAD変換し、変換結果をシリアルデータSDとして出力する。ここで、信号増幅部107から出力される1つの画素Pの信号としてのアナログ信号ASは、シリアルデータSDの形式において、複数ビットのシリアルデータ列として表現される。即ち、1つの画素Pの信号としてのアナログ信号ASは、複数ビットのシリアルデータ列に対応する。
次に、図4を参照しながら放射線撮像装置100および放射線撮像システムSYSの構成を説明する。前述のように、放射線撮像システムSYSは、放射線撮像装置100と、処理部101と、表示部102と、曝射制御部103と、放射線源104とを備えうる。放射線画像の撮影を行う際には、処理部101によって放射線撮像装置100と曝射制御部103とが同期制御されうる。被検者を通過した放射線(例えば、X線、α線、β線、γ線等)は、放射線撮像装置100によって検知され、処理部101等において所定の処理がなされた後、当該放射線に基づく画像データが生成される。当該画像データは、表示部102に放射線画像として表示される。
撮像部105は、図4に例示されるように複数の撮像ブロック120を一次元または二次元に配列して構成されうるが、単一の撮像ブロック120によって構成されてもよい。複数の撮像ブロック120を一次元または二次元に配列して撮像部105を構成する手法は、大型の撮像部105を得るために有利である。撮像部105は、放射線を検出する複数の画素(センサ)Pを有し、複数の画素Pの各々からアナログ信号を出力する。
放射線撮像装置100の制御部109は、例えば処理部101との間で、制御コマンドの通信の他、同期信号の通信を行い、また、処理部101に画像データを出力する。また、制御部109は、撮像部105および読出部106を制御する。制御部109は、読出部106を構成する各読出回路20のAD変換部108によりAD変換された撮像ブロック120の画像データ(デジタルデータ)を用いて1つのフレームデータを生成し、処理部101に出力する。
制御部109と処理部101との間では、各種インターフェースを介して、制御コマンド、制御信号および画像データの授受が行われる。処理部101は、制御用インターフェース110を介して、動作モードや各種パラメータなどの設定情報ないし撮影情報を制御部109に出力する。また、制御部109は、制御用インターフェース110を介して、放射線撮像装置100の動作状態などの装置情報を処理部101に出力する。また、制御部109は、画像データインターフェース111を介して、放射線撮像装置100で得られた画像データを処理部101に出力する。また、制御部109は、READY信号112を用いて、放射線撮像装置100が撮影可能な状態になったことを処理部101に通知する。また、処理部101は、外部同期信号113を用いて、制御部109からのREADY信号112に応答して制御部109に対して放射線の照射開始(曝射)のタイミングを通知する。また、制御部109は、曝射許可信号114がイネーブル状態の間に、曝射制御部103に制御信号を出力して放射線照射を開始させる。
放射線撮像装置100は、各画素において、例えば2つの感度のそれぞれで信号を取得し、これらの信号を用いて画像データを生成する動作モード(例えば、ダイナミックレンジ拡張を行う動作モード等)を有しうる。この動作モードを達成する1つの方法として、第1感度で得られた第1信号と第2感度で得られた第2信号とを、各画素Pの第1保持部SH1及び第2保持部SH2でそれぞれ保持して個別に読み出し、読み出された各感度の信号を画素毎に合成する方式がある。
以下、図5、図6を参照しながら放射線撮像装置100の1つの動作モードとして、ダイナミックレンジを拡張する動作モードを説明する。図5(a)は、複数のフレームの放射線画像を連続的に撮像する動作(動画撮像動作)を模式的に示すタイミングチャートである。図5(b)は、図5(a)の中のリセット駆動RDを模式的に示すタイミングチャートである。図5(c)は、図5(a)の中のサンプリング駆動SDを模式的に示すタイミングチャートである。図6(a)は、図5(a)の中の読出駆動READ S1、READS2、READ SNを模式的に示すタイミングチャートである。図6(b)は、図6(a)の一部の期間を拡大したタイミングチャートである。
時刻t1において、動作モード(撮像モード)が設定され撮像の開始が指示される。その後、時刻t2では、撮像のための動作が開始される。撮像のための動作は、リセット駆動RD、サンプリング駆動SDおよび読出駆動READ(READ S1、READ S2、READ SN)を含むサイクルの繰り返しであり、各サイクルにおいて1つのフレームの放射線画像が撮像される。リセット駆動RDおよびそれに続くサンプリング駆動SDの後であって、次のリセット駆動RDの前に、読出駆動READ(READ S1、READ S2、READ SN)がなされる。
リセット駆動RDでは、リセット動作およびクランプ動作が行われる。具体的には、図5(b)に示されるように、時刻t2でイネーブル信号ENがHiレベルに駆動され、第1制御トランジスタM3及び第2制御トランジスタM6が導通状態にされる。これにより、第1増幅トランジスタM4及び第2増幅トランジスタM7がソースフォロア動作を行う状態になる。また、時刻t2では、信号PRESがHiレベルに駆動され、第1リセットトランジスタM2が導通状態にされる。これにより、フォトダイオードPDは、基準電圧VRESに接続され、フォトダイオードPDのリセットが開始される。また、リセット開始直後のトランジスタM4のゲート電圧に応じた電圧がクランプ容量CCLの一方の端子n1に供給される。時刻t3では、信号PCLがHiレベルに駆動され、第2リセットトランジスタM5が導通状態にされる。これにより、クランプ電圧VCLがクランプ容量CCLの他方の端子n2に供給される。
時刻t4では、信号TS1、TS2およびTNがHiレベルに駆動され、第1転送トランジスタM8、第2転送トランジスタM11および第3転送トランジスタM14が導通状態にされる。これにより、容量CS1、CS2およびCNはいずれも初期状態(第2増幅トランジスタM7のゲート電圧が基準電圧VCLのときの増幅部APの出力値の電圧)になる。また、時刻t4では、信号WIDEがHiレベルに駆動され、感度切替え用のトランジスタM1が導通状態にされる。これにより、容量CFD’は基準電圧VRESに接続され、容量CFD’の電圧もリセットされる。時刻t5では、信号TS1、TS2およびTNがLowレベルに駆動され、第1転送トランジスタM8、第2転送トランジスタM11および第3転送トランジスタM14が非導通状態にされる。これにより、容量CS1、CS2およびCNの電圧が固定される。また、時刻t5では、信号WIDEがLoレベルに駆動され、感度切替え用のトランジスタM1が非導通状態にされる。これにより、容量CFD’は、基準電圧VRESに固定される。次に、時刻t6では、信号PRESがLowレベルに駆動され、第1リセットトランジスタM2が非導通状態にされる。これにより、クランプ容量CCLの端子n1は、リセット終了直後の第1増幅トランジスタM4のゲート電圧に応じた電圧にセットされる。時刻t7では、信号PCLがLowレベルに駆動され、第2リセットトランジスタM5が非導通状態にされる。これにより、端子n1と端子n2との電位差に応じた電荷がクランプ容量CCLに保持され、変換部CPのkTCノイズ及び第1増幅トランジスタのオフセット等のノイズ成分がクランプ容量CCLに保持される。これらにより、リセット動作とクランプ動作が完了する。そして、時刻t8では、イネーブル信号ENがLowレベルに駆動され、第1制御トランジスタM3及び第2制御トランジスタM6が非導通状態にされる。これにより、第1増幅トランジスタM4及び第2増幅トランジスタM7が非動作状態にされる。
以上のようにして、リセット駆動RDの一連の動作が終了する。即ち、リセット駆動RDでは、フォトダイオードPDがリセットされると共に、変換部CPのkTCノイズや第1増幅トランジスタのオフセットに起因するノイズ成分がクランプ容量CCLに保持され、また、容量CS1、CS2およびCNが初期化される。なお、このようなリセット駆動RDは、全ての画素Pに対して一括で行われる。即ち、各制御信号EN、PRES、PCL、TS1、TS2、TN、WIDEは、全ての画素Pに対して一括に同じタイミングで供給される。
ダイナミックレンジ拡張を行う動作モードにおけるサンプリング駆動SDでは、画素Pを2つの感度で駆動し、2つの感度でそれぞれ得られる信号が容量CS1およびCS2によって保持される。具体的な動作は、図5(c)に示されている。時刻t11では、イネーブル信号ENがHiレベルに駆動され、第1制御トランジスタM3及び第2制御トランジスタM6が導通状態にされ、第1増幅トランジスタM4及び第2増幅トランジスタM7がソースフォロア動作を行う状態にされる。なお、時刻t11では、信号WIDEはLowレベルであり、画素Pは、第1感度に対応する高感度モードになっている。第1増幅トランジスタM4のゲート電圧(即ち、FD容量CFDの電圧)は、フォトダイオードPDで発生し蓄積された電荷量に応じて変化する。この変化したゲート電圧に応じた電圧がクランプ容量CCLの一方の端子n1に供給され、端子n1の電位が変化する。クランプ容量CCLの他方の端子n2の電位変化は、端子n1の電位変化にしたがう。ここで、前述のとおり、クランプ容量CCLにはkTCノイズに相当する電圧が保持されているため、この電位変化の量が信号成分として第2増幅トランジスタM7から出力される。
時刻t12では、信号TS1がHiレベルに駆動され、第1転送トランジスタM8が導通状態にされる。即ち、時刻t12では、高感度モードにおける増幅部APの出力のサンプリング(転送)が開始される。具体的には、第1保持容量CS1には、増幅部APから出力される電圧(第2増幅トランジスタM7のゲート電圧に応じた電圧)が転送される。次に、時刻t13では、時刻t12でサンプリングが開始されたので、曝射許可信号(不図示)がLowレベル(禁止状態)に駆動される。その後、時刻t14では、信号TS1がLowレベルに駆動され、第1転送トランジスタM8を非導通状態にされる。即ち、時刻t14では、増幅部APから出力された電圧の転送が終了され、第1保持容量CS1によって保持された電圧が固定される。即ち、時刻t12〜t14では、第1感度の変換部CPの電荷に基づく第1信号がサンプリングされ、第1保持部SH1の第1保持容量CS1によって保持(ホールディング)される。
時刻t15では、信号WIDEがHiレベルに駆動され、感度切替え用のトランジスタM1が導通状態にされる。これにより、トランジスタM1を介して容量CFD’がフォトダイオードPDに電気的に接続され、トランジスタM4のゲート電圧は、FD容量CFDと容量CFD’との合成容量に応じた電圧となる。当該合成容量の値は、FD容量CFDの値よりも大きいため、第1増幅トランジスタM4のゲート電圧が変化しにくくなり、即ち、画素Pは、第2感度に対応する低感度モードに切り替わる。時刻t16では、信号TS2がHiレベルに駆動され、第2転送トランジスタM11が導通状態にされる。即ち、時刻t16では、低感度モードにおける増幅部APの出力のサンプリング(転送)が開始される。具体的には、第2保持容量CS2は、増幅部APから出力される電圧になる。その後、時刻t17では、信号TS2がLowレベルに駆動され、第2転送トランジスタM11が非導通状態にされる。即ち、時刻t17では、増幅部APから出力された電圧の転送が終了され、第2保持容量CS2によって保持された電圧が固定される。即ち、時刻t16〜t17では、第2感度の変換部CPの電荷に基づく第2信号がサンプリングされ、第2保持部SH2の第2保持容量CS2によって保持(ホールディング)される。
次に、時刻t18では、信号PRESがHiレベルに駆動され、第1リセットトランジスタM2が導通状態にされる。これにより、FD容量CFD及び容量CFD’の電圧が基準電圧VRESにリセットされ、端子n1の電圧も時刻t3と同じ状態にリセットされる。時刻t19では、信号PCLがHiレベルに駆動され、第2リセットトランジスタM5が導通状態にされる。これにより、クランプ電圧VCLがクランプ容量CCLの他方の端子n2(トランジスタM7側の端子)に供給される。時刻t20では、信号PRES及びWIDEがLowレベルに駆動され、トランジスタM1及び第1リセットトランジスタM2が非導通状態にされる。これにより、容量CFD’は、リセット開始直後の電圧で固定され、また、クランプ容量CCLの端子n1は、リセット開始直後の第1増幅トランジスタM4のゲート電圧に応じた電圧にセットされる。時刻t21では、信号TNがHiレベルに駆動され、第3転送トランジスタM14が導通状態にされる。これにより、第2増幅トランジスタM7のゲート電圧が基準電圧VCLのときに増幅部APから出力される電圧が第3保持容量CNに転送される。
時刻t22では、信号TNがLowレベルに駆動され、第3転送トランジスタM14が非導通状態にされる。これにより、第3保持容量CNの電圧が固定される。即ち、時刻t21〜t22では、オフセット信号が第3保持容量CNに保持される。このオフセット信号は、増幅部APの回路構成に依存する熱ノイズ、1/fノイズ、温度差、プロセスばらつき等の、第2増幅トランジスタM7のオフセットに起因するノイズ成分に相当する電圧に基づく。そして、時刻t23では、信号PCLがLowレベルに駆動され、第2リセットトランジスタM5が非導通状態にされる。時刻t24では、イネーブル信号ENがLowレベルに駆動され、第1制御トランジスタM3及び第2制御トランジスタM6が非導通状態にされる。以上のようにして、サンプリング駆動SDの一連の動作が終了する。即ち、サンプリング駆動SDでは、第1感度の画素Pで得られる第1信号が第1保持容量CS1によって、第2感度の画素Pで得られる第2信号が第2保持容量CS2によって、増幅部APのオフセット信号が第3保持容量CNによって、それぞれ保持される。なお、サンプリング駆動SDは、前述のリセット駆動RDと同様に、撮像ブロック120の制御タイミングのずれを防ぐため、全ての画素Pに対して一括で行われる。即ち、各制御信号EN、PRES、PCL、TS1、TS2、TN、WIDEは、全ての画素Pに対して一括に同じタイミングで供給される。
このように、各画素Pの各保持部に保持された各信号は、複数の画素Pが行単位で選択され、選択された行の複数の画素Pを列毎に順次選択され、行単位で上記動作を繰り返すことで、全ての画素Pからの画像信号が読み出される。これは、図5(a)の読出駆動READ S1、READ S2、READ SNで示されるもので、図6(a)、図6(b)を参照して更に説明される。図6(a)、図6(b)は、図2、図3に示される制御用の端子VST、CLKV、TRO1、TRO2、HST、CLKHおよびADCLKに供給される制御信号が示されている。
図6(a)、図6(b)に示された例では、第1行目の各画素Pから信号を読み出す時刻t210〜t220の期間において、前半では各画素Pから第1信号が読み出され、後半では各画素Pからの第2信号が読み出される。なお、撮像ブロック120から信号を読み出す際は、当該撮像ブロック120の端子ECSにはHiレベルが供給され、スイッチSWCSは導通状態になっている。
時刻t200では、端子VSTでスタートパルスを受ける。時刻t210では、クロック信号CLKVを受けて、垂直走査回路403が第1行目の制御線405を介して第1行目の画素Pの出力部OP1〜OP3に制御信号VSRを出力する。これにより、第1行目の画素Pの出力スイッチSW9、SW12、SW15が導通状態となり、第1行目の画素Pが選択される。その後、時刻t211〜t215にわたって信号TRO1がHiレベルに駆動され、信号TRO2がLowレベルに駆動される。これにより、第1行目の画素Pの第1信号が出力される状態になる。
時刻t211では、端子HSTでスタートパルスを受ける。時刻t212では、クロック信号CLKHを受ける。水平走査回路404は、クロック信号CLKH(のアクティブレベルへの遷移)を受ける度に、選択している列を、第1列目から第n列目まで順にシフトさせる。AD変換部108は、クロック信号CLKHのアクティブレベルへの遷移と次のアクティブレベルへの遷移との間の時刻(例えば、時刻t213)においてクロック信号ADCLK(のアクティブレベルへの遷移)を受ける。そして、AD変換部108は、クロック信号ADCLKのアクティブレベルへの遷移に応答して、選択されている列における画素Pからの第1信号についてのAD変換を行う。その後、例えば時刻t214において、次の列の画素Pが選択され、当該画素Pについての第1信号の出力およびAD変換が同様にしてなされる。このようにして、第1信号の読出動作が第1列目から第n列目まで順に列ごとになされる。その後、時刻t215では、信号TRO1がLowレベルに駆動され、信号TRO2がHiレベルに駆動され、第1列目から第n列目まで順に列ごとに、第2信号の読出動作が同様の手順でなされる。ここで、制御部109に出力されたデジタルデータは、読出部106で読み出された順番で、撮像部105の行ごとに画像データインターフェース111により処理部101に送信され、1フレーム分の画像信号が得られる。以上により、第1感度で取得した信号に基づく画像信号および第2感度で取得した信号に基づく画像信号の両方が読み出される。そして、第1感度で取得した信号に基づく画像信号と第2感度で取得した信号に基づく画像信号とを各画素Pに対応させて合成することにより、ダイナミックレンジが拡張された画像信号が得られる。
図15には、AD変換部108の構成が示されている。AD変換部108は、AD変換器212、アライメントパターン発生器211、セレクタ213およびシリアライザー214を含みうる。セレクタ213は、制御部109から供給される選択信号に従って、AD変換器212から供給される画素信号としてのデジタル信号DSおよびアライメントパターン発生器211から供給されるアライメントパターンの一方を選択して出力する。AD変換器212は、信号増幅部107から供給される画素信号としてのアナログ信号ASをクロック信号ADCLKに従ってAD変換し、変換結果を複数ビットのデータ(パラレルデータ)で構成されるデジタル信号DSとして出力する。アライメントパターン発生器211は、予め設定されたアライメントパターン(アライメントマーカ)としての複数ビットのデータ(パラレルデータ)を発生する。よって、セレクタ213は、複数ビットのデータ(パラレルデータ)で構成されるデジタル信号を出力する。シリアライザー214は、セレクタ213から出力される複数ビットのデータで構成されるデジタル信号DSをシリアルデータSDとしての複数ビットのシリアルデータ列に変換して出力する。AD変換部108はまた、クロック信号ADCLKに従って、シリアルデータSDと同期したシリアルクロックCLKを生成し出力する。AD変換器212およびアライメントパターン発生器211がシリアルデータを出力するように構成される場合には、シリアライザー214は不要である。アライメントパターン発生器211は、指定されたアライメントパターンを登録する機能を有しうる。
図16には、AD変換部108から出力されるシリアルデータSDが模式的に示されている。実際には、AD変換部108から出力されるシリアルデータSDは、AD変換器212から供給されるアナログ信号AS(図16では「AD変換器の出力データ」。)およびアライメントパターン発生器211から供給されるアライメントパターン(図16では「アライメントパターンの出力データ」。)の一方である。しかしながら、図16には、説明の便宜のために、それらの双方が示されている。シリアルクロックCLKは、DDR形式で生成されうる。1つのデータ(パラレルデータ)に対応する複数ビットのシリアルデータ列は、例えば、LSBを先頭として構成されうるが、MSBを先頭として構成されてもよい。図16には、N番目のデータ(パラレルデータ)、(N+1)番目のデータ(パラレルデータ)、(N+2)番目のデータ(パラレルデータ)が示されている。
図16には、N番目のデータ(パラレルデータ)、(N+1)番目のデータ(パラレルデータ)、(N+2)番目のデータ(パラレルデータ)が相互に識別して記載されているが、識別のためには、アライメントを行う必要がある。アライメントは、1つのデータ(パラレルデータ)に対応する、複数ビットで構成されるシリアルデータ列を含むシリアルデータにおいて当該シリアルデータ列を識別するための処理である。アライメントが正しくなされていない状態は、「ビットずれ」がある状態などと呼ばれる。
図14には、制御部109の構成が示されている。制御部109は、シリアルパラレル変換部201と、アライメントパターン格納部202と、アライメント部203と、クロック発生部204とを含みうる。AD変換部108から出力されるシリアルデータSDおよびシリアルクロックCLKは、伝送路TPを介して、制御部109のシリアルパラレル変換部201に伝送される。伝送路TPは、例えば、フレキシブルケーブルでありうる。ここで、AD変換部108は、シリアルデータSDおよびシリアルクロックCLKを送信する送信回路を有しうる。また、制御部109は、シリアルデータSDおよびシリアルクロックCLKを受信する受信回路を有しうる。該送信回路および該受信回路は、通信回路を構成する。また、該通信回路および伝送路TPは、伝送部を構成する。クロック発生部204は、例えば、自身で発生する基本クロック又は外部から供給される基本クロックに基づいて、AD変換部108に提供するためのクロックADCLKを発生する。
シリアルパラレル変換部201は、シリアルクロックCLKに従ってシリアルデータSDを取り込み、シリアルデータSDをパラレルデータPDに変換する。アライメントパターン格納部202は、アライメントのために使用されるアライメントパターンを格納する。アライメント部203は、AD変換部108から伝送されてくるシリアルデータSD中のアライメントパターンとアライメントパターン格納部202に格納されているアライメントパターンとを比較することによってアライメントを行う。このアライメントは、シリアルデータ列の先頭ビットを識別する処理でありうる。例えば、AD変換部108から伝送されてくるシリアルデータSD中のシリアルデータ列(アライメントパターン)とアライメントパターン格納部202に格納されたアライメントパターンとが一致したときに、シリアルデータ列の先頭ビットを識別しうる。
より具体的な例として、個々のパラレルデータがnビットで構成される場合を考える。この場合、個々のパラレルデータに対応するシリアルデータは、nビットのシリアルデータ列で構成される。シリアルパラレル変換部201は、0から(n−1)までカウントするカウント動作を繰り返すカウンタをシリアルクロックCLKに従って動作させ、カウンタのカウント値が0であるときにシリアルデータを先頭ビットとして取り込むように構成されうる。アライメント部203は、AD変換部108から伝送されてくるシリアルデータSD中のシリアルデータ列(アライメントパターン)とアライメントパターン格納部202に格納されたアライメントパターンとが一致したことに応じて該カウンタをリセットしうる。このリセットがアライメントである。アライメントは、シリアルデータSD中のシリアルデータ列(アライメントパターン)とアライメントパターン格納部202に格納されたアライメントパターンとが一致したことに応じてシリアルパラレル変換部201をリセットすることによってもなされうる。
図19には、シリアルパラレル変換部201におけるシリアルパラレル変換の例が模式的に示されている。この例では、1つのパラレルデータに対応するシリアルデータSDは、8ビットのシリアルデータ列で構成されている。シリアルパラレル変換部201は、シフトレジスタ233と出力レジスタ234とを含みうる。シリアルデータSDの8ビットのシリアルデータ列は、シリアルクロックSCの8個のエッジに従って、シリアルパラレル変換部201内のシフトレジスタ233に取り込まれる。8個のエッジは、カウンタによってカウントされうる。8ビットのシリアルデータ列がシフトレジスタ233に取り込まれると、8ビットのシリアルデータ列が出力レジスタ234にパラレルデータとして一斉にパラレル転送され、その後、出力レジスタ234からパラレルデータが出力される。
図16に示されたように、AD変換器212からのデジタル信号DS(「AD変換器の出力データ」)およびアライメントパターン発生器211からのアライメントパターン(「アライメントパターンの出力データ」)は、同じタイミングで出力される。したがって、アライメントパターンを使ってアライメントを行うことによって、その後、AD変換器212から出力されるデジタル信号DSから生成されるシリアルデータSDを正しくパラレルデータPDに変換することができる。
図14に示された例では、シリアルパラレル変換部201、アライメントパターン格納部202およびアライメント部203が制御部109内に存在する。しかしながら、シリアルパラレル変換部201、アライメントパターン格納部202およびアライメント部203の全部または一部は、制御部109の外部に存在してもよい。
図7、図17、図18を参照しながらアライメント部203によるアライメント方法(放射線撮像装置100の制御方法)について説明する。S601、S1601において、アライメント部203は、AD変換部108のアライメントパターン発生器211および制御部109のアライメントパターン格納部202にアライメントパターンを設定する。アライメントパターン発生器211は、設定されたアライメントパターンを発生する。アライメントパターンは、例えば、0xF0とされうる。「0x」は、16進を意味する。
S602、S1602では、アライメント部203は、AD変換部108のセレクタ213がアライメントパターン発生器211から供給されるアライメントパターンを選択して出力するように制御する。
S603、S1603では、アライメント部203は、シリアルパラレル変換部201をリセットする。外来ノイズ等の影響でビットずれが起こっていた場合などを考慮し、アライメントを実施する前にシリアルパラレル変換部201をリセットして初期状態に戻しておくことが望ましい。続いて、S604、S1604では、アライメント部203は、シリアルパラレル変換部201のアライメントを行う。前述のように、アライメント部203は、AD変換部108から伝送されてくるシリアルデータSD中のアライメントパターンとアライメントパターン格納部202に格納されているアライメントパターンとを比較することによってアライメントを行う。このアライメントは、シリアルデータ列の先頭ビットを識別するものでありうる。
2つのアライメントパターンの比較が1クロック(CLKの1サイクル)で完了すると仮定すると、2つのアライメントパターンが一致していれば、多くても8サイクル以内にシリアルデータ列の先頭ビットを識別しアライメントを完了することができる。8サイクル以内に先頭ビットを識別できた場合を成功、そうでない場合を失敗とする。S605では、アライメント部203は、アライメントが成功したか否か判断する。失敗した場合にはS602〜S605を繰り返す。成功した場合には、S606に進む。S606、S1605では、アライメント部203は、AD変換部108の出力をS601以前の状態に戻す。AD変換部108の出力が撮像ブロック120からの信号の出力であった場合は、アライメント部203は、撮像ブロック120からの信号を出力するようにAD変換部108のセレクタ213を切り替える。なお、S601以前におけるAD変換部108の出力(セレクタ213の状態)は、S601の実行前に保存される。
例えば、S601以前は、テストのためにアライメントパターン発生器211からのアライメントパターンがAD変換部108から出力されていた場合、S606、S1605において、そのような状態に戻される。
また、アライメントに失敗し続けた場合、予め設定された回数にわたって失敗が続いた場合は、アライメントが成功していなくても、S606、S1605に進んだり、動画撮影を停止したりしてもよい。図17に示された例では、3回にわたってアライメントが失敗すると、アライメントのための処理が終了される。アライメントに失敗する原因としては、例えばAD変換部108の設定ミスやアライメントパターン格納部202に格納されたアライメントパターンが誤っていること、アライメントの最中に外来ノイズの影響を受けること等が考えられる。
図8には、比較例として、撮像の開始前に一度だけアライメントを実施した場合の例が示されている。基本的な駆動は、図5と同様である。時刻t1で撮像モードが設定され撮像の開始が指示された後、時刻t311〜時刻t312の期間においてアライメントが行われる。図8において、「SERDES」は、シリアルパラレル変換部201の出力を示している(他の図においても同様。)。クロスハッチングが付された部分は、ビットずれがある状態、または、アライメントが行われていないのでシリアルパラレル変換部201の出力値を保証できない状態を示している。ハッチングが付された部分は、アライメントパターンが出力されていること、即ちアライメント処理の実行中であることを示している。白色の部分は、アライメントが完了し、ビットずれがない状態を示している。
図8の例では、時刻t311までが出力値を保証できない状態であり、時刻t311〜時刻t312の期間がアライメントの実行中であり、時刻t312〜時刻313の期間がビットずれのない状態である。時刻t313で静電気等の外来ノイズにより、シリアルパラレル変換部201でビットずれが発生している。図8の例では、撮像の開始前の一度しかアライメントを実施しないので、静電気等の外来ノイズがなくなった後もビットのずれた状態から復帰できない。
図9には、放射線撮像装置100の第1動作例が示されている。複数のフレームの放射線画像を連続的に撮像する動画撮像では、リセット駆動RDおよびサンプリング駆動SDを含むサイクルが複数回にわたって繰り返される。また、各サンプリング駆動SDに次いで、読出駆動READが行われる。ここで、リセット駆動RDが行われる期間をリセット駆動期間、サンプリング駆動が行われる期間をサンプリング駆動期間、読出駆動READが行われる期間を読出駆動期間と定義する。読出駆動期間は、図6を参照して説明されたように、AD変換部108によってAD変換が行われる期間を含んでいる。AD変換部108によってAD変換が行われる期間をAD変換期間と定義する。複数のリセット駆動期間は、複数のフレームにそれぞれ対応する。複数のサンプリング駆動期間は、複数のフレームにそれぞれ対応する。複数の読出駆動期間は、複数のフレームにそれぞれ対応する。複数のAD変換期間は、複数のフレームにそれぞれ対応する。AD変換部108は、複数のフレームにそれぞれ対応する複数のAD変換期間の各々において撮像部105からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力する。
時刻t1で撮像モードが設定され撮像の開始が指示された後、時刻t321〜時刻t322の期間においてアライメント部203によってアライメントが行われる。ここで、時刻t321〜時刻t322の期間は、複数の読出駆動期間のうち最初の読出駆動期間の前の期間である。換言すると、時刻t321〜時刻t322の期間は、複数のAD変換期間の前の期間である。
第1動作例では、更に、サンプリング駆動期間であるt323〜t324、t325〜t326、t327〜t328の期間においてもアライメント部203によってアライメントが行われる。サンプリング駆動期間では読出駆動READが行われないので、シリアルパラレル変換部201のリセット(アライメント)や、AD変換部108からアライメントパターンを出力する動作は、放射線撮像装置100から出力される画像データに影響を与えない。ここで、サンプリング期間は、読出駆動期間と次の読出駆動期間との間の期間である。換言すると、サンプリング期間は、AD変換期間と次のAD変換期間との間の期間である。よって、第1動作例では、アライメントは、複数のAD変換期間のうち最初のAD変換期間の前に行われる他、複数のAD変換期間の各々と次のAD変換期間との間の期間において行われる。
時刻t329から開始される2回目の読出駆動期間(R2)内の時刻t330において、静電気等の外来ノイズにより、シリアルパラレル変換部201でビットずれが発生したとする。第1動作例では、t327〜t328にアライメントを実施するので、t328以降はビットずれのない正常な状態となる。すなわち、あるフレームでビットずれによる画像異常が発生しても、次のフレームの画像は正常な画像に復帰できる。図9の動作例では、静電気等の外来ノイズによるビットずれにより、2回目の読出駆動期間(R2)に読み出される画像が読出の途中で異常になるが、3回目の読出期間(R3)に読み出される画像は正常に復帰している。つまり、図9の動作例では、仮に静電気等の外来ノイズによってあるフレームでシリアルパラレル変換部201にビットずれが生じた場合でも、次のフレームの読出駆動READの前にビットずれを修正することができる。よって、外来ノイズが画像に与える影響を最小限に抑えることができる。
図10には、第1動作例において、図9に示された例とは異なるタイミングで外来ノイズによるビットずれが発生した場合が示されている。図10に示された例では、1回目の読出駆動期間(R1)と2回目の読出駆動期間(R2)との間の時刻t339で静電気等の外来ノイズによるビットずれが発生している。時刻t339でビットずれが発生しても、t335〜t336で行われるアライメントによってビットずれが修正されるので、2回目の読出駆動期間(R2)で読み出される画像は正常である。すなわち、アライメントの終了からその後の読出駆動期間の終了までのt334〜t340の間にビットずれが起こらない限り、画像への影響はない。例えば、30fpsで動画撮像を行う場合、t334〜t340の期間は、読出周期33msecに対して数msecであるため、外来ノイズなどによるビットずれの確率が下がり、外来ノイズなどによる画像への影響を良好に抑制できる。
図9、図10に示された第1動作例では、アライメントがサンプリング駆動期間(SD)のうちTS1等のアサート前に行われるが、これは一例に過ぎない。前述したように、サンプリング駆動期間(SD)は、AD変換部108からの画像信号の読み出しに関与しないので、アライメントの実施は、サンプリング駆動期間内であればいつでもよい。ただし、アライメントは、読出駆動期間の開始前に終了しておく必要がある。
図11には、放射線撮像装置100の第2動作例が示されている。第2動作例は、アライメントを実施するタイミングが第1動作例と異なる。第2動作例では、時刻t1で撮像モードが設定され撮像の開始が指示された後、最初のリセット駆動期間(RD)の前の期間であるt341〜t342の期間にアライメント部203によってアライメントが行われる。ただし、このアライメントは省略可能である。
第2動作例では、更に、リセット駆動期間(RD)であるt343〜t344、t345〜t346、t347〜t348においてもアライメント部203によってアライメントが行われる。リセット駆動期間(RD)では読出駆動READが行われないので、シリアルパラレル変換部201のリセット(アライメント)や、AD変換部108からアライメントパターンを出力する動作は、放射線撮像装置100から出力される画像データに影響を与えない。
第2動作例においても、アライメントは、複数のAD変換期間のうち最初のAD変換期間の前に行われる他、複数のAD変換期間の各々と次のAD変換期間との間の期間において行われる。
時刻t349で静電気等の外来ノイズにより、シリアルパラレル変換部201でビットずれが発生したとする。第2動作例では、リセット駆動期間であるt347〜t348の期間においてアライメントが行われるので、t348以降はビットずれのない正常な状態となる。すなわち、あるフレームでビットずれによる画像異常が発生しても、次のフレームの画像は正常な画像に復帰できる。図11の例では、静電気等の外来ノイズによるビットずれで2回目の読出駆動期間(R2)で読み出される画像が異常になるが、3回目の読出駆動期間(R3)で読み出される画像は正常に復帰している。
図12は、第2動作例の変形例の動作が示されている。変形例では、読出駆動期間(R1、R2)がリセット駆動期間(RD)後に行われる。t355〜t356、t357〜t358のリセット駆動期間(RD)は、対応する読出駆動期間(R1、R2)の直前に配置されている。したがって、仮に時刻t359において静電気等の外来ノイズによるビットずれが起きた場合でも、次のフレームの読出駆動期間(R2)の開始前にビットずれを修正することができ、画像への影響を最小限に抑えることができる。
アライメントは読出駆動READを行っていない期間に行えばよいので、撮像モードに基づいて読出駆動READが行われるタイミングを知り、それに応じたタイミングでアライメントを行えばより高い効果を得ることができる。
第1動作例および第2動作例は、1フレーム当たり1回のアライメントを行う例であるが、これは例示に過ぎない。1フレームに複数回のアライメントを行ってもよいし、数フレームに1回の割合でアライメントを行ってもよい。または所定の時間に1回のアライメントを行うようにしてもよい。
即ち、アライメント部203は、複数の読出駆動期間のうち最初の読出駆動期間の前にアライメントを行う他、複数の読出駆動期間のうち少なくも1つの読出駆動期間と他の読出駆動期間との間の期間においてアライメントを行うように構成されうる。換言すると、アライメント部203は、複数のAD変換期間のうち最初のAD変換期間の前にアライメントを行う他、複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間においてアライメントを行うように構成されうる。
ビットずれの影響を低減する観点では、アライメント部203は、撮像部105から1フレーム分の信号がAD変換部108およびシリアルパラレル変換部201を通して読み出される期間において、アライメントを少なくとも1回行うことが好ましい。また、ビットずれの影響を更に低減する観点では、アライメント部203は、撮像部105から1フレーム分の信号がAD変換部108およびシリアルパラレル変換部201を通して読み出される期間において、アライメントを少なくとも2回行うことがより好ましい。
図13には、放射線撮像装置100の第3動作例が示されている。第3動作例では、1フレーム当たりに2回のアライメントがアライメント部203によって行われる。時刻t1で撮像モードが設定され撮像の開始が指示された後、時刻t361〜時刻t362の期間においてアライメント部203によってアライメントが行われる。また、サンプリング駆動期間(SD)であるt365〜t366、t369〜t370、t373〜t374の各期間においてもアライメント部203によってアライメントが行われる。さらに、リセット駆動期間(RD)であるt363〜t364、t367〜t368、t371〜t372の各期間においてもアライメント部203によってアライメントが行われる。リセット駆動期間(RD)およびサンプリング駆動期間(SD)では読出駆動READが行われないので、シリアルパラレル変換部201のリセットや、AD変換器からテストパターンを出力する動作も画像データに影響しない。
図13に示された例では、あるフレームについて読出駆動READを行っている間に次のフレームの同期信号SYNCを受信して、読出駆動READが中断され、リセット駆動RDが開始されている。そして、リリセット駆動セット駆動RDが終了してから、中断された読出駆動READが再開されている。中断される前のNフレーム目の読出駆動READがRN−aとして示され、リセット駆動RDが終了してから再開されたNフレーム目の読出駆動READがRN−bとして示されている。
時刻t375で静電気等の外来ノイズにより、シリアルパラレル変換部201でビットずれが発生したとする。第3動作例では、t371〜t372においてアライメントが行われるので、t372以降はビットずれのない正常な状態となる。図13に示された第3動作例では、静電気等の外来ノイズによるビットずれで読出駆動R2−aで読み出された画像が異常になるが、読出駆動R2−bで読み出された画像では正常に復帰している。
このように、リセット駆動RDをまたいで読出駆動READを行うような撮像モードにおいては、リセット駆動RDの期間およびサンプリング駆動SDの期間においてアライメントを行いうる。これにより、1フレーム当たりに2回のアライメントを行うことができる。第3動作例によれば、仮に時刻t375において静電気等の外来ノイズによるビットずれが起きた場合でも、次の読出駆動READの開始の前にビットずれを修正することができ、画像への影響を最小限に抑えることができる。
以上の動作は、ダイナミックレンジ拡張を行う動作モードに関して説明されたが、本発明は、ダイナミックレンジ拡張を行わない動作モードに関しても適用可能である。
図20を参照しながら、放射線撮像システムSYSをCアーム型放射線透視診断システムに適用した例を説明する。放射線撮像装置100および放射線源104は、C型アームcrの両端に固定されている。このシステムでは、アームcrを回転させて被検体に対する放射線の照射角度を変えながら放射線撮像(3D撮像)を行う。放射線撮像装置100で得られた画像データは、例えばケーブルを介して処理部101に出力される。処理部101は、該画像データに基づいて三次元の放射線画像を形成し、表示部102に表示させる。
100:放射線撮像装置、105:撮像部、108:AD変換部、201:シリアルパラレル変換部、203:アライメント部

Claims (20)

  1. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置であって、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力するAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列をパラレルデータに変換するシリアルパラレル変換部と、
    前記処理部が前記放射線撮像装置から前記複数のフレームの放射線画像の信号を正しく受信するように前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント部と、を備え、
    前記アライメント部は前記複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置。
  2. 前記複数のセンサからの信号をサンプリングしホールディングする保持部を更に備え、
    前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記保持部がサンプリングを行っている期間において前記アライメントを行う、
    ことを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記複数のセンサをリセットするリセット部を更に備え、
    前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記リセット部が前記複数のセンサをリセットする期間において前記アライメントを行う、
    ことを特徴とする請求項1に記載の放射線撮像装置。
  4. 前記複数のセンサからの信号をサンプリングしホールディングする保持部と、
    前記複数のセンサをリセットするリセット部と、を更に備え、
    前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記保持部がサンプリングを行っている期間および前記リセット部が前記複数のセンサをリセットする期間において前記アライメントを行う、
    ことを特徴とする請求項1に記載の放射線撮像装置。
  5. 前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記複数のAD変換期間の各々のAD変換期間と次のAD変換期間との間の期間において前記アライメントを行う、
    ことを特徴とする請求項1乃至4のいずれか1項に記載の放射線撮像装置。
  6. 前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記撮像部から1フレーム分の信号が前記AD変換部および前記シリアルパラレル変換部を通して読み出される期間において、前記アライメントを少なくとも1回行う、
    ことを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮像装置。
  7. 前記アライメント部は、前記複数のAD変換期間のうち最初のAD変換期間の前に前記アライメントを行う他、前記撮像部から1フレーム分の信号が前記AD変換部および前記シリアルパラレル変換部を通して読み出される期間において、前記アライメントを少なくとも2回行う、
    ことを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮像装置。
  8. 前記AD変換部は、前記撮像部からのアナログ信号をデジタル信号に変換するAD変換器と、前記AD変換器からのデジタル信号をシリアルデータに変換するシリアライザーとを含む、
    ことを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮像装置。
  9. 前記処理部は、前記シリアルパラレル変換部からのパラレルデータを処理する、
    ことを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮像装置。
  10. 放射線源と、
    請求項1乃至9のいずれか1項に記載の放射線撮像装置と、
    前記処理部と、
    前記表示部と、
    を備えることを特徴とする放射線撮像システム。
  11. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置の制御方法であって、
    前記放射線撮像装置は、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力するAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列をパラレルデータに変換するシリアルパラレル変換部と、を備え、
    前記制御方法は、前記処理部が前記放射線撮像装置から前記複数のフレームの放射線画像の信号を正しく受信するように前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント工程を含み、
    前記アライメント工程では前記複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置の制御方法。
  12. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置であって、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をクロック信号に従ってデジタル信号に変換するAD変換器、アライメントパターンとしてのデジタル信号を発生するアライメントパターン発生器、および、前記AD変換器から供給されるデジタル信号と前記アライメントパターン発生器から供給されるアライメントパターンとしてのデジタル信号の一方を選択し個々のデジタル信号を複数ビットのシリアルデータ列として出力し、且つ、前記クロック信号に従って前記シリアルデータ列に同期したシリアルクロックを出力する回路、を含むAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列を、前記シリアルクロックに従ってパラレルデータに変換するシリアルパラレル変換部と、
    アライメントのために使用されるアライメントパターンを格納するアライメントパターン格納部と、
    前記シリアルパラレル変換部に伝送されてくる複数ビットのシリアルデータ列の中のアライメントパターンと前記アライメントパターン格納部に格納されたアライメントパターンとを比較することにより、前記処理部が前記放射線撮像装置から前記複数のフレームの放射線画像の信号を正しく受信できるように前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント部と、を備え、
    前記アライメント部は前記複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置。
  13. 放射線源と、
    請求項12に記載の放射線撮像装置と、
    前記処理部と、
    前記表示部と、
    を備えることを特徴とする放射線撮像システム。
  14. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置の制御方法であって、
    前記放射線撮像装置は、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をクロック信号に従ってデジタル信号に変換するAD変換器、アライメントパターンとしてのデジタル信号を発生するアライメントパターン発生器、および、前記AD変換器から供給されるデジタル信号と前記アライメントパターン発生器から供給されるアライメントパターンとしてのデジタル信号の一方を選択し個々のデジタル信号を複数ビットのシリアルデータ列として出力し、且つ、前記クロック信号に従って前記シリアルデータ列に同期したシリアルクロックを出力する回路を含むAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列を、前記シリアルクロックに従ってパラレルデータに変換するシリアルパラレル変換部と、
    アライメントのために使用されるアライメントパターンを格納するアライメントパターン格納部と、を備え、
    前記制御方法は、前記シリアルパラレル変換部に伝送されてくる複数ビットのシリアルデータ列の中のアライメントパターンと前記アライメントパターン格納部に格納されたアライメントパターンとを比較することにより、前記処理部が前記放射線撮像装置から前記複数のフレームの放射線画像の信号を正しく受信できるように前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント工程を含み、
    前記アライメント工程では前記複数のAD変換期間のうち少なくも1つのAD変換期間と他のAD変換期間との間の期間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置の制御方法。
  15. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置であって、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力するAD変換器と、
    前記AD変換器から伝送路を介して伝送されてくる複数ビットのシリアルデータ列をパラレルデータに変換するシリアルパラレル変換部と、
    前記処理部が前記放射線撮像装置からの複数フレームの放射線画像に対する前記信号を正しく受信するように、前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント部と、を備え、
    前記アライメント部は、前記複数のAD変換期間のうち少なくも1つのAD変換期間に出力されるシリアルデータ列と他のAD変換期間に出力されるシリアルデータ列との間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置。
  16. 放射線源と、
    請求項15に記載の放射線撮像装置と、
    前記処理部と、
    前記表示部と、
    を備えることを特徴とする放射線撮像システム。
  17. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置の制御方法であって、
    前記放射線撮像装置は、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をデジタル信号に変換し、個々のデジタル信号を複数ビットのシリアルデータ列として出力するAD変換器と、
    前記AD変換器から伝送路を介して伝送されてくる複数ビットのシリアルデータ列をパラレルデータに変換するシリアルパラレル変換部と、を備え、
    前記制御方法は、前記処理部が前記放射線撮像装置からの複数フレームの放射線画像に対する前記信号を正しく受信するように、前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント工程を含み、
    前記アライメント工程では、前記複数のAD変換期間のうち少なくも1つのAD変換期間に出力されるシリアルデータ列と他のAD変換期間に出力されるシリアルデータ列との間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置の制御方法。
  18. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置であって、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をクロック信号に従ってデジタル信号に変換するAD変換器、アライメントパターンとしてのデジタル信号を発生するアライメントパターン発生器、および、前記AD変換器から供給されるデジタル信号と前記アライメントパターン発生器から供給されるアライメントパターンとしてのデジタル信号の一方を選択し個々のデジタル信号を複数ビットのシリアルデータ列として出力し、且つ、前記クロック信号に従って前記シリアルデータ列に同期したシリアルクロックを出力する回路と、を含むAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列を、前記シリアルクロックに従ってパラレルデータに変換するシリアルパラレル変換部と、
    アライメントのために使用されるアライメントパターンを格納するアライメントパターン格納部と、
    前記シリアルパラレル変換部に伝送されてくる複数ビットのシリアルデータ列の中のアライメントパターンと前記アライメントパターン格納部に格納されたアライメントパターンとを比較することにより、前記処理部が前記放射線撮像装置からの複数フレームの放射線画像に対する前記信号を正しく受信するように、前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント部と、を備え、
    前記アライメント部は、前記複数のAD変換期間のうち少なくも1つのAD変換期間に出力されるシリアルデータ列と他のAD変換期間に出力されるシリアルデータ列との間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置。
  19. 放射線源と、
    請求項18に記載の放射線撮像装置と、
    前記処理部と、
    前記表示部と、
    を備えることを特徴とする放射線撮像システム。
  20. 複数のフレームの放射線画像を連続的に撮像する放射線撮像装置と、前記放射線撮像装置からの信号に基づいて画像データを生成する処理を行う処理部と、前記画像データに基づいて前記複数のフレームの放射線画像を表示する表示部と、を含む放射線撮像システムにおいて使用される前記放射線撮像装置の制御方法であって、
    前記放射線撮像装置は、
    放射線を検出する複数のセンサを有し、前記複数のセンサの各々からアナログ信号を出力する撮像部と、
    複数のフレームにそれぞれ対応する複数のAD変換期間の各々において前記撮像部からの個々のアナログ信号をクロック信号に従ってデジタル信号に変換するAD変換器、アライメントパターンとしてのデジタル信号を発生するアライメントパターン発生器、および、前記AD変換器から供給されるデジタル信号と前記アライメントパターン発生器から供給されるアライメントパターンとしてのデジタル信号の一方を選択し個々のデジタル信号を複数ビットのシリアルデータ列として出力し、且つ、前記クロック信号に従って前記シリアルデータ列に同期したシリアルクロックを出力する回路、を含むAD変換部と、
    前記AD変換部から伝送路を介して伝送されてくる複数ビットのシリアルデータ列を、前記シリアルクロックに従ってパラレルデータに変換するシリアルパラレル変換部と、
    アライメントのために使用されるアライメントパターンを格納するアライメントパターン格納部と、を備え、
    前記制御方法は、前記シリアルパラレル変換部に伝送されてくる複数ビットのシリアルデータ列の中のアライメントパターンと前記アライメントパターン格納部に格納されたアライメントパターンとを比較することにより、前記処理部が前記放射線撮像装置からの複数フレームの放射線画像に対する前記信号を正しく受信するように、前記シリアルパラレル変換部が複数ビットのシリアルデータ列を識別するためのアライメントを行うアライメント工程を含み、
    前記アライメント工程では、前記複数のAD変換期間のうち少なくも1つのAD変換期間に出力されるシリアルデータ列と他のAD変換期間に出力されるシリアルデータ列との間において前記アライメントを行う、
    ことを特徴とする放射線撮像装置の制御方法。
JP2016010870A 2016-01-22 2016-01-22 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム Active JP6643104B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016010870A JP6643104B2 (ja) 2016-01-22 2016-01-22 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム
US15/398,917 US10422890B2 (en) 2016-01-22 2017-01-05 Radiation imaging apparatus, control method of radiation imaging apparatus, and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010870A JP6643104B2 (ja) 2016-01-22 2016-01-22 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム

Publications (3)

Publication Number Publication Date
JP2017130891A JP2017130891A (ja) 2017-07-27
JP2017130891A5 JP2017130891A5 (ja) 2019-08-29
JP6643104B2 true JP6643104B2 (ja) 2020-02-12

Family

ID=59360366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010870A Active JP6643104B2 (ja) 2016-01-22 2016-01-22 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム

Country Status (2)

Country Link
US (1) US10422890B2 (ja)
JP (1) JP6643104B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704944B2 (ja) 2018-02-09 2020-06-03 キヤノン株式会社 撮像装置、撮像システム、移動体
US10893222B2 (en) * 2018-03-29 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
CN110868555B (zh) * 2019-11-08 2022-04-19 中国航空工业集团公司洛阳电光设备研究所 一种稳定接收高速串行lvds红外图像数据的方法
JP2021136554A (ja) * 2020-02-26 2021-09-13 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法、および、プログラム
GB2604099A (en) * 2021-02-15 2022-08-31 Leonardo UK Ltd An image sensing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846961B2 (ja) * 1997-03-12 2006-11-15 ジーイー横河メディカルシステム株式会社 データ通信方法および装置並びにx線ct装置
JP2002191589A (ja) * 2000-12-25 2002-07-09 Canon Inc X線画像撮影装置
US7116812B2 (en) * 2003-01-29 2006-10-03 General Electric Company Method and apparatus for providing a standard video interface
JP2008220479A (ja) * 2007-03-09 2008-09-25 Fujifilm Corp 放射線画像撮影装置及びその処理方法
CN101861577A (zh) 2007-10-02 2010-10-13 无极公司 用于处理器间通信的系统和方法
US8446309B2 (en) * 2009-02-19 2013-05-21 Cmosis Nv Analog-to-digital conversion in pixel arrays
JP5743481B2 (ja) * 2010-10-14 2015-07-01 株式会社東芝 X線ct装置
JP2014030130A (ja) 2012-07-31 2014-02-13 Canon Inc 放射線検出器、放射線撮像装置及び制御方法
JP2014230600A (ja) * 2013-05-28 2014-12-11 株式会社東芝 X線ct装置およびx線ct装置用x線検出器
JP6556001B2 (ja) * 2015-09-24 2019-08-07 キヤノン株式会社 画像読取装置

Also Published As

Publication number Publication date
US10422890B2 (en) 2019-09-24
JP2017130891A (ja) 2017-07-27
US20170212252A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6643104B2 (ja) 放射線撮像装置、放射線撮像装置の制御方法、放射線撮像システム
JP6608132B2 (ja) 放射線撮像装置および放射線撮像システム
JP6579741B2 (ja) 撮像装置及び放射線撮像システム
CN110996797B (zh) 放射线成像装置
US10178330B2 (en) Imaging apparatus and imaging system
US10557948B2 (en) Radiation imaging system and moving image generation method
JP6532214B2 (ja) 放射線撮像装置及び放射線撮像システム
US9869774B2 (en) Radiation imaging apparatus, driving method for the same, and non-transitory computer-readable medium
US9838619B2 (en) Radiation imaging apparatus and radiation inspection apparatus
US9467631B2 (en) Radiation imaging apparatus, method of driving the same, and radiation inspection apparatus
JP6708474B2 (ja) 撮像装置及び放射線撮像システム
JP2018078394A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法およびプログラム
US20190230299A1 (en) Imaging apparatus and radiation imaging system
JP6936680B2 (ja) 放射線撮像システム、動画像生成方法及びプログラム
JP6373442B2 (ja) 放射線撮像装置及び放射線検査装置
WO2020110763A1 (ja) 放射線撮像装置および放射線撮像装置の制御方法
JP4227274B2 (ja) 固体撮像装置
JP2020081664A (ja) 放射線撮像装置および放射線撮像の制御方法
JP2023091731A (ja) 放射線撮像装置及びその制御方法、プログラム、記憶媒体
JP2017108317A (ja) 撮像装置、撮像システム、撮像装置の駆動方法
JP2024058805A (ja) 放射線撮像装置、放射線撮像システムおよび放射線撮像装置の制御方法
JP2020092361A (ja) 放射線撮像装置および放射線撮像装置の制御方法
JP2019047846A (ja) 放射線診断装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R151 Written notification of patent or utility model registration

Ref document number: 6643104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151