JP6624779B2 - 走査光学装置、画像形成装置及び補正方法 - Google Patents

走査光学装置、画像形成装置及び補正方法 Download PDF

Info

Publication number
JP6624779B2
JP6624779B2 JP2014250333A JP2014250333A JP6624779B2 JP 6624779 B2 JP6624779 B2 JP 6624779B2 JP 2014250333 A JP2014250333 A JP 2014250333A JP 2014250333 A JP2014250333 A JP 2014250333A JP 6624779 B2 JP6624779 B2 JP 6624779B2
Authority
JP
Japan
Prior art keywords
scanning
irradiation position
scanning direction
correction
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250333A
Other languages
English (en)
Other versions
JP2016110044A5 (ja
JP2016110044A (ja
Inventor
小林 久倫
久倫 小林
西口 哲也
哲也 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014250333A priority Critical patent/JP6624779B2/ja
Priority to US14/959,303 priority patent/US9864934B2/en
Publication of JP2016110044A publication Critical patent/JP2016110044A/ja
Publication of JP2016110044A5 publication Critical patent/JP2016110044A5/ja
Application granted granted Critical
Publication of JP6624779B2 publication Critical patent/JP6624779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、走査光学装置、画像形成装置及び補正方法に関し、特に、電子写真プロセスを有するレーザビームプリンタやデジタル複写機等の画像形成装置に好適な画像補正方法に関する。
従来、電子写真方式のカラー画像形成装置における画像形成スピードの高速化のために、色材の数と同数の現像器及び感光ドラムを備え、画像搬送ベルト上や記録媒体上に順次異なる色の画像を転写するタンデム方式のカラー画像形成装置が提案されている。タンデム方式のカラー画像形成装置では、レジストレーションずれを生じさせる複数の要因があることが既に知られており、それぞれの要因に対して様々な対処方法が提案されている。その要因の代表例としては、画像形成装置に搭載される走査光学装置が有するレンズの光学特性や取り付け精度、走査光学装置の画像形成装置本体への組み付け位置ずれがある。この場合、感光ドラムに露光される被走査面上において、走査線には傾きや曲がりが生じ、色毎に走査線の形状が異なることで、走査線の相対差が色ずれになる。
色ずれの対処方法として、画像データにより走査線を補正する方法が提案されている。例えば、走査線の副走査方向の照射位置を測定した結果に基づき、走査線の形状誤差となる照射位置や傾き、曲がりを補正する方法が提案されている(例えば、特許文献1参照)。また、画像データにより走査線を補正するためには、副走査方向では、走査線曲がりや等速特性を予め測定する必要があり、主走査方向では、走査線幅の走査時間を予め測定する必要がある。補正用の測定データを得る方法としては次のような構成が提案されている。例えば、走査光学装置が走査位置検出手段を有する構成や、感光ドラム上や中間転写ベルト上に形成されたトナー画像をイメージセンサで読み取る構成、予め測定した補正用データを制御手段に記憶させておく構成等である。このうち、予め工場での走査光学装置の製造工程(以下、製造工程という)で走査線を測定し補正用データを走査光学装置に記憶させておく構成が、コストや生産性で有利なためよく用いられる。
特開2003−322811号公報
しかし、従来の走査光学装置では、走査光学装置から出射される光束が感光ドラム面上で副走査方向に傾いた場合、主走査方向の走査時間がずれることによる片倍率差が発生するという課題がある。特に、カラー画像形成装置では、複数の走査線を重ね合わせるため、主走査方向に色ずれを生じるという課題がある。図9、図10は、片倍率差について説明する図であり、後述する実施の形態で詳細を説明する。図9(a)に示すような傾いた走査線L’は、感光ドラムD上では図9(b)に示すように走査される。このため、光束L1ではΔx1、光束L2ではΔx2の光路長差が生じてしまう。光路長差Δx1、Δx2が生じると、図10(a)に示す理想的な走査時間Ts、Teから走査時間のずれΔTs、ΔTeが生じてしまう。これにより、走査線の倍率は、図10(b−1)に示すように等倍率となるべきところ、図10(b−2)に示すように左右で異なる倍率となる片倍率差が生じてしまう。
近年、画像形成装置の小型化に伴い、感光ドラムも小径化されている。このため、感光ドラムの半径が小さくなることで、上述した光路長差が無視できないずれ量になって片倍率差が顕著になり、色ずれが発生するおそれがある。
本発明は、このような状況のもとでなされたもので、装置の小型化を実現しつつ、安価な構成で主走査方向の倍率誤差を低減することを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)レーザ光を出射する光源と、前記光源から出射されたレーザ光を偏向し、円弧面である被走査面に照射されたレーザ光のスポットを主走査方向に移動させ走査線を形成する偏向手段と、を備える走査光学装置であって、平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で測定された前記レーザ光の測定結果から求まる、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第1位置から前記第2位置までの前記レーザ光の第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第2位置から前記第3位置までの前記レーザ光の第2補正走査時間、及び前記第1位置、前記第2位置、前記第3位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置、第2照射位置、第3照射位置を記憶した記憶手段を備え、前記第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定された第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められ、前記走査線を形成するために前記光源から出射されるレーザ光の走査時間を、前記記憶手段に記憶されている前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づき設定することを特徴とする走査光学装置。
(2)前記被走査面を表面に有する感光体と、前記(1)に記載の走査光学装置と、前記走査光学装置を制御して前記被走査面上に潜像を形成させる制御手段と、を備え、前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づいて、前記レーザ光が前記被走査面を走査する走査時間を設定することを特徴とする画像形成装置。
(3)レーザ光を出射する光源と、前記光源から出射されたレーザ光を偏向し、円弧面である被走査面に照射されたレーザ光のスポットを主走査方向に移動させ走査線を形成する偏向手段と、を備える走査光学装置であって、前記走査線を形成するために前記光源から出射されるレーザ光が前記被走査面を走査する、前記主走査方向の倍率誤差を補正するための補正走査時間である第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である第2補正走査時間を記憶した記憶手段を備え、平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で前記レーザ光は測定され、前記第1位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第2位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第3位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定された第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められることを特徴とする走査光学装置。
(4)前記被走査面を表面に有する感光体と、前記(3)に記載の走査光学装置と、前記走査光学装置を制御して前記被走査面上に潜像を形成させる制御手段と、を備え、前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間を設定することを特徴とする画像形成装置。
(5)円弧面である像担持体と、レーザ光を出射する光源と、前記光源から出射されたレーザ光を偏向し主走査方向に走査する偏向手段と、前記偏向手段により偏向されたレーザ光を前記像担持体に導く光学部材と、を有し、入力された画像データを画像クロックに同期させて処理することにより生成された画像信号に応じた潜像を前記像担持体に形成する走査光学装置と、前記走査光学装置を制御して前記像担持体上に前記潜像を形成させる制御手段と、を備え、前記走査光学装置は、平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で測定された前記レーザ光の測定結果から求まる、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第1位置から前記第2位置までの前記レーザ光の第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第2位置から前記第3位置までの前記レーザ光の第2補正走査時間、及び前記第1位置、前記第2位置、前記第3位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置、第2照射位置、第3照射位置を記憶した記憶手段を有し、前記第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、前記第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、前記第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定され第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められ、前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づいて、前記レーザ光が前記像担持体に照射されたときの走査時間を算出し、算出した前記像担持体上での走査時間に基づいて、前記画像クロックの周波数を調整することを特徴とする画像形成装置。
本発明によれば、装置の小型化を実現しつつ、安価な構成で主走査方向の倍率誤差を低減することができる。
実施例1〜3のカラー画像形成装置の構成を示す概略図、断面図 実施例1〜3の走査光学装置の斜視図、断面図 実施例1〜3の走査光学装置と走査線測定機の主走査方向の位置関係を示す図 実施例1の感光ドラムと光線の関係を示す断面図、走査線の照射位置と走査時間の関係を示す図 実施例1の走査線測定機と走査光学装置のブロック図 実施例1の走査線の照射位置と走査時間の測定処理を示すフローチャート、実施例2の画像処理を示すフローチャート 実施例2の画像形成装置のブロック図 実施例2の画像処理を示すフローチャート、実施例3の画像処理を示すフローチャート 従来例の副走査方向に傾いた走査線の照射位置を示す図 従来例の走査線測定機と感光ドラム面上の走査時間の説明図、走査線の片倍率差の説明図
以下、本発明を実施するための形態を、実施例により図面を参照しながら詳しく説明する。尚、以下の説明において、走査光学装置から出射されたレーザ光が感光ドラム上を走査する方向を主走査方向としY軸方向とする。また、主走査方向に直交する方向であって感光ドラムの回転方向を副走査方向としZ軸方向とする。更に、主走査方向(Y軸方向)及び副走査方向(Z軸方向)に直交する方向をX軸方向とする。
(走査線測定機上の走査線と感光ドラム上の走査線とのずれ)
まず、製造工程で走査線測定機により測定された照射位置と、画像形成装置の感光ドラム面上での実際の照射位置について、図9を用いて説明する。図9は、感光ドラムDに対して、レーザ光を照射している説明図である。図9(a)は、感光ドラムDと、感光ドラムDに照射されるレーザ光の関係を示す斜視図であり、図9(b)は、図9(a)を矢印方向から見た感光ドラムDと、感光ドラムDに照射されるレーザ光の関係を示す断面図である。図中、一点鎖線で示すLは、副走査方向のレーザ光の照射位置が、傾きや曲がりが生じていない理想的な状態にある場合の走査線を示す。また、二点鎖線で示すL’は、副走査方向のレーザ光の照射位置が傾いている場合の走査線を示す。更に、感光ドラムDの中心をZX座標のO(0,0)とする。尚、走査線L’は、光束L1から光束L2の範囲内で感光ドラムDに照射される。
図9(b)に示すように、傾きや曲がりのない理想的な走査線Lは、副走査方向のずれが生じず、光束L1から光束L2までの間、X軸上の位置が一定のXLとなる。ところが、走査光学装置から出射される走査線は、一般的に、レンズの光学特性や取り付け精度によって、副走査方向に照射位置ずれが生じ、図9(a)のL’に示すように副走査方向に傾いた状態で感光ドラムD上に照射される。例えば、走査光学装置から出射される走査線が、被走査面である感光ドラムD上で副走査方向に傾いているとする。この場合、感光ドラムDは、図9に示すように円筒形状であるため、副走査方向に傾いた走査線L’は、図9(b)に示すように、光束L1ではX軸上の位置がXL1、光束L2ではX軸上の位置がXL2となり、X軸上の位置が一定にはならない。尚、以下に説明する実施例でも感光ドラムDは断面略円形の円筒形状としているが、例えばベルト状に形成された像担持体等、他の形状を有する像担持体であってもよい。
ここで、走査線測定機上で走査線の照射位置を測定する際、測定に用いられるセンサは平面であり、測定された照射位置(後述するz1、z2、z3)は、平面上で測定された値である。このため、光束L1、L2に対応するX軸上の位置は、傾いた走査線L’の照射位置を測定する場合であってもXLとなる。その結果、走査線測定機上で測定した照射位置と、感光ドラムD上に実際に照射される照射位置とでは、X軸上において、光束L1ではΔx1、光束L2ではΔx2の分の誤差が生じてしまう。そして、誤差Δx1、Δx2は、レーザ光の光路長差となってしまう。画像形成装置の小型化に伴い、感光ドラムDの半径が小さくなるにしたがって、光路長差Δx1、Δx2が及ぼす影響は無視できなくなっている。
(走査線測定機上の走査時間と感光ドラム上の走査時間とのずれ)
図10(a)は、製造工程におけるレーザ光の走査時間を示す説明図である。走査光学装置の主走査方向の走査時間は、走査線測定機の被走査面上に平面のセンサを配置して測定する。例えば、感光ドラムD上の画像中央に相当する被走査面上の中央に平面センサ42−2を配置し、感光ドラムD上の画像両端部に相当する被走査面上の両端部近傍に平面センサ42−1、42−3を配置する。尚、光束L1が照射される側のセンサを平面センサ42−1、光束L2が照射される側のセンサを平面センサ42−3とする。そして、平面センサ42−1と平面センサ42−2の区間の走査時間Tsと、平面センサ42−2と平面センサ42−3の区間の走査時間Teを測定している。
例えば、走査光学装置から出射される走査線が被走査面上で副走査方向に傾いている走査線L’の場合、光路長差Δx1、Δx2が発生する。光路長差Δx1、Δx2は、傾きがない場合の走査線Lにおける被走査面上までの理想的な距離に対して、光束L1、L2が平面センサ42−1、42−3に入射するまでの、実際の感光ドラムD面の到達位置までの差である。ここで、光束L1が被走査面上に入射する主走査方向の入射角度をθ1、光束L2が被走査面上に入射する主走査方向の入射角度をθ2とする(図10(a)参照)。光路長差Δx1、Δx2と、入射角度θ1、θ2から、上述した各区間の走査時間を算出すると、傾きがない走査線Lについての理想的な2区間の走査時間Ts、Teに対して、ΔTs、ΔTeのずれが発生することがわかる。
より詳細には、走査線の走査速度をS0とすると、傾きのない走査線Lは時間Tsの間に被走査面上のTs×S0の距離を走査する。一方、傾いている走査線L’の光束L1の場合、光路長差Δx1が生じるために、傾きのない走査線Lよりも時間Tsの間に被走査面上を走査する距離がΔTs×S0だけ短くなる。このため、光束L1側では、主走査方向の走査線の間隔が狭くなる。また、傾いている走査線L’の光束L2の場合、光路長差Δx2が生じるために、傾きのない走査線Lよりも時間Teの間に被走査面上を走査する距離がΔTe×S0だけ長くなる。このため、光束L2側では、主走査方向の走査線の間隔が広くなる。
ここで、図10(b−1)は、走査線Lを被走査面上に走査したときの画像の印字幅を示す図、図10(b−2)は走査線L’を被走査面上に走査したときの画像の印字幅を示す図である。上述したように、画像中央に対して、2区間の走査時間Ts、Teに差ΔTs、ΔTeが生じることで、理想的には図10(b−1)に示すようになるべきところ、図10(b−2)に示すように左右で倍率が異なってしまう。このように、左右で倍率が異なる現象を片倍率差といい、副走査方向に傾いた走査線L’では、傾きのない走査線Lに対して片倍率差が発生してしまうという課題がある。また、複数の走査線を重ね合わせたときに、主走査方向の照射位置の精度が低下し、色ずれが発生するおそれもある。
(画像形成装置の説明)
図1は実施例1のカラー画像形成装置を示す斜視図及び断面図である。本実施例のカラー画像形成装置(以下、プリンタとする)100は、電子写真プロセスを用いた4色フルカラーのレーザプリンタである。プリンタ100は、パーソナルコンピュータ、イメージリーダ、ファクシミリ装置等の不図示の外部ホスト装置から入力される電気的な画像信号に基づいて、記録媒体Sに対する画像形成を実行する。尚、記録媒体Sは、例えば、用紙、OHPシート、ラベル等であり、以下、用紙Sとする。
図1(a)は、本実施例のプリンタ100の外観斜視図であり、ユーザがプリンタ100の本体A(以下、単に本体Aとする)からプロセスカートリッジPy、Pm、Pc、Pkを引き出した状態を示している。図1(b)はプリンタ100の縦断左側面図である。画像形成時には移動部材35が本体Aの枠体内に収容される。ここで、プリンタ100に関して、前側又は正面側とは本体Aの開口部30に対する開閉部材であるドア31を配設した側である。後側とはドア31が配設された側とは反対側である。前後方向とは、本体Aの後側から前側に向かう方向(前方向)と、その逆の方向(後方向)である。左右とは、本体Aを前側から見て左又は右である。左右方向とは、右から左に向かう方向(左方向)と、その逆の方向(右方向)である。
プリンタ100の本体Aの内側には、後側から前側にかけて、第1から第4の4つのプロセスカートリッジ(以下、単にカートリッジという)Py、Pm、Pc、Pkが水平方向(横方向)に並べられて配設されている。このような構成をインライン構成又はタンデム型という。カートリッジPy、Pm、Pc、Pkは、収容されている現像剤(トナー)の色が異なるだけで、互いに同様の構成である。ここで、yはイエロー色を、mはマゼンタ色を、cはシアン色を、kはブラック色をそれぞれ示す。以下の説明では、必要な場合を除き、色を表す添え字ymckを省略する。
本実施例のカートリッジPは、潜像が形成される像担持体又は感光体としての感光ドラム1を有する。また、感光ドラム1に作用するプロセス手段として、カートリッジPは、帯電手段である帯電器、現像手段である現像器、クリーニング手段であるクリーニング装置を有する。そして、これらの部材は、カートリッジPのカートリッジ枠体1hに一体的に組み付けられている。カートリッジPyには、イエロー色(Y色)のトナーが収容されており、感光ドラム1y面にy色のトナー像が形成される。カートリッジPmには、マゼンタ色(M色)のトナーが収容されており、感光ドラム1m面にm色のトナー像が形成される。カートリッジPcには、シアン色(C色)のトナーが収容されており、感光ドラム1c面にc色のトナー像が形成される。カートリッジPkには、ブラック色(Bk色)のトナーが収容されており、感光ドラム1k面にk色のトナー像が形成される。
カートリッジPの上方部には、走査光学装置11が配設されている。走査光学装置11は、外部ホスト装置から入力される各色の画像情報に対応して、変調した光ビームを出力する。そして、走査光学装置11から出力された光ビームLy、Lm、Lc、Lkは、カートリッジ枠体1hの上面に設けられた露光窓6を通過して、各カートリッジPy、Pm、Pc、Pkの各感光ドラム1y、1m、1c、1k面を露光する。
カートリッジPの下方部には、中間転写ベルトユニット12が配設されている。カートリッジPの有する感光ドラム1の下面が、中間転写ベルトユニット12に接しており、感光ドラム1面上に形成されたトナー像が中間転写ベルト13上に転写される。中間転写ベルト13上に転写された未定着のトナー像は、転写ローラ対22により、中間転写ベルトユニット12の下方部に設けられた給送ユニット18から給紙された用紙S上に転写される。トナー像が転写された用紙Sは、定着装置23に送られ、用紙S上の未定着のトナー像が熱と圧力により用紙Sに定着された後、排紙ローラ対24により本体Aの上面に設けられた排出トレイ25に排出される。尚、プリンタ100の内部には、プリンタ100内部の温度を検知するための温度検知手段である温度センサ15が搭載されている。温度センサ15は、例えば、プリンタ100が動作したことにより上昇したプリンタ100内部の温度を検知し、検知した温度に基づいて定着装置23の定着温度等の定着条件をフィードバック制御するために用いられる。
(走査光学装置の説明)
図2(a)は走査光学装置11の斜視図、図2(b)は走査光学装置11の断面図である。尚、図2(a)の説明においても、必要な場合を除き、色を表す添え字ymckを省略する。光源部302は、各色に対応した光源である半導体レーザと、コリメータレンズ301と、を有している。コリメータレンズ301は、半導体レーザから出射されたレーザ光Lを各々所定形状にするためのレンズである。複眼シリンダレンズ303は、コリメータレンズ301を介して入射されたレーザ光を、後述する回転多面鏡305に焦線状に結像させるためのレンズである。レーザ駆動回路基板304は、半導体レーザを駆動し制御するための基板である。尚、レーザ駆動回路基板304は、後述する記憶手段である記憶部350を有している。記憶部350は、例えば不揮発性メモリである。回転手段である偏向器306は、後述する回転多面鏡305と、回転多面鏡305を駆動する不図示のスキャナモータと、を有している。
回転多面鏡305は、複眼シリンダレンズ303により集光された光束の線像近傍に、複数(図2(a)では四面)の反射面を有している。fθレンズ307a、307bや走査レンズ308a、308bは、例えばトーリックレンズで構成されている。fθレンズ307a、307b、走査レンズ308a、308bは、回転多面鏡305の反射面で反射される光束が、後述する感光ドラム1y、1m、1c、1k面上において、スポットを形成するように集光させる。また、レーザ光が被走査体である感光ドラム1上(像担持体上、被走査体上)を走査する際に、感光ドラム1y、1m、1c、1k面上に形成されたスポットの走査速度が等速に保たれるように設計されている。
反射ミラー309y、309m1、309m2、309m3、309c1、309c2、309c3、309kは、走査されるレーザ光を感光ドラム1へと導くためのミラーである。集光レンズ310は、レーザ駆動回路基板304上に設けられた不図示の水平同期信号検出手段であるビームディテクトセンサ(BDセンサとする)にレーザ光を導くためのレンズである。光学箱500は、偏向器306によって、対向走査される走査光学系を収納する箱である。光学箱500には、上述した各光学部品が組み込まれ、塵埃が侵入することを防止するため等の観点から、図示しない蓋によって略密閉され、一体化されて走査光学装置11を構成している。そして、走査光学装置11は、図1で説明した画像形成装置としてのプリンタ100に搭載される。
図2(b)に示すように、光源部302の半導体レーザから出射されるレーザ光Ly、Lm、Lc、Lkは、複眼シリンダレンズ303を通過し、回転多面鏡305によってそれぞれ異なる方向に対向走査される。回転多面鏡305によって走査されたレーザ光Ly、Lm、Lc、Lkは、それぞれfθレンズ307a、307b、及び走査レンズ308a、308bを透過する。fθレンズ307a、307b、走査レンズ308a、308bを透過したレーザ光Ly、Lm、Lc、Lkは、反射ミラー309y、309m1、309m2、309m3、309c1、309c2、309c3、309kによって方向を折り返される。fθレンズ307a、307b、走査レンズ308a、308b、反射ミラー309y〜309kは、回転多面鏡305により偏向されたレーザ光Lを感光ドラム1に導く光学部材である。そして、レーザ光Ly、Lm、Lc、Lkは、各色の感光ドラム1y、1m、1c、1kの面上をそれぞれ走査する。
このように、走査光学系は、4つの感光ドラム1上にレーザ光Lを導いて画像形成を行っている。感光ドラム1に結像するレーザ光Ly、Lm、Lc、Lkが、回転多面鏡305の回転方向(主走査方向)に走査されることで、走査線が形成される。そして、感光ドラム1y、1m、1c、1kが回転する(副走査方向)ことにより、感光ドラム1の表面に静電潜像が形成される。
また、感光ドラム1yに対応した半導体レーザから出射されたレーザ光Lyは、回転多面鏡305によりfθレンズ307aに偏向入射する位置より上流側で、集光レンズ310を通過し、集光レンズ310によってBDセンサに導光される。これにより画像書き出しタイミングが得られる。尚、本実施例の走査光学装置11は、集光レンズ310及びBDセンサは、感光ドラム1yに対応した半導体レーザ側にのみ有している。他の色に対応した半導体レーザの発光制御は、それぞれの色の書き出し位置になるように電気的に制御されている。
(走査線測定機による照射位置の測定)
図3に走査光学装置11の走査線位置を測定する測定用センサ41−1〜41−3と、平面センサ42−1〜42−3を配置した後述する走査線測定機1000(図5(a)参照)と走査光学装置11の位置関係を示す。図3(a)は測定用センサ41−1〜41−3を示す図で、図3(b)は平面センサ42−1〜42−3を示す図である。
測定用センサ41−1〜41−3は、走査光学装置11と、走査光学装置11が搭載されるプリンタ100の感光ドラム1との実際の位置関係となるように、所定の距離に配置されている。そして、実際の感光ドラム1上に形成される画像の主走査方向における中央(以下、画像中央という)に対応する位置には、測定用センサ41−2が配置されている。尚、画像中央を、0mm像高ともいう。ここで、像高とは、走査光学装置11と感光ドラム1とが上述した所定の距離に配置されているときの主走査方向における位置を表しており、画像中央を0mm、主走査方向の上流側をマイナス、主走査方向の下流側をプラスとして表す。
また、実際の感光ドラム1上に形成される画像の主走査方向における上流側の端部近傍に対応する位置には、測定用センサ41−1が配置されている。尚、測定用センサ41−1が配置されている位置を、−100mm像高ともいう。更に、実際の感光ドラム1上に形成される画像の主走査方向における下流側の端部近傍に対応する位置には、測定用センサ41−3が配置されている。尚、測定用センサ41−3が配置されている位置を、+100mm像高ともいう。本実施例では、測定用センサ41−1、41−3が配置されている像高を、±100mmとしている。しかし、この値は、走査光学装置11が搭載されるプリンタ100で使用可能な用紙Pの主走査方向の長さに応じて決定される値であり、±100mmに限定されない。
このように、本実施例の走査線測定機1000による走査線の測定の際には、主走査方向の3か所に、走査線の副走査方向の照射位置を測定するための測定用センサ41−1、41−2、41−3が設けられている。測定用センサ41−1〜41−3は、例えばラインセンサであり、ラインセンサの受像素子が並んでいる方向である長手方向が、主走査方向に直交しかつ副走査方向に平行になるように配置されている。このため、ラインセンサのどの受像素子にレーザ光が照射されたかを検知することによって、各像高における副走査方向の照射位置を検知することができる。以降、測定用センサ41−1〜41−3を、ラインセンサ41−1〜41−3とする。ラインセンサ41−1〜41−3は、レーザ光Ly、Lm、Lc、Lkそれぞれに対応して設けられているが、各レーザ光について行われる処理は同様であり、以下では、一つのレーザ光について説明する。走査光学装置11から出射されたレーザ光は、−100mm像高側から+100mm像高側へと走査される。
走査線測定機1000による副走査方向の照射位置の測定では、ラインセンサ41−1により−100mm像高の照射位置z1を測定している。また、ラインセンサ41−2により0mm像高の照射位置z3を、ラインセンサ41−3により+100mm像高の照射位置z2を、それぞれ測定している。本実施例では、製造工程において、走査線測定機1000により測定された照射位置z1、z2、z3を用いて走査線の傾きと曲がりを算出しておき、画像データの処理に応じて発光タイミングを制御することにより画像の歪を補正する。
図3(b)に示すように、図中矢印で示す走査線の主走査方向の測定には、平面センサ42−1〜42−3を用いる。平面センサ42−1はスリット43−1とフォトダイオード44−1を有し、平面センサ42−2はスリット43−2とフォトダイオード44−2を有し、平面センサ42−3はスリット43−3とフォトダイオード44−3を有している。本実施例では、−100mm像高の照射位置z1で平面センサ42−1により光束L1が検知されてから、0mm像高の照射位置z3で平面センサ42−2により光線が検知されるまでの時間(以降、走査時間という)Tsを測定する。また、0mm像高の照射位置z3で平面センサ42−2により光線が検知されてから、+100mm像高の照射位置z2で平面センサ42−3により光束L2が検知されるまでの走査時間Teを測定する。
(走査線に傾きがある場合の照射位置と走査時間)
図4は、走査線が副走査方向に傾いている場合の感光ドラム1上の照射位置と走査時間を示す。図4(a)は、感光ドラム1と感光ドラム1に照射されるレーザ光の関係を示す図9(b)と同じ方向から見た断面図である。図4(b)は、Z軸方向の+側から見た走査線の照射位置と走査時間の関係を示す説明図である。ここで、感光ドラム1の半径をR、感光ドラム1上の所定の照射位置をZとする。感光ドラム1の中心Oを座標(0,0)とすると、所定の照射位置Z(以下、Zを基準の位置とする)に対するXは、次式で表わされる。
X=R×cos(arcsin(Z/R)) (1)
また、各像高における感光ドラム1表面までの実際の光路長と理想的な(言い換えれば、平面の場合の)光路長との差分は、式(1)を用いて次式で示される。
z3:照射位置が理想的な場合の照射位置
x0:感光ドラム1面上における照射位置z3のX座標
x1:−100mm像高の照射位置に対するX座標
x2:+100mm像高の照射位置に対するX座標
Δx1:−100mm像高の照射位置での光路長と理想的な光路長との差分(光路長差)
Δx2:+100mm像高の照射位置での光路長と理想的な光路長との差分(光路長差)
Δx1=x0−x1
=R×cos(arcsin(z3/R))
−R×cos(arcsin(z1/R)) (2)
Δx2=x0−x2
=R×cos(arcsin(z3/R))
−R×cos(arcsin(z2/R)) (3)
次に、光線の光路長がずれることにより発生する各所定区間における走査時間のずれ量は、次式で示すことができる。尚、0mm像高の照射位置では感光ドラム1に入射するレーザ光は90°で、光路長が変化した場合でも主走査方向にずれることはない。
θ1:−100mm像高の照射位置での感光ドラム1面への光束L1の入射角度
θ2:+100mm像高の照射位置での感光ドラム1面への光束L2の入射角度
ΔT1:−100〜0mm像高間の走査時間のずれ量による距離
ΔT2:0〜+100mm像高間の走査時間のずれ量による距離
ΔT1=Δx1/tanθ1 (4)
ΔT2=Δx2/tanθ2 (5)
ここで、被走査面上を走査するレーザ光の走査速度をS0とすると、走査時間Ts、Teの補正量ΔTs、ΔTeは次式で示される。
ΔTs=−(ΔT1/S0) (6)
ΔTe=−(ΔT2/S0) (7)
ここで符合がマイナスになっている理由について説明する。
上述したように、傾いている走査線L’の光束L1では、光路長差Δx1が生じるために、傾きのない走査線Lよりも時間Tsの間に感光ドラム1上を走査する距離がΔT1だけ短くなり、感光ドラム1上での走査距離が不足してしまう。このため、不足する距離に相当する時間(ΔT1/S0)分を長く走査する、即ち走査時間を長くする必要がある。一方、傾いている走査線L’の光束L2では、光路長差Δx2が生じるために、傾きのない走査線Lよりも時間Teの間に被走査面上を走査する距離がΔT2だけ長くなり、感光ドラム1上での走査距離が長くなってしまう。このため、長くなった距離に相当する時間(ΔT2/S0)分を短く走査する、即ち走査時間を短くする必要がある。このように、感光ドラム1上での主走査方向の走査距離が延びた場合(ΔT1、ΔT2>0)には感光ドラム1上の走査時間を短くする必要がある。逆に、走査距離が縮んだ場合(ΔT1<0、ΔT2<0)には感光ドラム1上の走査時間を長くする必要があるためである。
以上の演算から、画像データを補正する際に用いる実際の走査時間は、それぞれTs’、Te’で示される。
Ts’=Ts+ΔTs (8)
Te’=Te+ΔTe (9)
式(8)、式(9)によって求められた感光ドラム1面上でのレーザ光の実際の走査時間Ts’、Te’は走査線毎に演算され、設定される。そして、照射位置z1、z2、z3の情報に対応した所定区間z1〜z3、z3〜z2の走査時間Ts’、Te’を走査光学装置11の記憶部350に書き込む。
走査光学装置11は、プリンタ100に搭載され、画像形成時には、プリンタ100側の制御部(実施例2で説明する処理部105のCPU106)が、走査光学装置11の記憶部350から走査時間Ts’、Te’の情報を読み取る。そして、プリンタ100側の制御部が、画像信号を生成するために入力された画像データを処理する際に用いる画像クロックの周波数を調整する。これにより、走査線の主走査方向の倍率誤差(片倍率差)を補正して、画像の印字幅を一致させることができる。
(走査線測定機のブロック図)
図5は、走査線測定機1000のブロック図である。走査線測定機1000は、上述したラインセンサ41−1、41−2、41−3、平面センサ42−1〜42−3、CPU1050、ROM1051、RAM1052を備えている。CPU1050は、ROM1051に記憶された各種プログラムにしたがって、RAM1052を作業領域として使用しながら各種処理を実行する。CPU1050は、ラインセンサ41−1〜41−3によって走査光学装置11から照射されたレーザ光の照射位置z1、z2、z3を測定する。また、CPU1050は、平面センサ42−1〜42−3によって走査光学装置11から照射されたレーザ光の走査時間Ts、Teを測定する。尚、CPU1050は、各色(本実施例では4色)について、それぞれ走査線測定機1000上の照射位置z1、z2、z3、走査時間Ts、Teを測定する。
CPU1050は、測定した照射位置z1、z2、z3、走査時間Ts、Teから、式(1)〜式(7)を用いて、補正値ΔTs、ΔTeを算出し、算出した補正値ΔTs、ΔTeから、式(8)、式(9)を用いて実際の走査時間Ts’、Te’を算出する。そして、CPU1050は、算出した実際の走査時間Ts’、Te’の情報を、走査光学装置11が備える記憶手段である記憶部350に記憶する。尚、感光ドラム1の半径R、入射角度θ1、θ2及び走査速度S0の情報は、予め走査線測定機1000のROM1051に記憶されているものとする。また、ROM1051に記憶される感光ドラム1の半径Rは、走査光学装置11が走査する色数分(例えば、4色分)の情報が記憶されるものとする。更に、本実施例では、像担持体である感光ドラム1の形状に関する情報として感光ドラム1の表面である円弧面の半径Rを用いているが、例えば曲率等の他の物理量によって像担持体の形状に関する情報としてもよい。
(走査線測定機による各像高における照射位置、走査時間の測定)
図6(a)は、製造工程において、走査線測定機1000のCPU1050が実行する処理を説明するフローチャートである。走査線測定機1000上に測定対象となる走査光学装置11が設置されると、走査線測定機1000上のレーザ光の照射位置及び走査時間の測定が開始される。尚、図6(a)は一つの色に対する測定を示しており、実際には4色分の測定が行われるものとする。ステップ(以下、Sとする)101でCPU1050は、ラインセンサ41−1〜41−3により、走査光学装置11から照射されるレーザ光の副走査方向の各像高における照射位置z1、z2、z3を測定する。
S102でCPU1050は、平面センサ42−1〜42−3により、照射位置z1と照射位置z3間の走査時間Tsと、照射位置z3と照射位置z2間の走査時間Teをそれぞれ測定する。尚、S101の処理とS102の処理は並行して実行されるため、図6(a)のような表記をしている。S103でCPU1050は、照射位置z1、z2、z3、走査時間Ts、Te、感光ドラム1の半径R、入射角度θ1、θ2及び走査速度S0から補正値ΔTs、ΔTeを算出する。ここで、照射位置z1、z2、z3は、S101で測定した走査線測定機1000上の照射位置である。また、走査時間Ts、Teは、S102で測定した走査時間である。更に、感光ドラム1の半径R、入射角度θ1、θ2及び走査速度S0は、ROM1051から読み出した値である。S104でCPU1050は、S103で算出した補正値ΔTs、ΔTeから感光ドラム1上での実際の走査時間Ts’、Te’を算出する。CPU1050は、算出した実際の走査時間Ts’、Te’及び測定した照射位置z1、z2、z3の情報を、走査光学装置11の記憶部350に記憶し、処理を終了する。このように、感光ドラム1面上における主走査方向の片倍率差を高精度に補正し、主走査方向の倍率誤差を低減することで色ずれを抑制し、画像品質を向上することができる。尚、走査線の長さ(主走査方向の倍率誤差)の補正は、画像クロックの周波数を調整、変更する代わりに、プリンタ100側の制御部が1つの走査線(1ライン)の画素数を変更、調整することによって実現してもよい。
以上、本実施例によれば、装置の小型化を実現しつつ、安価な構成で主走査方向の倍率誤差を低減することができる。
実施例2では、実施例1で説明した走査線測定機1000によって走査光学装置11の記憶部350に記憶されている照射位置z1、z2、z3、走査時間Ts、Teの情報と、温度センサ15により検知した温度の情報を用いる例を説明する。尚、実施例1と同様の構成には、同じ符号を付し、説明を省略する。
(温度センサ)
プリンタ100は、プリンタ100が稼働することにより、走査光学装置11自体やプリンタ100本体内の温度が上昇する。走査光学装置11やプリンタ100の昇温によって、走査光学装置11の光学箱500が熱変形するおそれがある。また、fθレンズ307a、307b、走査レンズ308a、308bの熱膨張、反射ミラー309y、309m1、309m2、309m3、309c1、309c2、309c3、309kの姿勢が変化する等の現象が生じるおそれもある。これらの要因によって、走査線は、特に副走査方向の照射位置が変化することがある。即ち、走査光学装置11やプリンタ100内の昇温と、走査線の副走査方向の照射位置のずれには相関がある。
そのため、プリンタ100内の温度センサ15により検知した温度に応じて、画像処理を行う処理部105で照射位置z1、z2の値を予測する。具体的には、走査線測定機1000のラインセンサ41−1〜41−3で測定した照射位置z1、z2に、温度センサ15により検知した温度に基づく補正を行って、新たに照射位置z1、z2を求める。温度センサ15の検知結果に基づき補正された新たな照射位置z1、z2は、温度センサ15の検知結果に基づき予測された値ともいえる。そして、プリンタ100側で、温度センサ15の検知結果に基づき予測した照射位置z1、z2に応じた補正量ΔTs、ΔTeを演算させる。尚、製造工程において、予め温度と走査線測定機1000上での照射位置z1、z2、z3との関係を測定しておき、この情報を例えばテーブルとして走査光学装置11の記憶部350に記憶しておく。
(走査線測定機による各像高における照射位置、走査時間の測定)
図6(b)は、本実施例の走査線測定機1000による各像高における照射位置と走査時間の測定処理を示すフローチャートである。尚、S301、S302の処理は、図6(a)で説明したS101、S102の処理と同様であり、説明を省略する。S303でCPU1050は、測定した照射位置z1、z2、z3、走査時間Ts、Teの情報を、走査光学装置11の記憶部350に記憶する。
(プリンタのブロック図)
図7に本実施例のプリンタ100のブロック図を示す。プリンタ100は、処理部105と、走査光学装置11と、温度センサ15を備えている。処理部105は、CPU106、ROM107、RAM108を有しており、CPU106は、ROM107に記憶された各種プログラムにしたがって、RAM108を作業領域として使用しながら各種処理を実行する。温度センサ15は、プリンタ100内の所定の位置に配置されている。温度センサ15については後述する。尚、走査光学装置11の構成は、図2、図5で説明した構成と同様であり、同じ構成には同じ符号を用い、説明を省略する。
走査光学装置11の記憶部350には、図6(b)のS301、S302で走査線測定機1000によって測定された、照射位置z1、z2、z3、走査時間Ts、Teの情報が記憶されている。CPU106は、走査光学装置11の記憶部350から読み出した照射位置z1、z2に、温度センサ15の検知結果に基づく補正を行い、新たな照射位置z1、z2を求める。CPU106は、新たな照射位置z1、z2と、照射位置z3、走査時間Ts、Teから補正量ΔTs、ΔTeを算出し、補正量ΔTs、ΔTeから実際の走査時間Ts’、Te’を算出する。CPU106は、算出した実際の走査時間Ts’、Te’を用いて、レーザ駆動回路基板304に出力する画像信号を生成するための画像クロックの周波数を調整する。CPU106は、実際の走査時間Ts’、Te’に基づく画像データを画像信号として走査光学装置11のレーザ駆動回路基板304に出力する。そして、レーザ駆動回路基板304は、入力された画像信号にしたがって、光源部302の半導体レーザを駆動する。これにより、CPU106は、温度センサ15の検知結果も考慮した片倍率差の補正を行っている。
(照射位置の温度検知センサの検知結果による補正)
図8(a)は、プリンタ100の走査時間の補正方法に、温度センサ15により検知した結果を考慮して、画像処理を行う場合のフローチャートである。S401でプリンタ100のCPU106は、走査線測定機1000により走査光学装置11の記憶部350に記憶された照射位置z1、z2、z3、走査時間Ts、Teの情報を読み出す。
S402でCPU106は、S401で走査光学装置11の記憶部350から読み出した照射位置z1、z2に対して、温度センサ15により検知した温度の情報から昇温分を補正した、新たな照射位置z1、z2の値を予測する。S403でCPU106は、S402で予測した照射位置z1、z2、S401で読み出した照射位置z3、走査時間Ts、Teから補正量ΔTs、ΔTeを、式(1)〜式(7)を用いて算出する。尚、本実施例では、感光ドラム1の半径R、入射角度θ1、θ2及び走査速度S0の情報は、処理部105のROM107に予め記憶されているものとする。S404でCPU106は、S403で算出した走査時間の補正量ΔTs、ΔTeから実際の走査時間Ts’、Te’を算出し、走査時間Ts’、Te’に基づき画像クロックを変調させて、画像データの主走査方向の倍率を補正する。
以上説明したように、本実施例では、実施例1と同様な効果を得られるとともに、温度等の環境特性に応じて、複数の感光ドラム上における片倍率差を高精度に補正する。これにより、各走査線の片倍率差を抑制し、主走査方向の色ずれを低減することができる。尚、本実施例では、温度センサ15は、プリンタ100の内部に搭載されているが、走査光学装置11における環境特性による照射位置の変化量と温度センサ15の検知結果とに相関関係があればよい。このため、温度センサ15の設置位置は限定されることなく、例えば、走査光学装置11に搭載されていてもよい。
以上、本実施例によれば、装置の小型化を実現しつつ、安価な構成で主走査方向の倍率誤差を低減することができる。
実施例3では、走査光学装置11に記憶された実際の走査時間Ts’、Te’を用いて、画像形成装置で画像処理する構成を説明する。実施例1と同様の構成には同じ符号を付し、説明を省略する。また、本実施例の走査線測定機1000のブロック図、実行する処理は、実施例1で説明した図5、図6(a)と同様であり、説明を省略する。
(補正処理)
図8(b)は、プリンタ100のCPU106が実行する実際の走査時間Ts’、Te’に基づく片倍率差の補正処理を説明するフローチャートである。S201でCPU106は、図6(a)で走査線測定機1000により走査光学装置11の記憶部350に記憶された実際の走査時間Ts’、Te’を読み出す。S202でCPU106は、S201で読み出した実際の走査時間Ts’、Te’に基づいて、画像クロックを変調し、レーザ駆動回路基板304を介して光源部302の半導体レーザを駆動する。
以上説明したように、本実施例は、実施例1、2と同様の効果に加え、感光ドラム上での片倍率差を高精度に補正した情報を記憶した走査光学装置11とすることができる。即ち、プリンタ100内部でコストをかけて画像処理部を設けることや、複雑な補正処理を行う必要がない。また、走査光学装置11で既に補正情報(Ts’、Te’)を記憶しているため、故障時の交換等、サービス性も向上させることができる。従って、安価な構成で、高品質な走査光学装置を提供することができる。
尚、実施例1〜3に記載されている構成部品の数量、配置等は、特に記載のない限りは、本発明の範囲をそれらに限定するものではない。例えば、走査時間の補正は走査光学装置の2区間(−100mm像高から0mm像高、0mm像高〜+100mm像高)のデータを用いて補正しているが、この補正区間は2区間に限定されるものではなく、複数の区間で走査時間を補正してもよい。また、走査光学装置11の測定箇所は3か所に限られるものではなく、複数の測定点であればよく、それに伴い、補正の分解能が向上し、高精度な片倍率差の補正が可能となる。
以上、本実施例によれば、装置の小型化を実現しつつ、安価な構成で主走査方向の倍率誤差を低減することができる。
11 走査光学装置
302 光源部
305 回転多面鏡
307 fθレンズ
308 走査レンズ
309 反射ミラー
350 記憶部

Claims (15)

  1. レーザ光を出射する光源と、
    前記光源から出射されたレーザ光を偏向し、円弧面である被走査面に照射されたレーザ光のスポットを主走査方向に移動させ走査線を形成する偏向手段と、
    を備える走査光学装置であって、
    平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で測定された前記レーザ光の測定結果から求まる、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第1位置から前記第2位置までの前記レーザ光の第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第2位置から前記第3位置までの前記レーザ光の第2補正走査時間、及び前記第1位置、前記第2位置、前記第3位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置、第2照射位置、第3照射位置を記憶した記憶手段を備え、
    前記第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、
    前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定された第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められ、
    前記走査線を形成するために前記光源から出射されるレーザ光の走査時間を、前記記憶手段に記憶されている前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づき設定することを特徴とする走査光学装置。
  2. 前記第1測定結果、前記第2測定結果、前記第3測定結果は、ラインセンサにより測定されたことを特徴とする請求項1に記載の走査光学装置。
  3. 前記第1測定走査時間、前記第2測定走査時間は、平面センサにより測定されたことを特徴とする請求項1に記載の走査光学装置。
  4. 前記被走査面を表面に有する感光体と、
    請求項1乃至3のいずれか1項に記載の走査光学装置と、
    前記走査光学装置を制御して前記被走査面上に潜像を形成させる制御手段と、
    を備え、
    前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づいて、前記レーザ光が前記被走査面を走査する走査時間を設定することを特徴とする画像形成装置。
  5. 温度を検知する温度検知手段を備え、
    前記制御手段は、前記温度検知手段により検知された温度に基づき、前記第1照射位置、前記第2照射位置、前記第3照射位置を補正することを特徴とする請求項4に記載の画像形成装置。
  6. レーザ光を出射する光源と、
    前記光源から出射されたレーザ光を偏向し、円弧面である被走査面に照射されたレーザ光のスポットを主走査方向に移動させ走査線を形成する偏向手段と、
    を備える走査光学装置であって、
    前記走査線を形成するために前記光源から出射されるレーザ光が前記被走査面を走査する、前記主走査方向の倍率誤差を補正するための補正走査時間である第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である第2補正走査時間を記憶した記憶手段を備え、
    平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で前記レーザ光は測定され、
    前記第1位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第2位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第3位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、
    前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定された第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められることを特徴とする走査光学装置。
  7. 前記第1測定結果、前記第2測定結果、前記第3測定結果は、ラインセンサにより測定されたことを特徴とする請求項6に記載の走査光学装置。
  8. 前記第1測定走査時間、前記第2測定走査時間は、平面センサにより測定されたことを特徴とする請求項6に記載の走査光学装置。
  9. 前記被走査面を表面に有する感光体と、
    請求項6乃至8のいずれか1項に記載の走査光学装置と、
    前記走査光学装置を制御して前記被走査面上に潜像を形成させる制御手段と、
    を備え、
    前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間を設定することを特徴とする画像形成装置。
  10. 円弧面である像担持体と、
    レーザ光を出射する光源と、前記光源から出射されたレーザ光を偏向し主走査方向に走査する偏向手段と、前記偏向手段により偏向されたレーザ光を前記像担持体に導く光学部材と、を有し、入力された画像データを画像クロックに同期させて処理することにより生成された画像信号に応じた潜像を前記像担持体に形成する走査光学装置と、
    前記走査光学装置を制御して前記像担持体上に前記潜像を形成させる制御手段と、
    を備え、
    前記走査光学装置は、平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で測定された前記レーザ光の測定結果から求まる、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第1位置から前記第2位置までの前記レーザ光の第1補正走査時間、前記主走査方向の倍率誤差を補正するための補正走査時間である前記第2位置から前記第3位置までの前記レーザ光の第2補正走査時間、及び前記第1位置、前記第2位置、前記第3位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置、第2照射位置、第3照射位置を記憶した記憶手段を有し、
    前記第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、前記第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、前記第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記像担持体の前記円弧面の半径とに基づき求められ、
    前記第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第1位置から前記第2位置までで測定され第1測定走査時間と前記第1照射位置とに基づき求められ、前記第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記平面上の前記第2位置から前記第3位置までで測定された第2測定走査時間と前記第3照射位置とに基づき求められ、
    前記制御手段は、前記記憶手段から読み出した前記第1補正走査時間、前記第2補正走査時間、前記第1照射位置、前記第2照射位置、前記第3照射位置に基づいて、前記レーザ光が前記像担持体に照射されたときの走査時間を算出し、算出した前記像担持体上での走査時間に基づいて、前記画像クロックの周波数を調整することを特徴とする画像形成装置。
  11. 前記記憶手段に記憶された前記第1測定結果、前記第2測定結果、前記第3測定結果は、ラインセンサにより測定されたことを特徴とする請求項10に記載の画像形成装置。
  12. 前記記憶手段に記憶された前記第1測定走査時間、前記第2測定走査時間は、平面センサにより測定されたことを特徴とする請求項10に記載の画像形成装置。
  13. 温度を検知する温度検知手段を備え、
    前記制御手段は、前記温度検知手段により検知された温度に基づき、前記第1照射位置、前記第2照射位置、前記第3照射位置を補正することを特徴とする請求項10乃至12のいずれか1項に記載の画像形成装置。
  14. レーザ光を出射する光源と、前記光源から出射されたレーザ光を偏向し、円弧面である被走査面に照射されたレーザ光のスポットを主走査方向に移動させ走査線を形成する偏向手段と、を備える走査光学装置の前記走査線を補正する補正方法であって、
    前記光源から出射されるレーザ光の照射位置を平面上の前記主走査方向における一端側である第1位置、中央である第2位置、他端側である第3位置で測定する第一の測定工程と、
    前記光源から出射されるレーザ光の前記第1位置から前記第2位置までの前記レーザ光の第1測定走査時間、前記第2位置から前記第3位置までの前記レーザ光の第2測定走査時間を測定する第二の測定工程と、
    前記第1位置に対応する前記主走査方向に直交する副走査方向における前記レーザ光の第1照射位置は、前記平面上の前記第1位置で測定された第1測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第2位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第2照射位置は、前記平面上の前記第2位置で測定された第2測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、前記第3位置に対応する前記主走査方向に直交する前記副走査方向における前記レーザ光の第3照射位置は、前記平面上の前記第3位置で測定された第3測定結果と前記被走査面の前記円弧面の半径とに基づき求められ、
    前記主走査方向の倍率誤差を補正するための補正走査時間である第1補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記第1測定走査時間と前記第1照射位置とに基づき求められ、前記主走査方向の倍率誤差を補正するための補正走査時間である第2補正走査時間は、前記主走査方向の倍率誤差を補正するように、前記第2測定走査時間と前記第3照射位置とに基づき求められる算出工程と、
    前記算出工程で算出された前記第1補正走査時間、前記第2補正走査時間に基づいて、前記走査線の長さを調整する調整工程と、
    を備えることを特徴とする補正方法。
  15. 温度検知手段により温度を検知する検知工程を備え、
    前記算出工程では、前記検知工程で検知された温度に基づき、前記第1照射位置、前記第2照射位置、前記第3照射位置を補正することを特徴とする請求項14に記載の補正方法。
JP2014250333A 2014-12-10 2014-12-10 走査光学装置、画像形成装置及び補正方法 Active JP6624779B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014250333A JP6624779B2 (ja) 2014-12-10 2014-12-10 走査光学装置、画像形成装置及び補正方法
US14/959,303 US9864934B2 (en) 2014-12-10 2015-12-04 Optical scanning device, image forming apparatus, and correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250333A JP6624779B2 (ja) 2014-12-10 2014-12-10 走査光学装置、画像形成装置及び補正方法

Publications (3)

Publication Number Publication Date
JP2016110044A JP2016110044A (ja) 2016-06-20
JP2016110044A5 JP2016110044A5 (ja) 2018-01-25
JP6624779B2 true JP6624779B2 (ja) 2019-12-25

Family

ID=56122093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250333A Active JP6624779B2 (ja) 2014-12-10 2014-12-10 走査光学装置、画像形成装置及び補正方法

Country Status (1)

Country Link
JP (1) JP6624779B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254862A (ja) * 2002-03-04 2003-09-10 Canon Inc 光学特性測定装置及び光学特性測定方法
JP2009300604A (ja) * 2008-06-11 2009-12-24 Canon Inc カラー画像形成装置
JP2012137658A (ja) * 2010-12-27 2012-07-19 Konica Minolta Business Technologies Inc 画像形成装置及び画像形成装置制御方法

Also Published As

Publication number Publication date
JP2016110044A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
US9864934B2 (en) Optical scanning device, image forming apparatus, and correction method
JP5945894B2 (ja) 光走査装置及び画像形成装置
JP5573493B2 (ja) 光走査装置及び画像形成装置
JP6887823B2 (ja) 光走査装置及び画像形成装置
JP6029314B2 (ja) 画像形成装置
US8310738B2 (en) Scanning optical device, image forming device and jitter correction method
JP2008224965A (ja) 光走査装置、および画像形成装置
JP5218503B2 (ja) 光走査装置および画像形成装置
JP2015028597A (ja) 画像形成装置
JP6624779B2 (ja) 走査光学装置、画像形成装置及び補正方法
JP2008076935A (ja) 走査光学装置及び画像形成装置
JP2011257572A (ja) 光走査装置及び画像形成装置
JP6512809B2 (ja) 走査光学装置及び画像形成装置
JP4468798B2 (ja) カラー画像形成装置
JP5381134B2 (ja) 光走査装置及びこれを使用する画像形成装置
JP2015206947A (ja) 走査光学装置及び画像形成装置
JP2012027138A (ja) 画像形成装置、およびプログラム
JP5743539B2 (ja) 画像形成装置
JP2009217152A (ja) 光走査装置及び画像形成装置
JP6904735B2 (ja) 光走査装置および前記光走査装置を備えた画像形成装置
JP6663136B2 (ja) 光走査装置及び該光走査装置を備えた画像形成装置
JP2009037030A (ja) 光走査装置及び画像形成装置
JP2008040155A (ja) 光走査装置及び光走査装置を備えた画像形成装置
JP6525780B2 (ja) 画像形成装置および走査線の曲がり検出方法
JP2023056963A (ja) 画像形成装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R151 Written notification of patent or utility model registration

Ref document number: 6624779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151