JP2008040155A - 光走査装置及び光走査装置を備えた画像形成装置 - Google Patents

光走査装置及び光走査装置を備えた画像形成装置 Download PDF

Info

Publication number
JP2008040155A
JP2008040155A JP2006214730A JP2006214730A JP2008040155A JP 2008040155 A JP2008040155 A JP 2008040155A JP 2006214730 A JP2006214730 A JP 2006214730A JP 2006214730 A JP2006214730 A JP 2006214730A JP 2008040155 A JP2008040155 A JP 2008040155A
Authority
JP
Japan
Prior art keywords
scanning
optical
sub
scanning line
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006214730A
Other languages
English (en)
Other versions
JP5037062B2 (ja
Inventor
Yoshinobu Sakagami
嘉信 坂上
Noboru Kususe
登 楠瀬
Hideto Higaki
秀人 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006214730A priority Critical patent/JP5037062B2/ja
Publication of JP2008040155A publication Critical patent/JP2008040155A/ja
Application granted granted Critical
Publication of JP5037062B2 publication Critical patent/JP5037062B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】装置のコストを安価にして、光ビームの副走査線の位置を検知することができる光走査装置および光走査装置を備えた画像形成装置を提供する。
【解決手段】複数の走査ビームを同一のビーム検知センサたるビーム検知ユニット300(301)に入射させて、このビーム検知ユニット300(301)で複数の走査ビームの副走査線方向の位置を検知する。これにより、各走査ビーム毎にビーム検知ユニットを設けるものに比べて、ビーム検知ユニットを少なくすることができる。これにより、走査ビーム毎にビーム検知ユニットを設けていたものに比べて、装置のコストを安価にして、光ビームの副走査線の位置を検知することができる。
【選択図】図3

Description

本発明は、光走査装置及び光走査装置を備えた画像形成装置に関するものである。
従来、複数の潜像担持体上にそれぞれ異なる色の画像(可視像)を形成してこれらの画像を互いに重ね合わせてカラー画像を形成する、いわゆるタンデム型のカラー画像形成装置が知られている。この画像形成装置は、各潜像担持体上に画像情報に応じた光ビームを照射してこれを走査することにより潜像担持体上に潜像を形成し、この潜像を現像して画像を得る。光ビームを照射し走査する光走査装置は、一般に、光源からの光ビームを偏向走査する主走査線偏向手段たるポリゴンミラーと、このポリゴンミラーによって偏向走査された光ビームを光照射対象である潜像担持体表面に結像するための複数の光学素子(レンズ等)とを備えている。このような光走査装置では、次のようなことが原因で、各光学素子間の位置および角度が微妙に変化する。すなわち、光学素子の像面湾曲特性、光走査装置のハウジングのねじれ、ポリゴンモータの発熱等による光走査装置を構成する各種構成部材の熱変形、潜像担持体の取付時のねじれなどである。このような、各光学素子間の位置および角度の変化が生じると、潜像担持体への光ビームの走査位置が変化する。また、光ビームによる潜像担持体表面上の走査線に、曲がりや傾きが発生する。その結果、各潜像担持体間における光ビームの走査位置、走査線の曲がりや傾きの相対的なズレが色ズレとなって表れる。特に、各潜像担持体間における副走査線方向の走査位置の相対的なズレによる色ズレが問題となっていた。
このため、従来では、各潜像担持体間における副走査線方向の走査位置の相対的なズレ量を検知するパターン画像(レジストマーク画像)を形成した後にセンサを用いてその位置を検知し、その検知結果に応じて副走査線方向の走査位置の補正(レジスト補正)を行っている。
ところが、上述のレジスト補正においては、潜像担持体や中間転写ベルトなどの転写媒体にパターン画像を形成するために、潜像担持体や中間転写ベルトにキズがついたり、異物が付着したりした場合、パターン画像が正しく形成できなくなる恐れがある。その結果、検知ができなくなったり、検知できたとしても補正結果が適正なものでなくなったりすることがあった。また、潜像担持体や中間転写ベルトの近傍にパターン画像を検知するセンサを配置するため、潜像担持体や中間転写ベルトから飛散したトナーなどによってセンサを汚して、パターン画像を正しく検知できなくなる問題もあった。さらには、パターン画像の形成時やそれを検知するときは、画像形成動作を行えない状態である所謂ダウンタイムとなる問題もあった。
特許文献1乃至3には、光ビームの副走査線の位置を検知するビーム検知センサを設け、ビーム検知センサの検知結果に基づいて、色ずれ補正を行うものが記載されている。このように、光ビームの副走査線位置を直接検知することで、位置検知のためのパターン画像を形成する必要がなくなる。その結果、検知ができなくなったり、検知できたとしても補正結果が適正なものでなくなったりすることが抑制される。また、パターン画像を形成することがないので、色ずれ補正時のダウンタイムの時間を短縮することができる。
特開2004−287380号公報 特開2000−235290号公報 特許第3087748号公報
しかしながら、特許文献1乃至3においては、Y、M、C、Kの光ビーム毎にビーム検知センサを設けるため、ビーム検知センサの個数が多くなり、装置のコストが高くなるという問題があった。
本発明は、上記問題に鑑みなされたものであり、その目的とするところは、装置のコストを安価にして、光ビームの副走査線の位置を検知することができる光走査装置および光走査装置を備えた画像形成装置を提供することである。
上記目的を達成するために、請求項1の発明は、複数の光ビーム発射手段と、これら光ビーム発射手段から発射された各光ビームを主走査線方向に偏向する主走査線偏向手段と、前記主走査線偏向手段によってそれぞれ偏向せしめられた後の走査ビームを検知するビーム検知センサとを備えた光走査装置において、前記ビーム検知センサは、光ビームの副走査線方向の位置を検知する機能を備え、前記主走査線偏向手段によって偏向せしめられた後の複数の走査ビームを、同一のビーム検知センサに入射させたことを特徴とするものである。
また、請求項2の発明は、請求項1の光走査装置において、複数の光ビームを同時に発射したときの各光ビームの前記主走査線偏向手段に入射する入射角度が異なるように、光ビーム発射手段および/または光ビーム発射手段から前記主走査線偏向手段までの光ビームの光路上に設けられた光学素子を配置したことを特徴とするものである。
また、請求項3の発明は、請求項1または2の光走査装置において、前記主走査線偏向手段によって偏向せしめられた後の各走査ビームを、同一の折り返しミラーに反射させて、前記ビーム検知センサに入射させることを特徴とするものである。
また、請求項4の発明は、請求項1乃至3いずれかの光走査装置において、前記光ビーム発射手段と、前記主走査線偏向走査手段と、前記ビーム検知センサと、前記光ビーム発射手段から被照射体までの光ビームの光路上に設けられた光学素子とを収納する筐体と、前記光ビーム発射手段から前記ビーム検知センサまでの光ビームの光路上以外に配置された光学素子を保持する光学素子保持部材とを備え、前記光学保持部材の線膨張係数を、前記筐体よりも低くしたことを特徴とするものである。
また、請求項5の発明は、請求項4の光走査装置において、前記光学素子保持部材を、金属で構成したことを特徴とするものである。
また、請求項6の発明は、請求項4または5の光走査装置において、前記被照射体との位置決めを行う位置決め部を前記筐体に備え、前記光学素子保持部材を、前記筐体の前記位置決め部近傍に位置決めすることを特徴とするものである。
また、請求項7の発明は、請求項1乃至6いずれかの光走査装置において、前記ビーム検知センサは、走査ビームの副走査線方向の位置に応じて、異なる信号を生じさせる信号発生手段を備えたことを特徴とするものである。
また、請求項8の発明は、請求項7の光走査装置において、前記ビーム検知センサは、受光素子を備え、走査ビームの副走査線方向の位置に応じて、前記受光素子の走査ビーム検知時間を異ならせたことを特徴とするものである。
また、請求項9の発明は、請求項7の光走査装置において、前記ビーム検知センサは、主走査線方向に少なくとも2つ以上の受光素子を配置し、一つ目の受光素子が走査ビームを検知してから、次の受光素子が走査ビームを検知するまでの時間を走査ビームの副走査線方向の位置に応じて、異ならせたことを特徴とするものである。
また、請求項10の発明は、請求項8または9の光走査装置において、前記ビーム検知センサは、前記受光素子に入射する前の走査ビームを副走査線方向に屈折せしめる光学素子を有することを特徴とするものである。
また、請求項11の発明は、請求項10の光走査装置において、前記ビーム検知センサが有する光学素子は、集光レンズであって、前記受光素子の配置位置と前記集光レンズの集光位置とを異ならせたことを特徴とするものである。
また、請求項12の発明は、請求項10または11の光走査装置において、前記ビーム検知センサは、前記受光素子と前記光学素子とを保持する同期素子保持部材を有することを特徴とするものである。
また、請求項13の発明は、請求項12の光走査装置において、前記同期素子保持部材の線膨張係数を前記筐体の線膨張係数よりも低くしたことを特徴とするものである。
また、請求項14の発明は、請求項1乃至13いずれかの光走査装置において、走査レンズ通過後の走査ビームが前記ビーム検知センサへ入射するように構成したことを特徴とするものである。
また、請求項15の発明は、請求項1乃至14いずれかの光走査装置において、走査ビームの走査開始位置を検知する走査開始用のビーム検知センサと、走査ビームの走査終了位置を検知する走査終了用のビーム検知センサとを備えたことを特徴とするものである。
また、請求項16の発明は、請求項1乃至15いずれかの光走査装置を備えたことを特徴とするものである。
また、請求項17の発明は、請求項16の画像形成装置において、前記ビーム検知センサの検知結果に基づいて、副走査線方向の位置ずれ量を算出する算出手段と、この算出された位置ずれ量に基づいて、副走査線方向の位置ずれを補正する副走査線補正手段を備えたことを特徴とするものである。
また、請求項18の発明は、請求項17の画像形成装置において、前記副走査線補正手段は、副走査線方向1走査を単位として位置ずれ補正することを特徴とするものである。
また、請求項19の発明は、請求項17または18の画像形成装置において、複数回前記ビーム検知センサで走査ビームの副走査線方向の位置を検知して、各検知結果に基づいてそれぞれ位置ずれ量を算出し、これら算出した位置ずれ量の平均値に基づいて位置ずれ補正を行うことを特徴とするものである。
請求項1乃至19の発明によれば、複数の走査ビームを同一のビーム検知センサに入射させて、このビーム検知センサで各ビームの副走査線方向の位置を検知することで、次の効果を得ることができる。すなわち、走査ビーム毎にビーム検知センサを設けていたものに比べて、ビーム検知センサを少なくすることができる。これにより、走査ビーム毎にビーム検知センサを設けていたものに比べて、装置のコストを安価にして、光ビームの副走査線の位置を検知することができる。
本発明が適用されるカラー画像形成装置の一例を図1に基づき説明する。
図1は、潜像担持体としての複数、4つのドラム状をした感光体10Y、10C、10M、10Kをタンデム配列したフルカラー画像形成装置の例であり、これら感光体は画像形成手段たる各作像装置7Y、7C、7M、7Kの一部として構成されている。これら作像装置7Y、7C、7M、7Kは順に、イエロー、シアン、マゼンタ、ブラックの各色に対応し、これらの色の画像をつくる。
図1の画像形成装置のタイプでは、3つの支持ローラ15a、15b、15cなどに支持されて回転する表面移動部材としての中間転写ベルト14があり、この中間転写ベルト14の下側の張設ラインに沿って、矢印で示す該中間転写ベルト14の移動方向順に、上流側から、上記作像装置7Y、7C、7M、7Kが間隔をおいて配置されている。
フルカラー画像の形成に際しては、これら作像装置7Y、7C、7M、7Kに設けられた感光体10Y、10C、10M、10Kに後述するように、各色のトナー画像が形成される。次に、これら異なる色のトナー画像は、中間転写ベルト14を間にして各感光体に対向して配置されている転写手段としての一次転写ローラ16の機能により中間転写ベルト14の移動とともに、中間転写ベルト14上に順次重ね転写される。詳しくは、中間転写ベルト14上の一次転写ローラ16が接している箇所は転写位置といい、この転写位置で転写が行なわれる。
4つの重ね転写トナー像は最終記録媒体である記録材に、支持ローラ15aと二次転写ローラ9とのニップ部で一括転写され、定着装置6の定着対ローラ間を通紙したのち、搬送ローラを経て、排紙ローラ対より排紙トレイ19上に排紙される。こうして、記録材上にフルカラー画像を得る。
尚、中間転写ベルト14は、黒画像1色形成モードに適合させるために、感光体10Kについては一次転写ローラ16により常時接触させる構成であり、他の感光体については、可動のテンションローラの機能により中間転写ベルト14が接離する構成としている。中間転写ベルト14上の残トナーを除去するためのクリーニング装置17がローラ15b部に設けられている。
図1において、各作像装置7Y、7C、7M、7Kは扱うトナーの色が異なるだけであり、機械的な構成及び作像プロセスは共通であるので、感光体以外の各構成部材は同一の符号を付し、任意の一つの作像装置、例えば作像装置7Yについて構成及び作像のプロセスを説明する。
作像装置7Yの感光体10Yの周囲には、図中、時計回りの回転方向順に、感光体10Yを帯電する帯電手段としての帯電ローラ11、書込光Lの照射位置、現像手段としての現像装置12、一次転写ローラ16、クリーニング装置13などが配置されている。
書込光Lは、光走査手段たる光走査装置20から出射されるもので、内部には、光源としての半導体レーザ、カップリングレンズ、fθレンズ、トロイダルレンズ、ミラー、回転多面鏡などを装備しており、各感光体に向けて各色用の書込光Lを出射し、感光体10Y上の書込位置に書込光Lを照射して静電潜像を形成する。なお、詳細については、後述する。
例えば、作像装置7Yの現像装置12については、イエローの現像剤が収納されていて、潜像をイエロー画像で可視像化する。他の作像装置についても、それぞれの色の現像剤が収納されていて、その収納されている現像剤の色で潜像を可視像化する。
画像形成に際しては、感光体10Yが回転して帯電ローラ11により一様に帯電され、書込位置でイエロー画像の情報を含む書込光Lの照射を受けて静電潜像が形成され、この潜像が現像装置を通過する間にイエロートナーにより顕像化される。
感光体10Y上のイエロートナー像は、一次転写ローラ16により中間転写ベルト14に転写される。中間転写ベルト14上の、このイエロートナー画像は、作像装置7Cでシアントナー画像、作像装置7Mでマゼンタトナー画像、作像装置7Bでブラックトナー画像と順次重ね転写される。これにより、フルトナー画像が形成される。
この重ねトナー像が二次転写ローラ9部に達するのと同じタイミングで二次転写ローラ9部に至るように、記録材が給紙部5、レジストローラからタイミングを取って送り出され、前記したように、支持ローラ15aと二次転写ローラ9とのニップ部で一括転写される。
一方、転写後の感光体はクリーニング装置13により残留トナーが除去された後、除電ランプにより除電されて次の画像形成に備えられる。同様に、中間転写ベルト14についても、残留トナーなどがクリーニング装置17により除去される。
本例の画像形成装置では、各感光体上のトナー画像を一旦中間転写ベルト14上に重ね転写して、この重ねトナー画像をシート状媒体に一括転写する方式であるが、かかる中間転写ベルトに代えて表面移動部材たる記録紙搬送ベルトを設け、この記録紙搬送ベルトにより記録材を載せて搬送し、この搬送の過程で、各感光体から順次カラートナー像を記録材上に重ね転写することにより、フルカラー画像を合成する方式のカラー画像形成装置も知られている。本発明は、これら何れの方式の画像形成装置に対しても、適用可能である。
次に、光走査装置20について説明する。
図2は、光走査装置20の構成を示す概略断面図である。
図3は、光走査装置20を下から見たときの概略図である。
図に示す光走査装置20はタンデム式の書込光学系であり、走査レンズ方式を採用しているが、走査レンズ、走査ミラー方式のいずれにも対応可能である。
光走査装置20は、主走査線偏向手段たるポリゴンスキャナ130、各種の反射ミラー、各種のレンズ等の光学素子を備えている。ポリゴンスキャナ130は、光走査装置20の略中央に配置されている。そして、図示しないポリゴンモータのモータ回転軸に固定された上段ポリゴンミラー26と下段ポリゴンミラー27とを有している。かかる構成のポリゴンスキャナ130は、その周囲が防音ガラス120によって囲まれている。
図2に示すように、ポリゴンスキャナ130の図中右側には、M用の光学系と、K用の光学系とが配設されている。ポリゴンスキャナ130の図中左側には、Y用の光学系と、C用の光学系とが配設されている。Y用の光学系は、ポリゴンモータの回転軸を中心にしてK用の光学系と点対称の関係となる構成になっている。また、C用の光学系は、ポリゴンモータの回転軸を中心にしてM用の光学系と点対称の関係となる構成になっている。
また、図3に示すように、各感光体10K、10M、10C、10Yにそれぞれ対応する光ビームLk、Lm、Lc、Lyを射出する光ビーム発射手段たる光源ユニット21K,21M,21C,21Yを備えている。光源ユニット21は、少なくと光源たる半導体レーザLDとコリメートレンズ21aとを備えている。
光学素子たる、結像レンズ(シリンダレンズ)24K、24M、24C、24Yと反射ミラー23a、23bは、光源ユニット21からポリゴンスキャナ150までの光ビームの光路上に配設されている。また、光学素子たる、走査レンズ(fθレンズ)28a,28b、第1ミラー31K,31M,31C,31Y,第2ミラー32K,32M,32C,32Y,第3ミラー33K,33M,33C,33Y、および長尺レンズ30K、30M,30C,30Yは、ポリゴンスキャナ130から被照射体である感光体10までの光路上に配置されている。
図3の図中右下方には、K色とM色の走査ビームLm、Lkの先端を検知するビーム検知センサたる先端ビーム検知ユニット300MKが設けられている。また、図中右上方には、K色とM色の走査ビームLm、Lkの後端を検知するビーム検知センサたる後端ビーム検知ユニット301MKが設けられている。また、ポリゴンモータの回転軸を中心にしてM、K用先端ビーム検知ユニット300MKと点対称となる位置(図中左上方)に、C、Y用先端ビーム検知ユニット300CYが設けられている。同様に、ポリゴンモータの回転軸を中心にしてM、K用後端ビーム検知ユニット301MKと点対称となる位置(図中左下方)に、C、Y用後端ビーム検知ユニット301CYが設けられている。
先端ビーム検知ユニット300MK、300CYは書込み開始位置検知用であり、後端ビーム検知ユニット301MK、301CYは、書込み終端位置検知用である。詳しくは、先端ビーム検知ユニット300MK、300CYは主走査同期検知手段及び/又は副走査ビーム位置検知手段となり、ビームの主走査同期及び/又は副走査検出が行われる。また、後端ビーム検知ユニット301MK、301CYにより、光走査装置としての主走査倍率及び/又は走査線傾きを計測することができる。なお、ビーム検知ユニットの詳細については後述する。
K用の光源ユニット21Kから発射された光ビームは、図示しないアパーチャを通過して、所定の形状の光ビームLkが形成される。このアパーチャを通過した光ビームLkは、結像レンズ24K(シリンダレンズ)に入射して光ビームの面倒れを補正する。結像レンズ24Kを通過した光ビームLkは、反射ミラー23aに反射されて防音ガラス120を通過して主走査線偏向手段たる上段ポリゴンミラー27の側面に入射する。上段ポリゴンミラー27の側面に光ビームLkが入射すると、この光ビームが主走査線方向に偏向走査される。ポリゴンミラー75bで偏向走査された光ビーム(走査ビーム)Lkは、再び防音ガラス120を通過して走査レンズ28a(fθレンズ)によって集光される。走査レンズ28aによって集光されたK色の走査ビームLkは、感光体10K上への走査に先立って折り返しミラー302MKに反射され、先端ビーム検知ユニット300MKに入射して走査ビームLkが検知される。先端ビーム検知ユニット300MKが走査ビームLkを検知すると、同期信号が出力され、同期信号に応じて、画像データに基づいて変換された光源信号の出力のタイミングが調整される。
入力された画像データに基づいて発光した光ビームLkは、上述同様、結像レンズ24Kなどを通過して、上段ポリゴンミラー27に走査されて、走査レンズ28aに入射する。走査レンズ28aに入射した走査ビームLkは、図2に示すように、長尺レンズ30Kを通過した後、第1〜第3ミラー31K、32K、33Kを介して感光体10Kに照射される。
M用の光源ユニット21Mから発射された光ビームLmも、K色同様、結像レンズ24Kなどを通過して反射ミラー23aに反射されて、下段ポリゴンミラー26に走査される。下段ポリゴンミラー26に走査されたM色用の走査ビームLmは、走査レンズ28aに入射して、感光体10M上への走査に先立って先端ビーム検知ユニット300MKに入射して、同期信号を出力する。そして、同期が取れて発射された画像データに基づく光ビームLmが、結像レンズ24M、下段ポリゴンミラー26、走査レンズ28a、第1ミラー31M、長尺レンズ30M、第2、第3ミラ−32M、33Mを通って、感光体10Mに照射される。
C用の光源ユニット21Cから発射された光ビームLcは、結像レンズ24Cなどを通過して反射ミラー23bに反射されて、下段ポリゴンミラー26に走査される。下段ポリゴンミラー26に走査されたC色用の走査ビームLcは、走査レンズ28bに入射して、感光体10C上への走査に先立って先端ビーム検知ユニット300CYに入射して、同期信号を出力する。そして、同期が取れて発射された画像データに基づく光ビームLcが、結像レンズ24C、下段ポリゴンミラー26、走査レンズ28b、第1ミラー31C、長尺レンズ30C、第2、第3ミラ−32C、33Cを通って、感光体10Cに照射される。
Y用の光源ユニット21Yから発射された光ビームLyは、結像レンズ24Yなどを通過して反射ミラー23bに反射されて、上段ポリゴンミラー27に走査される。上段ポリゴンミラー27に走査されたY色用の走査ビームLyは、走査レンズ28bを通過した後、感光体10Y上への走査に先立って折り返しミラー302CYに反射されて先端ビーム検知ユニット300CYに入射し同期信号が出力される。そして、同期が取れて発射された画像データに基づく光ビームLmが、結像レンズ24Y、上段ポリゴンミラー27、走査レンズ28b、長尺レンズ30Y、第1〜第3反射ミラー31Y、32Y、33Yを通って、感光体10Yに照射される。
次に、ビーム検知ユニットについて説明する。先端ビーム検知ユニットと後端ビーム検知ユニットとは、同一の構成であるので、ここでは、単にビーム検知ユニット300として説明する。
ビーム検知ユニット300は、図4に示すように、受光素子たるフォトダイオードPDと同期光学素子300bとを有し、これらフォトダイオードPDと同期光学素子300bと、図示しない信号発生回路基板が、同期素子保持部材300cに保持されている。
同期光学素子300bは、フォトダイオードPDに入射するビームスポット径が小さくなるように、ビーム検知ユニット300に入射した走査ビームを副走査線方向に集光させるものである。このように、フォトダイオードPDに入射するビームスポット径を小さくすることで、受光素子を小さくすることができる。同期光学素子を、図4に示すように、折り返しミラーを用いて構成して、走査ビームを集光させてもよい。また、図5に示すように、プリズムを用いて、走査ビームを集光させてもよい。また、図6に示すように、集光レンズを用いて走査ビームを集光させてもよい。ただし、同期光学素子として、集光レンズを用いた場合、集光レンズの集光位置に受光素子PDを配置すると、副走査線方向の検知ができなくなる。よって、集光レンズの集光位置と受光素子PDの配置位置とが異なるように、配置する。
また、同期素子保持部材300cの線膨張係数を、筐体100の線膨張係数よりも小さくすることが好ましい。筐体100よりもさらに線膨張係数が低いので、熱による同期素子保持部材300cの伸縮が抑制される。これにより、同期光学素子300bとフォトダイオードPDとの距離関係がほとんど変化することがなくなり、フォトダイオードPDに入射する走査ビームのスポット径の変化を抑制することができる。
本実施形態のビーム検知ユニット300は、上述したように、同期信号検知機能の他に、走査ビームの副走査線位置を検知する機能も有している。このため、フォトダイオードPDの数や配置、形状などを工夫して、ビーム検知ユニット300が、走査ビームの副走査線方向の位置に応じて、異なる信号を生じさせるようにしている。以下に、具体的に説明する。
図7は、走査ビームの副走査線方向の位置を検知する機能を備えたビーム検知ユニットの一例である。なお、図4の左側は、先端ビーム検知ユニット300を示しており、図中右側は、後端ビーム検知ユニット301を示している。
図に示すようにビーム検知ユニット300(301)は、第1受光素子たるフォトダイオードPD1(PD1’)の受光面は走査ビームに直交し、第2受光素子たるフォトダイオードPD2(PD2’)の受光面はフォトダイオードPD1(PD1’)の受光面に対して傾いている。この傾き角をα1とする。1対のフォトダイオード間、すなわちフォトダイオードPD1とPD2との間、或いは、フォトダイオードPD1’とPD2’との間を走査ビームL1が通過する時間T1と、走査ビームL1からΔZ副走査線方向にずれた走査ビームL2が通過する時間T2とが異なる。すなわち、走査ビームの副走査線方向の位置に応じて、フォトダイオードPD1(PD1’)が走査ビームを検知して検知信号を出力してから、フォトダイオードPD2(PD2’)が走査ビームを検知して検知信号を出力するまでの時間を異ならせたのである。そして、時間T1、T2の時間差(T2−T1)を求めることにより、走査ビームL2の走査ビームL1に対する副走査方向の相対的な位置ずれを算出することができる。すなわち、副走査方向の相対的なドット位置ずれΔZは、PD1とPD2との各受光面間のなす角度α1と、時間差T2−T1が既知であるので、計算により容易に求めることができる。
また、図8に示すようにフォトダイオードPD3(非平行タイプでもよく、PD1、PD2、PD3の走査方向の順序は問わない)を追加することで、走査ビームの走査速度が明確でない場合でも、副走査線方向の位置を検知することができる。
この場合、フォトダイオードがPD1とPD3との間、或いは、フォトダイオードPD1’とPD3’との間を走査ビームL1、L2が通過する時間T3、T3’を計測する。PD1とPD3との距離は副走査線方向の位置が異なっても等しいので、T3とT3’との比が走査ビームL1の走査速度と走査ビームL2の走査速度との速度比となる。このT3とT3’の比で、フォトダイオードPD1(PD1’)とPD2(PD2’)との間を走査ビームL2が通過する時間T2を補正する。これにより、PD1とPD2との各受光面間のなす角度α1と、T3とT3’との比で補正されたT2とT1との時間差から、走査速度Vが明確でなくても副走査方向の位置ずれ量ΔZを算出することができる。なお、PD1、PD2、PD3の間隔が走査速度に対し非常に小さいので、PD1、PD2、PD3間を通過する走査速度はほぼ一定とできる。よって、走査ビームの走査速度が等速でなくても、精度のよい副走査方向補正量ΔZを算出することができる。また、T3とT3’との比で補正されたT2とT1との時間差には、微小な走査速度変化は大よそ相殺されることになる。
また、図9に示すように、フォトダイオードPD1と、PD1からそれぞれ主走査線方向に異なる距離にPD2、PD3、PD4を配置することでも、走査ビームの副走査線方向の位置を検知することができる。
また、図10に示すように、フォトダイオードPD1、PD2、PD3を副走査線方向に並べて配置することでも走査ビームの副走査線方向の位置を検知することができる。この場合、PD1〜PD3のうち、いずれかのフォトダイオードが走査ビームを検知したかを把握することで、副走査線方向の位置を検知することができる。
さらに、図11に示すようなフォトダイオードPDの走査ビームと交差する辺の一方を斜辺として、副走査線方向に応じてフォトダイオードの長さを異ならせることでも、走査ビームの副走査線方向の位置を検知することができる。
この場合は、走査ビームL1がフォトダイオードPD1を通過する時間Taと、走査ビームL1から副走査線方向にΔZずれた走査ビームL2がフォトダイオードPD2を通過する時間Tbとが異なる。すなわち、走査ビームの副走査線方向の位置に応じて、フォトダイオードPD1が走査ビームを検知する検知時間を異ならせたのである。
そして、時間Ta、Tbの時間差(Tb−Ta)を求めることにより、走査ビームL2の走査ビームL1に対する副走査方向の相対的な位置ずれを算出することができる。すなわち、副走査方向の相対的なドット位置ずれΔZは、PD1の斜辺の角度α2と、時間差Tb−Taが既知であるので、計算により容易に求めることができる。
このようにして、ビーム検知ユニット300(301)で検知された副走査方向の相対的なドット位置ずれすなわち副走査方向補正量ΔZを、後述する副走査線補正手段により補正する。
また、先端ビーム検知ユニット300のフォトダイオードPD1と後端ビーム検知ユニット301のフォトダイオード間PD1’との間を走査ビームが通過するに要する時間T0の変動を検知することにより、主走査方向の倍率変動をモニターすることも可能である。
なお、上述においてはフォトダイオードを用いたビーム検知ユニットを示したが、ビーム位置を検知できるものであればこれ以外の受光素子でもよく、例えばラインCCDを用いてもよい。
このように、各ビーム毎に2ヶ所の測定を行なうことで、倍率だけでなく、像担持体を基準としたときの主走査方向一端側の書込み位置を、各ビームとも(走査先端/後端に関わらず)ダイレクトに測れることになる。
本実施形態においては、ひとつのビーム検知ユニット300(301)で、複数の走査ビームに関してそれぞれ副走査線の位置を検知できるように、走査ビームが異なるタイミングでビーム検知ユニット300(301)で入射するように構成されている。
以下に、先の図3を用いて説明する。
副走査線方向の色ずれ補正実施時に、K、M、C、Yの光源ユニット21から、同時に光ビームLk、Lm、Lc、Lyが発射される。光ビームLkと、光ビームLmは、異なる角度で反射ミラー23aに入射させ、ポリゴンミラー26、27へそれぞれ異なる角度で入射する。これによって、ポリゴンミラー26、27によってそれぞれ走査されたK色の走査ビームLk、走査ビームLmのうち、いずれか一方が走査レンズ28aを通過し、最初に折り返しミラー302MKに入射する。そして、先端ビーム検知ユニット300MKに入射して、副走査線方向の位置が検知される。次に、他方の走査ビームが、遅れて走査レンズ28aを通過し折り返しミラー302MKに入射する。そして、先端ビーム検知ユニット300MKに入射して、副走査線方向の位置が検知される。これにより、走査ビームLk、Lmの先端ビーム検知ユニット300MKに入射するタイミングが異なり、ひとつのビーム検知ユニットで、2つの走査ビームLk、Lmの副走査線方向の位置ずれを検知することができる。
同様に、光ビームLc、Lyも、それぞれ異なる角度でポリゴンミラー26、27に入射させて、先端ビーム検知ユニット300CYに入射するタイミングを異ならせる。これにより、ひとつのビーム検知ユニット300(301)CYで、2つの走査ビームLc、Lyの副走査線方向の位置ずれを検知することができる。
なお、本実施形態においては、光源ユニット21から発射された光ビームが反射ミラー23a(23b)に反射させる角度を異ならせることで、ポリゴンミラー26,27への入射角度を異ならせているが、これに限られない。例えば、上段ポリゴンミラー27と下段ポリゴンミラー26との位相を異ならせることで、走査ビームのポリゴンミラー26、27への入射角度を異ならせてもよい。
また、折り返しミラー302(303)に反射させずに、走査レンズ通過後の走査ビームが直接ビーム検知ユニット300(301)に入射する位置にビーム検知ユニット300(301)を配置してもよい。また、走査ビームをそれぞれ異なる折り返しミラーに反射させて、ビーム検知ユニット300(301)に入射させることも可能である。しかし、折り返しミラーが異なると、ミラーの取り付け誤差が生じてしまい、ビーム検知ユニット300(301)の受光素子へのビームスポット径が異なってしまい、好ましくない。また、走査レンズ28a、28bを通過していない走査ビームをビーム検知ユニット300(301)に入射させるようにしてもよい。
本実施形態においては、走査レンズを通過した走査ビームの副走査線方向の位置ずれを検知している。よって、光源ユニット21から走査レンズ28a(28b)までの光路上に配置された光学素子の温度変化による姿勢変化によって生じる副走査線方向の位置ずれは、ビーム検知ユニット300(301)で検知可能である。しかし、実際、走査レンズ以降の光学素子であるレンズやミラーの温度変化による姿勢変化も感光体上に照射される副走査線方向の位置ずれに影響を及ぼす。このため、走査レンズ以降の光学素子の温度変化による姿勢変化が大きいと、ビーム検知ユニット300(301)の検知結果による色ずれ補正を行っても、色ずれが十分に補正されないという不具合を起こすおそれがある。
このため、光源ユニット21からビーム検知ユニット300(301)までの光路上に配置された光学素子以外の光学素子を、筐体100よりも線膨張係数の低い光学素子保持部材で保持させて、ビーム検知ユニット300(301)で副走査線方向の温度変化による位置ずれの影響を検知できない光学素子の温度変化による姿勢変化を抑制する。
図12は、光学素子保持部材101を示す斜視図である。図に示すように、光学素子保持部材101は、線膨張係数の低い鉄を含んだ金属(板金)で形成された、枠体である。光学素子保持部材101に、走査レンズ以降の光学素子が取り付けられる。具体的には、第1ミラー44K,44M,44C,44Y,第2ミラー46K,46M,46C,46Y,第3ミラー47K,47M,47C,47Y、および長尺レンズ50K、50M,50C,50Yが光学素子保持部材101に保持される。なお、図12においては、光学素子保持部材に保持される光学素子の一部を示している。
光学素子保持部材101の図中手前側および奥側の左右には、筐体100との位置決め部たる位置決め凹部102a(図示せず)、102b(図示せず)、102c、102dと、位置決め孔部103a、103b、103c、103dが設けられている。
上記位置決め凹部102a〜102dが、筐体100の位置決め凸部(図示せず)と係合することで、光学素子保持部材101の副走査線方向の位置決めがなされる。また、位置決め孔部103a〜103dが、筐体100の位置決めピンに挿入されることで、主走査線方向の位置決めがなされる。
この光学素子保持部材101の筐体100との位置決め部たる位置決め孔部103a〜103dと位置決め凹部102a〜102dは、図13に示すように、光学素子保持部材101を筐体100に位置決めして取り付けたとき、筐体100の画像形成装置の位置決め部100a〜100dの近傍になる位置に設けている。この筐体100の位置決め部100a〜100dを画像形成装置に位置決めすることで、被照射体たる感光体に対して、筐体100が位置決めされ、感光体の所定の位置に走査ビームが照射されるようになる。このように、光学素子保持部材101を筐体100に位置決めして取り付けたとき、筐体100の画像形成装置の位置決め部100a〜100dの近傍になる位置に設けることで、光学素子保持部材101に与える筐体100の温度変化による変形の影響を少なくすることができる。
また、ビーム検知ユニット300(301)の温度変化による姿勢変化もまた、検知精度を低下させてしまうので、ビーム検知ユニット300(301)や折り返しミラー302(303)も光学素子保持部材101で保持するとよい。
また、図14に示すように、光走査装置20は、後述する色ずれ補正実施時に防塵ガラス34K、34M、34C、34Yを遮蔽して、走査ビームが感光体10K〜10Yに照射しないようにするシャッター400を有している。なお、シャッター400の機構は、K、M、C、Yで同じであるので、以下の説明では、Y色の防塵ガラス34Yを遮蔽するシャッター400について、説明する。
シャッター400は、防塵ガラス34Yと平行に移動可能となっている。
図に示すように、シャッター400の一端には、歯400aが設けられている。歯400aには、ギア400bが噛み合っており、このギア400bには図示しない駆動手段が接続されている。
後述する色ずれ補正実施時は、図に示すようにシャッター400Yが防塵ガラス34Yと対向させて、シャッター400Yを閉じた状態にしてビームを遮蔽して、ビームが感光体10Yに照射しないようにしている。これにより、色ずれ補正実施時は、ビームが感光体10Yに照射されなくなり、感光体10Yの光による劣化を抑制することができる。
感光体表面に潜像を形成するときは、図示しない駆動手段を駆動させて、ギア400bを図中時計回りに回転させる。すると、ギア400bと噛み合っている歯400aを介してシャッター400Yが図中右側へ移動する。シャッター400Yが防塵ガラス34Yと対向しなくなりシャッター400が開いた状態となったら、駆動手段を停止して、シャッター400Yの移動を停止する。感光体表面への潜像形成が終了したタイミングや、画像形成ジョブが終了したら、駆動手段を駆動させてギア400bを図中反時計回りに回転させる。ギア400bが図中反時計回りに回転すると、シャッター400が図中左側に移動して、防塵ガラス34Yと対向させてシャッター400Yを閉じる。シャッター400Yが閉じたら、駆動手段を停止する。このように、画像形成時以外のときは、シャッター400Yを閉じて、シャッター400Yで防塵ガラス34Yを覆うことで、防塵ガラス34Yに埃やチリなどの異物の付着を抑制することができる。これにより、画像に白ぽちなどの異常画像が生じるのを抑制することができる。
<副走査方向の単色画像の色ずれ(相対ずれ)補正方法>
光走査装置内のポリゴンモータの発熱や、環境温度の変化により各光学素子間の位置及び角度等微妙に変化することで、感光体への副走査方向の走査位置が変化し色ずれが発生してしまう。このように、温度によって色間のレジストの変化(各色の単色画像の間における相対的なずれ(相対ずれ))は大きく変化し、画像の劣化を招いている。
色ずれ補正方法として、色ズレ検出用パターンを転写部材等に形成し、読取センサにてこのパターンを検出して、色ズレ量を測定し、画像書き込みタイミングを調整して色ズレを低減する装置が既に提案されている。すなわち、この補正方式は、カラー画像形成装置の機内温度の変化や当該装置に外力が加わることにより、各画像形成ユニット自身の位置や大きさ、更には画像形成ユニット内の部品の位置や大きさが微妙に変化する。これに起因するカラーレジずれを検出し、これを補正するものである。しかし、色ずれ量の算出量を確かなものにするため、複数のパターンを計測して平均を取るためある程度の時間を有することと、トナーを無駄に消費する。このため、プリント枚数ごとに実行することはできず、約200枚程度ごとに行っているのが現状である。この実行タイミングでは、上記のようにポリゴンモータの発熱により徐々に色間のレジストがずれて画像の劣化を発生してしまう。
そこで前述の光走査装置20から照射するビームについてビーム検知ユニット300、3001をビーム出射位置に配置し、照射ビームを正確に検出する。そして、その検出結果に基づいて色間レジストの色ずれを経時的に補正する。
図15はこの補正を行う色ずれ補正手段のブロック図である。
図15において、検出モード時に色ずれ検知用センサ330からの検知信号、ビーム検知ユニット301、302から検知信号がインターフェイスI/F340を介してCPU341に入力され、その信号から得られた色ずれ補正値(副走査線方向の位置ずれ量ΔZ)がメモリ手段であるメモリ342に格納される。そして、CPU341は、メモリ342に格納された情報や各検知センサの検知信号に基づいて、色ずれ補正量を算出し、算出した色ずれ補正量に基づいて、インターフェイスI/F340を介してLDの発光タイミングを制御したり、副走査線方向偏向素子を制御したりする。
先ず、色ずれ検出パタ−ンを作成し、副走査方向のビーム位置の設定値を算出する。
図16に、設定値を算出手順の一例を示す。
色ずれ検出パタ−ン動作開始時に、各ビームの主走査同期を検出した後(S14)、副走査方向のビーム位置をビーム検知ユニット300もしくはビーム検知ユニット300,301で測定する(S15)。測定回数は、ポリゴンミラー1回転内でミラーの面倒れが異なるので、正確には1面ごとに微小に変化し、センサの読取り誤差等によるばらつきがある。よって、ポリゴンミラー面数(1回転)×n(整数倍)とすることで正確に副走査方向のビーム位置を測定できる。
ついで、この測定した各色の副走査方向のビーム位置と色ずれパターンを読取り(S17)、基準色に対して各色ずれの補正値を算出する(S18)。詳しくは、基準色(例えば黒色)の単色画像における副走査線ビーム位置及びその時間を基準とし、各色(基準色以外の色、ここではイエロー、シアン、マゼンタ)の書込みタイミング遅延時間と光走査装置20の副走査方向のビーム位置の設定値とを算出しメモリに記憶する。この副走査ビーム位置設定値は、測定した副走査ビーム位置と色ずれ計算し1ライン以下の補正値を足した値とする。
次に、通常のプリント動作時などの所定のタイミングに走査装置20の副走査ビーム位置を測定し、前述のメモリに格納した副走査ビーム位置設定値と比較して、色ずれ補正する。
以下、ビーム検知ユニット300(301)による走査ビームの副走査線方向の位置の検知結果に基づいて、色ずれ補正を行う手順について実施例1〜3に基づいて、説明する。
[実施例1]
まず、実施例1の色ずれについて、説明する。
実施例1の色ずれ補正は、通常のプリント動作スタート時に行うものである。
図17は、通常のプリント動作時の補正手順を示す図である。
図に示すように、プリント動作がスタートし、ポリゴンモータに駆動電圧を印加したら(ポリゴンスタート)(S21)、レーザ発光素子LDを発光させて(S22)、各ビームの副走査位置を検出する(S23)。具体的には、先端ビーム検知ユニット300MKおよび後端ビーム検知ユニット301MKでK色の走査ビームLkの副走査線方向の位置と、M色の走査ビームLmの副走査線方向の位置とを検出する。また、これと同時に、先端ビーム検知ユニット300CYおよび後端ビーム検知ユニット301CYでC色の走査ビームLcの副走査線方向の位置と、Y色の走査ビームLyの副走査線方向の位置とを検出する。そして、前述のメモリに格納した副走査ビーム位置設定値と、測定値とから、色ずれ補正量ΔZを算出し、副走査ビーム位置を補正する(S24)。色ずれ補正をしたら、シャッター400を開いて(S25)、感光体に照射可能にする。そして、前述のメモリに格納した副走査ビーム位置設定値と比較し、後述する副走査線方向偏向手段により副走査ビーム位置を設定値の位置に合うよう色ずれ補正する(S24)。色ずれ補正をしたら、シャッター400を開いて(S25)、感光体に照射可能にする。
各ビームの副走査位置を検出、色ずれ補正を実施している間もポリゴンミラー26、27の回転速度が徐徐に加速されていき、色ずれ補正実施中または色ずれ補正実施後に、所定の速度で等速回転し、ロック信号が検知される(ポリゴンロック)(S26)。ポリゴンロックを検知したら、画像形成を開始する(S27)。
なお、測定値は、ポリゴンミラーの面数(1回転)の整数倍分サンプリングを行い、それぞれ色ずれ補正量ΔZを算出して、その平均位置に基づいて色ずれ補正を行ってもよい。
また、色ずれ補正を、主走査線偏向手段の1走査を単位として行ってもよいし、主走査線偏向手段の1走査より細かい分解能を単位として副走査線方向の補正を行ってもよい。色ずれ補正を、主走査線偏向手段の1走査を単位として補正する場合は、LDの発光のタイミングを補正することで、色ずれ補正を行う。一方、色ずれ補正を、主走査線偏向手段の1走査より細かい分解能を単位として副走査線方向の補正を行う場合は、後述する副走査線方向偏向素子を用いて、補正を行う。
また、色ずれ補正量を、ビーム検知ユニット300、301のいずれかで検知された結果をもとに算出してもよい。また、ビーム検知ユニット300、301でそれぞれ算出された色ずれ補正量ΔZの平均値に基づいて色ずれ補正を行ってもよい。しかし、後述する傾き補正を行わない場合は、ビーム検知ユニット300、301でそれぞれ算出された色ずれ補正量ΔZの平均値に基づいて色ずれ補正を行う方が好ましい。これは、ビーム検知ユニット300、301のいずれかで検知された結果をもとに算出した色ずれ補正量ΔZに基づいて補正した場合、走査ビームの開始位置および終了位置のいずれか一方は、設定位置にあわせることができるが他方は、設定位置から大きく離れてしまう。その結果、開始位置および終了位置のいずれか一方の色ずれが大きくなる不具合が生じてしまう。
一方、ビーム検知ユニット300、301でそれぞれ算出された色ずれ補正量ΔZの平均値に基づいて色ずれ補正を行った場合は、走査ビームの中央が設定位置に合う。そして、開始位置および終了位置は、それぞれ同じ量分設定位置からずれるが、ビーム検知ユニット300、301のいずれかで検知された結果をもとに算出した色ずれ補正量ΔZに基づいて補正した場合に比べて走査ビームの開始位置および終了位置いずれも設定位置から大幅にずれることがない。これにより、ビーム検知ユニット300、301のいずれかで検知された結果をもとに算出した色ずれ補正量ΔZに基づいて補正した場合に比べて、傾きによる色ずれを抑制することができる。
色ずれ補正実施中、レーザ発光素子LDは常時発光させておくのが好ましい。これは、ポリゴンミラー26、27の回転速度(偏向速度)が徐徐に加速する間に副走査ビーム位置を測定するため、ポリゴンミラー26、27の回転速度(偏向速度)が一定のときのように、書込み開始位置から書込み終端位置までの時間が一定でない。このため、走査ビームが書込み開始位置と書込み終端位置に来る所定のタイミングのときにレーザ発光素子LDを発光させるように制御した場合、発光のタイミングがずれて、ビーム検知ユニット300、301で走査ビームが検知されない虞がある。このため、色ずれ補正実施中、レーザ発光素子LDを常時発光させておくことで、確実にビーム検知ユニット300、301で走査ビームを検知することができ、副走査ビーム位置を確実に測定することができる。また、レーザ発光素子LDを常時発光しても、シャッター400が閉じた状態であるので、走査ビームが感光体に照射されることがなく、色ずれ補正時に感光体を劣化させることがない。
このように、本実施形態においては、ロック信号を検知する前のポリゴンミラー26、27の回転が開始した段階(ポリゴンスタート)で色ずれ補正を開始する。よって、ロック信号を検知してから色ずれ補正を実施するものに比べて、プリント動作がスタートしてから画像形成を開始するまでの時間を短縮することができる。これにより、色ずれのない良好な画像が得られるとともにプリント動作を短くすることができる。
もちろん、ロック信号を検知してから色ずれ補正を実施してもよい。
[実施例2]
次に、実施例2の色ずれ補正手順について説明する。
実施例2の色ずれ補正手段は、プリント動作終了時に行うものである。
図18は、実施例2の色ずれ補正手順を示す図である。
プリント動作が終了すると、ポリゴンモータへの駆動電圧をOFFにする(S29)にし、シャッター400を閉じる(S30)。ポリゴンモータへの駆動電圧がOFFになると、ポリゴンミラー26、27は惰性で回転を続け徐徐に速度を落とし停止する。実施例2の色ずれ補正は、ポリゴンミラー26、27が惰性で回転して停止するまでの期間を利用して、色ずれ補正を行うものである。すなわち、図に示すようにポリゴンモータへの駆動電圧がOFFになり(S29)、シャッター400が閉じたら(S30)、レーザ発光素子LDを発光する(S31)。各ビームの副走査位置を測定して(S32)、前述のメモリに格納した副走査ビーム位置設定値と、測定値とから色ずれ補正量ΔZを算出する。そして、色ずれ補正量ΔZに基づいて色ずれ補正する(S33)。色ずれ補正が終了したら、レーザ発光素子LDを消灯する(S34)。
このように、実施例2の色ずれ補正においては、ポリゴンモータへの駆動電圧がOFFの状態で色ずれ補正を実施するので、色ずれ補正を省エネルギーで実行することができる。
また、上述同様、ポリゴンミラーの面数(1回転)の整数倍分サンプリングを行い、それぞれ色ずれ補正量ΔZを算出して、その平均位置に基づいて色ずれ補正を行ってもよい。しかし、ポリゴンミラー26、27の面数(1回転)の整数倍分サンプリング中にポリゴンミラーの回転が停止してしまう場合がある。このように、サンプリング中にポリゴンミラーの回転が停止してしまうと、いつまでの色ずれ補正が終了しないなどの不具合が生じてしまう。このため、ポリゴンモータへの駆動電圧がOFFになったら、時間カウントを開始して、時間カウントが所定値となったら、サンプリングを中止する。そして、サンプリングしたもので副走査位置の平均を算出して、これを副走査ビーム位置とするような制御を組み込んでもよい。
[実施例3]
次に、実施例3の色ずれ補正手順について説明する。
実施例4の色ずれ補正は、装置の電源投入時、省エネモードからの復帰時、前回色ずれ補正を実施して所定時間経過したときに色ずれ補正を行うものである。
図19は、実施例3の色ずれ補正手順を示す図である。
装置の電源投入時、省エネモードからの復帰時、前回色ずれ補正を実施して所定時間経過したときなど、所定のタイミングとなったら、色ずれ補正をスタートさせる。色ずれ補正がスタートしたら、ポリゴンモータに駆動電圧を印加にして(S52)、ポリゴンミラー26、27の回転を開始する。ポリゴンミラーの回転速度が徐徐に加速して、ポリゴンモータが設定された回転速度で等速回転したら、ポリゴンモータを制御しているモータ制御部からロック信号が送信される。この送信されたロック信号を検知(ポリゴンロック)したら(S53)、レーザ発光素子LDを発光する(S54)。
レーザ発光素子LDが発光したら、上述同様、ポリゴンミラーの面数(1回転)の整数倍分サンプリングを行う。次に、色ずれ補正量ΔZの平均位置を算出して副走査ビーム位置を検出する(S55)。次に、前述のメモリに格納した副走査ビーム位置設定値と比較して、位置ずれ量(色ずれ量)ΔZを算出し、算出した色すれ量ΔZに基づいて色ずれ補正する(S56)。そして、レーザ発光素子LDを消灯する(S57)とともに、ポリゴンモータへの駆動電圧をOFFにする(S58)。
ポリゴンモータの回転速度を画像形成時と同じ回転速度に達してから、走査ビームの副走査線方向の位置を検知してもよいし、ポリゴンモータの回転速度を画像形成時よりも低い回転速度で、走査ビームの副走査線方向の位置を検知してもよい。また、ポリゴンモータの回転速度を画像形成時よりも低い回転速度で、走査ビームの副走査線方向の位置を検知する場合、レーザ発光素子LDの発光量を落としてもよい。ポリゴンモータの回転速度を画像形成時の回転速度よりも低い回転速度で行うことで、色ずれ補正を画像形成時の設定回転数で行うものに比べて、ポリゴンモータを早く設定回転数で等速回転させることができる。これにより、色ずれ補正に要する時間を短縮することができる。また、画像形成時の設定回転数よりも低い回転数で色ずれ補正を行うので、ポリゴンモータへの駆動電圧を低く抑えることができ、色ずれ補正を省エネルギーで実施することができる。また、ポリゴンモータの回転速度を低く抑えているので、モータの振動などを抑えることができ、低騒音で色ずれ補正を行うことができる。また、レーザ発光素子LDの発光量も画像形成時の発光量よりも落とせば、色ずれ補正をさらに省エネルギーで行うことができる。
副走査線方向の色ずれ補正は、メモリに格納した副走査ビーム位置設定値と測定値とから算出された色ずれ補正量ΔZが、1走査ラインよりも大きくなったら、LDの発光タイミング遅延時間を補正することで、色ずれ補正を行ってもよいし、以下に示す副走査線方向偏向手段を用いて、色ずれ補正を行ってもよい。
以下に副走査線方向偏向手段について、実施例A〜Cに基づいて説明する。
[実施例A]
まず、実施例Aの副走査線方向偏向手段について説明する。
図20〜図23に、実施例Aの副走査線方向偏向手段の構成例を示す。
実施例1の副走査線方向偏向手段は、液晶からなる液晶光学素子140と液晶光学素子140に電圧を印加する制御回路141との組合せ(図20)からなっている。液晶光学素子140は、光ビームを射出する光源と主走査線偏向手段(ポリゴンスキャナ130)との間、またはポリゴンスキャナ130と走査レンズ28a、28bとの間に液晶光学素子140を配置する。例えば、図21に示すように、光走査装置20内の構成物の一部(光源たるLD、コリメートレンズ21a、偏向手段たるポリゴンミラー26、液晶光学素子140、制御回路141、走査レンズ28の配置関係を示している。液晶光学素子140は偏向手段たるポリゴンミラー26と走査レンズ28との間に配置されている。ポリゴンミラー26により偏向走査される光ビームは液晶光学素子140により図中D方向(副走査方向)にビーム位置の補正が可能である。
液晶光学素子140の例としては、図22に示すように、電極を有する基板142,143及び液晶層145からなるものが挙げられる。これにより、制御回路141から電極に所定の電位差を印加することで、液晶層145にプリズム作用を生じさせ、入射するビームを所定位置に平行移動させることで、副走査方向にビーム位置を修正することができる。
また、液晶光学素子140のほかの例としては、図23に示すように、液晶層145と液晶層145のビーム入射側に設けられる電極146,147からなるものが挙げられる。これにより、制御回路141から電極に所定の電位差を印加することで、凸レンズのレンズ作用を生じさせ、ビームを屈折させることで、副走査方向にビーム位置を修正することができる。
[実施例B]
次に、実施例Bの副走査線方向偏向手段について説明する。
図24〜図27に、実施例Bの副走査線方向偏向手段の構成例を示す。
実施例Bは特開2004−4191号公報に開示されている副走査線方向偏向手段を利用するものである。すなわち、光ビームを透過し、主走査方向の軸と平行な軸で回転可能に設置された平行平板150を使用する。光ビームを射出する光源LDとポリゴンミラー26との間、またはポリゴンミラー26と走査レンズ28との間に平行平板150を配置する。回転により傾いた平行平板150に光ビームを入射させることにより、副走査方向のビーム位置の補正が可能である(図24)。
図25は平行平板150を含む実施例Bの副走査線方向偏向手段の断面状態を示し、図26は実施例Bの副走査線方向偏向手段の斜視を示した図である。
実施例Bの副走査線方向偏向手段は、偏芯カム151、ステッピングモータ等のアクチュエータ152、平行平板突き当て面153、板ばね154、回転軸159、平行平板150から構成されている。
平行平板150は、平行平板150の下側2ヶ所を受け部の突起に突き当たり、上側は偏芯カム151によって固定され、反対側から板ばね154によって加圧されている。偏芯カム151にはアクチュエータ152が取り付けられ、この回転駆動により偏芯カム151が回転し、平行平板150の上側の突き当て位置を動かすことにより、矢印の方向に平行平板150が回転する。このとき、回転中心は下側の突き当て面(2ヶ所)を通過する軸となる。なお、回転中心は光軸上になくてもよい。
図27は、実施例Bの副走査線方向偏向手段の他の例を示すものであり、偏芯カム軸にフィラーを設けたものである。この場合は、偏芯カム軸にフィラーを取り付け、そのフィラーを動かすことによって偏芯カム151を回転させ、平行平板150を回転させる。
実施例Bの副走査線方向偏向手段によっても、傾いた平行平板150に入射した光ビームは、入射光ビームと平行でかつ副走査方向にずれて出射され、その軸ずれ量は平行平板150の回転角に比例して増加する関係となる。
また、この平行平板150に代えて、図28に示すように、断面形状が台形であるプリズム160を配置してもよい。この場合、プリズム160を副走査方向(図中上下方向)の所定位置に平行移動させることにより副走査方向のビーム位置の補正を行う。なお、プリズム160周りのアクチュエータの構成は前記平行平板のアクチュエータを利用するものでよい。
[実施例C]
次に、実施例Cの副走査線方向偏向手段について説明する。
図29〜図32に、実施例Cの副走査線方向偏向手段の構成例を示す。
実施例Cは特開2003−330243号公報に開示されている副走査線方向偏向手段を利用するものである。すなわち、図29に示すように、レーザ発光素子LDは、LDユニット(光学素子ユニット)21として、カップリング光学系であるコリメートレンズ21aとともに保持部材21bに保持されている。レーザ発光素子LDから出射された光ビームBは、コリメートレンズ21a及びポリゴンミラー26との間に配設されているアパーチャ21cとシリンダレンズ24を通して、ポリゴンミラー26に照射される。このLDユニット21は、ポリゴンミラー26及び感光体10に光ビームBを照射させる他の光学素子を保持して光学ユニットを構成する筐体100に対して、回転可能に取り付けられている。また、LDユニット21の回転中心軸OSと光ビームBの光軸が、主に主走査方向に所定のずれを有する状態で取り付けられている。さらに、ポリゴンミラー26の偏向位置でLDユニット21の回転中心軸OSとビーム光軸を略一致させている。
また、LDユニット21は、図30に示すように、その主走査方向側の一端部側にビーム位置調整モータ21eのリードスクリュウ21fが係合している。ビーム位置調整モータ21eが回転すると、リードスクリュウ21fが回転する。すると、LDユニット21が回転中心軸OSを中心として、図30に矢印で示すように回転する。
ついで、LDユニット21が回転中心軸OSを中心として回転する。すると、図31に示すように、レーザ発光素子LDとカップリング光学系を保持する保持部材21bからなるLDユニット21が副走査方向に変位する。これにより、レーザ照射位置が移動する。
その結果、図32に示すように、レーザ発光素子LDから出射された光ビームBが、感光体10上では、回転中心を中心にして、副走査方向に移動して、ビーム照射位置が変位する。
このように、LDユニット21を回転中心軸OSを中心に回転させることで、繰り返し安定性を向上させることができ、色ずれを高精度に補正することが可能となる。
<傾き補正>
各色の単色画像における走査線傾きは、装置全体の設置状態や環境温度等により変動し副走査方向の色ずれとなってしまう。
従来の補正方法としては、前述の色ずれの検出パターンを中間転写ベルト上に複数列(最低2列)作成し、その位置に対応した複数の位置ずれパターン検知センサ330により各色間の傾きによる色ずれを測定する。ついで基準色に対しての傾き量を算出し、この量に基づいて副走査線方向偏向手段によりビームの傾きを補正していた。詳しくは、各々の色毎にこの傾き量を補正する量とし、この量に基づいて偏向素子への印加電圧を求める。しかし、この電圧波形は、図33のように一ライン走査中に変化する電圧であり、主走査の同期検知信号をトリガーにして偏向素子に繰返し供給することでビームの傾きを補正していた。
本発明では、前記位置ずれパターン検知センサ330に代えて、ビーム検知ユニット300、301を傾き検知手段として用い、この検知結果に基づいてビームの傾きを補正する。すなわち、ビーム検知ユニット300、301それぞれで検知された2つの副走査線位置ずれ量に基づいて、単色画像の傾きを求め、その傾き量に応じて補正する。
あるいは、前述のように、色ずれパターンを形成する前に、光走査装置からビームが出射する副走査方向のビーム位置をビーム検知ユニット300及び301を用い、走査先端と後端のビーム位置を測定する。上記の色ずれ検出パターンを読取りフォトセンサにより計測した傾き量を補正値として、走査先端及び後端の狙いのビーム位置を計算する。これをメモリに記憶する。そして、通常のプリント動作において、この狙いのビーム位置になるように各偏向素子に図33の補正電圧を同期検知信号をトリガーにして印加するようにしてもよい。この方式とした場合には、連続印刷時の機内温度上昇や環境変動による傾き変動にも対応することができる。
傾きの補正は、先端ビーム検知ユニット300の測定結果に基づき算出した色ずれ量ΔZと、後端ビーム検知ユニット301の測定結果に基づき算出した色ずれ量ΔZとの差が1走査ラインよりも大きくなったら、1走査内の画情報を分割し、書込みタイミングを変更することで、走査線傾きが調整される。また、以下に記述する走査線傾き調整手段を用いて、傾きを調整してもよい。
図34〜図36に、走査線傾きを補正するための走査線傾き調整手段の構成例を示す。
これらは特開2004−287380号公報に開示されている傾き調整手段を利用するものである。ここでは、図34に示すように、光走査装置20に、長尺レンズ30を副走査方向Bに矯正してビームによる感光体10上における走査線の曲がりを補正する走査線曲がり補正手段71と、長尺レンズ30の全体を傾けてビームによる感光体10上における走査線の傾きを補正する走査線傾き補正手段72とを有した構成を示している。
走査線曲がり補正手段71を構成する部材の一部と走査線傾き補正手段72を構成する部材の一部とは、保持部材61に一体的に設けられている。なお、走査線曲がり補正手段71と走査線傾き補正手段72とはK、M、C、Yの長尺レンズ30K〜Yに対しても同様に別個に配設されており、これらを構成する部材の一部は保持部材61に対すると同様に保持部材62に一体的に設けられている。
保持部材61は、長尺レンズ30を副走査方向Bから支持する、主走査方向Aに長い支持部材63と、支持部材63との間で長尺レンズ30を挟持する挟持部材64とを有している。支持部材63は、保持した長尺レンズ30に当接し保持部材61内における長尺レンズ30の位置基準を形成する基準面65を有している。
支持部材63と挟持部材64とは、何れも断面をコの字型に曲げて曲げ強度向上させた板金であり、その平面を長尺レンズ30に突き当てている。支持部材63において長尺レンズ30に突き当てた平面が基準面65をなしている。長尺レンズ30は、その一部が基準面に凸設されたピン82により挟持されること
等により、基準面65上において支持部材63に固定されている。
支持部材63と挟持部材64との、長尺レンズ30の長手方向すなわち方向Aにおける両端部には、支持部材63と挟持部材64との間隔保持用の、長尺レンズ30の厚みとほぼ同じ高さを有する角柱66が配設されている。支持部材63と角柱66、及び挟持部材64と角柱66はそれぞれ、支持部材63と挟持部材64とで長尺レンズ30を挟持した状態で、ネジ67で締結されている。各角柱66は支持部材63と挟持部材64とともに保持部材61を構成している。なお、図27において、ネジ67は、挟持部材64と角柱66とを締結するもののみが図に表れている。
走査線曲がり補正手段71については、説明を省略する。
図34に示すように、走査線傾き補正手段72は、挟持部材64と一体的に設けられ保持部材61を傾けるように駆動するために次のような構成を有している。すなわち、保持部材傾斜手段、駆動手段としてのアクチュエータであるステッピングモータ90と、走査線の傾きを検知する図示しない傾き検知手段とを有している。また、傾き検知手段(ビーム検知ユニット300、301)が検知した走査線の位置ずれ量に対応する傾きに応じてステッピングモータ90により保持手段61を傾け、これにより長尺レンズ30の全体を傾けて走査線の傾きを補正させるための図示しない制御手段としてのCPUとを有している。
図34または図35において、符号91は、光走査装置20の図示しないハウジングと一体化された、保持部材61を支持するための不動部材としての長尺レンズホルダを示している。なお、不動部材は光走査装置20のハウジング自体であっても良い。長尺レンズホルダ91は、A方向における長尺レンズ30の中心に対応して、C方向に延在するように配設されたV溝92を有している。
走査線傾き補正手段72は、V溝92に載置された、C方向に長い支点部材としてのコロ93を有している。保持部材61は、コロ93を介して、長尺レンズホルダ91により、走査線の傾きを補正可能な方向に変位可能、具体的には搖動可能に支持されている。よってコロ93と保持部材61との当接部は、保持部材61を傾ける際の支点47を形成している。支点47は、A方向における長尺レンズ30の中心位置にあり、長尺レンズ30の光軸付近に位置している。
長尺レンズホルダ91がコロ93のみを介して保持部材61を支持すると保持部材61が不安定となる。このため、走査線傾き補正手段72は、支持部材63と長尺レンズホルダ91とに一体的に構成された弾性部材としての板ばね94と、挟持部材64と長尺レンズホルダ91とに一体的に構成された弾性部材としての板ばね95とを有する。そして、保持部材61を、長尺レンズホルダ91に対して走査線の傾きを補正可能な方向に搖動可能に支持させる。また、板ばね94、板ばね95の弾性力によりコロ93に押圧して長尺レンズホルダ91に対して安定させた状態で支持させる。
板ばね94はネジ96により支持部材63と長尺レンズホルダ91とに一体化され、板ばね95はネジ97により挟持部材64と長尺レンズホルダ91とに一体化されている。図34または図36に示すように、ステッピングモータ90は、ねじ98により挟持部材64に一体化されている。
図36に示すように、ステッピングモータ90はステッピングモータシャフト99を有している。長尺レンズホルダ91の上面には突起部43が凸設され、突起部43の内側によって形成される溝部44には、先端が球形状をなすとともに断面が小判型をなすナット45が嵌合している。ステッピングモータシャフト99には雄ねじが切られ、その先端部はナット45に噛合している。ナット45は溝部44に嵌合することで固定され、ステッピングモータシャフト99の回転時にも不動である。
CPUは、傾き検知手段としてのビーム検知ユニット300、301が検知した走査線の位置ずれ量に基づいてステッピングモータ90を駆動するステップ数を算出し、ステッピングモータ90を駆動するものである。テストパターンの形成は適時行なわれ、傾き検知手段の検知信号に基づくCPUによるフィードバック制御に供されるようになっている。
CPUがビーム検知ユニット300、301による検知結果(副走査方向の相対的なドット位置ずれ、すなわち副走査方向補正量ΔZ)に基づきステッピングモータ90を駆動する。ステッピングモータ90が駆動すると、ステッピングモータシャフト99が回転し、保持部材61は板ばね94、95の付勢力に抗して不動部材91に対して変位する。すると、保持部材61は支点47を中心にしてγ回転すことで傾く。CPUは検知手段による検知結果に基づきステッピングモータ90を駆動するフィードバック制御を行うため、走査線の位置ずれ、具体的に走査線の傾きは速やかに解消される。
なお、光走査装置20においては、Y(イエロー)、M(マゼンタ)、C(シアン)、K(黒)の4つの色の中の1つを基準とし、この基準色の走査位置に略一致するように、基準色以外の走査光学系による走査ビームの走査位置を補正する。言い換えると、非基準色に対応するビームによる走査線を基準色に対応するビームによる走査線に一致させるとよい。相対的な走査線位置の補正を行なえば、色調の変化を十分に抑えた色再現性の高い画像を得ることができるためである。これにより、走査線曲がり補正手段71、走査線傾き補正手段72はY(イエロー)、M(マゼンタ)、C(シアン)、K(黒)の各走査ビームの中の3つの走査ビームを調整するように配設すれば十分である。よって、それぞれの数が3つで済む。ここでは、基準色を黒色とするとよい。
また、本実施形態の偏向手段たるポリゴンミラー26、27は、複数の光源から発射されたビームをそれぞれ個別に偏向して、それぞれ別の感光体に光を走査させているが、これに限られない。光源それぞれに対応する偏向手段たるポリゴンミラーを設けてもよい。
以上、本実施形態の光走査装置によれば、各走査ビームを同一のビーム検知センサたるビーム検知ユニット300(301)に入射させて、このビーム検知ユニット300(301)で各ビームの副走査線方向の位置を検知する。これにより、各走査ビーム毎にビーム検知ユニットを設けるものに比べて、ビーム検知ユニットを少なくすることができる。これにより、走査ビーム毎にビーム検知ユニットを設けていたものに比べて、装置のコストを安価にして、光ビームの副走査線の位置を検知することができる。
また、各光ビームを同時に発射したときの各光ビームの主走査線偏向手段たるポリゴンミラー26、27に入射する入射角度が異なるように、光ビーム発射手段たるLDユニット21および/またはLDユニット21からポリゴンミラー26、27までの光ビームの光路上に設けられた光学素子(レンズ、ミラー)を配置する。ポリゴンミラーへの入射角度を異ならせることで、ビーム検知ユニット300(301)に各走査ビームが入射するタイミングを異ならせることができる。これにより、各光ビームを同時に発射しても、ひとつのビーム検知ユニットで複数の走査ビームの副走査線方向の位置を検知することができる。
また、各走査ビームを、同一の折り返しミラーに反射させて、ビーム検知ユニットに入射させる。これにより、各走査ビームを別々の折り返しミラーに反射させて、ビーム検知ユニットに入射させるものに比べて、ビーム検知ユニットの受光素子に照射される各走査ビームのスポット径の誤差を少なくすることができる。
また、本実施形態によれば、LDユニット21からビーム検知ユニット300、301までの光ビームの光路上以外に配置された光学素子(レンズやミラー)を筐体100よりも線膨張係数の低い光学素子保持部材101で保持する。これにより、筐体100に直接保持された光学素子に比べて、光学素子保持部材101に保持された光学素子の温度変化による姿勢変化を小さくすることができる。よって、LDユニット21からビーム検知ユニット300、301までの光ビームの光路上になく、ビーム検知ユニット300(301)で温度変化による姿勢変化で生じる副走査線方向の位置ずれの影響を検知できない光学素子の温度変化による姿勢変化が小さくなる。これにより、ビーム検知ユニット300(301)で温度変化による姿勢変化で生じる副走査線方向の位置ずれの影響を検知できない光学素子の温度変化による姿勢変化で生じる副走査線方向の位置ずれを抑制することができる。これにより、ビーム検知ユニット300(301)の検知結果による色ずれ補正で、良好に色ずれを抑制することができる。
特に、光学素子保持部材101を、金属で構成することで、光学素子保持部材101の線膨張を低くすることができる。
筐体100の被照射体たる感光体との位置決めを行う位置決め部100a〜100dは、位置決めされているため、温度変化によって変形しにくい。このため、この位置決め部100a〜100d近傍で、光学素子保持部材101と筐体100とを位置決めすることで、光学素子保持部材が受ける筐体の変形の影響が少なくなる。これにより、光学素子保持部材に保持されている光学素子の姿勢変形を抑制することができる。
また、ビーム検知ユニットは、走査ビームの副走査線方向の位置に応じて、異なる信号を出力するので、出力された信号によって走査ビームの副走査線方向の位置を検出することができる。
走査ビームの副走査線方向の位置に応じて、受光素子の走査ビーム検知時間を異ならせることで、走査ビームの副走査線方向の位置に応じて異なる信号を出力することができる。
また、走査ビームの副走査線方向の位置に応じて、一つ目の受光素子が走査ビームを検知してから、次の受光素子が走査ビームを検知するまでの時間が異ならせても、走査ビームの副走査線方向の位置に応じて異なる信号を出力することができる。
また、受光素子に入射する前の走査ビームを副走査線方向に屈折せしめる光学素子たる同期光学素子300bを設けることで、受光素子に照射する走査ビームのスポット径を小さくすることができる。これにより、受光素子を小さくしても、良好に走査ビームの副走査線方向の位置を検知することができる。
また、同期光学素子300bとして、集光レンズを用いた場合は、受光素子の配置位置と集光レンズの集光位置とを異ならせることで、走査ビームの副走査線方向の位置を検知することができる。
また、同期素子保持部材300cで受光素子PDと同期光学素子300bとを保持して、受光素子PDと同期光学素子300bとを一体化することで、受光素子PDと同期光学素子300bとが別体のものに比べて、受光素子PDと同期光学素子300bとの位置関係の精度を高めることができる。
また、同期素子保持部材300cの線膨張係数を筐体100の線膨張係数よりも低くしたことで、筐体100に受光素子PDと同期光学素子300bとを保持させるものに比べて、温度変化による受光素子PDと同期光学素子300bとの距離が変動するのを抑制することができる。これにより、受光素子に照射される走査ビームのスポット径の温度変化による変動を抑制することができる。
また、走査レンズ28a(28b)通過後の走査ビームをビーム検知ユニットへ入射するように構成することで、走査レンズの影響による走査ビームの副走査方向の位置ずれをビーム検知ユニットで検知することができる。
また、本実施形態によれば、走査ビームの走査開始位置を検知する走査開始用のビーム検知ユニット300と、走査ビームの走査終了位置を検知する走査終了用のビーム検知ユニット301とを備えている。これにより、走査ビームの走査開始位置での走査ビームの副走査線方向の位置と、走査ビームの走査終了位置での走査ビームの副走査線方向の位置とを検知することができる。検知した走査ビームの走査開始位置での走査ビームの副走査線方向の位置と走査ビームの走査終了位置での走査ビームの副走査線方向の位置とを用いれば、走査ビームの傾きを検知することもできる。また、走査開始用のビーム検知ユニット300が走査ビームを検知してから、走査終了用のビーム検知ユニット301が走査ビームを検知するまでの時間を計測すれば、主走査全体の倍率も測定することもできる。
また、ビーム検知ユニットの検知結果に基づいて、副走査線方向の位置ずれ量ΔZを算出し、この算出された位置ずれ量に基づいて、副走査線方向の位置ずれを補正する。これにより、中間転写ベルトに位置ずれ検知パターンを作像することなく、副走査線方向の位置ずれ補正を行うことができる。
また、副走査線方向1走査を単位として位置ずれ補正することで、副走査線方向の色ずれを補正することができる。
また、複数回前記ビーム検知ユニットで走査ビームの副走査線方向の位置を検知して、各検知結果に基づいてそれぞれ位置ずれ量を算出し、これら算出した位置ずれ量の平均値に基づいて位置ずれ補正を行うことで、ビーム検知ユニットの検出誤差等によるばらつきをなくし、精度よく副走査方向の位置ずれ補正を行うことができる。
本発明に係る画像形成装置の概略を示す側面図。 本発明に係る光走査装置の構成を示す概略断面図。 同光走査装置の構成を示す概略下面図。 ビーム検知ユニットの同期光学素子をミラーとした図。 ビーム検知ユニットの同期光学素子をプリズムとした図。 ビーム検知ユニットの同期光学素子を集光レンズとした図。 ビーム検知ユニットの受光素子の配置関係の一例を示す図。 ビーム検知ユニットの受光素子の配置関係の別の例を示す図。 ビーム検知ユニットの受光素子の配置関係のさらに別の例を示す図。 ビーム検知ユニットの受光素子の配置関係のさらに別の例を示す図。 ビーム検知ユニットの受光素子の配置関係のさらに別の例を示す図。 光学素子保持部材を示す斜視図。 光走査装置の筐体に光学素子保持部材を取り付けた様子を示す図。 シャッター機構の一例を示す図。 色ずれ補正を行う色ずれ補正手段のブロック図。 副走査方向のビーム位置の設定値の算出手順の一例を示す図。 実施例1の色ずれ補正の手順を示す図。 実施例2の色ずれ補正の手順を示す図。 実施例3の色ずれ補正の手順を示す図 実施例Aの走査線調整手段の基本構成を示す概略図。 実施例Aの走査線調整手段を備えた光走査装置の要部の構成を示す概略図。 液晶光学素子のプリズム作用の説明図。 液晶光学素子のレンズ作用の説明図。 実施例Bの走査線調整手段の基本構成を示す概略図。 実施例Bの走査線調整手段の断面図。 実施例Bの走査線調整手段の斜視図。 実施例Bの走査線調整手段の他の例を示す概略図。 実施例Bの走査線調整手段のさらに他の例を示す概略図。 実施例Cの走査線調整手段としてのLDユニット周辺を示す平面図。 実施例Cの走査線調整手段としてのLDユニットの正面図である。 実施例Cの走査線調整手段としてのLDユニットの回転による感光体上でのビームの変位の状態を示す概略図。 実施例Cの走査線調整手段としてのLDユニットの回転による感光体上でのビームの副走査方向の移動状態を示す概略図。 単色画像の走査線傾きを補正する偏向素子への印加電圧パターンを示す図である。 光走査装置における走査線傾き補正手段を含む要部を示す斜視図。 光走査装置における走査線傾き補正手段を含む要部の正断面図である。 光走査装置における走査線傾き補正手段を含む要部の側断面図である。
符号の説明
6 定着装置
9 二次転写ローラ
11 帯電ローラ
12 現像装置
14 中間転写ベルト
19 排紙トレイ
20 光走査装置
21 光源ユニット
100 筐体
101 光学素子保持部材
120 防音ガラス
130 ポリゴンスキャナ
300,301 ビーム検知ユニット

Claims (19)

  1. 複数の光ビーム発射手段と、これら光ビーム発射手段から発射された各光ビームを主走査線方向に偏向する主走査線偏向手段と、前記主走査線偏向手段によってそれぞれ偏向せしめられた後の走査ビームを検知するビーム検知センサとを備えた光走査装置において、
    前記ビーム検知センサは、光ビームの副走査線方向の位置を検知する機能を備え、前記主走査線偏向手段によって偏向せしめられた後の複数の走査ビームを、同一のビーム検知センサに入射させたことを特徴とする光走査装置。
  2. 請求項1の光走査装置において、
    複数の光ビームを同時に発射したときの各光ビームの前記主走査線偏向手段に入射する入射角度が異なるように、光ビーム発射手段および/または光ビーム発射手段から前記主走査線偏向手段までの光ビームの光路上に設けられた光学素子を配置したことを特徴とする光走査装置。
  3. 請求項1または2の光走査装置において、
    前記主走査線偏向手段によって偏向せしめられた後の各走査ビームを、同一の折り返しミラーに反射させて、前記ビーム検知センサに入射させることを特徴とする光走査装置。
  4. 請求項1乃至3いずれかの光走査装置において、
    前記光ビーム発射手段と、前記主走査線偏向走査手段と、前記ビーム検知センサと、前記光ビーム発射手段から被照射体までの光ビームの光路上に設けられた光学素子とを収納する筐体と、前記光ビーム発射手段から前記ビーム検知センサまでの光ビームの光路上以外に配置された光学素子を保持する光学素子保持部材とを備え、前記光学保持部材の線膨張係数を、前記筐体よりも低くしたことを特徴とする光走査装置。
  5. 請求項4の光走査装置において、
    前記光学素子保持部材を、金属で構成したことを特徴とする光走査装置。
  6. 請求項4または5の光走査装置において、
    前記被照射体との位置決めを行う位置決め部を前記筐体に備え、前記光学素子保持部材を、前記筐体の前記位置決め部近傍に位置決めすることを特徴とする光走査装置。
  7. 請求項1乃至6いずれかの光走査装置において、
    前記ビーム検知センサは、走査ビームの副走査線方向の位置に応じて、異なる信号を生じさせる信号発生手段を備えたことを特徴とする光走査装置。
  8. 請求項7の光走査装置において、
    前記ビーム検知センサは、受光素子を備え、走査ビームの副走査線方向の位置に応じて、前記受光素子の走査ビーム検知時間を異ならせたことを特徴とする光走査装置。
  9. 請求項7の光走査装置において、
    前記ビーム検知センサは、主走査線方向に少なくとも2つ以上の受光素子を配置し、一つ目の受光素子が走査ビームを検知してから、次の受光素子が走査ビームを検知するまでの時間を走査ビームの副走査線方向の位置に応じて、異ならせたことを特徴とする光走査装置。
  10. 請求項8または9の光走査装置において、
    前記ビーム検知センサは、前記受光素子に入射する前の走査ビームを副走査線方向に屈折せしめる光学素子を有することを特徴とする光走査装置。
  11. 請求項10の光走査装置において、
    前記ビーム検知センサが有する光学素子は、集光レンズであって、前記受光素子の配置位置と前記集光レンズの集光位置とを異ならせたことを特徴とする光走査装置。
  12. 請求項10または11の光走査装置において、
    前記ビーム検知センサは、前記受光素子と前記光学素子とを保持する同期素子保持部材を有することを特徴とする光走査装置。
  13. 請求項12の光走査装置において、
    前記同期素子保持部材の線膨張係数を前記筐体の線膨張係数よりも低くしたことを特徴とする光走査装置。
  14. 請求項1乃至13いずれかの光走査装置において、
    走査レンズ通過後の走査ビームが前記ビーム検知センサへ入射するように構成したことを特徴とする光走査装置。
  15. 請求項1乃至14いずれかの光走査装置において、
    走査ビームの走査開始位置を検知する走査開始用のビーム検知センサと、走査ビームの走査終了位置を検知する走査終了用のビーム検知センサとを備えたことを特徴とする光走査装置。
  16. 請求項1乃至15いずれかの光走査装置を備えたことを特徴とする画像形成装置。
  17. 請求項16の画像形成装置において、
    前記ビーム検知センサの検知結果に基づいて、副走査線方向の位置ずれ量を算出する算出手段と、この算出された位置ずれ量に基づいて、副走査線方向の位置ずれを補正する副走査線補正手段を備えたことを特徴とする画像形成装置。
  18. 請求項17の画像形成装置において、
    前記副走査線補正手段は、副走査線方向1走査を単位として位置ずれ補正することを特徴とする画像形成装置。
  19. 請求項17または18の画像形成装置において、
    複数回前記ビーム検知センサで走査ビームの副走査線方向の位置を検知して、各検知結果に基づいてそれぞれ位置ずれ量を算出し、これら算出した位置ずれ量の平均値に基づいて位置ずれ補正を行うことを特徴とする画像形成装置。
JP2006214730A 2006-08-07 2006-08-07 光走査装置及び光走査装置を備えた画像形成装置 Expired - Fee Related JP5037062B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214730A JP5037062B2 (ja) 2006-08-07 2006-08-07 光走査装置及び光走査装置を備えた画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214730A JP5037062B2 (ja) 2006-08-07 2006-08-07 光走査装置及び光走査装置を備えた画像形成装置

Publications (2)

Publication Number Publication Date
JP2008040155A true JP2008040155A (ja) 2008-02-21
JP5037062B2 JP5037062B2 (ja) 2012-09-26

Family

ID=39175232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214730A Expired - Fee Related JP5037062B2 (ja) 2006-08-07 2006-08-07 光走査装置及び光走査装置を備えた画像形成装置

Country Status (1)

Country Link
JP (1) JP5037062B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210909A (ja) * 2008-03-05 2009-09-17 Sharp Corp 画像形成装置
JP2010175993A (ja) * 2009-01-30 2010-08-12 Ricoh Co Ltd 光走査装置及び画像形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148777A (ja) * 1996-07-22 1998-06-02 Ricoh Co Ltd 多色画像形成装置の光走査装置
JP2004287077A (ja) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd 光走査装置
JP2005037575A (ja) * 2003-07-18 2005-02-10 Ricoh Co Ltd 光走査装置およびカラー画像形成装置
JP2006082525A (ja) * 2004-09-17 2006-03-30 Ricoh Co Ltd 画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148777A (ja) * 1996-07-22 1998-06-02 Ricoh Co Ltd 多色画像形成装置の光走査装置
JP2004287077A (ja) * 2003-03-20 2004-10-14 Fuji Xerox Co Ltd 光走査装置
JP2005037575A (ja) * 2003-07-18 2005-02-10 Ricoh Co Ltd 光走査装置およびカラー画像形成装置
JP2006082525A (ja) * 2004-09-17 2006-03-30 Ricoh Co Ltd 画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210909A (ja) * 2008-03-05 2009-09-17 Sharp Corp 画像形成装置
US7948512B2 (en) 2008-03-05 2011-05-24 Sharp Kabushiki Kaisha Image forming apparatus with separate controllers for independently controlling an irradiating section
JP2010175993A (ja) * 2009-01-30 2010-08-12 Ricoh Co Ltd 光走査装置及び画像形成装置

Also Published As

Publication number Publication date
JP5037062B2 (ja) 2012-09-26

Similar Documents

Publication Publication Date Title
KR100564957B1 (ko) 색 불합치 보정 방법, 광 기록 장치 및 화상 형성 장치
JP4694926B2 (ja) 光走査装置及び画像形成装置
JP2008033141A (ja) 光走査装置および光走査装置を用いた画像形成装置
JP2008224965A (ja) 光走査装置、および画像形成装置
JP2006323159A (ja) 光走査装置及び画像形成装置
US20070019269A1 (en) Optical scanning device and image forming apparatus
JP2004109658A (ja) 光走査装置及び光路調整方法並びに画像形成装置
JP5037062B2 (ja) 光走査装置及び光走査装置を備えた画像形成装置
JP4390200B2 (ja) 多色画像形成装置、多色画像形成装置に用いる光走査装置および多色画像形成装置の色ずれ補正方法
JP2008076935A (ja) 走査光学装置及び画像形成装置
JP2008070801A (ja) 画像形成装置
JPH10133130A (ja) 多色画像形成装置の光走査装置
JP4643159B2 (ja) 光路調整方法
JP2008070802A (ja) 画像形成装置
JP4830821B2 (ja) 光走査光学装置
JP4830820B2 (ja) 光走査光学装置
JP5381134B2 (ja) 光走査装置及びこれを使用する画像形成装置
JP4340557B2 (ja) 光走査装置および多色画像形成装置
JP4946395B2 (ja) 光走査光学装置
JP6758906B2 (ja) 画像形成装置
JP4634831B2 (ja) 光走査装置・画像形成装置・走査線傾きの検出方法
JP6624779B2 (ja) 走査光学装置、画像形成装置及び補正方法
JP2005308971A (ja) 画像形成装置
JP4830819B2 (ja) 光走査光学装置
JP4946393B2 (ja) 光走査光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees