JP6610191B2 - 電流検知装置及びこれを使用した漏電遮断器 - Google Patents
電流検知装置及びこれを使用した漏電遮断器 Download PDFInfo
- Publication number
- JP6610191B2 JP6610191B2 JP2015225626A JP2015225626A JP6610191B2 JP 6610191 B2 JP6610191 B2 JP 6610191B2 JP 2015225626 A JP2015225626 A JP 2015225626A JP 2015225626 A JP2015225626 A JP 2015225626A JP 6610191 B2 JP6610191 B2 JP 6610191B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- excitation
- voltage
- current detection
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 142
- 230000005284 excitation Effects 0.000 claims description 132
- 239000004020 conductor Substances 0.000 claims description 32
- 230000007246 mechanism Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 230000010355 oscillation Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 description 18
- 238000003199 nucleic acid amplification method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Breakers (AREA)
Description
この電流検知装置では、微小電流を高精度で検知できることや電流を広範囲に検知できることが要求されている。
特許文献1に記載の装置によれば、1つの磁気コアを用いて測定電流の検知ができ、磁気コアの特性の違いによりS/N比が低下することがないため、微小電流を高精度で検出することができる。さらに、特許文献1には、電流を広範囲に検知可能な方法として、オペアンプにおける閾値及び励磁コイルに供給する励磁電流値の組を複数組選択可能にすることが開示されている。特許文献1に記載の電流検知装置によれば、電流の検出感度を変更することができるため、より広範囲に電流を検知することができる。
そこで、本発明は、上記従来例の課題に着目してなされたものであり、微小電流から大電流までの広範囲な電流を検知することができる電流検知装置及びこれを使用した漏電遮断器を提供することを目的としている。
また、本発明に係る漏電遮断器の一態様は、上記構成を有する電流検知装置と、電流検知対象となる導線に介挿された引外しコイルを有する開閉機構部と、電流検知装置の第1電流検知部及び第2電流検知部の少なくとも一方で導線に流れる電流を検知したときに、開閉機構部を動作させる漏電動作制御部とを備えている。
また、本発明の一態様によれば、微小電流領域から過大電流領域までの広範囲な電流を検知する第1電流検知部と、第1電流検知装置で検知する微小電流領域より低い微小電流領域の電流を検知する第2電流検知装置とを備えた電流検知装置と、開閉機構部及び漏電遮断制御部とを備えることにより、より広範囲な電流領域の漏電電流を検知して電流遮断を行なうことができる漏電遮断器を提供することができる。
また、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
漏電遮断器1は、図1に示すように、電流測定対象となる2本の導線2a,2bからなる導線2における漏れ電流を検知する電流検知装置3と、導線2を開閉する開閉機構部4と、電流検知装置3で漏れ電流を検知したときに、開閉機構部4を動作させる漏電制御部5とを備えている。
電流検知装置3は、導線2に流れる例えば30mA程度の微小電流領域から数A程度の過大電流領域までの広範囲の電流を検知する第1電流検知部3Aと、導線2に流れる第1電流検知部で検知する微小電流領域より低い15mA未満(例えば6mA)〜例えば40mA程度の微小電流領域の電流を検知する第2電流検知部3Bとを備えている。
第1磁気コア11は、リング状の磁性体であり、2本の導線2a,2bを囲むように配置されている。つまり、第1磁気コア11の中空部には、図1に示すように、2本の導線2a,2bが通されている。また、第1磁気コア11は、図2(a)で細い実線(材料b)又は点線(材料c)で示すように、角形比が比較的小さい、磁束密度Bと磁界の強さHとの関係を表すB−H特性を有し、高透磁率材料の非線形な特性を有する。このB−H特性を有する第1磁気コア11のインダクタンスは、図2(b)に示すように、飽和電流G1付近で急激に消失する。第1磁気コア11を貫通する2本の導線2a,2bに任意の電流値C1の電流を通電すると、図2(b)のインダクタンスLと電流Iとの関係を表すL−I特性は、電流値C1に応じて磁界の強さがH方向にシフトしてインダクタンスが消失するタイミングがJ1へと変化する。
第1励磁部13は、自励発振方式の発振回路(励磁回路)であり、図3に示すように、コンパレータとして動作するオペアンプ13aを備えている。このオペアンプ13aの出力側と反転入力側との間に第1励磁コイル12が接続されている。また、オペアンプ13aの反転入力側は抵抗13bを介してグランドに接続され、オペアンプ13aの非反転入力側は、オペアンプ13aの出力側及びグランド間に直列に接続された分圧抵抗13c及び13d間に接続されている。そして、オペアンプ13aの出力側が第1検知部14に接続されている。なお、第1励磁部13が第1励磁コイル12に供給する励磁電流は、第1磁気コア11の磁束密度が飽和状態又はその近傍の状態となる電流値である。
すなわち、時点t1で、図4(a)に示すように、オペアンプ13aの出力側の出力電圧Va1がハイレベルとなると、これが第1励磁コイル12に印加される。このため、第1励磁コイル12を出力電圧Va1と抵抗13bの抵抗値Rbとに応じた励磁電流Ibで励磁する。このとき、励磁電流Ibは、図4(b)に示すように、出力電圧Va1の立ち上がり時点t1から比較的急峻に立ち上がり、その後緩やかに増加して放物線状に増加し、その後再度比較的急峻に増加する。
このため、電流が零のときにインダクタンスが飽和する電流(図2(b)のG1)と励磁電流Ibの極性が切り換わる電流(図4(b)のP)とを一致させる。そうすると、インダクタンスが飽和する電流(図2(b)のG1)が導線2a,2bの差電流の電流値C1に応じて変化するので、励磁電流Ibの極性が切り換わる電流(図2(b)のH)も同様に変化することになる。
したがって、第1励磁部13から出力される矩形波電圧Va1のデューティ比を第1検知部14で検出することにより、導線2a,2bを流れる差電流を検知することができる。
第1検知部14は、第1検出回路15、第1ノイズフィルタ回路16、第1増幅回路17及び第1比較器18を備えている。
第1増幅回路17は、フィルタ出力Vf1を増幅し、増幅した直流増幅信号Vdaを第1比較器18に出力する。ここで、第1増幅回路17の増幅率は、出力電圧が残留するノイズ成分の影響を受けない程度の増幅率に設定されている。
第2磁気コア21は、前述した第1電流検知部3Aの第1磁気コア11と同様の構成を有するが、B−H特性の角型比が図2で太線図示(材料a)のように第1磁気コア11のB−H特性の角型比より大きくなり、且つ保持力が小さくなるように設定されている。この場合の角型比は0.5以上が好ましく、保持力は1.5以下であることが好ましい。
第2励磁部23は、他励発振方式の発振回路(励磁回路)で構成されている。この第2励磁部23は、図5に示すように、無安定マルチバイブレータの構成を有し、所定周波数の矩形波電圧Va2を第2励磁コイル22に印加することにより第2励磁コイル22に励磁電流を供給する。
fV=1/(2・C1・R1・ln(1+2/R3/R2)) ・・・(1)
なお、オペアンプ23aで第2励磁コイル22に励磁電流を十分に供給できない場合には、必要に応じて図示しない電流ブースターをオペアンプ23aの出力側に接続することで励磁電流を増加させることが可能である。
すなわち、第2励磁コイル22にパルス状の矩形波電圧Va2を印加すると、最初に第2磁気コア21のインダクタンスで決まる電流Iexが流れ、第2磁気コア21のインダクタンスが飽和すると(図7(b)中のF点)、第2励磁コイル22の抵抗で決まる励磁電流Iexが流れる。
このため、第2励磁コイル22の他端に、励磁電流Iexを検知する第2電流検知部3Bを接続する。この第2電流検知部3Bは、図1に示すように、第2検出回路25、第2ノイズフィルタ回路26、第2増幅回路27及び第2比較器28を有する。
電流−電圧変換回路31は、図6に示すように、第2励磁コイル22とグランドとの間に接続されたシャント抵抗31aで構成され、このシャント抵抗31aの第2励磁コイル22側から励磁電圧Vb2が出力される。
この励磁電圧Vb2は、シャント抵抗31aの抵抗値をRSHとすると、下記(2)式のように抵抗値RSHと励磁電流Iexとの積で表される。
Vb2=Iex・RSH …………(2)
Vhy=Vc2・(Rc+Rd)/Rc ・・・(3)
このように、二値化回路32をヒステリシス付コンパレータ32aで構成することにより、電流−電圧変換回路31から出力される出力電圧Vb2に、図7(b)に示すように、ノイズが重畳されている場合でも、ヒステリシス幅Vhyの範囲内でのノイズの影響を除去した図7(c)に示す矩形波電圧Vc2を出力することができる。
この電流検知回路33では、図7(c)に示す矩形波電圧Vc2を平均化することで、測定電流Iexの電流値が零である場合の実線図示の矩形波は、デューティ比が略50%となるので、平均値が略“0”となるが、測定電流C2が流れる場合の図7(c)で点線図示の矩形波は、デューティ比が50%未満(オン時間がオフ時間より短い状態)となることにより、平均値が一点鎖線図示のように負値となる。この負値の平均値が絶対値回路33bで絶対値化されて、測定電流C2の値に対応した直流電圧Vd2として第2ノイズフィルタ回路26に出力される。
この第2ノイズフィルタ回路26は、図6に示すように、正帰還形とされた二次の低域通過フィルタ26aで構成されている。この低域通過フィルタ26aは、電流検知回路33から出力される直流電圧Vd2を抵抗26b及び26cを介して非反転入力側に入力されるとともに、出力側が反転入力側に直接接続されたオペアンプ26dと、抵抗26cとオペアンプ26dの非反転入力側の接続点とグランド間に接続されたコンデンサ26eと、抵抗26b及び26cの接続点とオペアンプ26dの反転入力側との間に接続されたがコンデンサ26fとを備えている。
fc=1/(2・π・Rf・Cf) …………(4)
ここで、抵抗値Rf及び容量Cfを除去したいノイズ成分の下限周波数に応じて設定することにより、高周波のノイズ成分を確実に除去することができる。しかも、二次の低域通過フィルタを適用しているので、急峻な遮断特性を得ることができる。
この第2比較器28では、第2増幅回路27から出力される直流増幅信号Vda2と例えば15mA以下の微小電流に相当する第2閾値Vref2とを比較し、直流増幅信号Vdaが第1閾値Vref1未満であるときにローレベルとなり、直流増幅信号Vdaが第1閾値Vref1以上であるときにハイレベルとなる漏電検知信号Sr2を漏電制御部5に出力する。
開閉機構部4は、図1に示すように、導線2a及び2bに介挿された通常時は閉極状態に制御され、漏電検知時に開極状態に制御される開閉接点部4a及び4bと、非励磁時に開閉接点部4a及び4bを閉極状態に維持し、励磁時に開閉接点部4a及び4bを開極状態に制御する引外しコイル4cとを備えている。
今、電流測定対象となる導線2a及び2bに漏電が生じておらず、導線2a及び2b間に差電流が生じていないときには、第1電流検知部3Aの第1励磁部13から出力される矩形波電圧Va1が図4(a)で実線図示のように、デューティ比が略50%となっている。このため、第1検出回路15で、矩形波電圧Va1を平均化することにより、直流検知電圧は零となり、これが絶対値化されても零を維持し、この直流検知電圧が第1ノイズフィルタ回路16でノイズ除去され、第1増幅回路17で増幅されても零の直流増幅電圧が第1比較器18に供給される。
この第1比較器18では、入力される直流増幅電圧が第1閾値Vref1より小さい値となるので、ローレベルの漏電検知信号Sr1を出力する。
この第2検出回路25では、電流−電圧変換回路31で励磁電流Iexを電圧Vb2に変換し、この電圧Vb2を二値化回路32に供給することにより、この二値化回路32から図7(c)で実線図示のデューティ比が50%となる矩形波電圧Vc2が出力される。このデューティ比50%の矩形波電圧Vc2が電流検知回路33に供給され、この電流検知回路33で平均化されて絶対値化されることにより、零の直流電圧Vd2が出力される。
このため、漏電制御部5では、第1電流検知部3A及び第2電流検知部3Bからともにローレベルの漏電検知信号Sr1及びSr2が入力されるので、ローレベルの論理和信号が漏電引外し信号出力回路5bに出力され、この漏電引外し信号出力回路5bかられ励磁信号が出力されず、開閉機構部4の引外しコイル4cが非励磁状態を維持するので、導線2a及び2bが通電可能状態を維持する。
すなわち、第2電流検知部3Bでは、導線2a及び2b間に差電流が生じると、第2磁気コア21に巻装された第2励磁コイル22に流れる励磁電流Iexが図7(b)で鎖線図示のように、矩形波電圧Va2の立ち上がり時には、第2磁気コア21のインダクタンスによって決まる電流が流れる状態からインダクタンスが飽和して第2励磁コイル22の抵抗で決まる電流が流れる状態に切り換わるタイミングが通常時のF点からH点に遅れることになる。
このため、電流−電圧変換回路31の出力電圧Vb2を二値化回路32で二値化したときに、二値化信号Vc2は、図7(c)で点線図示のように、実線図示のオン区間の時間が短くオフ区間の時間が長いデューティ比が50%より少ない矩形波信号となる。
このため、二値化信号Vc2を電流検知回路33で平均化することにより、図7(c)で一点鎖線図示のように負値となる直流電流となり、これを絶対値回路33bで絶対値化することにより、漏洩電流を表す直流電圧Vd2が出力される。
このため、漏電制御部5で論理和回路5aの出力信号がハイレベルとなることにより、漏電引外し信号出力回路5bからハイレベルの励磁信号が引外しコイル4cに出力され、開閉接点部4a及び4bが開極状態に制御される。
この第1電流検知部3Aでは、第1磁気コア11の角型比が第2電流検知部3Bの第2磁気コア21の角型比より小さく設定されているので、例えば30mA未満の微小電流の検知は不可能であるが、30mA以上から数Aまでの電流範囲の電流検知が可能となる。
したがって、第1励磁部13から出力される矩形波電圧Va1のデューティ比を第1検出回路15で検知し、この第1検出回路15から出力されるデューティ比に応じた直流電圧を第1ノイズフィルタ回路16に供給してインバータ負荷の高周波ノイズ等を除去してから第1増幅回路17で増幅し、第1比較器18で第1閾値Vref1と比較することにより、例えば30mA〜数Aの広範囲な電流領域で電流検知を行なうことができる。
このため、漏電制御部5では論理和回路5aの出力信号がハイレベルとなることにより、漏電引外し信号出力回路5bから励磁信号が引外しコイル4cに出力されて、開閉接点部4a及び4bが開極状態に制御されて、導線2a及び2bの通電路が開放される。
そして、第1電流検知部3A及び第2電流検知部3Bを有する電流検知装置で導線2a及び2bを流れる漏れ電流による差電流を正確に検知したときに、漏電制御部5で開閉機構部4を動作させて導線2a及び2bの通電路を開放することにより、例えば15mA以下の微小漏電電流から数A程度の漏電電流までの広範囲な漏電電流をノイズの影響を受けることなく正確に検知して、漏電引外し動作する漏電遮断器を提供することができる。
なお、上記実施形態では、漏電を検知する主回路導線2が2本の導線2a,2bである場合について説明したが、これに限定されるものではなく、例えば主回路導線2は一本の導線であってもよい。
2 主回路導体
2a,2b 導線
3 電流検知装置
3A 第1検知装置
3B 第2検知装置
4 開閉機構部
4a,4b 開閉接点部
4c コイル
5 漏電制御部
5a 論理和回路
5b 信号出力回路
11 第1磁気コア
12 第1励磁コイル
13 第1励磁部
13a オペアンプ
13b 抵抗
13c 分圧抵抗
14 第1検知部
15 第1検出回路
16 第1ノイズフィルタ回路
17 第1増幅回路
18 第1比較器
21 第2磁気コア
22 第2励磁コイル
23 第2励磁部
23a オペアンプ
23b 帰還抵抗
23c,23d 分圧抵抗
23e コンデンサ
24 第2検知部
25 第2検出回路
26 第2ノイズフィルタ回路
26a 低域通過フィルタ
26b 抵抗
26c 抵抗
26d オペアンプ
26e コンデンサ
26f コンデンサ
27 第2増幅回路
28 第2比較器
31 電流−電圧変換回路
31a シャント抵抗
32 二値化回路
32a ヒステリシス付コンパレータ
32b オペアンプ
32c 抵抗
33 電流検知回路
33a 低域通過フィルタ
33b 絶対値回路
61 高域通過フィルタ
62 絶対値回路
Claims (6)
- 電流検知対象の導線に流れる微小電流領域から過大電流領域までの広範囲の電流を検知する第1電流検知部と、前記導線に流れる前記第1電流検知部で検知する微小電流領域より低い微小電流領域の電流を検知する第2電流検知部とを備え、
前記第1電流検知部は、前記導線を囲む1つの第1磁気コアと、前記第1磁気コアに巻装された第1励磁コイルに励磁電流を供給し、前記第1励磁コイルに流れる前記励磁電流に応じた電圧と基準電圧とを比較して、前記第1磁気コアを飽和状態またはその近傍の状態で前記励磁電流の極性を反転させる矩形波電圧を発生させる自励発振方式の第1励磁部とを有し、
前記第2電流検知部は、前記導線を囲む1つの第2磁気コアと、前記第2磁気コアに巻装された第2励磁コイルに矩形波電圧を印加して当該第2磁気コアを飽和状態またはその近傍の状態にする励磁電流を供給する他励発振方式の第2励磁部とを有し、
前記第2磁気コアは、前記第1磁気コアよりも角型比が大きく、保持力が小さな磁気特性を有し、角型比が0.5以上で、保持力が1.5以下に設定されていることを特徴とする電流検知装置。 - 前記第1電流検知部は、前記第1励磁部から出力される矩形波電圧のデューティ変化から前記導線に流れる電流を検知する第1検知部を有することを特徴とする請求項1に記載の電流検知装置。
- 前記第2電流検知部は、前記第2励磁コイルから出力される励磁電流を電圧に変換し、変換した前記電圧の大きさが変化するタイミングに基づく矩形波電圧から前記導線に流れる電流を検知する第2検知部を有することを特徴とする請求項1または2に記載の電流検知装置。
- 前記第2電流検知部は、第2励磁コイルから出力される励磁電流を電圧に変換して出力する電流−電圧変換部と、該電流−電圧変換部から出力される出力電圧の大きさが変化するタイミングに基づいて矩形波電圧に変換する二値化部と、二値化部から出力される矩形波電圧に基づいて前記導線に流れる電流を検知する第2検知部とを備えていることを特徴とする請求項3に記載の電流検知装置。
- 請求項1から4の何れか1項に記載の電流検知装置と、電流検知対象となる導線に介挿された引外しコイルを有する開閉機構部と、前記電流検知装置の第1電流検知部及び第2電流検知部の少なくとも一方で前記導線に流れる電流を検知したときに、前記開閉機構部を動作させる漏電動作制御部とを備えていることを特徴とする漏電遮断器。
- 前記第1電流検知部は、前記導線に流れる電流を検知したときに第1電流検知信号を出力し、前記第2電流検知部は、前記導線に流れる電流を検知したときに第2電流検知信号を出力し、漏電動作制御部は、前記第1電流検知信号及び前記第2電流検知信号が入力される論理和回路と、該論理和回路を介して前記第1電流検知信号及び前記第2電流検知信号の少なくとも一方が入力されたときに引外し信号を出力する漏電引外し信号出力回路とを備え、前記漏電引外し信号出力回路から出力される励磁信号によって前記開閉機構部の引き外しコイルを動作させることを特徴とする請求項5に記載の漏電遮断器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225626A JP6610191B2 (ja) | 2015-11-18 | 2015-11-18 | 電流検知装置及びこれを使用した漏電遮断器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225626A JP6610191B2 (ja) | 2015-11-18 | 2015-11-18 | 電流検知装置及びこれを使用した漏電遮断器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017096644A JP2017096644A (ja) | 2017-06-01 |
JP6610191B2 true JP6610191B2 (ja) | 2019-11-27 |
Family
ID=58817203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015225626A Active JP6610191B2 (ja) | 2015-11-18 | 2015-11-18 | 電流検知装置及びこれを使用した漏電遮断器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6610191B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024049762A1 (en) * | 2022-09-01 | 2024-03-07 | Webasto Charging Systems, Inc. | Digital residual current detecting system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018204129B3 (de) * | 2018-03-19 | 2019-07-04 | Siemens Aktiengesellschaft | Verfahren und Einrichtung zur Messung eines Wechselstroms mit einem Rogowski-Stromwandler |
JP7312084B2 (ja) * | 2019-10-31 | 2023-07-20 | ローム株式会社 | 電圧監視回路 |
JP7354926B2 (ja) * | 2020-05-18 | 2023-10-03 | 富士電機機器制御株式会社 | 漏電遮断器 |
WO2022231376A1 (ko) * | 2021-04-30 | 2022-11-03 | 제닉스윈 주식회사 | 지능형 누전차단기 및 이의 제어 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59169322A (ja) * | 1983-03-16 | 1984-09-25 | 株式会社日立製作所 | 漏電遮断器 |
JPH0765517A (ja) * | 1993-08-20 | 1995-03-10 | Mitsubishi Chem Corp | 信号処理回路及び情報記録装置 |
JP2000002738A (ja) * | 1998-06-17 | 2000-01-07 | Shihen Tech Corp | 直流漏電検出装置 |
JP2008150637A (ja) * | 2006-12-14 | 2008-07-03 | Hitachi Metals Ltd | 磁性合金、アモルファス合金薄帯、および磁性部品 |
JP5429613B2 (ja) * | 2009-03-26 | 2014-02-26 | 日立金属株式会社 | ナノ結晶軟磁性合金ならびに磁心 |
JP5516079B2 (ja) * | 2010-05-27 | 2014-06-11 | 富士電機株式会社 | 電流検知装置 |
JP5625525B2 (ja) * | 2010-06-18 | 2014-11-19 | 富士電機株式会社 | 電流検知装置 |
-
2015
- 2015-11-18 JP JP2015225626A patent/JP6610191B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024049762A1 (en) * | 2022-09-01 | 2024-03-07 | Webasto Charging Systems, Inc. | Digital residual current detecting system |
Also Published As
Publication number | Publication date |
---|---|
JP2017096644A (ja) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6610191B2 (ja) | 電流検知装置及びこれを使用した漏電遮断器 | |
KR102016192B1 (ko) | 전류 검출 장치 | |
JP6697746B2 (ja) | 漏電検出装置 | |
JP5625525B2 (ja) | 電流検知装置 | |
JP6220748B2 (ja) | 直流漏洩電流検出装置 | |
JP5606521B2 (ja) | クローズドループフラックスゲート電流センサー | |
JP2011017618A (ja) | 電流センサ | |
WO2014010187A1 (ja) | 電流検出装置 | |
US11300601B2 (en) | Arc fault detection using single current sensor and wideband analog frontend | |
JP5817316B2 (ja) | 漏電遮断器 | |
JP2007316042A (ja) | 直流電流センサー及び直流電流検出装置 | |
JP2016125863A (ja) | 電流検知装置 | |
JP5516079B2 (ja) | 電流検知装置 | |
JP2005055300A (ja) | 電流センサ | |
JP2014130061A (ja) | 直流電流検知装置 | |
JP6728777B2 (ja) | 電流検知装置 | |
JP5702592B2 (ja) | 電流検知装置 | |
JP2016050921A (ja) | 電流検知装置 | |
CN113514689A (zh) | 用于电绝缘、ac/dc灵敏差动电流测量的装置及方法 | |
JP2012063218A (ja) | 電流検知装置 | |
JP2016194483A (ja) | 電流検知装置 | |
JP6191267B2 (ja) | 電流検出装置 | |
JP6119384B2 (ja) | 電流検知装置 | |
JP5793021B2 (ja) | 電流検知装置 | |
CN107942124B (zh) | 一种直流电流比较测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20180914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6610191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |