JP6578332B2 - 発光表示装置の流体アセンブリのシステム及び方法 - Google Patents

発光表示装置の流体アセンブリのシステム及び方法 Download PDF

Info

Publication number
JP6578332B2
JP6578332B2 JP2017177614A JP2017177614A JP6578332B2 JP 6578332 B2 JP6578332 B2 JP 6578332B2 JP 2017177614 A JP2017177614 A JP 2017177614A JP 2017177614 A JP2017177614 A JP 2017177614A JP 6578332 B2 JP6578332 B2 JP 6578332B2
Authority
JP
Japan
Prior art keywords
light emitting
well
providing
emitting element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017177614A
Other languages
English (en)
Other versions
JP2018061017A (ja
Inventor
佐々木 健司
健司 佐々木
ヨハネ・パウロ・スチュウエレ
カート・ウルム
ジョンジャンリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
eLux Inc
Original Assignee
eLux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/266,796 external-priority patent/US9917226B1/en
Priority claimed from US15/410,001 external-priority patent/US9825202B2/en
Priority claimed from US15/410,195 external-priority patent/US10236279B2/en
Priority claimed from US15/412,731 external-priority patent/US10418527B2/en
Application filed by eLux Inc filed Critical eLux Inc
Publication of JP2018061017A publication Critical patent/JP2018061017A/ja
Application granted granted Critical
Publication of JP6578332B2 publication Critical patent/JP6578332B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、集積回路(IC)に関し、特に発光表示装置の製造に用いられる流体アセンブリの方法に関するものである。
微細加工電子デバイス、オプトエレクトロニクスデバイス及びサブシステムのドナー基板・ウエハから、大画面の及び/又は非従来の基板に流体移動させることにより、電子デバイスとオプトエレクトロニクスデバイスの応用範囲を拡大させる新しい機会が提供されている。例えば、表示装置の画素サイズの発光ダイオード(LED)マイクロ構造、例えば、ロッド、フィンまたはディスクは、まず小型ウエハ上に製造され、次に大型パネルのガラス基板に移して、バックライトを必要としない直接発光表示装置を製造する。これらのLEDマイクロ構造を移す従来の手段は、ピックアンドプレイスプロセスによるものである。しかし、何百万もの素子を含む表示装置では、このようなプロセスを完了させるまでに多くの時間を必要とするため、非効率的である。
例えば、LEDおよび集光式太陽電池のような電子デバイスの流体自己組立は、通常特許文献1に示されているように、溶融はんだキャピラリーインターフェイス(molten solder capillary interfaces)による表面エネルギーの最小化により実現され、アセンブリの期間において同時に電極の機械的接続および電気的接続の両方を行うことができる。一方、例えば特許文献2に示されているように、電子デバイスは形状が適合する井戸構造において取得され、続いて電気的集積プロセスが行われる。
従来の流体アセンブリプロセスにおいて未だ解決されていない問題は、大規模な配置方法と、大画面上においてマイクロコンポーネントを駆動回路に集積すること、および欠陥のあるマイクロコンポーネントの修復に用いられる潜在的メカニズムに関連する。大規模な状況下において、従来の流体を井戸中にアセンブリして、マイクロコンポーネントを取得するのに用いられる最大速度と、高速アレイをアセンブリするのに用いられる最小配置速度を得るという二つの要件を満たすことが挑戦となっている。同様に、センチメートル以上の組立基板全体に、高収率のために必要なマイクロコンポーネントの配置方法および流速の均一性を実現することも非常に挑戦的なことである。
アセンブリされたマイクロコンポーネントの集積は、マイクロコンポーネント用のフォトリソグラフィによって形成された電極蒸着を介して実現される、または第一電気接続部をアセンブリの方法の一部とする位置の近くに、第二電気接続部を積層することによって行われてきた。しかし、流体をアセンブリした後の大基板におけるフォトリソグラフィは、基板表面上に残っているマイクロコンポーネントの汚染によって抑制されることがある。また、積層された上部接点において、表示装置の応用に用いられるマイクロコンポーネントへの十分な信頼性のある電気接続が実証されていない。
また、電気励起によるマイクロコンポーネントの欠陥に対する検出は、修復前に用いられる検査において、最も信頼性が高い効果的な方法である。上部接点電極を有するアセンブリされたマイクロコンポーネントは、少なくとも部分的に絶縁マトリクス内に保持される。このマトリクスから欠陥のあるマイクロコンポーネントを除去することを含む修復は、極めて困難である。また、欠陥を有するマイクロコンポーネントを補償するためにアレイに加えられた如何なる類似した集積されたマイクロコンポーネントは何れも、繰り返して電極接続を行うプロセスを必要とする。技術的な解決方法は恐らく存在するが、コストが高く、時間がかかり、信頼度が低いことが予想される。
最小限のプロセスステップにより、発光素子を表示装置基板に効果的に移すために、流体アセンブリプロセスを使用することができれば有利である。
米国特許第7774929号明細書 米国特許第6316278号明細書
本発明で開示される流体アセンブリおよび配向方法は、各マイクロコンポーネントに対して高分散部分応力を使用する。応力の分散が大きいと速度の変動が大きくなり、取得に用いられる最大の組立速度が存在する限り、各要素の速度はその最大閾値を下回り、井戸に落ちる可能性がある。高分散の第二の利点は、大型(メートルスケール)基板上における構成要素の分布が比較的速いことである。井戸に一旦沈降すると、最大の応力は、組み立てられた構成要素が正しい向きから外れないようにするが、方向を誤った構成要素は外される。これにより、低コストで高速な組立方法が提供され、一時間に5600万個を超える外付け組立速度を達成することが予想される。当該組立方法は、如何なる数量の基板にも適用できる一般的な方法であるが、特に井戸以外の表面形状が限定された低充填率、高面積アレイに最適である。
したがって、発光表示装置の製造に用いる流体アセンブリ方法を提供する。この方法は、上表面を有する発光基板と、この上表面に形成された複数の井戸と、を提供する。各井戸は、第一電気インターフェイスを有する底表面と、複数の行と列との交差点を形成する行トレースおよび列トレースを含むマトリクスを有する。各行と列との交差点は、対応する井戸に関連付けられている。また、発光素子の液体懸濁液を提供する。液体は、例えば、アルコール、ポリオール、ケトン、ハロカーボン、または水であってもよい。この方法は、発光基材の上表面を横切って懸濁液を流し、発光素子が井戸内で取得される。発光基板に対してアニールを行うことによって、各発光素子が対応する井戸の第一電気インターフェイスと電気接続が行われる。液体懸濁液は、はんだフラックスを含んでもよく、または、井戸内の発光素子を取得する前および後のいずれか、および基板をアニーリングする前の別のステップではんだフラックスを適用してもよい。付加処理プロセスによって、選択された井戸上に色修正剤および光拡散剤を形成することができる。
基板または発光素子の共晶はんだ界面金属及び熱アニール前にフラックスを使用することが望ましい。例えば、塩化ジメチルアンモニウムクロリド(dimethylammonium chloride)、ジエタノールアミンおよびグリセロール溶液をイソプロパノールに溶解してもよい。この溶液は、組立流体(懸濁液)として使用することができる。または、洗浄および蒸発によって組立流体を除去した後に導入することができる。
一方、発光素子は、上表面に2つの電気接続部(SMLEDの上表面が井戸内に面し、井戸の底表面に隣接する)を有する表面実装型発光ダイオード(SMLED)である。その後、発光素子と井戸の第一電気インターフェイスとの間の電気接続を行う。アニーリングの後に基板上にカバー金属層を形成すること、導電トレースを付加すること、アニーリング後の基板に対するワイヤボンディングを行う必要がない。さもなければ、発光素子が垂直LEDである場合(上表面に1つの電気接続部および底表面に1つの電気接続部を有する)、アニーリング後に恐らく追加で金属化プロセスが必要である。典型的には、発光素子が井戸内で取得されると、取得されていない発光素子は同時に回収され、その後の発光表示装置の製造のために再懸濁される。
一方、基板上に発光素子を配置するための補助構造が係合される。補助構造のいくつかの例として、ブラシ(回転または非回転)、ワイパー、回転シリンダー、加圧流体、および機械振動(例えば、音響または超音波)を含む。補助構造は、懸濁液内の発光素子または発光基板の上表面との接触または係合を介して、基板表面にわたる発光素子の分布を助ける。例えば、放射基板が長さおよび幅を有すると仮定すると、この方法は、放射基板の長さを横切る第一方向の第一速度で、発光基板の上表面を横切って懸濁液を流す。少なくとも発光基板の幅に等しい回転軸及びブラシの長さを有する補助構造ブラシは、ブラシの長さを第一方向の基板長さにわたって平行移動させる。第一回目にブラシを平行移動させると同時にブラシを回転させて、第一速度における第一ローカル分散を生成する。一方、ブラシの回転は、第一速度よりも大きな第一ローカル分散を生成する。本方法は、さらに、第一方向または反対方向にブラシ移動を繰り返してもよく、ブラシの回転は、第一速度よりも大きいかまたは小さい。ブラシは120〜300回転/分(RPM)の範囲の速度で回転し、毎秒3〜10センチメートル(cm/s)の範囲の速度で発光基板の上表面を横切って移動する。
一方、発光素子(表面実装型または垂直型)は、底表面から延伸するポストを備えて製造される。次に、液体懸濁液が基板の上表面を横切って流れるにつれて、発光素子は発光素子のポスト上に生成されたトルクによって、少なくとも部分的に移動する。最も重要なのは、底表面から延伸するポストは表面配向を助け、並びに井戸の底表面の真上を発光素子の上表面が直接カバーするため、これらのポストは、発光素子が井戸の中で取得されるのを支持することである。
以下は、上述した方法の詳細および異なる形状の発光素子を発光基板に移す方法を説明する。
発光表示装置を製造する際の流体アセンブリ方法のフローチャートである。 例えば、図1のステップ102において、一例の発光基板の部分断面図である。 例えば、図1のステップ102において、一例の発光基板の部分平面図である。 図1のステップ104からステップ108を実施した際の、各方面の部分断面図である。 例えば、表面実装発光ダイオード(SMLED)の一例を示す断面図である。 例えば、表面実装発光ダイオード(SMLED)の一例を示す平面図である。 ブラシ補助構造の一例を示す立体斜視図である。 発光基板がポストを備えた発光素子によって占められた部分断面図である。 発光表示装置を製造する際の流体アセンブリ方法の第一変形例のフローチャートである。 図7に示した方法をサポートする第一実施例の平面図である。 図7に示した方法をサポートする第二実施例の平面図である。 発光表示装置を製造する際の流体アセンブリ方法の第二変形例のフローチャートである。 例えば、図1のステップ102において、発光基板の別例の一部を示した断面図である。 例えば、図1のステップ102において、発光基板の別例の一部を示した平面図である。 発光素子のポストの発光素子表面の配向方向における機能を示す部分断面図である。 発光素子のポストの発光素子表面の配向方向における機能を示す部分断面図である。 取得速度が発光素子の流体アセンブリに与える影響を示す部分断面図である。 取得速度が発光素子の流体アセンブリに与える影響を示す部分断面図である。 取得速度が発光素子の流体アセンブリに与える影響を示す部分断面図である。 アセンブリ工程において、流体アセンブリ懸濁液の抗力が発光素子の速度に対する影響を示す部分断面図である。
以下、具体的な実施形態を図面と合わせて、本発明について詳細に説明する。
図1は、発光表示装置を製造する際の流体アセンブリ方法のフローチャートである。説明を明確にするために、本発明では、各ステップに番号を付けて説明を行うが、番号の順番がステップの順番を決めるものではない。また、これらステップの一部は実行しなかったり、並行して行ったり、または、厳密に前後の順次を守らなくてもよい。一般的には、当該方法の各ステップは付けられた番号の順番によって行われる。当該方法はステップ100から開始する。ステップ102において発光基板が提供される。
図2A及び図2Bはそれぞれ、例えば、図1のステップ102において、一例の発光基板の部分断面図と平面図である。発光基板200は、一つの上表面202及びこの上表面202に形成された第一複数の井戸204(図に示す井戸204−0〜204−2)を備える。基本的に、基板の上表面202は略平であり、第一複数の井戸204は、唯一流体アセンブリの表面形状の特徴に影響する。各第一複数の井戸204は第一電気インターフェイス208を有する底表面206を含み、必要に応じて溶接剤によって第一電気インターフェイス208を覆うことができる。図面には第一電気インターフェイス208−0〜第一電気インターフェイス208−2が示されている。一般的に、発光基板200は透明であり、ガラス基板及び当該ガラス基板を覆う誘電材料を含む多層構造(図示せず)であってもよく、前記複数の井戸はこの誘電材料の中に形成される。発光基板200はさらに、複数の行トレース210と複数の列トレース212を有するマトリクスを含む。これら行トレース210と列トレース212は複数の行と列との交差点214を形成する。図には、列トレース212−0〜212−3及び行と列との交差点214―0〜214−3が示されている。各行と列との交差点214は、対応する井戸204と互いに関連する。例えば、行と列との交差点214―0と井戸204−0は互いに関連する。行トレース210と列トレース212は簡単な受動型のマトリクスを形成することができ、必要に応じて発光素子を発光させたり、または、同じ目的として用いる主動型のマトリクスの一部を形成したりすることができる。主動型のマトリクスの詳細は後述する。故に、本願の図面には、行、列及び電気接点間の接続に関する詳細な内容は示していない。
図11A及び図11Bはそれぞれ、例えば、図1のステップ102において、発光基板の別例の一部を示した断面図と平面図である。ここで、前記発光素子は図4A及び図4Bで詳細に示す表面実装発光ダイオード(SMLED)である。後述するが、前記SMLEDは上表面上に二つの電気接続部が形成されており、当該上表面は井戸の底表面206と対向する面である。したがって、井戸の底表面206には二つの電気インターフェイスが形成されており、それぞれ第一電気インターフェイス208−0〜208−2及び第二電気インターフェイス209−0〜209−2である。ここで、発光基板200は、行トレースと列トレースを有する受動的マトリクスに形成され、必要に応じて前記複数のSMLEDを発光させる。図に示したように、行トレース210は井戸204−0〜204−2の第一電気インターフェイス(208−0〜208−2)と接続され、列トレース212−0〜212−2はそれぞれ井戸204−0〜204−2の第二電気インターフェイス(209−0〜209−2)と接続される。
図1を再度参照すると、ステップ104において、発光素子の液体懸濁液を提供する。ステップ106において、前記懸濁液を前記発光基板の上表面に流す。ステップ104における液体は、アルコール類、ポリオール類、ケトン類、ハロゲン化炭化水素類または水等複数種類の中の一つである。ステップ108において、前記複数の井戸の中で発光素子を取得する。一方、ステップ104において、フラックスを含む発光素子の液体懸濁液を提供する。または、前記複数の井戸の中で発光素子を取得した(ステップ108)後、基板に対してアニーリングする(ステップ110)前に、ステップ109aにおいて、フラックスを発光素子が入っている井戸中に充填する。
図3は、図1のステップ104からステップ108までを実施した際の、各方面の部分断面図である。液体懸濁液300は発光素子302を含み、その中で、一部の発光素子302は井戸204の中で取得され、発光素子は少なくとも一つの第一電気接続部304を有する。また、図には発光素子の第二電気接続部306が示されている。第一電気接続部304及び第二電気接続部306は、発光素子302の上表面308上に形成される。同様に、各井戸の底表面206には一つの第二電気インターフェイス310が形成される。
図1を再度参照すると、ステップ110にて発光基板に対してアニーリングを行う。アニーリングにより、ステップ112において各発光素子は対応する井戸の第一電気インターフェイスと接続される。上述のように、井戸の第一電気インターフェイスは溶接剤によって覆われてもよい。または、発光素子上の一つ電気接続部または複数の電気接続部は溶接剤によって覆われてもよい。利用する溶接剤を熔化するために、前記アニーリングは十分に高い温度で行う。
基板または発光素子に共晶はんだ界面金属を使用することと、熱アニーリング前にフラックスを使用することは必須である。原子濃度(at%)を使用した際、Au28/Ge62共晶はんだの融点(MP)は361℃であり、In49/Sn51共晶はんだの融点は120℃である。純粋なインジウムの融点は156℃であるが、圧力がない状態ではボンディング(bonding)できないという欠点がある。フラックスは、イソプロピルアルコール、有機酸、またはロジン系流体の内のジメチルアンモニウムクロリド(dimethylammonium chloride)、ジエタノールアミン、グリセロール溶液に溶解することができる。前記溶液は組立流体(懸濁液)として使用してもよいし、または、洗浄及び蒸発によって組立流体を取り除いた後に導入してもよい。
図4A及び図4Bのそれぞれは、表面実装発光ダイオード(SMLED)の一例を示す断面図及び平面図であるが、図3に示したような発光素子、例えばSMLEDであってもよい。このSMLED302は、n型ドーパントまたはp型ドーパントを有する第一半導体層402を含む。第二半導体層404中には第一半導体層402に利用されていないドーパントが含まれている。多重量子井戸(MQW)層406は第一半導体層402と第二半導体層404との間に位置する。通常、MQW層406は図示されていない一系列の量子井戸層(代表的には5層であり、例えば、図示されていないが、5nmの窒化インジウムガリウム(InGaN)と9nmのn型GaN(n−GaN)が交互に設置されたもの)である。また、前記MQW層とp型半導体層との間に窒化アルミニウムガリウム(AlGaN)電子ブロック層(図示せず)を設置してもよい。外層は約200nmの厚さのp型GaN(Mg型)であってもよい。MQWにおいて、インジウム含有量が高い場合、高輝度の青色LEDまたは緑色LEDを形成することができる。第一半導体層と第二半導体層として最も実用的な材料は、青色または緑色の光を発光させることができる窒化ガリウム(GaN)、或いは赤色の光を発光させることができるアルミニウムガリウムインジウムリン(AlGaInP)である。
一方、第一電気接続部304は環状に設置され、第二半導体層404は円盤状であり、そのエッジ部分は環状の第一電気接続部304下方に位置する。第二電気接続部306は、環状の第一電気接続部304のエッジ内に形成され、第一半導体層402とMQW層406は第二電気接続部306の下方に積層される。環状の第一電気接続部304のエッジと第二電気接続部306との間にはトレンチが形成され、このトレンチ内には電気絶縁体408が埋め込まれている。前記SMLEDの詳細は、Schuele等の発明者が発明した、名称「DISPLAY WITH SURFACE MOUNT EMMISIVE ELEMENT」である、出願日が2017年1月19日付の米国出願(出願番号15/410001号)にて提供されているので、ここでは、当該特許出願を参考文献として援用する。SMLEDを利用する場合、ステップ112中の各発光素子と第一電気インターフェイスとの間の電気接続は、カバー金属層を形成すること、導電トレースを付加する(additional conductive traces)こと、アニーリング後の基板に対するワイヤボンディングを行う必要がなく、また、発光素子に外部の圧力をかけて各発光素子に第一電気インターフェイスと電気接続を行う必要もない。一方、SMLEDはアライメント及び配向に用いるポスト410を含む。
より明確には、ステップ102において、井戸を有する発光基板を提供し、井戸の底表面上には第一電気インターフェイスと第二電気インターフェイスを備える。受動型マトリクス(PM)を用いる場合、前記行トレースと列トレースは、第一電気インターフェイスと第二電気インターフェイスに接続される。主動型マトリクス(AM)を用いる場合、前記行トレースと列トレースは、井戸毎に対応する駆動回路の駆動に用いられ、当該駆動回路の出力端は前記第一電気インターフェイスに接続される。また、AMを用いる場合、前記発光基板中の配線マトリクス(the matrix of traces)はさらに直流電源を各駆動回路に接続させる配線を含む。また、前記発光基板はさらに各井戸に接続される第二電気インターフェイスの電気インターフェイス基準電圧ネットワークを含む。このAM及びPMの実施に関するより詳細な内容は、米国特許出願第15/410001号にて提供されている。
次に、ステップ104において、表面実装発光素子(例えば、SMLED)を含む液体懸濁液を提供する。この表面実装発光素子は一つの底表面と一つの上表面を備え、当該上表面上には第一電気接続部と第二電気接続部が形成されている。ステップ108において、発光素子を井戸の中から取得することは、各表面実装発光素子の上表面が直接対応する井戸の底表面を覆うように取得することを含む。アニーリング処理(ステップ112)によって、各発光素子の第一電気接続部とそれに対応する井戸の第一電気インターフェイスとを電気接続させることは、各表面実装発光素子の第一電気接続部とそれに対応する井戸の第一電気インターフェイスとを電気接続すること、及び各表面実装発光素子の第二電気接続部とそれに対応する井戸の第二電気インターフェイスとを電気接続することを含む。
一方、ステップ104において、垂直型発光素子の液体懸濁液を提供する。この垂直型発光素子は、第一電気接続部を備える底表面と第二電気接続部を備える上表面を含む。ステップ108において、発光素子の底表面が直接対応する井戸の底表面を覆うように取得する。ステップ112において、各発光素子の第一電気接続部は対応する井戸の第一電気インターフェイスと接続される。また、ステップ112において、各発光素子の第一電気接続部を対応する井戸の第一電気インターフェイスと接続した後、ステップ114において、前記発光基板の上表面を覆う基準電圧界面層(reference voltage interface layer)を形成する。当該技術分野においては周知のように、このようなステップは、基板の上表面に分離層(isolation layer)を積層し、エッチングによってこの分離層を貫通するコンタクトホールを形成して、直後に形成される基準電圧界面層が第二電気接続部と電気接続できるようにする必要がある。ステップ116において、各垂直発光素子の第二電気接続部は基準電圧界面層と接続される。例えば、薄膜技術によって、前記発光基板の上表面に金属化相互接続が形成される。垂直発光素子を用いた受動型マトリクスの場合、前記のように、行/列マトリクスの一部(例えば、行トレース)はステップ102において提供され、並びに行/列マトリクスの一部(例えば、列トレース)はステップ114において提供される。
一方、ステップ107において、必要に応じて補助構造を用いて発光素子を配置する。前記補助構造は、例えば、ブラシ(回転ブラシまたは非回転ブラシ)、ワイパー、回転シリンダー、加圧流体、または機械振動であってもよい。前記「流体」は、気体であっても液体であってもよい。前記機械振動は音響振動と超音波振動を含む。次いで、ステップ108において、少なくとも補助構造が懸濁液内の発光素子と係合するか、または発光基板上表面と係合することによって、部分的に発光素子を取得する。
図5はブラシ補助構造の一例を示す立体斜視図である。図1及び図5に示したように、ステップ102において、長さ500、幅502の発光基板200を提供する。ステップ106において、発光基板200の長さ500にわたる第一方向504上に第一速度を有する懸濁液を提供する。次いで、ステップ107において、回転軸508及びブラシの長さ510を有するブラシ506を用いる。ブラシの長さ510は、少なくとも後述するサブステップ中の発光基板200の幅502に等しい。ステップ107aにおいて、第一回目は、ブラシ長さ510は、第一方向にて発光基板200の長さ500全体にわたって平行移動する。一方、ステップ107aにおいて、ブラシは毎秒3〜10センチメートル(cm/s)の速度で平行移動する。第一回目でブラシは平行移動すると共に、ステップ107bにおいて、第一速度の第一ローカル分散が生じるようにブラシを回転させる。図に示すように、第一ローカル分散は第一速度よりも速い速度である。あるいは、第一ローカル分散は第一速度よりも遅い速度であってもよい。一方、ステップ107bは、120〜300回転/分(PRM)の範囲の速度でブラシを回転させる。本実施例において、基板表面におけるブラシの線速度(linear velocity)は35cm/sとなり、ブラシが懸濁液を押し流す前領域に低速取得領域(low−velocity trapping region)が出現する。
例えば、補助構造として、50mmの外径を有し、75マイクロメートルの直径を有するナイロンまたはポリプロピレンの剛毛によって形成された複数の3mmタフト(Tuft)により製造された円柱型ブラシを用いることができる。前記複数のタフトは緊密に積み重ねられたスパイラルパターンまたは双方向スパイラルパターンに配置することができる。中心点から中心点までのタフト間の距離は6mmである。円柱型ブラシを説明するために前記のような具体的なサイズを提供したが、円柱型ブラシは無公害材料によって形成された剛毛を緊密に積み重ねて製造され、並びにマイクロコンポーネント及びキャリア流体(carrier fluid)と最適な相互作用を持つ。
具体例として、ブラシは基板の第一エッジから開始する。第一ステップにおいて、前記ブラシは基板の第二エッジに向かって移動し、反時計回りに回転してローカル分散を増やす。第二ステップにおいて、前記ブラシは前記第二エッジに近い箇所で停止する。回転方向は時計周りとなる。第三ステップにおいて、ブラシは引き続き第二エッジまで移動し、直後に反対側の第一エッジに向かって移動し、時計周りのまま回転する。第四ステップにおいて、前記ブラシは前記第一エッジに近い箇所で停止し、反対向きの反時計周りに回転する。第五ステップにおいて、前記ブラシは第一エッジまでの移動を完了する。必用に応じて、前記の各ステップを繰り返し行うことができる。
基板を一定の角度まで傾斜して設置すると、第一速度の流速は重力によって駆動することができる。流速は振動またはパルスであってもよい。また、懸濁液内の発光素子の速度は必ずしも液体の速度に等しいとは限らない。本発明において、第一速度は液体の速度を示す。
一方、前記懸濁液がイソプロピルアルコールである液体中に、高濃度で厚さが2〜8マイクロメートルである複数のLEDを配置する。このLEDの直径或いは最大の断面のサイズは20〜150マイクロメートルである。基板の表面上には、厚さが薄いイソプロピルアルコールが存在し、ナイロンまたはポリプロピレンの剛毛を持つ水平軸ブラシが基板表面に近づきながら回転する。前記ブラシの長さは、平行移動してわたる際に、ブラシが基板全体を完全に覆うことができるよう基板の片側の長さと一致する。平行移動する際、最初に回転する際、液体懸濁液と接触している剛毛の線速度は平行移動と同じ方向であり、その速度もより速い。このような方法により、前記ブラシは基板全体の表面における発光素子を収集する。一般的に、各発光素子はその移動点から素早く移動し、比較的大きな初期速度(ブラシの線速度に近い)によって進み、再度表面に沈降する前にブラシから一定距離移動する。通常、このような沈降によってLEDは井戸の中に組み立てられる。
図13A〜図13Cは取得速度が発光素子の流体アセンブリに与える影響を示す部分断面図である。発光素子の速度(V)が臨界取得速度(critical trapping velocity)(VCRIT)以上となる場合、発光素子302は十分に遅い速度で移動して井戸204の中で取得される。前記臨界取得速度は、取得井戸位置、流体力学と組み合わせて、発光素子と部分的な基板形状及び井戸に対する素子の初期位置等の条件に基づいて、速度の大きさが定義され、速度の大きさが大きい場合、発光素子は取得できず、速度の大きさが小さい場合、発光素子は取得することができる。決定的な要因としては、井戸の側壁と発光素子との間での相互作用が発光素子に抗力を与えるかどうかである。発光素子の主な部分が基板の上表面の平面以下まで沈降したとしても、発光素子のガイド側壁エッジが完全に基板の上表面の平面上にある場合、更なる流体液によって発光素子を井戸から追い出す。これとは逆に、発光素子の前エッジ部分が井戸の側壁に取得された場合、そのモメンタム(momentun)は基板に移転され、発光素子は井戸の中に沈降することができる。発光素子に与える固定の下向きの力(流体力学の作用力は含まない)は、流体中にて発生する浮力とは反対の重力である。従って、VCRITは流体密度、幾何学及び初期条件によって決定される。
前記臨界取得速度は二次元図により示されているが、実際には、発光素子が進むルートは井戸の中心を通過しない場合があるので、二次元図の内外に移動する構成要素を含むことができる。このため、比較的遠い井戸側壁に接続する前に発光素子が沈降することによって、発光素子を取得できるかが決定され、中心を通過するルートが発光素子が側壁に接続しない状況で採用できる最長ルートを示しているため、十分に遅い速度によって井戸の偏心に沿って進む発光素子を取得する必用がある。言い換えると、臨界取得速度の大きさは、井戸の中心に向かって進む発光素子の速度を示しており、組立の最大値(一レベル)を示す。具体的な実践において高生産量を実現するために、最小発光素子の速度はここで示したVCRITより大幅に低い。
図14は組立工程において、流体アセンブリ懸濁液の抗力が発光素子の速度に対する影響を示す部分断面図である。運搬体流体速度(V)が臨界取得体流体速度VCRITより大きい場合、ブラシ506は、発光ディスク(emissive disk)を上方へと押し進めて、基板の上表面202から離れる。図に示したように、発光素子302上で作用する力は、恐らくブラシ506の平行速度1400とブラシ506の回転速度1402との関数である。流体は乱流である可能性があり、発光素子の移動は、ある一定のレベル、全体の流体の流動(初期ブラシストロークを超える)とは独立して移動する。通常、ブラシ領域の付近には高密度の発光素子が存在し、発光素子は、流体の流動によって基板上で前に進みながら分散され抗力によって減速する。最終的には、前に進むブラシは発光素子に到達する前に表面に沈降されて井戸の中に入る。これにより、ブラシの初期速度は必然的に非常に高いが、発光素子302は減速し、且つ安定的にVCRITより低い速度となる。これはブラシ方法を採用した主な利点である。高速度の剛毛は、方向が不正確な発光ディスク抑えて、その前方に発光素子の高密度波(high−density wave)を押し込み、ブラシの前でリセットする機会を与える。剛毛の速度(主にブラシの回転速度)は、配向発光ディスクに用いられるデトラップ力ウィンドウ(detrapping force window)によって選択され、ブラシの直線移動速度は、液体中の発光素子のセトリング時間によって選択される。このようにして、前記組立方法はVCRITによって制限された各発光組立速度を高速の全体表示部品組立速度から切り離す。
組み立ては、ほぼ一回では完了できないため、通常、複数回方向を変えて平行移動させながら回転させる必要がある。ただし、平行移動と回転は同時に方向を変える必要はない。基板表面上において、組み立てられていない部材の割合(即ち、井戸に入ってない)を減少させるために、先ず全ての組み立てられていない部材が組立領域へと導かれるまで、回転方向を変えると同時に、ブラシは前と同じ方向に沿って平行移動する。この際、ブラシの平行移動の方向も変わる。
一方、取得に用いられる沈降空間が多くの機会を持つことができるように、組み立てる際の発光素子の最大部分密度は約部材の0.3〜0.8単層とする。また、発光素子が取得された際、移動中のブラシの前の取得されていない(アライメントされていない)発光素子の量と余分線量の懸濁液流体を補充することができる。余分な部材にすることよってよい結果を得ることができ、具体的には、組立領域上方の懸濁液液体中の素子量が取得ポイントの量より少なくとも50%以上とすることで、取得率の向上と組立時間の短縮を実現する。全ての位置(井戸)が正しい配向の発光素子によって占められた後、同じブラシ用具を用いて、異なる方法(例えば、統一した回転方向でブラシを基板領域を超える所まで平行移動させる)によって余分な組み立られていない素子を取り除く。取り除かれた素子は保存容器に収集して再利用する(ステップ109a及び109b)。
このような方法を採用する要因として、部材の電気接続は、堆積された金属によって組立期間中または組立後に行うのではなく、発光素子−基板界面金属の共融溶融温度を超えるアニーリング期間中に行うことである。従来の方法には、フラックス(例えば、HCI)を含んだ溶融はんだ組立用の水性懸濁液が用いられているが、当該方法は、はんだ接続部を徐々に溶解してしまうため、マイクロコンポーネントとの一貫性のある電気接続が困難である。本発明で使用するフラックスの初期濃度は十分低いため腐蝕性を持たず、アニーリング期間中に、先ず残留しているイソプロピルアルコールが揮発し、その後グリセロールが揮発する。各ステップにおいて、金属表面を洗浄して容易にバンディングきるよう、フラックスの濃度を増やして表面の酸化物および汚染物質を取り除く。ピックアップ−配置方法とは異なり、本実施形態において、コンポーネントインターフェイスに対して、任意の外部圧力をかけなくとも、良好な電気接続を実現できる。
一方、ステップ106において、発光素子が懸濁液内で流動され、発光基板の上表面で発光素子の体積百分率は液体より高くなる。関連する変更実施例のステップ106において、0.3〜0.8の単層範囲内で懸濁液を発光基板の表面に流して、懸濁液内の発光素子の最大の部分密度を生成する。
図6は発光基板がポストを備えた発光素子によって占められた部分断面図である。
図1及び図6を参考すると、ステップ104において、発光素子302の液体懸濁液を提供する。発光素子302は表面602から延伸するポスト600を備える。本実施例において、前記発光素子は表面実装発光素子である。ステップ106において、発光素子のポスト600上で生成されたトルクよって、少なくとも部分的に基板の上表面を横切って発光素子を移動させることによって液体懸濁液を流す。さらに、発光素子を井戸の中で取得するステップ(ステップ108)は、発光素子のポスト600によって、表面実装発光素子の上表面308が直接井戸の底表面を覆うように表面配向させることを含む。
図12A及び図12Bは発光素子のポストの発光素子表面の配向方向における機能を示す部分断面図である。流体アセンブリ期間において、液体流(矢印1200で示される)により、牽引力(drag forces)が基板200の表面を介して発光素子302のポスト600上に与えられる。ポスト600は発光素子の表面602から延伸しているため、牽引力はプレートダイオードの表面配向に非対称的な影響を有する。特に、牽引力は、反転された発光素子302を非反転向きに回転させる固定の回転点の周り(例えば、基板200の表面と接続される発光素子のエッジ)にポジティブモーメントを生成させる。これとは逆に、液体流動によって非反転向きの発光素子302に与えられる牽引力は、主にポスト600付近の摂動によるものであり、発光素子302上に与えられる力はネットモーメントを生成する。前記ネットモーメントは発光素子の前エッジ(即ち、矢印1200方向に沿って進むエッジ)を押し下げて、発光素子を非反転方向へと安定させる。
井戸204において堆積された非反転配向の発光素子302(図12Aを参照)と、井戸204において反転配向に堆積された発光素子302(図12Bを参照)との間には、同様の非対称な牽引力が生じる。図12Aに示すように、液体流によって引き起こされる発光素子302の右下コーナー付近の任意の力のモーメントは、表面602に加えられる力によって相殺され、井戸204内に堆積された発光素子を維持しようとするネットモーメントが生じる。図12Bに示すように、発光素子302が井戸204内で反転されている場合、表面602は液体流からの持ち上げ力を生成する水中翼として、ネットポジティブモーメントが発光素子302の右側が井戸204の側面に接触するように作用する。このネットポジティブモーメントは、発光素子302を矢印1202によって示される方向に反転させる傾向にある。この結果、発光素子は井戸204から押し出され、液体流によって発光素子は別の下流の井戸に向けて、非反転向きに再堆積することができる。
一方、井戸内で発光素子を取得すると同時に(ステップ108)、ステップ109bにおいて、取得されていない発光素子を収集し、ステップ109cにおいて、後続の発光表示装置製造に用いるために収集した発光素子を再懸濁する。一方、ステップ118において、対応する複数の露出した発光素子の底表面を覆う複数の色修正構造(color modifiers)を形成する。あるいは、または加えて、ステップ118において、対応する複数の発光素子を覆う複数の光拡散器を形成する。
発光素子が2つの底部接続部(例えば、SMLED)を有する場合、アニーリング(ステップ110)が最終処理ステップであるが、色修正の統合およびパッシベーションは省略することができる。 垂直発光素子の場合は、電極が対向した表面上にあるので、発光素子の上表面には接続部が開口するようにパッシベーション層が堆積され、パターニングされた金属は発光素子への電気接続を実現する(ステップ114、116)。
図7は発光表示装置を製造する際の流体アセンブリ方法の第一変形例のフローチャートである。この方法はステップ700から始まる。ステップ702において、上表面を有する発光素子を提供し、当該上表面には複数の井戸が形成される。各井戸は第一電気インターフェイスを有する底表面を含み、前記基板は、複数の行トレースと複数の列トレースによって形成されたマトリクスを含む。各複数の行トレースと列トレースは複数の行と列との交差点を形成する。各行と列との交差点は、対応する井戸と関連付けられている。ステップ704において、第一種類の発光素子を有する第一液体懸濁液を提供する。ステップ706において、第一懸濁液は発光基板の上表面を横切って流れる。ステップ708において、第一種類の発光素子を井戸内で取得する。ステップ710は第二種類の発光素子を有する第二液体懸濁液を提供する。ステップ712において、第二懸濁液が発光基板の上表面を横切って流れる。ステップ714において、発光基板の最終的なアニーリングを行う。最終的なアニーリングによって、ステップ716おいて発光素子は対応する井戸の第一電気的インターフェイスと電気接続される。一方、第二懸濁液を流す前に、ステップ709において、既に井戸内で取得された第一種類の発光素子と電気インターフェイスに接続するための初期アニーリングを行う。製造方法の詳細に関しては、前記図1の説明から理解できるので、簡潔にするためにここでの説明は省略する。一方、ステップ708の後、且つステップ712の前に、第二種類の発光素子が取得される井戸が形成される。
一方、ステップ714においての最終アニーリングの前に、ステップ713aにおいて、第三種類の表面実装発光素子を有する第三液体懸濁液を提供する。ステップ713bにおいて、第三懸濁液が発光基板の上表面を横切って流れる。図示されていないが、ステップ713b後の付加ステップにおいて、第三種類の発光素子とこれらを取得した井戸の電気インターフェイスとを接続するために、第三種類の発光素子に対してアニーリングを行うことができる。 図示されていないが、本方法は、任意数の発光素子の種類に対応する、数量の異なる懸濁液に堆積するように拡張することができる。
図8は図7に示した方法をサポートする第一実施例の平面図である。ここで、ステップ702において、第一直径806を有する複数の円形井戸804と、第二直径802を有する複数の円形井戸800を有する発光基板を提供する。第二直径802は第一直径806よりも小さい。 次に、ステップ704において、第一液体懸濁液は発光素子ディスク812を提供する。発光素子ディスク812は第二直径802より大きく、且つ第一直径806より小さい第三直径814を有する円形状である。ステップ710において、第二種類の発光素子ディスク808を含む第二液体懸濁液を提供する。第二種類の発光素子ディスク808は第二直径の802より小さい第四直径810を有する円形状である。
図9は図7に示した方法をサポートする第二実施例の平面図である。ここで、ステップ702において、第一形状900を有する複数の井戸と第二形状902を有する複数の井戸を含む発光基板を提供する。第二形状902と第一形状900は異なる。この実施例において、第一形状900は正方形であり、第二形状は円形である。しかしながら、この方法は、特定の形状または形状の組み合わせに限定されない。ステップ704において、第一種類の発光素子を有する第一懸濁液を提供する。前記第一種類の発光素子は第三形状904を有し、第三形状904は第一形状900の井戸を充填することができるが、第二形状902の井戸を充填することはできない。ステップ710において、第二種類の発光素子を有する第二液体懸濁液を提供する。この第二種類の発光素子は第四形状906を有し、第四形状906は第二形状902の井戸を充填することができる。一方、第四形状906を有する発光素子は第一形状900の井戸を充填することができない。
図10は、発光表示装置を製造する際の流体アセンブリ方法の第二変形例のフローチャートである。この方法は、ステップ1000から始まる。ステップ1002において発光基板を提供する。前記発光基板は、上表面と、第一形状を有する複数の井戸と、第一形状とは異なる第二形状を有する複数の井戸と、を有する。各井戸は、第一電気インターフェイスを有する底表面を含む。また、ステップ1002において、複数の行トレースと複数の列トレースによって形成されるマトリクスを提供する。前記複数の行トレースと複数の列トレースは複数の行と列との交差点を形成し、各行と列との交差点は対応する井戸に関連付けられる。ステップ1004において、第一形状の井戸を充填することができるが、第二形状の井戸を充填することができない第三形状を有する第一種類の発光素子を有する液体懸濁液を提供する。また、ステップ1004における液体懸濁液は第二形状の井戸を充填することができるが、第一形状の井戸を充填することができない第四形状を有する第二種類の発光素子を含む。ステップ1006において、懸濁液は発光基板の上表面を横切って流れる。ステップ1008において、第一形状の井戸の第一種類の発光素子と、第二形状の井戸の第二種類の発光素子を取得する。ステップ1010において、発光基板に対してアニーリングを行う。このアニーリングによって、ステップ1012において発光素子は対応する井戸の第一電気インターフェイスと電気接続される。
本発明は表示装置の製造に用いる流体アセンブリプロセスを提供する。特定の材料、サイズおよび回路のレイアウトの例は、本発明を説明するために提示されている。しかしながら、本発明はこれらの実施例に限定されるものではなく、本分野の発明者は、本発明のその他の変形および実施例を想到することができる。
200 発光基板
202、308 上表面
204 井戸
208、208−0、208−1、208−2 第一電気インターフェイス
206 底表面
210 行トレース
212、212−0、212−1、212−2、212−3 列トレース
214 列と行との交差点
209−0、209−1、209−2、310 第二電気インターフェイス
300 液体懸濁液
302 発光素子
304 第一電気接続部
306 第二電気接続部
402 第一半導体層
404 第二半導体層
406 多重量子井戸層
408 電気絶縁体
500 長さ
502 幅
504 第一方向
506 ブラシ
508 回転軸
510 ブラシの長さ
1400 水平速度
1402 回転速度
410、600 ポスト
602 表面
800、804 円形井戸
808、812 発光素子ディスク
806 第一直径
802 第二直径
814 第三直径
810 第四直径
900 第一形状
902 第二形状
904 第三形状
906 第四形状
1200、1202 矢印
1400 平行速度
1402 回転速度

Claims (25)

  1. 発光表示装置の製造に用いられる流体アセンブリ方法であって、
    上表面と、複数の行トレースと複数の列トレースによって形成されたマトリクスと、を備え、前記上表面には複数の井戸が形成され、各井戸は第一電気インターフェイスを有する底表面を備え、前記複数の行トレースと前記複数の列トレースは複数の行と列との交差点を形成し、各行と列との交差点は対応する前記井戸に関連付けられている発光基板を提供するステップと、
    底表面から延伸するポストを有する発光素子の液体懸濁液を提供するステップと、
    前記液体懸濁液を前記発光基板の上表面を横切って流すステップと、
    前記発光素子を前記複数の井戸内で取得するステップと、
    前記発光基板をアニーリングするステップと、
    前記アニーリングによって、各発光素子を対応する井戸の第一電気インターフェイスと電気接続させるステップと、を含むことを特徴とする発光表示装置の製造に用いる流体アセンブリ方法。
  2. 電気接続された各発光素子は、アニーリング後に基板上にカバー金属層を形成すること、導電トレースを付加すること、アニーリング後の基板に対するワイヤボンディングを行う必要がなく、各発光素子を第一電気インターフェイスに接続することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  3. 更に回転または非回転のブラシ、ワイパー、回転シリンダー、加圧流体および機械振動からなる群から選択された補助構造を用いて前記発光素子を配置するステップを含み、
    前記発光素子を前記複数の井戸内で取得するステップは、前記液体懸濁液または前記発光基板の上表面内の前記発光素子と前記補助構造とを係合することにより、前記発光素子を取得するステップを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  4. 前記発光基板を提供するステップは、長さ及び幅を有する発光基板を提供するステップを含み、
    前記液体懸濁液を前記発光基板の前記上表面を横切って流すステップは、前記液体懸濁液を前記発光基板の長さにわたって第一方向に第一速度で供給することを含み、
    前記補助構造と係合するステップは、ブラシと係合することを含み、前記ブラシは回転軸および少なくとも前記発光基板の幅に等しいブラシの長さを有し、第一回目には、ブラシの長さを第一方向の発光基板の長さに沿って平行移動させ、第一回目に前記ブラシを平行移動させると同時に、ブラシを回転させて第一速度の第一ローカル分散を生成することを特徴とする請求項3に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  5. 前記補助構造と係合するステップは、
    120〜300回転/分(RPM)の範囲の速度でブラシを回転させることと、
    ブラシを毎秒3〜10センチメートル(cm/s)の範囲の速度で平行移動させることと、を含むことを特徴とする請求項4に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  6. 前記発光基板を提供するステップは、はんだが覆われた第一電気インターフェイスを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  7. 前記液体懸濁液を前記発光基板の上表面を横切って流すステップにおいて、前記液体懸濁液内の前記発光素子の最大部分密度が0.3〜0.8単層の範囲内となることを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  8. 前記発光素子の前記液体懸濁液を提供するステップは垂直発光素子を提供するステップを含み、前記垂直発光素子は第一電気接続部を有する底表面と第二電気接続部を有する底表面を有し、
    前記発光素子を前記複数の井戸内で取得するステップは、前記発光素子の底表面が対応する井戸の底表面を直接覆うように取得するステップを含み、
    各発光素子と対応する井戸の第一電気インターフェイスとを電気接続するステップは、各発光素子の前記第一電気接続部と対応する井戸の第一電気インターフェイスとを電気接続することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  9. 各発光素子を電気接続するステップは、前記発光素子に外圧をかけることなく、各発光素子と対応する井戸の前記第一電気インターフェイスとを電気接続することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  10. 記液体懸濁液を前記発光基板の上表面を横切って流すステップは、少なくとも部分的には前記発光素子のポスト上に生成されたトルクによって、前記発光基板の上表面を横切って前記発光素子を移動させるステップを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  11. 記発光素子を前記複数の井戸内で取得するステップは、前記発光素子のポストによって表面配向を前記発光素子の第一電気接続部が前記井戸の底表面を直接覆うようにすることを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  12. 前記発光基板を提供するステップは、各井戸が第一電気インターフェイスと第二電気インターフェイスを有する底表面を含むことを含み、
    前記発光素子の前記液体懸濁液を提供するステップは、底表面及び上表面を有する表面実装発光素子を提供するステップを含み、前記表面実装発光素子は前記上表面に形成された第一電気接続部と第二電気接続部を有し、
    前記発光素子を前記複数の井戸内で取得するステップは、各表面実装発光素子の上表面が対応する井戸の底表面を覆うように取得するステップを含み、
    前記アニーリングによって各発光素子が対応する井戸内の第一電気インターフェイスと電気接続するステップは、各表面実装発光素子の前記第一電気接続部を対応する井戸の第一電気インターフェイスに電気接続するステップと、各発光素子の前記第二電気接続部を対応する井戸の第二電気インターフェイスに電気接続するステップと、を含むこと特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  13. 前記発光素子の前記液体懸濁液を提供するステップは、フラックスを含む懸濁液を提供することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  14. さらに、前記発光素子を前記複数の井戸内で取得した後、前記発光基板に対してアニーリングする前に、発光素子によって充填された井戸にフラックス剤を充填するステップを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  15. さらに、前記発光素子を前記複数の井戸内で取得すると同時に、取得されていない発光素子を収集するステップを含み、
    収集された前記発光素子は次の発光表示装置を製造するために使用されること特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  16. 対応する複数の発光素子の底表面を覆う複数の色修正構造を形成するステップを含むこと特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  17. 対応する複数の発光素子を覆う複数の光拡散器を形成するステップを含むこと特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  18. 前記発光素子の前記液体懸濁液を提供するステップは、アルコール、ポリオール、ケトン、ハロカーボンおよび水らを組み合わせたものから選択される液体を提供することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  19. 前記発光素子の前記液体懸濁液を提供するステップは、はんだで覆われた電気接続部を有する発光素子を提供することを含むことを特徴とする請求項1に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  20. 発光表示装置の製造に用いられる流体アセンブリ方法であって、
    上表面と、複数の行トレースと複数の列トレースによって形成されたマトリクスと、を備え、前記上表面には複数の井戸が形成され、前記井戸毎に第一電気インターフェイスを有する底表面が含まれ、前記複数の行トレースと前記複数の列トレースは複数の行と列との交差点を形成し、各行と列との交差点は対応する前記井戸に関連付けられている発光基板を提供するステップと、
    底表面から延伸するポストを有する第一種類の発光素子を有する第一液体懸濁液を提供するステップと、
    前記第一液体懸濁液を前記発光基板の上表面を横切って流すステップと、
    前記第一種類の発光素子を前記複数の井戸内で取得するステップと、
    底表面から延伸するポストを有する第二種類の発光素子を有する第二液体懸濁液を提供するステップと、
    前記第二液体懸濁液を前記発光基板の上表面を横切って流すステップと、
    前記発光基板の最終的なアニールを行うステップと、
    最終的なアニーリングによって、発光素子を対応する井戸の第一電気インターフェイスに電気接続するステップと、を含むことを特徴とする発光表示装置の製造に用いる流体アセンブリ方法。
  21. さらに、最終アニーリングの前に、第三種類の表面実装発光素子を有する第三液体懸濁液を提供するステップと、
    前記第三液体懸濁液を前記発光基板の上表面を横切って流れるステップを含むことを特徴とする請求項20に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  22. 前記発光基板を提供するステップは、第一直径を有する複数の円形井戸を提供するステップと、前記第一直径よりも小さい第二直径を有する複数の円形井戸を提供するステップと、を含み、
    前記第一液体懸濁液を提供するステップは、前記第二直径より大きく、且つ前記第一直径より小さい第三直径の円形を有する第一種類の発光素子ディスクを提供するステップを含み、
    前記第二液体懸濁液を提供するステップは、前記第二直径より小さい第四直径の円形状を有する第二種類の発光素子ディスクを提供するステップを含むことを特徴とする請求項20に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  23. 前記発光基板を提供するステップは、第一形状を有する複数の井戸を提供するステップと、前記第一形状とは異なる第二形状を有する複数の井戸を提供するステップと、を含み、
    前記第一液体懸濁液を提供するステップは、第一種類の発光素子を提供するステップを含み、前記第一種類の発光素子は第一形状の井戸を充填することができるが前記第二形状の井戸を充填することができない第三形状を有し、
    前記第二液体懸濁液を提供するステップは、第二種類の発光素子を提供するステップを含み、前記第二種類の発光素子は前記第二形状の井戸を充填することができる第四形状を有すること特徴とする請求項20に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  24. 前記第二液体懸濁液を流す前に、初期アニーリングを行うことを特徴とする請求項20に記載の発光表示装置の製造に用いる流体アセンブリ方法。
  25. 上表面と、第一形状を有する複数の井戸と、第一形状とは異なる第二形状を有する複数の井戸と、を備え、各井戸は第一電気インターフェイスを有する底表面を有し、複数の行トレースおよび複数の列トレースによって形成されたマトリクスを有し、前記複数の行トレースと前記複数の列トレースは複数の行と列との交差点を形成し、各行と列との交差点は対応する前記井戸に関連付けられている発光基板を提供するステップと、
    前記第一形状の井戸を充填することができるが前記第二形状の井戸を充填することができない第三形状を有し、且つ底表面から延伸するポストを有する第一種類の発光素子と、前記第二形状の井戸を充填することができるが前記第一形状の井戸を充填することができない第四形状を有し、且つ底表面から延伸するポストを有する第二種類の発光素子とを含む液体懸濁液を提供するステップと、
    前記液体懸濁液を前記発光基板の上表面を横切って流すステップと、
    前記第一種類の発光素子を前記第一形状の井戸内で取得し、前記第二種類の発光素子を前記第二形状の井戸内で取得するステップと、
    前記発光基板をアニーリングするステップと、
    アニーリングによって、前記発光素子を対応する井戸の第一電気インターフェイスに電気接続するステップと、を含むことを特徴とする発光表示装置の製造に用いる流体アセンブリ方法。
JP2017177614A 2016-09-15 2017-09-15 発光表示装置の流体アセンブリのシステム及び方法 Active JP6578332B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15/266,796 US9917226B1 (en) 2016-09-15 2016-09-15 Substrate features for enhanced fluidic assembly of electronic devices
US15/266,796 2016-09-15
US15/410,001 US9825202B2 (en) 2014-10-31 2017-01-19 Display with surface mount emissive elements
US15/410,001 2017-01-19
US15/410,195 2017-01-19
US15/410,195 US10236279B2 (en) 2014-10-31 2017-01-19 Emissive display with light management system
US15/412,731 2017-01-23
US15/412,731 US10418527B2 (en) 2014-10-31 2017-01-23 System and method for the fluidic assembly of emissive displays

Publications (2)

Publication Number Publication Date
JP2018061017A JP2018061017A (ja) 2018-04-12
JP6578332B2 true JP6578332B2 (ja) 2019-09-18

Family

ID=61643258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017177614A Active JP6578332B2 (ja) 2016-09-15 2017-09-15 発光表示装置の流体アセンブリのシステム及び方法

Country Status (4)

Country Link
JP (1) JP6578332B2 (ja)
KR (1) KR102037226B1 (ja)
CN (1) CN107833525B (ja)
TW (1) TWI664710B (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803149B (zh) * 2018-07-20 2021-05-25 京东方科技集团股份有限公司 面光源及其制作方法以及液晶显示装置
CN108962042B (zh) * 2018-07-23 2021-04-02 上海天马微电子有限公司 显示面板及其制作方法
CN109065692A (zh) * 2018-08-01 2018-12-21 厦门多彩光电子科技有限公司 一种led的封装方法
CN109065677A (zh) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 Micro-LED巨量转移方法及Micro-LED基板
CN109449270B (zh) * 2018-10-26 2020-07-31 上海天马微电子有限公司 Led结构、显示面板及其制作方法
CN111162064B (zh) * 2018-11-08 2022-03-25 成都辰显光电有限公司 Led单元、导引板、led显示器及其制造方法
CN111244246B (zh) * 2018-11-29 2021-08-17 成都辰显光电有限公司 发光微元件及其转移系统、显示装置
CN109585342B (zh) * 2018-11-30 2020-10-16 天马微电子股份有限公司 一种微发光二极管的转移方法及显示面板
KR102145016B1 (ko) 2019-02-28 2020-08-18 엘지전자 주식회사 반도체 발광 소자를 디스플레이 패널에 조립하는 조립 장치
JP6694222B1 (ja) * 2019-03-18 2020-05-13 アルディーテック株式会社 半導体チップ集積装置の製造方法、半導体チップ集積装置、半導体チップインクおよび半導体チップインク吐出装置
KR20200124799A (ko) * 2019-04-24 2020-11-04 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
KR20200026669A (ko) * 2019-05-22 2020-03-11 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
KR20200026679A (ko) 2019-06-20 2020-03-11 엘지전자 주식회사 디스플레이 장치 및 반도체 발광소자의 자가조립 방법
KR20190104276A (ko) * 2019-08-20 2019-09-09 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200026725A (ko) * 2019-08-28 2020-03-11 엘지전자 주식회사 반도체 발광소자 수거 장치 및 수거 방법
WO2021054508A1 (ko) * 2019-09-19 2021-03-25 엘지전자 주식회사 반도체 발광소자의 자가조립 장치
EP4071789A4 (en) 2019-09-19 2024-02-14 LG Electronics Inc. SUBSTRATE CHUCK FOR SELF-ASSEMBLY OF LIGHT-EMITTING SEMICONDUCTOR DIODES
KR102302475B1 (ko) * 2020-01-22 2021-09-16 엘지전자 주식회사 반도체 발광소자의 자가조립용 기판 척
CN110600590B (zh) * 2019-09-25 2021-02-02 深圳市华星光电半导体显示技术有限公司 微型发光二极管的转移方法和显示面板
KR20190117413A (ko) * 2019-09-26 2019-10-16 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR102251195B1 (ko) 2019-10-01 2021-05-12 윤치영 수직 정렬된 버티컬 타입 초소형 엘이디를 구비한 엘이디 어셈블리
KR102512547B1 (ko) * 2019-10-01 2023-03-29 윤치영 수직 정렬된 버티컬 타입 초소형 엘이디를 구비한 엘이디 어셈블리
KR102186922B1 (ko) * 2019-10-01 2020-12-04 윤치영 버티컬 타입 초소형 엘이디의 수직 정렬방법 및 이를 이용한 엘이디 어셈블리 제조방법
JP6842783B1 (ja) * 2019-10-31 2021-03-17 アルディーテック株式会社 マイクロledディスプレイの製造方法およびマイクロledディスプレイ
KR20190143840A (ko) * 2019-12-11 2019-12-31 엘지전자 주식회사 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
KR20200024178A (ko) * 2020-02-17 2020-03-06 엘지전자 주식회사 반도체 발광소자의 자가조립용 기판 척
KR20210140956A (ko) * 2020-05-14 2021-11-23 엘지전자 주식회사 반도체 발광소자의 지능형 조립전사 통합장치
CN113675108B (zh) * 2020-05-15 2024-03-29 展晶科技(深圳)有限公司 背板及流体组装的方法
CN112002792B (zh) * 2020-07-06 2022-02-22 深圳市隆利科技股份有限公司 一种电泳组装制备led显示器的方法
CN111933774B (zh) * 2020-07-06 2022-09-23 深圳市隆利科技股份有限公司 流体制备led显示器的方法和系统
CN111933775B (zh) * 2020-07-24 2022-09-23 深圳市隆利科技股份有限公司 界面限位组装制备led显示器的方法
CN112289907A (zh) * 2020-09-11 2021-01-29 罗化芯显示科技开发(江苏)有限公司 一种快速且精淮的芯片巨量转移工艺
WO2022065557A1 (ko) * 2020-09-28 2022-03-31 엘지전자 주식회사 반도체 발광소자 및 이를 포함하는 디스플레이 장치
TWI799752B (zh) * 2020-10-29 2023-04-21 群創光電股份有限公司 電子裝置以及其製作方法
US11711896B2 (en) 2020-10-29 2023-07-25 Innolux Corporation Electronic device and manufacturing method thereof
KR20230113754A (ko) * 2020-12-04 2023-08-01 엘지전자 주식회사 디스플레이 장치
US20240063327A1 (en) * 2021-01-08 2024-02-22 Lg Electronics Inc. Self-assembly device and self-assembly method
CN112967951B (zh) * 2021-01-29 2023-02-17 天马微电子股份有限公司 一种发光元件组装系统及组装方法
WO2022168998A1 (ko) * 2021-02-03 2022-08-11 엘지전자 주식회사 반도체 발광소자의 전사용 롤러부의 전극구조 및 이를 포함하는 지능형 조립전사 통합장치
TWI820389B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 發光元件封裝體、顯示裝置及製造顯示裝置的方法
TWI820627B (zh) * 2021-02-08 2023-11-01 隆達電子股份有限公司 顯示裝置及其製造方法
KR102530177B1 (ko) * 2021-04-08 2023-05-09 주식회사 어드밴스트뷰테크널러지 유체 기반의 마이크로 led 정렬 방법
KR20220160196A (ko) * 2021-05-27 2022-12-06 삼성전자주식회사 가이드 장치 및 이를 적용한 디스플레이 전사 방법
KR20230033386A (ko) * 2021-09-01 2023-03-08 엘지전자 주식회사 반도체 발광소자의 조립 기판구조 및 이를 포함하는 디스플레이 장치
WO2023163406A1 (ko) * 2022-02-25 2023-08-31 삼성전자주식회사 디스플레이 모듈 및 그 제조 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824186A (en) * 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5545291A (en) * 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US6864570B2 (en) * 1993-12-17 2005-03-08 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
JP4082031B2 (ja) * 2002-01-17 2008-04-30 ソニー株式会社 素子の配列方法、及び表示装置
US6927382B2 (en) * 2002-05-22 2005-08-09 Agilent Technologies Optical excitation/detection device and method for making same using fluidic self-assembly techniques
JP4281044B2 (ja) * 2002-06-18 2009-06-17 財団法人名古屋産業科学研究所 微小部品の配置方法
JP4620939B2 (ja) 2003-06-25 2011-01-26 株式会社リコー 複合素子の製造方法
JP4613489B2 (ja) * 2003-12-08 2011-01-19 ソニー株式会社 素子配列方法及び表示装置
JP3978189B2 (ja) * 2004-01-23 2007-09-19 松下電器産業株式会社 半導体装置の製造方法及びその製造装置
US7687277B2 (en) * 2004-12-22 2010-03-30 Eastman Kodak Company Thermally controlled fluidic self-assembly
US7662008B2 (en) * 2005-04-04 2010-02-16 Searete Llc Method of assembling displays on substrates
US20060223225A1 (en) * 2005-03-29 2006-10-05 Symbol Technologies, Inc. Method, system, and apparatus for transfer of integrated circuit dies using an attractive force
JP4899675B2 (ja) * 2006-07-12 2012-03-21 ソニー株式会社 実装方法、電子機器の製造方法および発光ダイオードディスプレイの製造方法
US8415879B2 (en) * 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US7874474B2 (en) * 2008-01-22 2011-01-25 University Of Washington Self-assembly of elements using microfluidic traps
US8028621B2 (en) * 2008-05-02 2011-10-04 International Business Machines Corporation Three-dimensional structures and methods of fabricating the same using a printing plate
TWI528604B (zh) * 2009-09-15 2016-04-01 無限科技全球公司 發光、光伏或其它電子裝置及系統
KR101058880B1 (ko) * 2010-05-07 2011-08-25 서울대학교산학협력단 액티브 소자를 구비한 led 디스플레이 장치 및 그 제조방법
CN102788779B (zh) * 2012-09-07 2015-04-01 中国科学院苏州纳米技术与纳米仿生研究所 编码悬浮微芯片、其制备方法及应用
KR101490758B1 (ko) * 2013-07-09 2015-02-06 피에스아이 주식회사 초소형 led 전극어셈블리 및 이의 제조방법

Also Published As

Publication number Publication date
TWI664710B (zh) 2019-07-01
JP2018061017A (ja) 2018-04-12
CN107833525A (zh) 2018-03-23
KR20180030454A (ko) 2018-03-23
CN107833525B (zh) 2020-10-27
TW201826490A (zh) 2018-07-16
KR102037226B1 (ko) 2019-10-28

Similar Documents

Publication Publication Date Title
JP6578332B2 (ja) 発光表示装置の流体アセンブリのシステム及び方法
US10276754B2 (en) Method for the fluidic assembly of emissive displays
TWI664711B (zh) 具有表面貼裝發光元件的顯示器
US10211364B2 (en) Display with surface mount emissive elements and active matrix drive
JP6780032B2 (ja) 流体アセンブリにおいて非対称で安定性を提供するダイオード
US10361337B2 (en) Micro light-emitting diode (LED) display and fluidic self-assembly of same
US20200091383A1 (en) Method for Encapsulating Emissive Elements for Fluidic Assembly
US10468361B2 (en) Method of manufacturing light emitting diodes having a supporting layer attached to temporary adhesive
KR102162739B1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
JP2019036719A (ja) マイクロ発光ダイオード(led)素子及びディスプレイ
KR102323256B1 (ko) 반도체 발광소자의 자가조립 장치
US20220223754A1 (en) Method for manufacturing micro led display, and micro led display using same
KR102233158B1 (ko) 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
CN103187508B (zh) Led圆片级芯片尺寸封装结构及封装工艺
EP3352211A1 (en) Method for the fluidic assembly of emissive displays
US20230005886A1 (en) Display device using micro led
JP2012074673A (ja) 発光素子およびその製造方法、発光装置の製造方法、照明装置、バックライト並びに表示装置
Gong et al. Laser‐Based Micro/Nano‐Processing Techniques for Microscale LEDs and Full‐Color Displays
KR102190064B1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20200018521A (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
KR102260639B1 (ko) 반도체 발광소자의 자가조립 장치
WO2023221943A1 (zh) 光学设备、激光光源及制作方法
US20200365777A1 (en) Encapsulating Light Emitting Diodes for Selective Fluidic Assembly
KR102260638B1 (ko) 반도체 발광소자의 자가조립 장치
KR20230038739A (ko) 반도체 발광소자의 자가조립 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190826

R150 Certificate of patent or registration of utility model

Ref document number: 6578332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250