JP6552739B2 - 並列電源装置 - Google Patents

並列電源装置 Download PDF

Info

Publication number
JP6552739B2
JP6552739B2 JP2018524890A JP2018524890A JP6552739B2 JP 6552739 B2 JP6552739 B2 JP 6552739B2 JP 2018524890 A JP2018524890 A JP 2018524890A JP 2018524890 A JP2018524890 A JP 2018524890A JP 6552739 B2 JP6552739 B2 JP 6552739B2
Authority
JP
Japan
Prior art keywords
voltage
duty ratio
circuit
switching
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524890A
Other languages
English (en)
Other versions
JPWO2018003199A1 (ja
Inventor
優介 檜垣
優介 檜垣
亮太 近藤
亮太 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018003199A1 publication Critical patent/JPWO2018003199A1/ja
Application granted granted Critical
Publication of JP6552739B2 publication Critical patent/JP6552739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

この発明は、複数の電源装置を並列接続して共通負荷を運転する並列電源装置に関するものである。
従来の並列電源装置は、複数の電源装置を並列接続して共通負荷の運転を行う。各電源装置は、当該電源装置の出力電流を検出して電流検出信号を発生し、他の電源装置にて発生する電流検出信号と、当該電源装置の電流検出信号とを比較して第1の比較結果を得、当該電源装置の電流検出信号と、前記第1の比較結果とを比較して第2の比較結果を得、当該第2の比較結果に基づいて、当該電源装置の出力電圧を調整する(例えば、特許文献1参照)。
また、並列電源装置内で並列接続される電源装置に用いられる従来のDC/DCコンバータには、以下のものがある。このDC/DCコンバータは、トランスの第1巻線と直流電源との間に第1スイッチング回路が接続され、第2巻線とバッテリとの間に第2スイッチング回路が接続される。制御回路は、バッテリ充電時には、第2スイッチング回路内の第2ブリッジ回路の素子をオフし、第1スイッチング回路内の第1ブリッジ回路の第1基準素子の駆動位相に対し、第1対角素子の位相シフト量と、第2ブリッジ回路内の第2対角素子の位相シフト量を制御する。バッテリ放電時には、第1ブリッジ回路の素子をオフし、第2ブリッジ回路の第2基準素子の駆動位相に対し、第2対角素子の位相シフト量と、第1対角素子の位相シフト量を制御する(例えば、特許文献2参照)。
特開2001−209437号公報 WO2015/004825号公報
上記特許文献1に記載される並列電源装置では、複数の電源装置の出力電圧値はバランスされ一致するように制御される。しかしながら、各電源装置の制御は、自身の電源装置だけで無く、他の電源装置にて発生する電流検出信号を得る必要がある。このため、各電源装置を独立して制御することができず、また複数の電源装置を互いに接続する必要があるため、電源装置を自由に設置や増設することができない。
また上記特許文献2に記載される双方向型のDC/DCコンバータを複数台並列運転すると、DC/DCコンバータの制御に関わる電圧や電流の検出誤差によって、複数のDC/DCコンバータの間で出力電流に差が生じる。この差電流は複数のDC/DCコンバータ間を循環し、無効電流となる。特に複数のDC/DCコンバータの出力電流の極性が不一致となると、DC/DCコンバータで発生する損失を増大させるという問題点があった。
この発明は、上記のような問題点を解消するために成されたものであって、双方向型のDC/DCコンバータを複数台並列接続して並列電源装置を構成し、各電源装置であるDC/DCコンバータを独立して制御し、かつ複数のDC/DCコンバータの出力電流の極性不一致を抑制して出力電流をバランスさせ、損失低減を図ることを目的とする。
この発明に係る並列電源装置は、それぞれ双方向の電力伝送を行う複数のDC/DCコンバータを並列接続して共通負荷に電力供給する。上記各DC/DCコンバータは、トランスと、それぞれ逆並列ダイオードが接続された複数の半導体スイッチング素子を備えた2つのブリッジ回路によるフルブリッジ回路で構成され、上記共通負荷と上記トランスの第1巻線との間に接続されて、直流/交流間で電力変換する第1スイッチング回路と、それぞれ逆並列ダイオードが接続された複数の半導体スイッチング素子を備えた2つのブリッジ回路によるフルブリッジ回路で構成され、直流電源と上記トランスの第2巻線との間に接続されて、直流/交流間で電力変換する第2スイッチング回路と、上記第1スイッチング回路、上記第2スイッチング回路の各交流入出力線に接続された第1リアクトル、第2リアクトルと、上記第1スイッチング回路および上記第2スイッチング回路を制御する制御回路とを備える。上記各制御回路は、補償器を有して上記共通負荷の電圧と目標電圧との偏差を0にするようにDuty比を生成する電圧制御部を備えて、上記Duty比に基づいて上記第1、第2スイッチング回路の駆動信号の第1、第2位相シフト量を決定して、上記第1、第2スイッチング回路を制御する。そして上記各制御回路は、上記電圧制御部が生成した上記Duty比の大きさが、設定値未満では0に固定され、それ以外は該設定値分小さくなるように、上記Duty比を補正して用いるものである。
この発明に係る並列電源装置によれば、複数のDC/DCコンバータを各制御回路が独立して制御でき、かつ複数のDC/DCコンバータの出力電流の極性不一致を抑制して出力電流をバランスさせることができる。このため、DC/DCコンバータの設置や増設の自由度が高く、しかも低損失の並列電源装置が得られる。
この発明の実施の形態1による並列電源装置の概略構成図である。 この発明の実施の形態1によるDC/DCコンバータの構成を示す回路図である。 この発明の実施の形態1によるDC/DCコンバータの昇圧充電時の駆動信号波形図である。 この発明の実施の形態1によるDC/DCコンバータの降圧充電時の駆動信号波形図である。 この発明の実施の形態1によるDC/DCコンバータの降圧放電時の駆動信号波形図である。 この発明の実施の形態1によるDC/DCコンバータの昇圧放電時の駆動信号波形図である。 この発明の実施の形態1によるDC/DCコンバータの基本制御動作を説明する波形図である。 この発明の実施の形態1によるDC/DCコンバータの制御回路を説明する制御ブロック図である。 この発明の実施の形態1によるDC/DCコンバータの制御回路を説明する制御ブロック図である。 この発明の実施の形態1によるDC/DCコンバータの電圧制御回路を説明する制御ブロック図である。 この発明の実施の形態1によるDC/DCコンバータの制御動作を説明する波形図である。 比較例による複数のDC/DCコンバータの出力電流を示す波形図である。 この発明の実施の形態2によるDC/DCコンバータの制御回路を説明する制御ブロック図である。 この発明の実施の形態2によるDC/DCコンバータの制御回路を説明する制御ブロック図である。 この発明の実施の形態2によるDC/DCコンバータの電圧制御回路を説明する制御ブロック図である。 この発明の実施の形態3による並列電源装置の概略構成図である。 この発明の実施の形態3の別例による並列電源装置の概略構成図である。 この発明の実施の形態4による並列電源装置の概略構成図である。
実施の形態1.
以下、この発明の実施の形態1について説明する。
図1は、この発明の実施の形態1による並列電源装置の概略構成を示す図である。図に示すように、並列電源装置100は、負荷または電力源としての共通負荷1と、電力源または負荷としての複数の直流電源2a〜2eとの間に、複数のDC/DCコンバータ30a〜30eを並列接続して備える。複数のDC/DCコンバータ30a〜30eは、共通負荷1側の端子が並列接続されて共通負荷1に接続され、各DC/DCコンバータ30a〜30eは、個別に各直流電源2a〜2eに接続される。なお、DC/DCコンバータ30a〜30eの数は、複数であれば良い。
各DC/DCコンバータ30a〜30eは、トランス3と、トランス3と共通負荷1との間に接続されて直流/交流間で電力変換する第1スイッチング回路5と、トランス3と各直流電源2a〜2eとの間に接続されて直流/交流間で電力変換する第2スイッチング回路8と、制御回路20とを備えて、双方向の電力伝送を行う。また、各DC/DCコンバータ30a〜30eには、第1スイッチング回路5に接続される共通負荷1の両端の電圧V1を検出する電圧検出器16と、第2スイッチング回路8と直流電源2a〜2eとの間の電流Ia〜Ieを検出する電流検出器17とが設けられる。各制御回路20は、検出された電圧V1および電流Ia〜Ieに基づいて、駆動信号21a、21bを生成して第1、第2スイッチング回路5、8を制御する。
この場合、第2スイッチング回路8から直流電源2a〜2eへ向かう電流Ia〜Ieの方向を正とする。電流Ia〜Ieが正となる共通負荷1から直流電源2a〜2eへの電力伝送の動作を充電動作とする。また、電流Ia〜Ieが負となる直流電源2a〜2eから共通負荷1への電力伝送の動作を放電動作とする。
図2は、DC/DCコンバータ30aの詳細構成を示す回路図である。なお、他のDC/DCコンバータ30b〜30eの構成および動作もDC/DCコンバータ30aと同様であるため、以下、DC/DCコンバータ30b〜30eについての説明は省略する。
DC/DCコンバータ30aは、絶縁されたトランス3と、共通負荷1に並列に接続された第1平滑コンデンサ4と、第1スイッチング回路5と、直流電源2aに並列に接続された第2平滑コンデンサ7と、第2スイッチング回路8と、第1スイッチング回路5、第2スイッチング回路8の各交流入出力線に接続された第1リアクトル9、第2リアクトル10とを備える。またDC/DCコンバータ30aは、第1スイッチング回路5および第2スイッチング回路8を制御する制御回路20を備える。
第1スイッチング回路5は、それぞれダイオード12が逆並列接続されたIGBTあるいはMOSFET等から成る複数の半導体スイッチング素子Q1A、Q1B、Q1C、Q1D(以下、単にQ1A、Q1B、Q1C、Q1Dあるいは、半導体スイッチング素子Qと称す)を有するフルブリッジ回路で、直流側が第1平滑コンデンサ4に、交流側がトランス3の第1巻線3aに接続されて、直流/交流間の双方向の電力変換を行う。また、第1スイッチング回路5は、各半導体スイッチング素子Qのスイッチング時の素子の両端電圧がほぼゼロ電圧にできるゼロ電圧スイッチング回路であり、各半導体スイッチング素子Qにはそれぞれ並列にコンデンサ13が接続される。また半導体スイッチング素子Qとトランス3との間の交流入出力線には第1リアクトル9が接続され、第1リアクトル9と第1巻線3aとが直列接続される。
第2スイッチング回路8は、それぞれダイオード12が逆並列接続されたIGBTあるいはMOSFET等から成る複数の半導体スイッチング素子Q2A、Q2B、Q2C、Q2D(以下、単にQ2A、Q2B、Q2C、Q2Dあるいは半導体スイッチング素子Qと称す)を有するフルブリッジ回路で、直流側が第2平滑コンデンサ7に、交流側がトランス3の第2巻線3bに接続されて、直流/交流間の双方向の電力変換を行う。また、第2スイッチング回路8は、各半導体スイッチング素子Qのスイッチング時の素子の両端電圧がほぼゼロ電圧にできるゼロ電圧スイッチング回路であり、各半導体スイッチング素子Qにはそれぞれ並列にコンデンサ13が接続される。また、半導体スイッチング素子Qとトランス3との間の交流入出力線には第2リアクトル10が接続され、第2リアクトル10と第2巻線3bとが直列接続される。さらに、第2スイッチング回路8の直流側にはリアクトル11が接続される。
また、第2平滑コンデンサ7と直流電源2aとの間には、リアクトル11を流れる電流Iaを検出する電流検出器17(図1参照)が設置され、そのセンシングされた出力が制御回路20に入力される。さらに、第1平滑コンデンサ4の電圧V1を検出する電圧検出器16(図1参照)が設置され、そのセンシングされた出力が制御回路20に入力される。制御回路20では、入力された電流Ia、電圧V1の値に基づいて、第1スイッチング回路5および第2スイッチング回路8の各半導体スイッチング素子Qをスイッチング制御する駆動信号21a、21bを生成して第1スイッチング回路5および第2スイッチング回路8を駆動制御する。
なお、電流検出器17は、第2平滑コンデンサ7より第2スイッチング回路8側の位置に設けても良い。
次に、DC/DCコンバータ30aの動作について以下に説明する。
DC/DCコンバータ30a内の制御回路20は、駆動信号21a、21bにて上記第1、第2スイッチング回路5、8を位相シフト制御することによって、電流Iaを調整する。この位相シフト制御は、Duty比に基づいて第1、第2スイッチング回路5、8の駆動信号21a、21bの第1、第2位相シフト量θ1、θ2を決定して、第1、第2スイッチング回路5、8を制御するもので、以下に詳述する。
図3は、DC/DCコンバータ30aの昇圧充電時における第1スイッチング回路5、第2スイッチング回路8の各半導体スイッチング素子Qの駆動信号21a、21bの波形を示す図である。この場合、電流Iaは正で、共通負荷1から直流電源2aへの電力伝送の動作である。
なお、駆動信号の組み合わせパターンである複数のゲートパターン毎に期間A〜Jを設けて図示した。また、図3内では、Q1A、Q1B、Q1C、Q1D、Q2C、Q2D、Q2A、Q2Bの各駆動信号の符号を、便宜上、各素子の符号で示した。
そして、送電側回路である第1スイッチング回路5内の一方のブリッジ回路である第1ブリッジ回路(Q1A,Q1B)を基準として、全体の駆動信号が生成される。受電側回路である第2スイッチング回路8内の一方のブリッジ回路である第2ブリッジ回路(Q2A,Q2B)のQ2A、Q2Bはオフ状態に保持される。
また、第2ブリッジ回路(Q2A,Q2B)以外の3つのブリッジ回路は、各ブリッジ回路を構成する正側(高電圧側)のQ1A、Q1C、Q2Cおよび負側(低電圧側)のQ1B、Q1D、Q2Dは、短絡防止時間を除くと、それぞれ50%のオン時間比率で制御される。なお、短絡防止時間は、正側の半導体スイッチング素子と負側の半導体スイッチング素子との同時オンを防止する為に設定された時間であり、一方がオフした後、設定された短絡防止時間の経過後に他方がオンする。そして、送電側の第1スイッチング回路5の各半導体スイッチング素子Qがゼロ電圧スイッチングするように、短絡防止時間の間に各半導体スイッチング素子Qに並列接続されたコンデンサ13の電圧が第1平滑コンデンサ4の電圧まで増加する、あるいはゼロ電圧近辺まで低下するように設定されている。
また、第1ブリッジ回路(Q1A,Q1B)内のQ1Aを第1基準素子とし、第2ブリッジ回路(Q2A,Q2B)内のQ2Aを第2基準素子として、第1基準素子Q1Aと対角の関係にあるQ1Dを第1対角素子とし、第2基準素子Q2Aと対角の関係にあるQ2Dを第2対角素子とする。
そして、第1基準素子Q1A(送電側回路の基準素子)の駆動信号の位相に対する第1対角素子Q1Dの駆動信号の位相シフト量θ1(第1位相シフト量)と、第1基準素子Q1Aの駆動信号の位相に対する第2対角素子Q2Dの駆動信号の位相シフト量θ2(第2位相シフト量)とが、制御指令であるDUTY比に応じて決定される。即ち、位相シフト量θ1、θ2がDUTY比に応じて制御される。この位相シフト量θ1、θ2の制御についての詳細は後述するが、この場合、位相シフト量θ1が最小に保持され、位相シフト量θ2がDUTY比に応じて変化する。
また図に示すように、第1基準素子Q1Aと第1対角素子Q1Dとが同時にオンしている期間を対角オン時間t1とすると、位相シフト量θ1により対角オン時間t1が決定される。なお、Q1BとQ1Cとが同時にオンしている対角オン時間t1aも対角オン時間t1と等しい。
また、第2ブリッジ回路(Q2A,Q2B)に対して、第1ブリッジ回路(Q1A,Q1B)と等しい駆動信号を仮想駆動信号として想定し、第2基準素子Q2Aの仮想駆動信号によるQ2Aの仮想オンと第2対角素子Q2Dのオンとが重なる期間を仮想対角オン時間t2とする。この仮想対角オン時間t2は、第1基準素子Q1Aの駆動信号の位相に対する第2対角素子Q2Dの駆動信号の位相シフト量θ2により決まる。なお、Q2Bの仮想駆動信号によるQ2Bの仮想オンとQ2Cのオンとが重なる仮想対角オン時間t2aも、仮想対角オン時間t2と等しい。
以下、一周期内のDC/DCコンバータ30aの動作を、図3に基づいて簡単に説明する。なお、直流電源2aの電圧は、第2巻線3bに発生する電圧より高いものとし、共通負荷1から直流電源2aへ電力伝送される。
便宜上、期間Bから説明していく。
期間Bにおいて、第1スイッチング回路5では、電流の極性が期間Aから反転して共通負荷1側からエネルギが伝送され、第2スイッチング回路8では還流電流が流れる。従って、第1リアクトル9および第2リアクトル10は励磁される。
期間Cにおいて、第1スイッチング回路5では、共通負荷1側からエネルギが伝送され、第2スイッチング回路8では、電力が直流電源2a側へ伝送される。従って、第1リアクトル9および第2リアクトル10の励磁エネルギが直流電源2a側へ伝送される。
期間Dにおいて、第1スイッチング回路5では、共通負荷1側からエネルギが伝送され、第2スイッチング回路8ではQ2Dがオンとなるが、引き続き電力が直流電源2a側へ伝送される。従って、第1リアクトル9および第2リアクトル10の励磁エネルギが直流電源2a側へ伝送される。
期間Eにおいて、第1スイッチング回路5では、Q1Aがオフとなって電流は還流し、第2スイッチング回路8では、直流電源2aの電圧によって還流電流は徐々に減少し、0になるとその状態を維持する。
期間Fにおいて、第1スイッチング回路5では、Q1BがZVS(ゼロ電圧スイッチング)によりオンし、還流電流が残っている場合は共通負荷1側へ回生される。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
期間Gにおいて、第1スイッチング回路5では、電流の極性が期間Fから反転して共通負荷1側からエネルギが伝送され、第2スイッチング回路8では還流電流が流れる。従って、第1リアクトル9および第2リアクトル10は励磁される。
期間Hにおいて、第1スイッチング回路5では、共通負荷1側からエネルギが伝送され、第2スイッチング回路8では、電力が直流電源2a側へ伝送される。従って、第1リアクトル9および第2リアクトル10の励磁エネルギが直流電源2a側へ伝送される。
期間Iにおいて、第1スイッチング回路5では、共通負荷1側からエネルギが伝送され、第2スイッチング回路8ではQ2Cがオンとなるが、引き続き電力が直流電源2a側へ伝送される。従って、第1リアクトル9および第2リアクトル10の励磁エネルギが直流電源2a側へ伝送される。
期間Jにおいて、第1スイッチング回路5では、Q1Bがオフとなって電流は還流し、第2スイッチング回路8では、直流電源2aの電圧によって還流電流は徐々に減少し、0になるとその状態を維持する。
期間Aにおいて、第1スイッチング回路5では、Q1AがZVS(ゼロ電圧スイッチング)によりオンし、期間Jで還流電流が残っている場合は共通負荷1側へ回生される。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
このような一連の制御(期間A〜J)を繰り返すことによって、DC/DCコンバータ30aは、トランス3の第2巻線3bに発生する電圧を昇圧して直流電源2aに電力を供給する。
第1スイッチング回路5は、Q1A、Q1Dが同時オンする対角オン時間t1に、共通負荷1の電圧V1の正のパルスを、Q1B、Q1Cが同時オンする対角オン時間t1aに電圧(−V1)の負のパルスを出力して、トランス3に印加する。そして、第2スイッチング回路8では、トランス3に電圧印加されている対角オン時間(t1、t1a)内に、第2リアクトル10を励磁する期間を設け、即ち、第2リアクトル10を昇圧リアクトルに用いて昇圧動作する。
また、トランス3の一次側の第1スイッチング回路5における各半導体スイッチング素子Qのスイッチングは、コンデンサ13および第1リアクトル9の作用で、全てゼロ電圧スイッチングとなる。なお、二次側の第2スイッチング回路8のスイッチングは、一部がゼロ電圧スイッチングとなる。
また、第2ブリッジ回路(Q2A,Q2B)のQ2A、Q2Bはオフ状態に保持されるため、期間E、Fにおいて、還流電流が減少して0になると、Q2Aのダイオードがオフとなり逆電流が流れることはない。期間J、Aにおいても、還流電流が減少して0になると、Q2Bのダイオードがオフとなり逆電流が流れることはない。
次に、図4は、DC/DCコンバータ30aの降圧充電時における第1スイッチング回路5、第2スイッチング回路8の各半導体スイッチング素子Qの駆動信号21a、21bの波形を示す図である。この場合も、駆動信号の組み合わせパターンである複数のゲートパターン毎に期間A〜Jを設けて図示し、Q1A、Q1B、Q1C、Q1D、Q2C、Q2D、Q2A、Q2Bの各駆動信号の符号を、便宜上、各素子の符号で示した。
図3で示した昇圧充電時と同様に、送電側回路である第1スイッチング回路5内の第1ブリッジ回路(Q1A,Q1B)を基準として、全体の駆動信号が生成され、第2スイッチング回路8内の第2ブリッジ回路(Q2A,Q2B)のQ2A、Q2Bはオフ状態に保持される。また、第2ブリッジ回路(Q2A,Q2B)以外の3つのブリッジ回路は、各ブリッジ回路を構成する正側(高電圧側)のQ1A、Q1C、Q2Cおよび負側(低電圧側)のQ1B、Q1D、Q2Dは、短絡防止時間を除くと、それぞれ50%のオン時間比率で制御される。
そして、第1基準素子Q1A(送電側回路の基準素子)の駆動信号の位相に対する第1対角素子Q1Dの駆動信号の位相シフト量θ1(第1位相シフト量)と、第1基準素子Q1Aの駆動信号の位相に対する第2対角素子Q2Dの駆動信号の位相シフト量θ2(第2位相シフト量)とが、制御指令であるDUTY比に応じて決定される。この場合、位相シフト量θ1と位相シフト量θ2とは等しく、双方の位相シフト量θ1、θ2がDUTY比に応じて変化する。
この場合も、対角オン時間t1、t1aは、位相シフト量θ1により決定される。また、第2ブリッジ回路(Q2A,Q2B)に対して、第1ブリッジ回路(Q1A,Q1B)と等しい駆動信号を仮想駆動信号として想定すると、上述した仮想対角オン時間t2、t2aは、位相シフト量θ2により決まる。この場合、対角オン時間t1、t1aと仮想対角オン時間t2、t2aは等しい。
以下、一周期内のDC/DCコンバータ30aの動作を、図4に基づいて簡単に説明する。なお、直流電源2aの電圧は、第2巻線3bに発生する電圧より低いものとし、共通負荷1から直流電源2aへ電力伝送される。
便宜上、期間Dから説明していく。
期間Dにおいて、第1スイッチング回路5では、共通負荷1側からエネルギが伝送され、第2スイッチング回路8では、電力が直流電源2a側へ伝送される。
期間Eにおいて、第1スイッチング回路5では、Q1Aがオフとなって電流は還流し、第2スイッチング回路8では、直流電源2aの電圧によって還流電流は徐々に減少し、0になるとその状態を維持する。
期間F、Gにおいて、第1スイッチング回路5では、Q1BがZVS(ゼロ電圧スイッチング)によりオンし電流は還流する。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
期間Hにおいて、第1スイッチング回路5では、還流電流が残っている場合は共通負荷1側へ回生される。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
期間Iにおいて、第1スイッチング回路5では、電流の極性が期間Hから反転して共通負荷1側からエネルギが伝送される。第2スイッチング回路8では、電力が直流電源2a側へ伝送される。
期間Jにおいて、第1スイッチング回路5では、Q1Bがオフとなって電流は還流し、第2スイッチング回路8では、直流電源2aの電圧によって還流電流は徐々に減少し、0になるとその状態を維持する。
次に期間A、Bにおいて、第1スイッチング回路5では、Q1AがZVS(ゼロ電圧スイッチング)によりオンし電流は還流する。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
期間Cにおいて、第1スイッチング回路5では、還流電流が残っている場合は共通負荷1側へ回生される。第2スイッチング回路8では、還流電流が徐々に減少し、0になるとその状態を維持する。
このような一連の制御(期間A〜J)を繰り返すことによって、DC/DCコンバータ30aは、トランス3の第2巻線3bに発生する電圧を降圧して直流電源2aに電力を供給する。
また、トランス3の一次側の第1スイッチング回路5における各半導体スイッチング素子Qのスイッチングは、コンデンサ13および第1リアクトル9の作用で、全てゼロ電圧スイッチングとなる。なお、二次側の第2スイッチング回路8のスイッチングは、一部がゼロ電圧スイッチングとなる。
また、第2ブリッジ回路(Q2A,Q2B)のQ2A、Q2Bはオフ状態に保持されるため、期間E〜Hにおいて、還流電流が減少して0になると、Q2Aのダイオードがオフとなり逆電流が流れることはない。期間J、A〜Cにおいても、還流電流が減少して0になると、Q2Bのダイオードがオフとなり逆電流が流れることはない。
次にDC/DCコンバータ30aが直流電源2aから共通負荷1に電力伝送する場合について説明する。この場合、電流Iaは負である。
図5は、DC/DCコンバータ30aの降圧放電時における第1スイッチング回路5、第2スイッチング回路8の各半導体スイッチング素子Qの駆動信号21a、21bの波形を示す図である。また、図6は、DC/DCコンバータ30aの昇圧放電時における第1スイッチング回路5、第2スイッチング回路8の各半導体スイッチング素子Qの駆動信号21a、21bの波形を示す図である。
DC/DCコンバータ30aの降圧放電時の動作は、図4および図5に示すように、降圧充電時の逆方向動作となり、降圧充電時における第1スイッチング回路5の駆動信号と、第2スイッチング回路8の駆動信号を入れ替えたものである。また、DC/DCコンバータ30aの昇圧放電時の動作は、図3および図6に示すように、昇圧充電時の逆方向動作となり、昇圧充電時における第1スイッチング回路5の駆動信号と、第2スイッチング回路8の駆動信号を入れ替えたものである。
DC/DCコンバータ30aが直流電源2aから共通負荷1に電力伝送する放電動作時には、第1スイッチング回路5、第2スイッチング回路8は以下のように制御される。
送電側回路である第2スイッチング回路8内の第2ブリッジ回路(Q2A,Q2B)を基準として、全体の駆動信号が生成される。第1スイッチング回路5内の第1ブリッジ回路(Q1A,Q1B)のQ1A、Q1Bはオフ状態に保持される。
また、第1ブリッジ回路(Q1A,Q1B)以外の3つのブリッジ回路は、各ブリッジ回路を構成する正側(高電圧側)のQ1C、Q2A、Q2Cおよび負側(低電圧側)のQ1D、Q2B、Q2Dは、短絡防止時間を除くと、それぞれ50%のオン時間比率で制御される。この場合、制御回路20は、送電側回路(第2スイッチング回路8)の各半導体スイッチング素子Qをスイッチングする際、短絡防止時間の間に各半導体スイッチング素子Qに並列接続されたコンデンサ13の電圧が第2平滑コンデンサ7の電圧まで増加する、あるいはゼロ電圧近辺まで低下するようにしてゼロ電圧スイッチングする。
そして、第2基準素子Q2A(送電側回路の基準素子)の駆動信号の位相に対する第1対角素子Q1Dの駆動信号の位相シフト量θ1(第1位相シフト量)と、第2基準素子Q2Aの駆動信号の位相に対する第2対角素子Q2Dの駆動信号の位相シフト量θ2(第2位相シフト量)とが、制御指令であるDUTY比に応じて決定される。即ち、位相シフト量θ1、θ2がDUTY比に応じて制御される。
図5に示す降圧放電では、位相シフト量θ1と位相シフト量θ2とは等しく、双方の位相シフト量θ1、θ2がDUTY比に応じて変化する。また、図6に示す昇圧放電では、位相シフト量θ2が最小に保持され、位相シフト量θ1がDUTY比に応じて変化する。
また図5、図6に示すように、Q2AとQ2Dとが同時オンする対角オン時間t2は位相シフト量θ2により決定され、Q2BとQ2Cとが同時オンする対角オン時間t2aも対角オン時間t2と等しい。
また、制御回路20は、第1ブリッジ回路(Q1A,Q1B)に対して、第2ブリッジ回路(Q2A,Q2B)と等しい駆動信号を仮想駆動信号として想定し、Q1Aの仮想駆動信号によるQ1Aの仮想オンとQ1Dのオンとが重なる期間を仮想対角オン時間t1とする。この仮想対角オン時間t1は、位相シフト量θ1により決まる。なお、Q1Bの仮想駆動信号によるQ1Bの仮想オンとQ1Cのオンとが重なる仮想対角オン時間t1aも、仮想対角オン時間t1と等しい。
以上のように、DC/DCコンバータ30aでは、昇圧充電、降圧充電、降圧放電および昇圧放電の4つの制御モードを備えて双方向の電力伝送を行うものである。そして、上述したように、送電側回路の基準素子の駆動信号の位相に対する第1対角素子Q1Dの駆動信号の位相シフト量θ1および第2対角素子Q2Dの駆動信号の位相シフト量θ2が、DUTY比に応じて制御される。そして、送電側回路の基準素子は、充電時には第1基準素子Q1Aであり、放電時には第2基準素子Q2Aである。
図7は、DC/DCコンバータ30aの基本制御動作を説明する波形図であり、DUTY比に応じた位相シフト量θ1、θ2と対角オン時間(仮想対角オン時間)t1、t2とを示す。この場合、充電方向の電力を正としている。
なお、ここでは基本制御動作を示すため、伝送電力に比例してDUTY比が決定されるものを示すが、後述するように、演算されたDUTY比は補正されて用いられる。
図7に基づいて充電時の制御を以下に説明する。放電時の制御は、電力伝送方向を逆にするのみであるため省略する。
昇圧充電時の制御では、制御回路20は、トランス3の第1巻線3aに電圧が印加される期間が最大となるように、対角オン時間t1(=t1a)を最大オン時間tmaxに設定する。この最大オン時間tmaxは、第1スイッチング回路5の各半導体スイッチング素子Qがゼロ電圧スイッチングする為に要する短絡防止時間に基づいて設定される。その時、位相シフト量θ1は最小で、短絡防止時間に等しい。
この昇圧充電時には、位相シフト量θ2は位相シフト量θ1以上の値で、トランス3に電圧印加されている対角オン時間(t1、t1a)内に、第2スイッチング回路8で第2リアクトル10を励磁する期間がある。制御回路20は、位相シフト量θ1、θ2が共に最小(短絡防止時間)となる第1基準点22を起点として、DUTY比が増大すると位相シフト量θ1を最小に保持すると共に位相シフト量θ2を増大させる。
位相シフト量θ1、θ2が共に最小(短絡防止時間)となる基準点22にあるとき、対角オン時間t1および仮想対角オン時間t2は共に最大オン時間tmaxとなる点22aである。そして、制御回路20は、点22aを起点としてDUTY比が増大すると対角オン時間t1を最大オン時間tmaxに保持すると共に仮想対角オン時間t2を低減させる。
そして、降圧充電時には、位相シフト量θ1と位相シフト量θ2とは等しく、双方の位相シフト量θ1、θ2がDUTY比に応じて変化する。
位相シフト量θ1、θ2が最大の時、対角オン時間t1および仮想対角オン時間t2は共に最小(短絡防止時間)となり、電力伝送がない状態である。降圧充電時では、制御回路20は、DUTY比が0のとき、位相シフト量θ1、θ2が最大で、DUTY比が増大すると位相シフト量θ1、θ2を共に低減させる。この時、対角オン時間t1および仮想対角オン時間t2は増大する。
また、制御回路20は、位相シフト量θ1、θ2が共に最大の時、第2ブリッジ(Q2A,Q2B)をオフ状態に保持した制御から、第1ブリッジ(Q1A,Q1B)をオフ状態に保持する制御に切り替えて、電力伝送方向を切り替える。この切り替え時には、対角オン時間(仮想対角オン時間)t1、t2は共に最小(短絡防止時間)で、即ち、電力伝送がない状態の時であるため、切り替えによる影響がなく、スムーズな切り替えが可能になる。
図8、図9は、DC/DCコンバータ30a内の制御回路20の動作を説明する制御ブロック図である。制御回路20は、電圧制御回路24と電流制御回路27と補正回路36とを備える。この場合、電圧制御回路24および電流制御回路27が制御回路20の電圧制御部を構成する。
図8は、電圧制御回路24および電流制御回路27を示す。図9は、電流制御回路27が演算するDuty比を補正する補正回路36を示す。
上述したように、共通負荷1の電圧V1、および第2スイッチング回路8と直流電源2aとの間の電流Iaは、電圧検出器16、電流検出器17にて検出されて制御回路20に入力される。
図8に示すように、電圧制御回路24は、誤差検出器25と第1補償器26とを備える。電圧制御回路24には、与えられた共通負荷1の目標電圧V1*と検出された電圧V1とが入力され、誤差検出器25は、電圧V1から目標電圧V1*を減算して電圧偏差ΔVを出力する。そして、第1補償器26は、電圧偏差ΔVを0にするような電流Iaの目標電流Ia*を演算する。
また、電流制御回路27は、誤差検出器28と第2補償器29とを備える。電流制御回路27には、電圧制御回路24から出力された目標電流Ia*と検出された電流Iaとが入力され、誤差検出器28は、電流Iaから目標電流Ia*を減算して電流偏差ΔIaを出力する。そして、第2補償器29は、電流偏差ΔIaを0にするようなDC/DCコンバータ30aのDuty比Daを演算する。
第1補償器26と第2補償器29とは、比例制御とフィルタ(位相進み補償、位相遅れ補償、ローパスフィルタなど)との直列接続にて構成される。そして、比例制御のゲインにより、おおよその制御応答を決定し、フィルタで安定性の改善と定常偏差の改善を図る。なお、第1補償器26、第2補償器29は、積分制御を用いないため電圧偏差および電流偏差を累積し続けることは無い。
このように演算されるDuty比Daでは、共通負荷1の電圧V1が目標電圧V1*よりも大きい場合には、目標電流Ia*は正の値となりDuty比Daも正の値となる。共通負荷1の電圧V1が目標電圧V1*以下の場合には、目標電流Ia*も0以下の値となりDuty比Daも0以下となる。
検出された電圧V1の値が、仮に複数のDC/DCコンバータ30a〜30eで全て等しい場合、目標電流Ia*〜Ie*の極性は一致し、Duty比Da〜Deの極性も一致する。その場合、電流Ia〜Ieは同一極性で調整される。
しかしながら実際には、各DC/DCコンバータ30a〜30eの制御回路20が電圧V1を取得する際、一定の電圧範囲内の検出誤差Verrが発生する。
図10に示すように、電圧制御回路24では、共通負荷1の電圧V1に検出誤差Verrが加算または減算されて入力される。そして検出誤差Verrが加算または減算された電圧V1が誤差検出器25へ入力され、第1補償器26は、検出誤差Verrを含む電圧偏差ΔVに基づいて目標電流Ia*を演算する。
検出誤差Verrは、各DC/DCコンバータ30a〜30eの部品の特性誤差に起因し、各DC/DCコンバータ30a〜30e毎に検出誤差Verrの値、極性は異なる。このため、各DC/DCコンバータ30a〜30eの制御回路20が演算する目標電流Ia*〜Ie*も不一致となり、極性が不一致となる事もある。
このため、各制御回路20は、目標電流Ia*〜Ie*に基づいて電流制御回路27が演算するDuty比Da〜Deを、補正回路36により補正して用いる。
図9に示すように、補正回路36は、差分検出器31、33とリミッタ32、34と、加算器35とを備える。
ところで、Duty比を0で制御すると電力伝送は行われず電流Iaも0となる。検出誤差Verrに起因して電流Iaの極性反転が懸念されるDuty比の領域は0近傍であり、その領域を、正の値Vthを用いて−Vth〜Vthと設定する。このVthは、検出誤差Verrに起因する為、例えば、検出誤差の最大値ΔEを用いて以下のように設定される。
Vth=ΔE×第1補償器26のゲイン×第2補償器29のゲイン
なお、検出誤差の最大値ΔEは、電圧検出器16に用いられるハードウェアの部品特性に基づいて決まる。
差分検出器31には、電流制御回路27が演算したDuty比Daと設定値Vthが入力され、Duty比Daから設定値Vthを減算した値(Da−Vth)を出力する。リミッタ32は、差分検出器31の出力を下限0で制限して出力する。
差分検出器33には、電流制御回路27が演算したDuty比Daと、設定値Vthを極性反転した値(−Vth)が入力され、Duty比Daから値(−Vth)を減算した値(Da+Vth)を出力する。リミッタ34は、差分検出器33の出力を上限0で制限して出力する。そして加算器35は、2つのリミッタ32、34の出力を合算してDuty比Daaを出力する。
図11は、DC/DCコンバータ30aの制御動作を説明する波形図である。図に示すように、電流制御回路27が演算したDuty比Daは、Duty比Daaに補正される。即ち、Duty比Daの絶対値(大きさ)が、Vth未満では0に固定され、それ以外はVth分小さくなるように補正されてDuty比Daaが生成される。
そして、Duty比Daaに応じて決定される位相シフト量θ1、θ2は、Duty比Daの絶対値がVth未満の領域、即ち、Duty比Daaが0に固定される領域で、最大値に固定される。
即ち、図7で示した位相シフト量θ1、θ2の波形の中央部に最大値に固定される領域を挿入した波形となる。Duty比Daの大きさがVth以上では、位相シフト量θ1、θ2が共に最小になるDuty比Daの基準点A、−Aまで、Duty比の大きさの増加に従い位相シフト量θ1、θ2が同量で減少する。そしてDuty比Daが基準点A、−Aを超えると、位相シフト量θ1、θ2の一方を最小に保持すると共に他方をDuty比の大きさの増加に従い増大する。なお、Duty比Daの基準点A、−Aは、位相シフト量θ1、θ2の基準点22に対応するDuty比Daの値を示す。
以上のように、各DC/DCコンバータ30a〜30eの制御回路20では、電流制御回路27により演算されたDuty比Da〜Deが上記のように補正される。そして、補正後のDuty比Daa〜Deeに基づいて各DC/DCコンバータ30a〜30eは位相シフト制御される。
このため、検出誤差Verrに起因して電流Ia〜Ieの極性反転が懸念される領域でDuty比Daa〜Deeが0に固定され、電流Ia〜Ieも0に制御される。このため、複数のDC/DCコンバータ30a〜30eで電流Ia〜Ieの極性が不一致となる事が防止でき、循環電流を抑制して電流バランスが向上し損失低減が図れる。
図12に、Duty比を補正せずに2台のDC/DCコンバータを制御した比較例における出力電流を示す。
2台のDC/DCコンバータからの電流Ix、Iyの合計電流Ix+Iyは変化しないが、合計電流5Aの為に、一方のDC/DCコンバータは25Aの電流を出力し、他方のDC/DCコンバータは−20Aの電流を出力している。この場合、並列電源装置として電力伝送に寄与する合計電流Ix+Iyに比して、各DC/DCコンバータの電流Ix、Iyが大きく、各DC/DCコンバータの負担が大きく非効率であることが分かる。
また仮に、検出誤差Verrに起因して電流の極性反転が双方のDC/DCコンバータで起こると、合計電流5Aが確保できず、並列電源装置として信頼性の高い動作を行えない。
以上のように、この実施の形態では、電流制御回路27が演算したDuty比を補正して各DC/DCコンバータ30a〜30eを位相シフト制御するため、出力電流(Ia〜Ie)の極性不一致を抑制して出力電流をバランスさせることができ、損失低減が図れる。また、各制御回路20は、各DC/DCコンバータ30a〜30eを独立して制御しているため、並列電源装置100は、DC/DCコンバータの設置や増設の自由度が高い装置構成となる。
また、Duty比が0に固定される領域−Vth〜Vthを、電圧V1の検出誤差Verrの最大値ΔEに基づいて決定したため、無駄の無い効果的な補正が行え、検出誤差Verrに起因した電流の極性反転が抑制できる。
なお、上記実施の形態では、制御回路20が補正回路36を有してDuty比Daを補正し、補正回路36が出力するDuty比Daaを用いて位相シフト量θ1、θ2を決定するものを示したが、これに限るものでは無い。例えば、Duty比Daaに対応する位相シフト量θ1、θ2を、予めDuty比Daに対応付けて記憶して用いても良い。あるいは、Duty比Daに対応する位相シフト量θ1、θ2(図7参照)を、Duty比Daaに対応する位相シフト量θ1、θ2に直接補正しても良い。いずれにしても、補正されたDuty比Daaを用いて位相シフト量θ1、θ2が決定され、同様の効果が得られる。
実施の形態2.
次に、この発明の実施の形態2について説明する。
上記実施の形態1では、制御回路20内の電圧制御部を、電圧制御回路24および電流制御回路27で構成したが、この実施の形態2では、電圧制御部としての電圧制御回路24AがDC/DCコンバータのDuty比を演算する。
図13、図14は、この実施の形態2による、DC/DCコンバータ30a内の制御回路20の動作を説明する制御ブロック図である。制御回路20は、電圧制御回路24Aと補正回路36とを備え、図13は電圧制御回路24Aを示し、図14は、Duty比を補正する補正回路36を示す。
この場合、第2スイッチング回路8と直流電源2aとの間の電流Iaを制御に用いないため、電流検出器17は不要である。その他の構成は、上記実施の形態1と同様である。
図13に示すように、共通負荷1の電圧V1は、電圧検出器16にて検出されて制御回路20内の電圧制御回路24Aに入力される。電圧制御回路24Aは、誤差検出器25と補償器23とを備える。電圧制御回路24Aには、与えられた共通負荷1の目標電圧V1*と検出された電圧V1とが入力され、誤差検出器25は、電圧V1から目標電圧V1*を減算して電圧偏差ΔVを出力する。そして、補償器23は、電圧偏差ΔVを0にするようなDC/DCコンバータ30aのDuty比Daを演算する。
補償器23は、比例制御とフィルタ(位相進み補償、位相遅れ補償、ローパスフィルタなど)との直列接続にて構成される。そして、比例制御のゲインにより、おおよその制御応答を決定し、フィルタで安定性の改善と定常偏差の改善を図る。なお、補償器23は、積分制御を用いないため電圧偏差を累積し続けることは無い。
このように演算されるDuty比Daでは、共通負荷1の電圧V1が目標電圧V1*よりも大きい場合には、Duty比Daは正の値となる。共通負荷1の電圧V1が目標電圧V1*以下の場合には、Duty比Daは0以下となる。
検出された電圧V1の値が、仮に複数のDC/DCコンバータ30a〜30eで全て等しい場合、Duty比Da〜Deの極性は一致する。その場合、複数のDC/DCコンバータ30a〜30eにおける各電圧V1は同一極性で調整、即ち増減方向が同一に調整される。
しかしながら実際には、各DC/DCコンバータ30a〜30eの制御回路20が電圧V1を取得する際、一定の電圧範囲内の検出誤差Verrが発生する。
図15に示すように、電圧制御回路24Aでは、共通負荷1の電圧V1に検出誤差Verrが加算または減算されて入力される。そして検出誤差Verrが加算または減算された電圧V1が誤差検出器25へ入力され、補償器23は、検出誤差Verrを含む電圧偏差ΔVに基づいてDuty比Daを演算する。
検出誤差Verrは、各DC/DCコンバータ30a〜30eの部品の特性誤差に起因し、各DC/DCコンバータ30a〜30e毎に検出誤差Verrの値、極性は異なる。このため、各DC/DCコンバータ30a〜30eの制御回路20が演算するDuty比Da〜Deも不一致となる事がある。
このため、各制御回路20は、電圧制御回路24Aが演算するDuty比Da〜Deを、補正回路36により補正して用いる。
図14に示すように、補正回路36は、差分検出器31、33とリミッタ32、34と、加算器35とを備える。
ところで、Duty比を0で制御すると、電力伝送は行われず電圧V1も調整されない、即ち、電圧V1の調整量は0となる。検出誤差Verrに起因して電圧V1の調整量の極性反転が懸念されるDuty比の領域は0近傍であり、その領域を、正の値Vthを用いて−Vth〜Vthと設定する。このVthは、検出誤差Verrに起因する為、例えば、検出誤差の最大値ΔEを用いて以下のように設定される。
Vth=ΔE×補償器23のゲイン
なお、検出誤差の最大値ΔEは、電圧検出器16に用いられるハードウェアの部品特性に基づいて決まる。
差分検出器31には、電圧制御回路24Aが演算したDuty比Daと設定値Vthが入力され、Duty比Daから設定値Vthを減算した値(Da−Vth)を出力する。リミッタ32は、差分検出器31の出力を下限0で制限して出力する。
差分検出器33には、電圧制御回路24Aが演算したDuty比Daと、設定値Vthを極性反転した値(−Vth)が入力され、Duty比Daから値(−Vth)を減算した値(Da+Vth)を出力する。リミッタ34は、差分検出器33の出力を上限0で制限して出力する。そして加算器35は、2つのリミッタ32、34の出力を合算してDuty比Daaを出力する。
以上のように制御されるDC/DCコンバータ30aの制御動作は、上記実施の形態1と同様に図11に示す波形図で表される。即ち、電圧制御回路24Aが演算したDuty比Daは、Duty比Daaに補正される。Duty比Daの絶対値(大きさ)が、Vth未満では0に固定され、それ以外はVth分小さくなるように補正されてDuty比Daaが生成される。
そして、Duty比Daaに応じて決定される位相シフト量θ1、θ2は、Duty比Daの絶対値がVth未満の領域、即ち、Duty比Daaが0に固定される領域で、最大値に固定される。
即ち、図7で示した位相シフト量θ1、θ2の波形の中央部に最大値に固定される領域を挿入した波形となる。Duty比Daの大きさがVth以上では、位相シフト量θ1、θ2が共に最小になるDuty比Daの基準点A、−Aまで、Duty比の大きさの増加に従い位相シフト量θ1、θ2が同量で減少する。そしてDuty比Daが基準点A、−Aを超えると、位相シフト量θ1、θ2の一方を最小に保持すると共に他方をDuty比の大きさの増加に従い増大する。なお、Duty比Daの基準点A、−Aは、位相シフト量θ1、θ2の基準点22に対応するDuty比Daの値を示す。
以上のように、各DC/DCコンバータ30a〜30eの制御回路20では、電圧制御回路24Aにより演算されたDuty比Da〜Deが上記のように補正される。そして、補正後のDuty比Daa〜Deeに基づいて各DC/DCコンバータ30a〜30eは位相シフト制御される。
このため、検出誤差Verrに起因して電圧V1の調整量の極性反転が懸念される領域でDuty比Daa〜Deeが0に固定され、電圧V1の調整量も0に制御される。このため、複数のDC/DCコンバータ30a〜30eで、電圧V1の調整量の極性が不一致となる事が防止でき、即ち、同じ増減方向で電圧V1を調整できる。これにより、各DC/DCコンバータ30a〜30eの出力電流の極性不一致を抑制でき、循環電流を抑制して電流バランスが向上し損失低減が図れる。
実施の形態3.
次に、この発明の実施の形態3について説明する。
図16は、この発明の実施の形態3による並列電源装置の概略構成を示す図である。
上記実施の形態1、2では、各DC/DCコンバータ30a〜30eは、個別に各直流電源2a〜2eに接続されたが、この実施の形態3では、各DC/DCコンバータ30a〜30eは共通の直流電源2に接続される。その他の構成は上記実施の形態1(または実施の形態2)と同様である。この場合も、各DC/DCコンバータ30a〜30eは上記実施の形態1(または実施の形態2)と同様に動作して、同様の効果が得られる。
なお、図17に示すように、DC/DCコンバータ30a〜30eの内、複数のDC/DCコンバータ30a、30bが共通の直流電源2abに接続され、他のDC/DCコンバータ30c〜30eが個別に各直流電源2c〜2eに接続されても良い。
実施の形態4.
次に、この発明の実施の形態4について説明する。
図18は、この発明の実施の形態4による並列電源装置の概略構成を示す図である。
この実施の形態では、各DC/DCコンバータ30a〜30eに、直流電源2a〜2eの電圧V2を検出する電圧検出器18が設けられる。そして、各制御回路20は、検出された共通負荷1の電圧V1、直流電源2a〜2eの電圧V2および電流Ia〜Ieに基づいて、駆動信号21a、21bを生成して第1、第2スイッチング回路5、8を制御する。その他の構成は実施の形態1と同様である。
この場合、制御回路20は、電流制御回路27内の第2補償器29のゲインを、電圧V2に応じて調整する。この場合、電圧V2が増大するとゲインを低減させるように調整する。これにより、並列電源装置100は上記実施の形態1と同様の効果が得られると共に、さらに以下の効果が得られる。即ち、直流電源2a〜2eの電圧V2が広い範囲において変動しても、各DC/DCコンバータ30a〜30eは一定の制御性能を確保して制御可能となる。
なお、この実施の形態4は、上記実施の形態2にも同様に適用できる。その場合、各制御回路20は、検出された共通負荷1の電圧V1および直流電源2a〜2eの電圧V2に基づいて、駆動信号21a、21bを生成して第1、第2スイッチング回路5、8を制御する。そして、電圧制御回路24A内の補償器23のゲインを、電圧V2に応じて調整する。これにより、上記実施の形態2と同様の効果が得られると共に、直流電源2a〜2eの電圧V2が広い範囲において変動しても、各DC/DCコンバータ30a〜30eは一定の制御性能を確保して制御可能となる。
また、上記各実施の形態において、共通負荷1は、抵抗負荷、コンデンサ負荷、AC/DCインバータ、または直流電源を用いても良く、直流電源2a〜2eは蓄電池でも良い。
なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (9)

  1. それぞれ双方向の電力伝送を行う複数のDC/DCコンバータを並列接続して共通負荷に電力供給する並列電源装置において、
    上記各DC/DCコンバータは、
    トランスと、
    それぞれ逆並列ダイオードが接続された複数の半導体スイッチング素子を備えた2つのブリッジ回路によるフルブリッジ回路で構成され、上記共通負荷と上記トランスの第1巻線との間に接続されて、直流/交流間で電力変換する第1スイッチング回路と、
    それぞれ逆並列ダイオードが接続された複数の半導体スイッチング素子を備えた2つのブリッジ回路によるフルブリッジ回路で構成され、直流電源と上記トランスの第2巻線との間に接続されて、直流/交流間で電力変換する第2スイッチング回路と、
    上記第1スイッチング回路、上記第2スイッチング回路の各交流入出力線に接続された第1リアクトル、第2リアクトルと、
    上記第1スイッチング回路および上記第2スイッチング回路を制御する制御回路とを備え、
    上記各制御回路は、
    補償器を有して上記共通負荷の電圧と目標電圧との偏差を0にするようにDuty比を生成する電圧制御部を備えて、上記Duty比に基づいて上記第1、第2スイッチング回路の駆動信号の第1、第2位相シフト量を決定して、上記第1、第2スイッチング回路を制御するもので、
    上記各制御回路は、上記電圧制御部が生成した上記Duty比の大きさが、設定値未満では0に固定され、それ以外は該設定値分小さくなるように、上記Duty比を補正して用いる、
    並列電源装置。
  2. 上記各制御回路内の上記電圧制御部は、
    上記補償器としての第1補償器および第2補償器と、上記第1補償器により上記共通負荷の電圧と目標電圧との偏差を0にするように目標電流を生成する電圧制御回路と、上記第2補償器により上記第2スイッチング回路と上記直流電源との間の電流と上記目標電流との偏差を0にするように上記Duty比を生成する電流制御回路とを備える、
    請求項1に記載の並列電源装置。
  3. 上記第1、第2スイッチング回路内の上記各半導体スイッチング素子は、それぞれ並列コンデンサが接続されゼロ電圧スイッチング可能に構成された、
    請求項1または請求項2に記載の並列電源装置。
  4. 上記第1、第2スイッチング回路内の各1つの半導体スイッチング素子を基準素子とし、その対角関係にある各1つの半導体スイッチング素子を対角素子とし、
    上記制御回路は、上記第1、第2スイッチング回路の内、送電側回路の上記基準素子の駆動信号の位相に対する、上記第1、第2スイッチング回路内の上記各対角素子の駆動信号の位相差を上記第1、第2位相シフト量として決定する、
    請求項1から請求項3のいずれか1項に記載の並列電源装置。
  5. 上記制御回路は、上記電圧制御部が生成した上記Duty比の大きさが上記設定値未満では、上記第1、第2位相シフト量を最大値に固定する、
    請求項4に記載の並列電源装置。
  6. 上記制御回路は、上記Duty比の大きさが上記設定値以上では、上記第1、第2位相シフト量が共に最小になる上記Duty比の基準点まで、上記Duty比の大きさの増加に従い上記第1、第2位相シフト量を同量で減少させるように制御し、上記Duty比の大きさが上記基準点を超える場合、上記第1、第2位相シフト量の一方を最小に保持すると共に他方を上記Duty比の大きさの増加に従い増大させるように制御する、
    請求項5に記載の並列電源装置。
  7. 上記Duty比の大きさに対する上記設定値は、上記共通負荷の電圧の検出誤差レベルおよび上記補償器のゲインに基づいて決定される、
    請求項1から請求項6のいずれか1項に記載の並列電源装置。
  8. 上記各制御回路は、上記直流電源の電圧に応じて上記補償器のゲインを調整する、
    請求項7に記載の並列電源装置。
  9. 上記複数のDC/DCコンバータ内の2以上のDC/DCコンバータに接続される上記直流電源は共通である、
    請求項1から請求項8のいずれか1項に記載の並列電源装置。
JP2018524890A 2016-06-30 2017-03-15 並列電源装置 Active JP6552739B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016130016 2016-06-30
JP2016130016 2016-06-30
PCT/JP2017/010412 WO2018003199A1 (ja) 2016-06-30 2017-03-15 並列電源装置

Publications (2)

Publication Number Publication Date
JPWO2018003199A1 JPWO2018003199A1 (ja) 2018-08-30
JP6552739B2 true JP6552739B2 (ja) 2019-07-31

Family

ID=60787113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524890A Active JP6552739B2 (ja) 2016-06-30 2017-03-15 並列電源装置

Country Status (5)

Country Link
US (1) US10742128B2 (ja)
JP (1) JP6552739B2 (ja)
CN (1) CN109314466B (ja)
DE (1) DE112017003265T5 (ja)
WO (1) WO2018003199A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3763029A4 (en) 2018-03-07 2021-11-10 The Board of Trustees of the Leland Stanford Junior University APPARATUS AND METHODS INVOLVING POWER CONVERSION BY MEANS OF MULTIPLE RECTIFIER CIRCUITS
US10622905B2 (en) * 2018-07-10 2020-04-14 Sharp Kabushiki Kaisha DC-DC converter
JP6821052B1 (ja) * 2019-05-07 2021-01-27 三菱電機株式会社 Dc/dcコンバータ及び電力変換装置
CN116780915A (zh) 2019-08-07 2023-09-19 台达电子工业股份有限公司 应用于固态变压器架构的电源装置及电源系统
DE102019213071A1 (de) * 2019-08-30 2021-03-04 Robert Bosch Gmbh Regelvorrichtung für einen Gleichspannungskonverter, Gleichspannungskonverter und Verfahren zur Regelung eines Gleichspannungskonverters
US12027985B2 (en) * 2020-11-05 2024-07-02 Delta Electronics (Shanghai) Co., Ltd. Power conversion system with N power converters
DE102021102261A1 (de) 2021-02-01 2022-08-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Gleichspannungswandlervorrichtung sowie Regeleinrichtung zum Betreiben einer Gleichspannungswandlervorrichtung
DE102021103377A1 (de) 2021-02-12 2022-08-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Recheneinrichtung zum Regeln einer Ausgangsspannung einer Gleichspannungswandlereinheit
GB202116919D0 (en) 2021-11-24 2022-01-05 Rolls Royce Plc Electrical power system
CN114142736A (zh) * 2021-11-30 2022-03-04 四川英杰电气股份有限公司 一种大功率电子枪高压直流电源系统的控制方法
JP2024101814A (ja) * 2023-01-18 2024-07-30 株式会社日立産機システム 電力変換装置の並列制御システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967332A (en) * 1990-02-26 1990-10-30 General Electric Company HVIC primary side power supply controller including full-bridge/half-bridge driver
JP4360726B2 (ja) 2000-01-27 2009-11-11 Tdkラムダ株式会社 並列電源装置
US6243277B1 (en) * 2000-05-05 2001-06-05 Rockwell Collins, Inc. Bi-directional dc to dc converter for energy storage applications
JP2002237395A (ja) * 2001-02-13 2002-08-23 Koito Mfg Co Ltd 放電灯点灯回路
JP2002246191A (ja) * 2001-02-14 2002-08-30 Koito Mfg Co Ltd 放電灯点灯回路
CN102035390A (zh) * 2010-12-31 2011-04-27 广东美的电器股份有限公司 多路移相并联dc-dc变换装置及其控制方法
US9455641B2 (en) 2012-02-14 2016-09-27 Mitsubishi Electric Corporation DC/DC converter
JP6140007B2 (ja) * 2013-07-01 2017-05-31 東洋電機製造株式会社 電力変換装置
US9641089B2 (en) 2013-07-11 2017-05-02 Mitsubishi Electric Corporation DC-DC converter
JP6286793B2 (ja) * 2014-01-24 2018-03-07 株式会社日立情報通信エンジニアリング Dc−dcコンバータ、二次電池充放電システム、およびdc−dcコンバータの制御方法
JP6511224B2 (ja) * 2014-04-23 2019-05-15 日立オートモティブシステムズ株式会社 電源装置
US9762134B2 (en) * 2014-09-08 2017-09-12 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter
TWI524629B (zh) * 2014-10-28 2016-03-01 國立成功大學 電池與超電容協同供電系統
JP6102898B2 (ja) * 2014-11-27 2017-03-29 トヨタ自動車株式会社 電力変換装置
US10158286B2 (en) * 2015-02-02 2018-12-18 Mitsubishi Electric Corporation DC/DC converter
US10090709B2 (en) * 2015-03-23 2018-10-02 Mitsubishi Electric Corporation Bidirectional non-contact power supply device and bidirectional non-contact power supply system
CN107636950B (zh) * 2015-06-03 2019-11-05 三菱电机株式会社 电力变换装置以及电力变换装置的控制方法
US9787117B2 (en) * 2015-09-17 2017-10-10 Conductive Holding, LLC Bidirectional battery charger integrated with renewable energy generation

Also Published As

Publication number Publication date
DE112017003265T5 (de) 2019-03-21
CN109314466A (zh) 2019-02-05
US20190157979A1 (en) 2019-05-23
WO2018003199A1 (ja) 2018-01-04
US10742128B2 (en) 2020-08-11
JPWO2018003199A1 (ja) 2018-08-30
CN109314466B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
JP6552739B2 (ja) 並列電源装置
JP6067116B2 (ja) Dc/dcコンバータ
JP6207775B2 (ja) Dc/dcコンバータ
JP6207774B2 (ja) Dc/dcコンバータ
JP5279797B2 (ja) 電力変換装置
JP5285716B2 (ja) 電力変換装置
US9401655B2 (en) Power conversion apparatus with inverter circuit and series converter circuit having power factor control
US10998830B2 (en) Power conversion device and three-phase power conversion device
WO2016075996A1 (ja) 電力変換装置
JP2007104872A (ja) 電力変換器
JP6223609B2 (ja) Dc/dcコンバータ
US20160197562A1 (en) Electric power conversion device
WO2011148526A1 (ja) 電力変換装置
JP6822606B2 (ja) Dc−dcコンバータ装置
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP6035845B2 (ja) 交流電源システム
JP5410551B2 (ja) 電力変換装置
JP5362657B2 (ja) 電力変換装置
JP4119985B2 (ja) 直列電気二重層コンデンサ装置
WO2020217721A1 (ja) 電源装置
JP2015015778A (ja) 系統連系用電力変換システム
JP2005080414A (ja) 電力変換装置及びそれを用いたパワーコンディショナ
JP2014011831A (ja) 交直電力変換装置、及びこの交直電力変換装置を備えた無停電電源装置
WO2011128941A1 (ja) 電力変換装置
JP2013162538A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190702

R150 Certificate of patent or registration of utility model

Ref document number: 6552739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250