JP6523873B2 - マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク - Google Patents

マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク Download PDF

Info

Publication number
JP6523873B2
JP6523873B2 JP2015167664A JP2015167664A JP6523873B2 JP 6523873 B2 JP6523873 B2 JP 6523873B2 JP 2015167664 A JP2015167664 A JP 2015167664A JP 2015167664 A JP2015167664 A JP 2015167664A JP 6523873 B2 JP6523873 B2 JP 6523873B2
Authority
JP
Japan
Prior art keywords
film
mask
hard mask
manufacturing
mask blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015167664A
Other languages
English (en)
Other versions
JP2017044892A (ja
JP2017044892A5 (ja
Inventor
亨 福井
亨 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2015167664A priority Critical patent/JP6523873B2/ja
Publication of JP2017044892A publication Critical patent/JP2017044892A/ja
Publication of JP2017044892A5 publication Critical patent/JP2017044892A5/ja
Application granted granted Critical
Publication of JP6523873B2 publication Critical patent/JP6523873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランクに関する。
マスクブランクにおいて基板上に設けられた薄膜の中には、その最表面にケイ素化合物からなるハードマスク膜を有するものがある。ケイ素化合物からなる薄膜は、塩素系ガスに対するドライエッチング耐性に優れることから、遮光膜として用いられるクロム系薄膜等を塩素系ガスでドライエッチングする場合のマスクパターンとして有用である。また、厚さ5nm以下のきわめて薄膜であってもマスクとして機能を果たすことから、ハードマスク膜をエッチングする際にマスクとして用いるレジスト膜を薄膜化することができる。これにより、基板上の薄膜に対して、100nm以下の寸法の微細パターンを転写することが可能となる。
ここで、ケイ素系化合物からなるハードマスク膜の表面は極性表面であり、極性の低い有機化合物からなるレジスト膜に対する密着性が十分ではない。このため、例えば線幅50nm以下の微細パターンの形成においては、リソグラフィーによってレジスト膜に形成したレジストパターンのパターン倒れが発生する。そこでマスクブランクの製造工程においては、薄膜の上部にレジスト膜を形成する前に、ハードマスク膜の表面に対して密着性改善のための表面改質処理が行われている。この表面改質処理においては、例えばハードマスク膜に対して例えば窒素ガスを用いて蒸散させたHMDS(ヘキサメチルジシラザン)を接触させ、ハードマスク膜の表面にごく薄い疎水性表面層を形成する(例えば下記特許文献1参照)。
特開2014−59575号公報
ところで、マスクブランクを用いた転写用マスクの製造においては、レジスト膜のリソグラフィー処理によってレジストパターンを形成した後には、速やかに当該レジストパターンをマスクにして下層のハードマスク膜をエッチングすることが好ましい。これにより、レジストパターンに異物が付着することによる下層のエッチング形状の劣化が防止されるためである。
しかしながら、レジストパターン形成後、直ちに下層のハードマスク膜をエッチングした場合であっても、ハードマスクパターンに欠陥が発生する現象が生じた。
そこで本発明は、レジストパターン形成直後であってもケイ素系化合物を用いて構成されたハードマスク膜を高精度にパターニングすることが可能なマスクブランクの製造方法を提供すること、および形状精度の良好な微細パターンを有する転写用マスクの製造方法を提供することを目的とする。
<構成1>
基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とをこの順に成膜する成膜工程と、
有機ケイ素化合物を用いた処理により、前記ハードマスク膜の表面のシラノール基を化学修飾基で修飾する改質処理工程と、
前記改質処理された前記ハードマスク膜上にレジスト膜を形成する工程とを有し、
前記改質処理は、室温23℃における前記ハードマスク膜の表面の水接触角が40°以上55°以下の範囲となるように行う
マスクブランクの製造方法。
<構成2>
基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とをこの順に成膜する成膜工程と、
有機ケイ素化合物を用いた処理により、前記ハードマスク膜の表面のシラノール基を化学修飾基で修飾する改質処理工程と、
前記改質処理された前記ハードマスク膜上にレジスト膜を形成する工程とを有し、
前記改質処理は、前記シラノール基の前記化学修飾基による被覆率が、飽和被覆率を100%とした場合に45%以上85%以下の範囲となるように処理を行う
マスクブランクの製造方法。
<構成3>
前記成膜工程では、前記パターニング材料膜として、クロムを含有する材料膜を成膜する
ことを特徴とする構成1または2記載のマスクブランクの製造方法。
<構成4>
前記有機ケイ素化合物は、アミンを有している
ことを特徴とする構成1〜3の何れかに記載のマスクブランクの製造方法。
<構成5>
前記有機ケイ素化合物は、ヘキサメチルジシラザンである
ことを特徴とする構成1〜4の何れかに記載のマスクブランクの製造方法。
<構成6>
前記ハードマスク膜の膜厚は、1.5nm以上15nm未満である
ことを特徴とする構成1〜5の何れかに記載のマスクブランクの製造方法。
<構成7>
前記ハードマスク膜は、酸素および窒素のうちの少なくとも一方とケイ素とからなる
ことを特徴とする構成1〜6の何れかに記載のマスクブランクの製造方法。
<構成8>
構成1〜7の何れかに記載のマスクブランクの製造方法によって製造されたマスクブランクを用いる転写用マスクの製造方法であって、
リソグラフィー法により前記レジスト膜にレジストパターンを形成する工程と、
前記レジストパターンをマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜をパターニングする工程と、
前記パターニングされたハードマスク膜をマスクとして前記パターニング材料膜をエッチングすることにより、当該パターニング材料膜をパターニングする工程とを有する
転写用マスクの製造方法。
<構成9>
前記成膜工程では、前記パターニング材料膜として、クロムを含有する材料膜を成膜し、
前記パターニング材料膜をパターニングする工程では、前記ハードマスク膜をマスクとし、塩素系ガスを用いたドライエッチングより、前記クロムを含有する材料膜をパターニングする
ことを特徴とする構成8記載の転写用マスクの製造方法。
<構成10>
基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とがこの順で成膜されたマスクブランクであって、
前記ハードマスク膜は、有機ケイ素化合物を用いた処理によって、表面のシラノール基が化学修飾基で修飾されており、修飾された表面の水接触角が40°以上55°未満である
ことを特徴とするマスクブランク。
<構成11>
基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とがこの順で成膜されたマスクブランクであってり、
前記ハードマスク膜は、有機ケイ素化合物を用いた処理によって、表面のシラノール基が化学修飾基で修飾されており、修飾された表面の前記化学修飾基による被覆率が飽和被覆率を100%とした場合に45%以上85%以下である
ことを特徴とするマスクブランク。
以上の構成を有する本発明の製造方法によれば、レジスト膜とケイ素系化合物を用いて構成されたハードマスク膜との密着性を確保しつつ、レジストパターン形成直後であってもハードマスク膜を高精度にパターニングすることが可能なマスクブランクを得ることが可能である。またこの製造方法によって得られたマスクブランクを用いることにより、形状精度の良好な微細パターンを有する転写用マスクを得ることが可能になる。
本発明の実施形態のマスクブランクの製造方法を示す断面工程図である。 本発明の転写用マスクの製造方法を示す製造工程図(その1)である。 本発明の転写用マスクの製造方法を示す製造工程図(その2)である。
発明者らは、ケイ素系化合物からなるハードマスク膜上にレジスト膜が設けられた構成のマスクブランクに関し、リソグラフィーの直後に直ちに下層のハードマスク膜をパターンエッチングしてハードマスクパターンを形成した場合に、ハードマスクパターンに生じる欠陥の発生原因について検討を行った。
その結果、欠陥の形成分布と、リソグラフィー処理によるレジストパターン形成後に処理表面に残存している水滴の分布とが類似していることを突き止めた。そしてこのことから、レジストパターンをマスクにしてハードマスク膜をドライエッチングする際の減圧処理に伴う低温化の影響で、処理表面に残存している水滴が氷化し、その氷がマスクとなってハードマスク膜のエッチングを阻害していると推測した。詳しく説明すると、次のとおりである。
すなわち、リソグラフィー処理によるレジストパターン形成においては、現像・リンス処理後に、処理表面をスピン乾燥する。この際、処理表面にはレジストパターンによる凹凸が形成されているため、微細な水滴がレジストパターン間に残存する。レジストパターン間には、表面改質処理によってごく薄い疎水性表面層が形成されたハードマスク膜の表面が露出した状態となっている。このため、レジストパターン間に残存する水滴は、ハードマスク膜に対して大きな接触角で盛り上がり、体積に対して表面積が小さい形状となっている。
ここでリソグラフィー処理によるレジストパターン形成の直後、すなわちスピン乾燥の直後にドライエッチングのための減圧処理を施した場合、平らな形状に付着した水滴であれば、体積に対する表面積が大きいため減圧環境下で容易に蒸発する。これに対して、大きな接触角で盛り上がった形状の水滴は、表面積が小さいために蒸発効率が悪く、減圧に伴うチャンバー内空間の温度低下と水滴表面からの気化熱により急冷されることによって凝固(氷化)し、その氷がハードマスク膜のエッチングの際の異物要素になっていると推測した。
そこで発明者らは、ケイ素系化合物を用いて構成されたハードマスク膜上にレジスト膜を形成する場合のハードマスク膜の表面改質処理として、単なる疎水化処理ではなく、レジスト膜との密着性を確保しつつも、リソグラフィー処理の後に残存する水滴に有る程度の蒸発(蒸散)効率が得られる範囲の親水性とする処理を行うことにより、上述した欠陥の発生を防止できるという結論に至った。
以下に、上述した効果を得るための本発明の詳細な構成を、図面に基づいて説明する。ここでは、本発明を位相シフト型のマスクブランクの製造方法に適用した実施の形態を説明し、次いでこの製造方法によって得られたマスクブランクを用いた転写用マスクの製造方法の実施の形態を説明する。尚、各図において同様の構成要素には同一の符号を付して説明を行う。
≪マスクブランクの製造方法≫
図1は、実施形態のマスクブランクの製造方法を説明するための断面工程図である。以下に、図1に基づき、実施形態のマスクブランクの製造方法を説明する。
先ず図1Aに示すように、基板10を用意し、この基板10上に、ハーフトーン膜11、遮光膜13、およびケイ素系材料からなるハードマスク膜15をこの順に成膜する成膜工程を行う。このうちハーフトーン膜11および遮光膜13は、微細なパターンが転写形成されるパターニング材料膜として成膜される。また遮光膜13は、クロムを含有する材料膜として成膜される。次に、各構成要素およびその成膜手順の詳細を説明する。
<基板10>
ここで用意する基板10は、一般的にガラス材から構成され、ケイ素を含有する材料からなるものが選択される。例えばバイナリマスクや位相シフトマスク用のマスクブランクの基板1であれば、ArFエキシマレーザ光(波長:約193nm)のような露光光に対して透過性を有する材料で構成されればよい。このような材料としては、合成石英ガラスが用いられるが、この他にも、アルミノシリケートガラス、ソーダライムガラスを用いることができる。特に、石英基板は、ArFエキシマレーザ光、またはそれよりも短波長の領域で透明性が高いので、本発明のマスクブランクに特に好適に用いることができる。
また、反射型のマスクブランクの基板1であれば、露光時の発熱による熱膨張が低く抑えられた低熱膨張ガラス(SiO−TiOガラス等)を用いて構成される。
以上のような基板10は、周端面および主表面が所定の表面粗さに研磨され、その後、所定の洗浄処理および乾燥処理が施されたものである。
尚、ここで言うリソグラフィーにおける露光工程とは、マスクブランクを用いて作製された転写用マスクを用いてのリソグラフィーにおける露光工程であり、以下において露光光とはこの露光工程で用いられる露光光であることとする。転写用マスクがバイナリマスクや位相シフトマスクの場合、この露光光としては、ArFエキシマレーザ光(波長:193nm)、KrFエキシマレーザ光(波長:248nm)、i線光(波長:365nm)のいずれも適用可能であるが、露光工程における位相シフトパターンの微細化の観点からは、ArFエキシマレーザ光を露光光に適用することが望ましい。また転写用マスクが反射型マスクである場合、この露光光としては、EUV光(波長:13.56nm)が適用される。
<ハーフトーン膜11の成膜>
次に、以上のような基板10における処理表面上に、例えばスパッタ法によってハーフトーン膜11を成膜する。ここで成膜するハーフトーン膜11は、例えばケイ素(Si)を含有する材料膜として成膜する。このハーフトーン膜11は、ケイ素の他に、窒素(N)を含有する材料で形成されていることが好ましい。このようなハーフトーン膜11は、フッ素系ガスを用いたドライエッチングによってパターニングが可能であり、以下に説明するクロム(Cr)を含有する材料で形成された遮光膜13に対して、十分なエッチング選択性を有したパターニングが可能である。
またハーフトーン膜11は、フッ素系ガスを用いたドライエッチングによってパターニングが可能であれば、さらに、半金属元素、非金属元素、金属元素から選ばれる1以上の元素を含有していてもよい。
このうち、半金属元素は、ケイ素に加え、いずれの半金属元素であってもよい。非金属元素は、窒素に加え、いずれの非金属元素であっても良く、例えば酸素(O)、炭素(C)、フッ素(F)および水素(H)から選ばれる一以上の元素を含有させると好ましい。また金属元素は、モリブデン(Mo)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、バナジウム(V)、コバルト(Co)、クロム(Cr)、ニッケル(Ni)、ルテニウム(Ru)、スズ(Sn)、ホウ素(B)、ゲルマニウム(Ge)が例示される。
このような元素を含有するハーフトーン膜11として、例えばMoSiNで構成されたものが例示される。
またハーフトーン膜11は、露光光に対して所定の位相差と所定の透過率となるように、屈折率n、消衰係数k、および膜厚が設定され、その屈折率nおよび消衰係数kとなるように、膜材料の組成や成膜条件を調整して成膜される。一例として、露光光がArFエキシマレーザ光である場合、位相差は例えば150[deg]〜180[deg]であり、透過率は1%〜30%である。
またスパッタ法によるハーフトーン膜11の成膜においては、ハーフトーン膜11を構成する材料を所定の組成比で含有するスパッタリングターゲットおよびスパッタガスを用い、さらには必要に応じてアルゴン(Ar)およびヘリウム(He)等の不活性ガスをスパッタガスとして用いた成膜が行われる。
スパッタ法によってハーフトーン膜11を成膜した後には、後処理として所定の加熱温度でのアニール処理を行う。
<遮光膜13の成膜>
次に、ハーフトーン膜11上に、例えばスパッタ法によって遮光膜13を成膜する。遮光膜13は、ここで成膜する遮光膜13は、クロムを含有する材料膜であって、単層で成膜してもよく、図示したような下層13aと上層13bとの2層構造で成膜してもよく、さらに多層の複数層で成膜してもよい。遮光膜13を複数層として成膜する場合には、クロム(Cr)の含有量を変化させた各層を成膜する。
ここでクロム系薄膜は、パターニングの際のエッチングガスに塩素を主体とした酸素との混合ガスを使用するが、次に成膜するケイ素系材料からなるハードマスク膜15は塩素系ガスに対して強靭なエッチング耐性を有する。このため、ケイ素系材料からなるハードマスク膜15をマスクにして、クロム系薄膜によって構成された遮光膜13をエッチングする際には、高いエッチング選択性でパターニングエッチングが可能である。
また遮光膜13は、クロム金属のほか、クロムに酸素、窒素、炭素、ホウ素、水素およびフッ素から選ばれる一以上の元素を含有する材料を含有していてもよい。さらにこの遮光膜13には、光学濃度(OD)を維持しつつも、膜全体のエッチングレートの低下を抑制することを目的として、インジウム(In)、スズ(Sn)、およびモリブデン(Mo)から選ばれる少なくとも1以上の金属元素(インジウム等金属元素)を含有していてもよい。
このような遮光膜13は、酸素含有塩素系ガスを用いたドライエッチングによってパターニングが可能である。また、この遮光膜13はケイ素(Si)を含有する材料で形成されたハーフトーン膜11との間で十分なエッチング選択性を有しており、ハーフトーン膜11にほとんどダメージを与えずに遮光膜13をエッチング除去することが可能である。この遮光膜13は、以下に説明するケイ素(Si)を含有する材料で形成されたハードマスク膜15に対して十分なエッチング選択性を有しており、このハードマスク膜15をマスクとした遮光膜13のパターニングが可能である。
また以上のような遮光膜13は、ドライエッチングにおいての形状精度が確保され、かつ露光転写工程で用いられる露光光に対して所定値以上の光学濃度(OD)を有するように、各層の組成や膜厚が設定して成膜される。
スパッタ法による遮光膜13の成膜においては、遮光膜13の各層を構成する材料を所定の組成比で含有するスパッタリングターゲットおよびスパッタガスを用い、さらには必要に応じてアルゴン(Ar)およびヘリウム(He)等の不活性ガスをスパッタガスとして用いた成膜が行われる。
<ハードマスク膜15の成膜>
次いで遮光膜13上に、例えばスパッタ法によってハードマスク膜15を成膜する。ここで成膜するハードマスク膜15は、ケイ素(Si)を含有する膜であって、遮光膜13にパターンを形成するためのドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの極薄い膜厚を有して成膜される。
このようなハードマスク膜15は、ケイ素(Si)の他に、酸素(O)、窒素(N)、炭素(C)、ホウ素(B)および水素(H)から選らばれる1以上の元素を含有する材料を用いて成膜される。
このうち、ここではケイ素(Si)と共に、酸素(O)および窒素(N)のうちの少なくとも一方からなるハードマスク膜15を成膜することが好ましい。ここのようなハードマスク膜15を構成する材料の具体例としては、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiON)等が挙げられる。これらの材料からなるハードマスク膜15は、クロム(Cr)を含有する材料で形成された遮光膜13との間で十分なエッチング選択比を有しており、しかも遮光膜13にほとんどダメージを与えずに、ハードマスク膜15をエッチング除去することが可能である。
またこれらの材料からなるハードマスク膜15は、下層のクロム(Cr)を含有する材料で形成された遮光膜13との間で十分なエッチング選択比を有しているため、極薄膜であっても十分にエッチングマスクとして機能する。このため、1.5nm〜15nm未満の膜厚で成膜されることとする。
またスパッタ法によるハードマスク膜15の成膜においては、ハードマスク膜15を構成する材料を所定の組成比で含有するスパッタリングターゲットおよびスパッタガスを用い、さらには必要に応じてアルゴン(Ar)およびヘリウム(He)等の不活性ガスをスパッタガスとして用いた成膜が行われる。
ここで成膜されたハードマスク膜15の表面Sは、ハードマスク膜15を構成するケイ素(Si)に対してヒドロキシル基(−OH)が結合したシラノール基で覆われ、これによって親水性表面となっている。
<改質処理工程>
次に、図1Bに示すように、有機ケイ素化合物を用いた処理により、ハードマスク膜15の表面Sのシラノール基を化学修飾基で修飾する改質処理工程を行う。この改質処理工程は、ハードマスク膜15の表面Sの水接触角が、室温23℃において40°以上55°以下となるように実施するところが重要である。
改質処理工程で用いられる有機ケイ素化合物は、ハードマスク膜15の表面Sのシラノール基(−SiOH)と結合可能な官能基と、次の工程で形成するレジスト膜との親和性に優れる疎水性の官能基とを有する化合物である。
シラノール基(−SiOH)と結合可能な官能基としては、例えば、アミノ基、ヒドロキシル基、クロライド基などが挙げられ、アミノ基、ヒドロキシル基が好ましく例示される。
レジスト膜との親和性に優れる官能基としては、レジスト膜を構成するレジスト材料がいかなる成分であるかに応じて適宜決定することができ、例えばレジスト材料と共有結合または水素結合のような化学結合する官能基、または疎水―疎水相互作用等によって結合する官能基が選択される。
例えば、レジスト材料と化学結合する官能基としては、アルキルスルフォン酸基、アルキルアミン基、アルキルカルボン酸基が例示される。またレジスト材料と、疎水―疎水相互作用によって結合する官能基としてはアルキル基が例示される。
以上のような官能基を備えた有機ケイ素化合物の具体例としては、1,1,3,3−テトラメチルジシラザン、ヘキサメチルジシラザン(HMDS)、ビニルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、テトラメトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。
また、これらの有機ケイ素化合物の中でも、ヘキサメチルジシラザン(HMDS)が好ましく用いられる。ヘキサメチルジシラザン(HMDS)は、トリメチルシリル基[−Si(CH3)3]で置換されたアミン化合物であり、ハードマスク膜15の表面Sのシラノール基(−SiOH)に結合可能な官能基としてアミノ基を有し、レジスト膜との親和性に優れる官能基としてレジスト材料と疎水―疎水相互作用によって結合するメチル基を有する。
このようなヘキサメチルジシラザン(HMDS)を用いた改質処理工程によれば、ハードマスク膜15の表面Sのシラノール基(−SiOH)と、ヘキサメチルジシラザン(HMDS)とが反応し、シラノール基(−SiOH)に対して、ヘキサメチルジシラザン(HMDS)のトリメチルシリル基[−Si(CH3)3]が化学修飾基として結合する。これにより、もともとケイ素(Si)を含有するハードマスク膜15の表面にトリメチルシリル基[−Si(CH3)3]が結合する。このため、疎水化度以外の膜質をほとんど変化させることのなくハードマスク膜15の表面の改質処理が施される。このような改質処理は、ケイ素を含有する材料からなる基板10において、ヘキサメチルジシラザン(HMDS)が供給された面も同様に進行する。また、この反応により、発生するアンモニアは、アンモニアガスとして速やかに排出される。
以上のような有機ケイ素化合物を用いた改質処理工程は、ハードマスク膜15の表面Sに対して、有機ケイ素化合物を供給することによって行われる。
このような改質処理工程は、処理時間、ハードマスク膜15の表面Sに対する有機ケイ素化合物の供給流量、および処理温度のうちの少なくとも1つを制御することにより、シラノール基に対する化学修飾基の結合量を調整する。これにより、ハードマスク膜15の表面Sの水接触角を、室温23℃において40°以上55°以下の範囲とする。またこの改質処理工程、シラノール基に対する化学修飾基による被覆率を、飽和被覆率を100%とした場合に45%以上85%以下の範囲として実施してもよい。尚、水接触角の測定は、接触角計によって測定することができる。また化学修飾基による被覆率は、化学修飾基のイオン等を直接的または間接的に測定できる質量分析装置(例えばTOF−SIMS)によって測定することができる。
<レジスト膜17の成膜>
次に図1Cに示すように、化学修飾基の結合によって改質処理されたハードマスク膜15の表面S上に、レジスト膜17を形成する。レジスト膜17の形成は、例えばスピンコート法のような塗布法によるレジスト材料層の成膜と、その後の処理とを行う。ここで形成するレジスト膜17は、特に材料限定されることはないが、微細パターンを形成する場合に有効であるため、化学増幅型レジストに適用することが好ましい。また、ネガ型、ポジ型のいずれのレジストにも適用可能であるが、ネガ型に適用すると効果的である。
以上により、基板10上に、ハーフトーン膜11、遮光膜13、ハードマスク膜15、およびレジスト膜17をこの順に積層したマスクブランク1が得られる。
≪転写用マスクの製造方法≫
図2および図3は、実施形態の転写用マスクの製造方法を説明するための断面工程図である。これらの図に示す転写用マスクの製造方法は、図1を用いて説明した製造方法によって得られたハーフトーン型のマスクブランク1を用いた転写用マスクの製造方法である。以下に、図2および図3に基づき、転写用マスクの製造方法を説明する。尚、図2および図3においては、図1を用いて説明した構成要素と同一の構成要素には同一の符号を付し、重複する説明は省略する。
<レジストパターンの形成>
先ず、図2Aに示すように、リソグラフィー法によりレジスト膜17に第1のレジストパターン17aを形成する。ここでは先ず、マスクブランク1におけるレジスト膜17に対して、ハーフトーン膜11に形成すべき位相シフトパターンとアライメントマークパターンとを露光描画する。この露光描画には、電子線が用いられる場合が多い。この際、基板10における中央部分を位相シフトパターン形成領域10aとし、ここに位相シフトパターンに対応するパターンを露光描画する。また、位相シフトパターン形成領域10aの外周領域10bには、位相シフトパターンを形成せずアライメントマーク等のパターンを露光描画する。
その後、レジスト膜17に対してPEB処理、現像処理、リンス処理、およびスピン乾燥処理を行う。これにより、位相シフトパターンおよびアライメントマークパターンを有する第1のレジストパターン17aを形成する。
<ハードマスク膜15のパターニング>
次いで図2Bに示すように、減圧処理室内において、第1のレジストパターン17aをマスクとして、フッ素系ガスを用いたハードマスク膜15のドライエッチングを行い、ハードマスク膜15をパターニングしてハードマスクパターン15aを形成する。しかる後、第1のレジストパターン17aを除去する。なお、ここで、第1のレジストパターン17aを除去せず残存させたまま、遮光膜13のドライエッチングを行ってもよい。この場合でも、遮光膜13のドライエッチングの途上で第1のレジストパターン17aは消失する。
<ハーフトーン膜11および遮光膜13のパターニング>
次に図2Cに示すように、引き続き減圧処理室内において、ハードマスクパターン15aをマスクとして、塩素系ガスと酸素ガスとの混合ガス(酸素含有塩素系ガス)を用いた遮光膜13のドライエッチングを行い、クロムと共にインジウム等金属元素を含有する遮光膜13をパターニングする。これにより、ケイ素を含有するハードマスク膜15に対して、きわめて高いエッチング選択性で遮光膜13をエッチングし、遮光膜パターン13aaを形成する。
その後、図2Dに示すように、遮光膜パターン13aaをマスクとして、フッ素系ガスを用いたハーフトーン膜11のドライエッチングを行ない、ケイ素を含有する材料で形成されたハーフトーン膜11をパターニングする。これにより、基板10における位相シフトパターン形成領域10aに、ハーフトーン膜11をパターニングしてなる位相シフトパターン20aを形成する。また、基板10における外周領域10bに、遮光膜13とハーフトーン膜11とを貫通する孔形状のアライメントマークパターン20bを形成する。尚、このようなケイ素を含有する材料で形成されたハーフトーン膜11のドライエッチングにおいては、ケイ素を含有する材料で形成されたハードマスクパターン15aも同時に除去される。
次に、図3Eに示すように、基板10における外周領域10bを覆う形状で、第2のレジストパターン31を形成する。この際、先ず基板10上に、レジスト膜をスピン塗布法によって形成する。次に、基板10における外周領域10bを覆う形状でレジスト膜が残されるように、当該レジスト膜に対して露光を行い、その後レジスト膜に対して現像処理等の所定の処理を行う。これにより、基板10における外周領域10bを覆う形状で、第2のレジストパターン31を形成する。
その後、図3Fに示すように、第2のレジストパターン31をマスクとして、塩素系ガスと酸素ガスとの混合ガスを用いた遮光膜13のドライエッチングを行い、外周領域10bを覆う帯状に遮光膜13をパターニングしてなる遮光パターン20cを形成する。
次いで、図3Gに示すように、第2のレジストパターン31を除去し、洗浄等の所定の処理を行う。以上により、転写用マスク2が得られる。
≪実施形態の効果≫
以上説明した実施形態のマスクブランクの製造方法によれば、ケイ素を含有するハードマスク膜15の表面の水接触角を40°以上としたことにより、成膜時には親水性であったハードマスク膜15の表面が適度に疎水化され、レジスト膜17との密着性を確保することが可能になる。そして、この製造方法によって作製されたマスクブランク1を用いた転写用マスクの製造方法によれば、図2Aを用いて説明したように、リソグラフィー処理によって第1のレジストパターン17aを形成した場合のパターン倒れを防止することが可能になる。
これに対し水接触角が40°未満の場合、すなわち改質処理が不十分な場合、ハードマスク膜15の表面の親水性が高すぎるため、レジスト膜17との密着性を確保することが困難であり、パターン倒れを防止することはできない。尚、例えば有機ケイ素化合物としてヘキサメチルジシラザン(HMDS)を用いた場合のハードマスク膜15の改質処理においては、その処理速度から水接触角を40°未満の範囲での制御は困難である。したがって、40°以上の範囲での制御が可能である。
さらに実施形態のマスクブランクの製造方法によれば、ハードマスク膜15の表面の水接触角を55°以下としたことにより、ハードマスク膜15の表面が疎水化され過ぎることを防止している。ハードマスク膜15上に残存する水滴の高さが制限されて表面積を確保することができる。したがって、水滴が残存した場合であっても、その蒸発(蒸散)効率を確保することができる。そして、この製造方法によって作製されたマスクブランク1を用いた転写用マスクの製造方法によれば、図2Aを用いて説明したリソグラフィー処理の後に第1レジストパターン17a間に水滴が残っていたとしても、図2Bを用いて説明したハードマスク膜15のドライエッチングに際しての減圧処理において、水滴を氷化させることなく蒸発させて除去することができる。
これに対し水接触角が55°を超えると、付着した水滴の高さが高くなるため、水滴が蒸発し難く処理表面に残存し易いため、上述した減圧処理において氷化し、レジストパターン17a間に異物として残存してしまうのである。
以上の結果、実施形態で説明した改質処理を実施するマスクブランクの製造方法およびその後の転写マスクの製造方法によれば、以降の実施例でも示すように、リソグラフィー処理によってレジスト膜17にレジストパターンを形成した場合のパターン倒れを防止しつつも、リソグラフィー処理後にレジストパターン間に残存する水滴を氷化させることなく効率的に蒸発させることができ、これによりレジストパターンをマスクにしたハードマスク膜15のエッチングを形状精度良好に実施することが可能になる。
尚、以上においてはマスクブランク1の製造方法の実施形態として、ハーフトーン型のマスクブランクの製造方法を例示した。しかしながら、本発明のマスクブランクの製造方法は、ケイ素を含有するハードマスク膜15に接してレジスト膜17を形成する工程を有するマスクブランクの製造方法に広く適用可能であり、同様の効果を得ることが可能である。
このような例として、例えばバイナリー型のマスクブランクを例示することができる。バイナリー型のマスクブランクの製造方法に本発明を適用する場合、基板10上に、例えばクロム系材料を用いた遮光膜を成膜し、この上部にケイ素を含有するハードマスク膜を成膜した後、このハードマスク膜の表面に対して上述した改質処理工程を行えばよく、同様の効果を得ることが可能である。
以下、実施例により、本発明の実施の形態をさらに具体的に説明する。
≪実施例1≫
[マスクブランクの製造]
図1を用いて説明した第1実施形態のマスクブランク1を以下のように製造した。先ず図1Aに示すように、主表面の寸法が約152mm×約152mmで、厚さが約6.25mmの合成石英ガラスからなる透光性基板10を準備した。この基板10は、周端面及び主表面Sが所定の表面粗さに研磨され、その後、所定の洗浄処理および乾燥処理を施されたものである。
次に、基板10上に、スパッタ成膜によって、ハーフトーン膜11、遮光膜13の下層13a、遮光膜13の上層13b、ハードマスク膜15をこの順に成膜した。スパッタ成膜には、DCスパッタリング方式の枚葉式成膜装置を用いた。各層の材料構成および膜厚は、次の通りである。
・ハーフトーン膜11:MoSiN、膜厚69nm
・下層13a:CrON、膜厚47nm
・上層13b:CrN、膜厚5nm
・ハードマスク膜15:SiON、膜厚5nm
尚、ハーフトーン膜11をスパッタ成膜した後には、成膜後の後処理として450℃で30分間のアニール処理を行った。アニール処理後のハーフトーン膜11について、位相シフト量測定装置でArFエキシマレーザ光の波長(約193nm)に対する透過率および位相差を測定したところ、透過率は6.4%、位相差が175°であった。
以上のスパッタ成膜の後、図1Bに示すように、ハードマスク膜15の表面に対して、有機ケイ素化合物としてヘキサメチルジシラザン(HMDS)を用いた改質処理を行った。ここでは、複数のサンプル1〜サンプル12に対して、処理時間、およびヘキサメチルジシラザン(HMDS)の供給量を変化させた各処理条件で改質処理を実施した。これにより、各サンプル1〜サンプル12におけるハードマスク膜15の表面Sの水接触角を調整した。この際、サンプル11の作製においては、ハードマスク膜15の表面における化学修飾基での修飾が飽和状態となる条件で改質処理を行った。またサンプル12の作製においては、改質処理の工程を実施しなかった。尚、化学修飾基は、トリメチルシリル基[Si(CH]である。
下記表1には、各サンプル1〜サンプル12における改質処理後のハードマスク膜15の表面の水接触角を示す。ハードマスク膜15の表面の水接触角は、協和界面化学株式会社製全自動接触角計 DM―701を用い、室温23℃の雰囲気内にて測定した。
また下記表1には、各サンプル1〜サンプル12における改質処理後の、化学修飾基[ヘキサメチルジシラザン(HMDS)]による被覆率を、サンプル11の被覆率を飽和被覆率100とした場合の相対値として示した。
化学修飾基[ヘキサメチルジシラザン(HMDS)]による被覆率は、以下のようにして求めた。
先ず、各サンプル1〜サンプル12において、ハードマスク膜15の表面に残ったシラノール基を、臭素を含有するケイ素化合物基によって十分に化学修飾した。次いで、各サンプル1〜サンプル12について、TOF−SIMSを用いた表面分析を行い、臭素を含有するケイ素化合物基に由来する二次イオンの検出強度Aを測定した。そして、改質処理を行っていないサンプル12の検出強度Aを基準値Bとし、(基準値B−検出強度A)/基準値Bを、各サンプル1〜サンプル12におけるヘキサメチルジシラザン(HMDS)による被覆率として算出し、算出した被覆率をサンプル11の被覆率を100とした相対値に換算した。
次に図1Cに示すように、ハードマスク膜15上に、化学増幅型ネガレジスト(富士フィルムエレクトロニクスマテリアルズ社製 SLN−009+)をスピン塗布し、その後乾燥処理することにより、膜厚80nmのレジスト膜17を形成した。
以上の手順により、基板10上に、ハーフトーン膜11、2層構造の遮光膜13、ハードマスク膜15、およびレジスト膜17をこの順に積層した構造を備えたマスクブランク1を製造した。
[ハードマスク膜15のパターニング]
次に、電子線描画機を用いて、レジスト膜17に対して所定のデバイスパターンを描画した。ここでは、デバイスパターンとして、ハーフトーン膜11に形成すべき位相シフトパターンに対応するパターンであって、ラインアンドスペースを含むパターンを描画した。ここでの描画は、SRAFパターンのパターン寸法に対応する40nm幅のラインアンドスペースの位相シフトパターンの形成を目的とした。
次に、レジスト膜17に対して、2.38%TMAH(テトラメチアンモニウムハイドライド)水溶液を現像液として現像処理を施した後、純水(イオン交換水)を用いたリンス処理を行った。
リンス処理後のレジストパターン付基板をスピン乾燥した。この際、回転数1500rpm、乾燥時間400秒とした。これにより、レジスト膜17をパターニングしてなる第1のレジストパターン17a(図2A参照)を完成させた。
次に、第1のレジストパターン17aをマスクとして、ハードマスク膜15のドライエッチングを行い、ハードマスクパターン15a(図2B参照)を形成した。ドライエッチングにおいては、エッチングガスとしてフッ素系ガス(SF6)を用い、エッチング時間は20秒とした。
[ハードマスクパターンの評価]
以上のようにして形成したハードマスクパターン15aについて、その形状を評価した。ここでは、ハードマスクパターン15aに形成された抜き不良、すなわち第1のレジストパターン17aをマスクとしたハードマスク膜15のエッチング不良のうち、パターン残りによる欠陥数をカウントした。この結果を下記表1に合わせて示す。欠陥数のカウントは、レーザーテック株式会社製マスクブランクス欠陥検査装置(MAGICSシリーズ M2351)を使用して実施した。
Figure 0006523873
表1に示すように、ハードマスク膜15の表面に対する改質処理後の水接触角が40°以上55°以下、化学修飾基による被覆率45%以上85%以下の範囲のサンプル1〜サンプル7では、ハードマスクパターン15aの欠陥数50個以下に抑えられている。これに対して、水接触角および化学修飾基による被覆率が上記範囲から外れているサンプル8〜サンプル11は、欠陥数が200以上であった。尚、サンプル12は、ハードマスク膜15の表面に対する改質処理後を実施していないため、第1レジストパターン17aにパターン倒れが発生したため、ハードマスク膜15aのドライエッチングを実施しなかった。
以上の結果から、本発明の適用により、ケイ素系化合物を用いて構成されたハードマスク膜15を高精度にパターニングすることが可能なマスクブランク1が得られることが確認された。またハードマスク膜15を高精度にパターニングしてなるハードマスクパターン15aをマスクとして用いることで、遮光膜13およびハーフトーン膜11を形状精度良好にエッチングすることができるため、本発明の適用により、形状精度の良好な微細パターンを有する転写用マスクが得られることが確認された。
1…マスクブランク
2…転写用マスク
10…基板、
11…ハーフトーン膜(パターニング材料膜)
13…遮光膜(パターニング材料膜、クロムを含有する材料膜)
15…ハードマスク膜
17…レジスト膜
17a…第1のレジストパターン
31…第2のレジストパターン
d…ハードマスク膜の膜厚

Claims (11)

  1. 基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とをこの順に成膜する成膜工程と、
    有機ケイ素化合物を用いた処理により、前記ハードマスク膜の表面のシラノール基を化学修飾基で修飾する改質処理工程と、
    前記改質処理された前記ハードマスク膜上にレジスト膜を形成する工程とを有し、
    前記改質処理は、室温23℃における前記ハードマスク膜の表面の水接触角が40°以上55°以下の範囲となるように行う
    マスクブランクの製造方法。
  2. 前記成膜工程では、前記パターニング材料膜として、クロムを含有する材料膜を成膜する
    ことを特徴とする請求項記載のマスクブランクの製造方法。
  3. 前記有機ケイ素化合物は、アミノ基を有している
    ことを特徴とする請求項1または2記載のマスクブランクの製造方法。
  4. 前記有機ケイ素化合物は、ヘキサメチルジシラザンである
    ことを特徴とする請求項1〜の何れかに記載のマスクブランクの製造方法。
  5. 前記ハードマスク膜の膜厚は、1.5nm以上15nm未満である
    ことを特徴とする請求項1〜の何れかに記載のマスクブランクの製造方法。
  6. 前記ハードマスク膜は、酸素および窒素のうちの少なくとも一方とケイ素とからなる
    ことを特徴とする請求項1〜の何れかに記載のマスクブランクの製造方法。
  7. 請求項1〜の何れかに記載のマスクブランクの製造方法によって製造されたマスクブランクを用いる転写用マスクの製造方法であって、
    リソグラフィー法により前記レジスト膜にレジストパターンを形成する工程と、
    前記レジストパターンをマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜をパターニングする工程と、
    前記パターニングされたハードマスク膜をマスクとして前記パターニング材料膜をエッチングすることにより、当該パターニング材料膜をパターニングする工程とを有する
    転写用マスクの製造方法。
  8. 前記成膜工程では、前記パターニング材料膜として、クロムを含有する材料膜を成膜し、
    前記パターニング材料膜をパターニングする工程では、前記ハードマスク膜をマスクとし、塩素系ガスを用いたドライエッチングより、前記クロムを含有する材料膜をパターニングする
    ことを特徴とする請求項記載の転写用マスクの製造方法。
  9. 基板上に、パターニング材料膜と、ケイ素を含有するハードマスク膜とがこの順で成膜されたマスクブランクであって、
    前記ハードマスク膜は、有機ケイ素化合物を用いた処理によって、表面のシラノール基が化学修飾基で修飾されており、修飾された表面の室温23℃における水接触角が40°以上55°以下である
    ことを特徴とするマスクブランク。
  10. 前記有機ケイ素化合物は、アミノ基を有している
    ことを特徴とする請求項記載のマスクブランク。
  11. 前記有機ケイ素化合物は、ヘキサメチルジシラザンである
    ことを特徴とする請求項9または10記載のマスクブランク。
JP2015167664A 2015-08-27 2015-08-27 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク Active JP6523873B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167664A JP6523873B2 (ja) 2015-08-27 2015-08-27 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167664A JP6523873B2 (ja) 2015-08-27 2015-08-27 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019085890A Division JP6738935B2 (ja) 2019-04-26 2019-04-26 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Publications (3)

Publication Number Publication Date
JP2017044892A JP2017044892A (ja) 2017-03-02
JP2017044892A5 JP2017044892A5 (ja) 2018-05-31
JP6523873B2 true JP6523873B2 (ja) 2019-06-05

Family

ID=58211290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167664A Active JP6523873B2 (ja) 2015-08-27 2015-08-27 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Country Status (1)

Country Link
JP (1) JP6523873B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126020A (ja) * 2016-01-15 2017-07-20 Hoya株式会社 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979337B2 (ja) * 2017-11-17 2021-12-15 芝浦メカトロニクス株式会社 フォトマスクの製造方法
US20220319824A1 (en) 2019-07-01 2022-10-06 Furuya Metal Co., Ltd. Ruthenium-based sputtering target and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291655A (ja) * 2000-04-07 2001-10-19 Tokyo Electron Ltd 疎水化処理の評価方法、レジストパターンの形成方法及びレジストパターン形成システム
JP5704754B2 (ja) * 2010-01-16 2015-04-22 Hoya株式会社 マスクブランク及び転写用マスクの製造方法
JP5518772B2 (ja) * 2011-03-15 2014-06-11 信越化学工業株式会社 パターン形成方法
KR20150014009A (ko) * 2013-07-25 2015-02-06 에스케이하이닉스 주식회사 미세 패턴 형성 방법
JP6258151B2 (ja) * 2013-09-25 2018-01-10 信越化学工業株式会社 フォトマスクブランクおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126020A (ja) * 2016-01-15 2017-07-20 Hoya株式会社 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク

Also Published As

Publication number Publication date
JP2017044892A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US20190384156A1 (en) Reflective mask blank, reflective mask, and method of manufacturing reflective mask blank
US9709885B2 (en) Photomask blank and method for manufacturing photomask blank
JP4635610B2 (ja) 反射型フォトマスクブランク、反射型フォトマスク、及び反射型フォトマスクの製造方法
KR101811096B1 (ko) 포토마스크 블랭크의 제조 방법
JP2016018192A (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6545795B2 (ja) マスクブランク、転写用マスク、マスクブランクの製造方法、転写用マスクの製造方法および半導体デバイスの製造方法
TWI823946B (zh) 反射型光罩基底、反射型光罩及反射型光罩基底之製造方法
JP2007017998A (ja) ハーフトーン型位相シフトマスク及びマスクブランク
US9383637B2 (en) Substrate with multilayer reflective film, reflective mask blank for EUV lithography, method of manufacturing reflective mask for EUV lithography and method of manufacturing semiconductor device
JP6526938B1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6523873B2 (ja) マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク
CN111758071A (zh) 掩模坯料、相移掩模及半导体器件的制造方法
US20220214608A1 (en) Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP6321265B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
WO2019188397A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
WO2020179463A1 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP6744100B2 (ja) 転写用マスクの製造方法
JP6713336B2 (ja) マスクブランクの製造方法、および転写用マスクの製造方法
JP6738935B2 (ja) マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク
JP7254470B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
WO2023037731A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6523873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250