KR20150014009A - 미세 패턴 형성 방법 - Google Patents

미세 패턴 형성 방법 Download PDF

Info

Publication number
KR20150014009A
KR20150014009A KR1020130088354A KR20130088354A KR20150014009A KR 20150014009 A KR20150014009 A KR 20150014009A KR 1020130088354 A KR1020130088354 A KR 1020130088354A KR 20130088354 A KR20130088354 A KR 20130088354A KR 20150014009 A KR20150014009 A KR 20150014009A
Authority
KR
South Korea
Prior art keywords
layer
hard mask
pattern
domain
forming
Prior art date
Application number
KR1020130088354A
Other languages
English (en)
Inventor
반근도
복철규
김명수
이기령
심현경
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020130088354A priority Critical patent/KR20150014009A/ko
Priority to US14/135,145 priority patent/US9190274B2/en
Publication of KR20150014009A publication Critical patent/KR20150014009A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment

Abstract

하드 마스크(hard mask)층을 표면 처리하여 소수성을 증가시켜 중성층(neutral layer)을 형성하고, 중성층 상에 블록코폴리머(block co-polymer)층을 형성한 후, 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 미세 패턴 형성 방법을 제시한다.

Description

미세 패턴 형성 방법{Method for fabricating fine pattern}
본 발명은 반도체 소자에 관한 것으로서, 보다 상세하게는 미세 패턴(fine pattern)을 형성하는 방법에 관한 것이다.
전자 소자의 회로를 반도체 기판에 집적할 때, 제한된 면적에 보다 많은 수의 패턴들을 집적하고자 노력하고 있다. 전자 소자 또는 반도체 소자의 집적도가 증가되며, 보다 작은 크기로 미세 패턴을 구현하고자 노력 하고 있다. 수 내지 수십 ㎚의 크기의 나노 스케일(nano scale)의 선폭(CD: Critical Dimension)으로 미세 콘택홀(contact hole) 배열과 같은 미세 패턴들의 배열을 형성하기 위해 다양한 새로운 기술이 시도되고 있다.
반도체 소자의 미세 패턴을 단순히 포토리소그래피(photo lithography) 기술에 의존하여 형성할 때, 리소그래피 장비의 이미지(image) 분해능에 대한 한계로 보다 미세한 크기의 패턴을 구현하는 데 제약이 있다. 포토리소그래피 기술에 사용되는 광원의 파장 및 광학 시스템(system)의 해상 한계로 인한 분해능 제약을 극복하여 미세 패턴들의 배열을 형성하기 위해서, 폴리머(polymer) 분자들의 자기조립(self assembly) 가능성을 이용한 미세 패턴들을 형성하는 방법이 고려될 수 있다. 이러한 자기조립 방법을 이용한 미세 구조 형성 과정들은 실험적 수준에 머무르고 있어, 고집적 반도체 소자들에 요구되는 미세 패턴들의 배열에 적용하는 데 여전히 어려움이 있다.
본 발명은 블록코폴리머(block co-polymer)의 상분리 및 자기 조립 현상을 이용하여 미세 패턴을 형성하는 방법을 제시하고자 한다.
본 발명의 일 관점은, 하드 마스크(hard mask)층을 표면 처리하여 소수성을 증가시켜 중성층(neutral layer)을 형성하는 단계; 상기 중성층 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및 상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법을 제시한다.
본 발명의 일 관점은, 하드 마스크(hard mask)층 상에 가이드 패턴(guide pattern)을 형성하는 단계; 상기 가이드 패턴에 노출된 상기 하드 마스크층 부분을 선택적으로 표면 처리하여 소수성을 증가시켜 중성층(neutral layer) 부분을 형성하는 단계; 상기 하드 마스크층 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및 상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법을 제시한다.
본 발명의 일 관점은, 하드 마스크(hard mask)층 상에 가이드 패턴(guide pattern)을 형성하는 단계; 상기 가이드 패턴에 노출된 상기 하드 마스크층 부분을 선택적으로 제거하여 하드 마스크 패턴을 형성하는 단계; 상기 하드 마스크 패턴에 표면 처리하여 소수성을 증가시켜 중성층(neutral layer) 패턴을 형성하는 단계; 상기 중성층 패턴 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및 상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법을 제시한다.
본 발명의 실시예들에 따르면, 블록코폴리머(block co-polymer)의 상분리 및 자기 조립 현상를 이용하여 미세 패턴을 형성하는 방법을 제시할 수 있다.
도 1 내지 도 10은 본 발명의 일 실시예에 따른 미세 패턴 형성 방법을 보여주는 도면들이다.
도 11 내지 도 15는 본 발명의 일 실시예에 따른 미세 패턴 형성 방법을 보여주는 도면들이다.
도 16 내지 도 20은 본 발명의 일 실시예에 따른 미세 패턴 형성 방법을 보여주는 도면들이다.
본 발명의 실시예들은 블록코폴리머(BCP)의 도메인부(domain)들을 자기 조립하여 반도체 소자의 미세 패턴의 배열을 형성하는 방법을 제시한다. 블록코폴리머(BCP)의 상분리 현상을 이용하여 상분리된 도메인(domain)부들이 자발적으로 자기 조립되게 함으로써, 도메인부들이 반복적으로 배열되는 미세 구조를 얻을 수 있다. 블록코폴리머의 자기조립을 이용한 패턴 형성 공정은 단일 분자층 두께와 유사한 수준의 크기로 미세 패턴을 구현할 수 있어 포토리소그래피 공정에서의 분해능 한계를 극복할 수 있다.
본 발명의 실시예들은 블록코폴리머층이 코팅(coating)되는 하부층을 친수성을 가지는 막질, 예컨대, 실리콘산질물(SiON)층이나 실리콘산화물(SiO2)층을 포함하여 도입하고, 이온주입(implantation) 처리하여 소수성화를 유도하여 블록코폴리머의 폴리머 블록(polymer block)들이 하부층 상에 실질적으로 수직하게 배열될 수 있게 한다. 실리콘산질물(SiON)층이나 실리콘산화물(SiO2)층은 표면이 친수성을 가지는 친수성 막질이므로, 폴리머 블록의 수직 배향을 유도하는 층, 예컨대, 중성층(neutral layer)로 직접적으로 사용되기는 어렵다. 중성층은 블록 코폴리머를 이루는 각각의 폴리머 블록들 중 어느 한 폴리머 블록에 대한 친화도가 상대적으로 우세하지 않은 중립적인 친화도를 제공하는 층일 수 있다. 예컨대, 중성층은 각각의 폴리머 블록에 대해 중간 정도의 친화도를 나타내어 어느 한 폴리머 블록이 우선적으로 접촉하여 조립되지 않도록 유도하는 특성을 나타낸다. 중성층 표면에서 각각의 폴리머 블록은 실질적으로 대등한 친화도를 가지게 되어, 상호 간에 교번적으로 분리되어 배향될 수 있다.
직접 자기 조립(DSA: Direct Self Assembly) 리소그래피 기술로 알려진 블록코폴리머의 자기 조립을 이용한 패턴 형성 방법에서 폴리머 블록의 수직 배향을 유도하는 중성층으로 유기 물질층(organic material layer)을 이용하는 것으로 알려져 있으나, 블록코폴리머 또한 유기물이어서 식각 정도가 유사하며, 유기 물질층과 블록코폴리머 사이에 식각 선택비를 얻기가 어려울 수 있다. 본 발명의 실시예들에서는 블록코폴리머와는 달리 비유기물질층(inorganic material layer)을 중성층으로 도입하고, 비유기물층 표면을 이온주입 처리하여 소수성화하여 비유기물질층 표면을 블록코폴리머의 폴리머 블록들이 실질적으로 수직하게 배향될 수 있는 소수성을 가지게 한다. 비유기물질층인 SiON층이나 SiO2층은 유기물질인 블록코폴리머와 상당한 식각 선택비를 가질 수 있고, SiON층이나 SiO2층 자체로 하드 마스크(hard mask)로 사용될 수 있어, 패턴 형성 과정의 공정 단계를 줄여 보다 단순화할 수 있다.
본 발명의 실시예들에 따른 미세 패턴 형성 방법은, DRAM, SRAM, FLASH, MRAM, PcRAM, ReRAM 또는 FeRAM과 같은 메모리 소자나, 논리 집적회로가 집적된 로직(logic) 소자를 구성하는 라인 및 스페이스(line & space) 배열이나 콘택홀(contact hole)들의 배열과 같은 미세 패턴들을 구현하는 데 적용될 수 있다.
본 발명의 실시예의 기재에서 어느 부재의 "상"에 위치하거나 "상부" 또는 "하부"에 위치한다는 기재는 상대적인 위치 관계를 의미하는 것이지 그 부재에 직접 접촉하거나 또는 사이 계면에 다른 부재가 더 도입되는 특정한 경우를 한정하는 것은 아니다.
도 1은 하드 마스크(hard mask: 400)층을 형성하는 단계를 보여준다. 반도체 기판(100) 상에 식각 대상층(200), 하드 마스크 메인층(main hard mask layer: 300) 및 하드 마스크층(400)을 순차적으로 형성할 수 있다. 반도체 기판(100)에는 디램(DRAM) 소자와 같은 메모리(memory) 소자의 메모리 셀(cell)을 이루는 트랜지스터(transistor: 도시되지 않음)들이 집적될 수 있다. 식각 대상층(200)은 하드 마스크층(400) 또는 하드 마스크 메인층(300)을 식각 마스크(mask)로 이용하여 선택적 식각으로 패터닝될 층으로 도입될 수 있다. 식각 대상층(200)은 실리콘산화물층을 포함하는 층간 절연층으로 형성되거나 또는 배선을 이루는 도전층 또는 금속층을 포함하여 형성될 수 있다.
하드 마스크층(400) 및 하드 마스크 메인층(300)은 식각 대상층(200)을 선택적으로 식각할 때 식각 마스크로서 하드 마스크를 제공하는 층으로 도입될 수 있다. 하드 마스크 메인층(300)은 비정질 카본층(amorphous carbon layer)이나 또는 스핀온카본(SOC: Spin On Carbon)층을 포함하여 형성될 수 있다. 하드 마스크층(400)은 하드 마스크로 주되게 이용될 부분인 하드 마스크 메인층(300)을 식각하는 식각 마스크를 제공하는 층으로 도입될 수 있다.
하드 마스크 메인층(300)이 대략 1500Å 두께의 비정질 카본층이나 또는 스핀온카본(SOC)층을 포함하여 형성될 경우, 이를 보호하는 비유기 물질층(inorganic material layer)을 포함하여 하드 마스크층(400)을 형성할 수 있다. 비유기 물질층은 친수성을 가지는 막질로, 실리콘(Si)을 함유하는 유전층으로 형성될 수 있다. 실리콘 산화물(SiO2)층 또는 실리콘 산질화물(SiON)층을 포함하여 하드 마스크층(400)을 형성할 수 있다. 후속될 블록코폴리머층(block copolymer layer)과의 식각 선택비를 고려할 때, 보다 높은 식각 선택비를 구현할 수 있는 실리콘 산질화물(SiON)층을 포함하여 하드 마스크층(400)을 형성할 수 있다. 실리콘 산화물층은 대략 200Å 두께로 형성될 수 있다.
도 2는 포토레지스트 패턴(530)을 형성하는 단계를 보여준다. 하드 마스크층(400)에 바닥반사방지층(BARC: 510)을 형성한다. 바닥반사방지층(510) 상에 포토레지스트층을 도포하고 노광 및 현상하여 포토레지스트 패턴(530)을 형성한다.
도 3은 가이드 패턴(guide pattern: 510, 530)을 형성하는 단계를 보여준다. 포토레지스트 패턴(530)에 의해 노출된 바닥반사방지층(510) 부분을 선택적으로 식각 제거하는 BARC 트림(trim) 식각을 수행할 수 있다. 포토레지스트 패턴(530) 및 바닥반사방지층(510)의 패턴을 포함하여 가이드 패턴(510, 530)이 하드 마스크층(400) 상에 형성될 수 있다. 이때, 가이드 패턴(510, 530)은 하드 마스크층(400)을 차폐하는 부분의 폭, 즉, 가이드 패턴(510, 530)의 폭 보다, 하드 마스크층(400)이 가이드 패턴(510, 530)에 의해 노출되는 폭, 즉, 가이드 패턴(510, 530)과 패턴 사이의 이격 간격의 폭이 (N(N은 정수) + 1)배 더 크게 형성될 수 있다. 가이드 패턴(510, 530)은 후속 과정에서 블록코폴리머의 폴리머 블록들이 도메인(domain)부들을 이루며 상분리될 때, 각각의 도메인부들의 크기 및 수를 제어하기 위해 도입될 수 있다.
도 4는 하드 마스크층(400)에 중성층 부분(neutral portion: 410)을 형성하는 단계를 보여준다. 가이드 패턴(510, 530)에 의해 노출된 하드 마스크층(400) 부분을 선택적으로 표면 처리한다. 표면 처리는 노출된 하드 마스크층(400) 부분에 하전 입자를 제공하여 표면의 소수성을 증가시키도록 수행될 수 있다. 하전 입자를 주입(implantation)하여 하드 마스크층(400) 부분의 소수성 정도를 증가시켜, 하드 마스크층(400)의 친수성 성질을 소수성을 가지게 변화시킬 수 있다.
하전 입자들을 주입하는 과정은 불화 탄소(carbon fluoride) 가스를 포함하는 이온 주입 매질을 이용하는 이온 주입 과정으로 수행될 수 있다. 불화 탄소 가스는 사불화 탄소(CF4) 가스가 사용될 수 있다. 실리콘층을 기준으로 표면 처리하기 이전의 물방울의 접촉 각도는 28도(°) 내지 36도(°)이나, 사불화 탄소를 사용한 이온 주입의 주입 에너지를 달리 하여 수행하여, 물방울의 접촉 각도를 97.3도(°), 105.2도(°) 및 106.8도(°)로 각각 증가시킨 결과를 실험적으로 측정할 수 있다. 즉, 친수성의 표면 특징을 하전 입자 주입의 표면 처리로 개질하여 소수성화 할 수 있다.
하드 마스크층(400)의 노출된 부분에 이온 주입을 수행함으로써, 노출된 부분의 표면 특질을 소수성화하여 노출된 부분을 중성층 부분(410)으로 개질할 수 있다. 중성층 부분(410)은 소수성을 가져 블록코폴리머층이 상분리될 때 개개의 폴리머 블록이 실질적으로 수직하게 배향되도록 유도할 수 있다. 이러한 중성층 부분(410)은 별도의 유기 물질층을 형성하여 형성할 수도 있으나, 하드 마스크층(400)을 이루는 실리콘산질화물과 같은 비유기 물질층에 직접적으로 이온주입을 수행하여 표면 에너지를 변화시킴으로써 비유기 물질층이 친수성이 아닌 보다 소수성에 가까워진 표면 친화도를 가지게 유도할 수 있다. 이에 따라 별도의 유기 물질층을 형성하는 과정을 생략할 수 있다.
이온 주입 매질의 종류, 도즈(dose), 알에프 파워(RF power), 바이어스(bias) 또는 공정 압력(pressure)의 조건을 변화시켜 하드 마스크층(400) 표면의 표면 에너지 상태를 변화시키는 정도를 달리하여 소수성을 증가시키는 정도를 달리할 수 있다. 또한, 이온 주입 매질을 플라즈마(plasma)로 여기하고 하드 마스크층(400) 표면에 하전 입자, 즉, 여기된 이온들이 주입 또는 입사되도록 하여 하드 마스크층(400)의 표면을 표면 처리할 수 있다. 이온 주입(implantation)은 이온 빔(beam)을 사용하는 이온 주입 과정으로 수행되거나 또는 플라즈마를 이용한 이온 주입을 이용하여 수행될 수 있다.
하드 마스크층(400)의 노출 부분을 표면 처리하여 중성층 부분(410)으로 개질하며, 가이드 패턴(510, 530)에 의해 차폐되어 있어 이온 주입 표면 처리가 수행되지 않은 하드 마스크층(400) 부분은 비처리 부분(430)으로 친수성을 유지하게 된다. 이러한 비처리 부분(430)은 가이드 패턴(510, 530)의 패턴 형상 및 선폭을 따라 그 영역이 설정될 수 있다.
도 5는 가이드 패턴(510, 530)을 제거하는 단계를 보여준다. 가이드 패턴(510, 530)을 선택적으로 제거한다. 솔벤트(solvent)를 이용하는 습식 과정을 수행하여 가이드 패턴(510, 530)을 제거하여, 하부의 하드 마스크층(400)의 비처리 부분(430)을 노출한다.
도 6은 하드 마스크층(400)을 덮는 블록코폴리머층(BCP: Block Co-Polymer: 600)을 형성하는 단계를 보여준다. 블록코폴리머층(600)을 코팅(coating)하여 형성한 후, 어닐링(annealing)하여 블록코폴리머층(600)을 제1도메인부(domain: 610) 및 제2도메인부(630)들로 상분리시킨다. 블록코폴리머층(600)은 폴리스티렌-폴리메타메틸아크릴레이트(PS-PMMA) 코폴리머를 코팅하여 형성될 수 있다. 제1도메인부(610)는 BCP를 구성하는 PS 블록 부분이 상분리되어 이루어질 수 있고, 제2도메인부(630)는 PMMA 블록 부분이 상분리되어 이루어질 수 있다.
블록코폴리머(BCP)는 두 가지 또는 그 이상의 서로 다른 구조를 가지는 폴리머 블록(polymer block)들이 공유 결합을 통해 하나의 폴리머로 결합된 형태의 기능성 고분자이다. 블록코폴리머를 구성하는 각 폴리머 블록들은 각각의 화학 구조의 차이로 인해 서로 다른 섞임 특성 및 서로 다른 선택적 용해도를 가질 수 있다. 이는 블록 공중합체가 용액상 혹은 고체상에서 상분리 또는 선택적 용해에 의해 자기조립 구조 (self-assembled structure)를 형성하게 되는 요인이 된다.
블록코폴리머가 자기조립을 통해 특정 형상의 미세 구조를 구성하는 것은 각각의 블록 폴리머의 물리 또는/ 및 화학적 특성에 영향을 받을 수 있다. 2 개의 서로 다른 폴리머로 이루어진 블록코폴리머가 기판 상에 자기조립되는 경우, 블록코폴리머의 자기조립 구조는 블록코폴리머를 구성하는 각 폴리머 블록들의 부피 비율, 상분리를 위한 어닐링 온도, 블록 폴리머의 분자의 크기 등에 따라 3차원 구조인 큐빅(cubic) 및 이중 나선형, 그리고 2차원 구조인 조밀 육방 기둥(hexagonal packed column) 구조 및 라멜라(lamella) 구조 등과 같은 다양한 구조들로 형성될 수 있다. 각 구조 내에서의 각 폴리머 블록의 크기는 해당 고분자 블록의 분자량에 비례할 수 있다.
블록코폴리머는 폴리부타디엔-폴리부틸메타크릴레이트 (polybutadiene-polybutylmethacrylate) 코폴리머, 폴리부타디엔-폴리디메틸실록산 (polybutadiene-polydimethylsiloxane) 코폴리머, 폴리부타디엔-폴리메틸메타크릴레이트(polybutadiene-polymethylmethacrylate) 코폴리머, 폴리부타디엔-폴리비닐피리딘 (polybutadienepolyvinylpyridine) 코폴리머, 폴리부틸아크릴레이트-폴리메틸메타크릴레이트 (polybutylacrylate-polymethylmethacrylate) 코폴리머, 폴리부틸아크릴레이트-폴리비닐피리딘 (polybutylacrylate-polyvinylpyridine) 코폴리머, 폴리이소프렌-폴리비닐피리딘 (polyisoprene-polyvinylpyridine) 코폴리머, 폴리이소프렌-폴리메틸메타크릴레이트(polyisoprene-polymethylmethacrylate) 코폴리머, 폴리헥실아크릴레이트-폴리비닐피리딘 (polyhexylacrylatepolyvinylpyridine) 코폴리머, 폴리이소부틸렌-폴리부틸메타크릴레이트 (polyisobutylene-polybutylmethacrylate) 코폴리머, 폴리이소부틸렌-폴리메틸메타크릴레이트 (polyisobutylene-polymethylmethacrylate) 코폴리머, 폴리이소부틸렌-폴리부틸메타크릴레이트 (polyisobutylene-polybutylmethacrylate) 코폴리머, 폴리이소부틸렌-폴리디메틸실록산 (polyisobutylenepolydimethylsiloxane) 코폴리머, 폴리부틸메타크릴레이트-폴리부틸아크릴레이트 (polybutylmethacrylatepolybutylacrylate) 코폴리머, 폴리에틸에틸렌-폴리메틸메타크릴레이트 (polyethylethylene-polymethylmethacrylate) 코폴리머, 폴리스티렌-폴리부틸메타크릴레이트 (polystyrene-polybutylmethacrylate), 폴리스티렌-폴리부타디엔(polystyrene-polybutadiene) 코폴리머, 폴리스티렌-폴리이소프렌 (polystyrene-polyisoprene) 코폴리머, 폴리스티렌-폴리메틸실록산 (polystyrene-polydimethylsiloxane) 코폴리머, 폴리스티렌-폴리비닐피리딘 (polystyrene-polyvinylpyridine) 코폴리머, 폴리에틸에틸렌-폴리비닐피리딘 (polyethylethylene-polyvinylpyridine), 폴리에틸렌-폴리비닐피리딘(polyethylene-polyvinylpyridine) 코폴리머, 폴리비닐피리딘-폴리메틸메타크릴레이트 (polyvinylpyridinepolymethylmethacrylate) 코폴리머, 폴리에틸렌옥사이드-폴리이소프렌 (polyethyleneoxide-polyisoprene) 코폴리머, 폴리에틸렌옥사이드-폴리부타디엔 polyethyleneoxide-polybutadiene) 코폴리머, 폴리에틸렌옥사이드-폴리스티렌(polyethyleneoxide-polystyrene) 코폴리머, 폴리에틸렌옥사이드-폴리메틸메타크릴레이트 (polyethyleneoxidepolymethylmethacrylate) 코폴리머, 폴리에틸렌옥사이드-폴리디메틸실록산 (polyethyleneoxide-polydimethylsiloxane) 코폴리머, 폴리스티렌-폴리에틸렌옥사이드 (polystyrene-polyethyleneoxide) 코폴리머 등을 사용할 수 있다. 또한, 세 종류의 폴리머 블록을 가지는 삼중 블록 코폴리머를 사용할 수도 있다.
BCP층(600)의 상분리를 통해 BCP층(600)의 각각의 폴리머 성분들을 재배열 및 배향시키기 위하여, BCP층(600) 내의 블록코폴리머의 유리전이온도(Tg) 보다 더 높은 온도에서 어닐링을 수행할 수 있다. 대략 100℃ 내지 190 ℃의 범위 내에서 선택되는 온도에서 대략 1 시간 내지 24 시간 동안 BCP층(600)을 어닐링할 수 있다.
하드 마스크층(400)의 중성층 부분(430)은 BCP층(600)을 구성하는 각각의 폴리머 블록들이 실질적으로 수직하게 배향되도록 유도할 수 있다. 하드 마스크층(400)의 비처리 부분(410)은 소수성을 가지게 개질되지 않아 친수성을 유지하고 있어, BCP층(600)을 이루는 어느 하나의 폴리머 블록이 우선적으로 정렬될 수 있다. 예컨대, 제1도메인부(610)가 비처리 부분(410)에 정렬되게 배열 배향될 수 있다. 비처리 부분(410)들 사이에 위치하는 중성층 부분(430)은 친수성 표면 성질에서 상대적으로 높은 소수성을 가지게 개질되어 각각의 폴리머 블록들에 대해 실질적으로 대등한 친화도를 가지는 표면 특성을 가질 수 있으므로, 각각의 폴리머 블록들이 실질적으로 수직하게 배열되도록 상분리되도록 유도할 수 있다. 제1도메인부(610)가 비처리 부분(410) 상에 우선적으로 정렬되게 배열되므로, 중성층 부분(430) 상에는 제2도메인부(630) 및 제1도메인부(610)가 교번적으로 반복 배치되는 형상으로 배열될 수 있다.
가이드 패턴(도 4의 530, 510)이 길게 연장되는 라인(line) 형상으로 패터닝될 경우, 가이드 패턴(530, 510)의 형상을 따라 설정되는 비처리 부분(410) 또한 라인 형상을 가지며, 비처리 부분(410)에 우선적으로 정렬되는 제1도메인부(610) 또한 라인 형상을 가질 수 있다. 비처리 부분(410)에 정렬되는 제1도메인부(610) 사이의 BCP층(600) 부분은 중성층 부분(430) 상에서 각각의 폴리머 블록들이 재배향 및 배열되므로 비처리 부분(410)에 정렬된 제1도메인부(610) 옆에 제2도메인부(630)가 배치되는 방식으로 제1 및 제2도메인부(610, 630)들이 교번적으로 배치되는 형상으로 배열될 수 있다. 따라서, 제1 및 제2도메인부(610, 630)들은 라인 형상의 라멜라 구조를 제공하게 상분리될 수 있다.
도 7은 제2도메인부를 선택적으로 제거하는 단계를 보여준다. 제2도메인부(630)을 선택적으로 제거하여 오프닝부(631)들의 배열을 형성한다. 예컨대, 제2도메인부(630)을 이루는 PMMA 블록을 선택적으로 식각 제거할 수 있다. PMMA 폴리머와 PS 폴리머의 용해도 차이를 이용하여, 솔벤트를 이용하는 습식 식각으로 PMMA 블록만을 선택적으로 식각 제거할 수 있다. 오프닝부(631)는 제2도메인부(630)의 형상을 따르는 길게 연장된 라인 형상으로 형성될 수 있다.
도 8은 하드 마스크(401)를 패터닝(patterning)하는 단계를 보여준다. 제2도메인부(630)을 제거한 후 잔류하는 제1도메인부(610)들의 배열을 식각 마스크(etch mask)로 이용하여, 제1도메인부(610)에 의해 노출된 하드 마스크층(400) 부분을 선택적으로 식각 제거한다. 하드 마스크층(400)은 SiON층과 같은 비유기 물질층으로 이루어져 있고, 제1도메인부(610)는 PS 폴리머와 같은 유기 물질층이므로, 하드 마스크층(400)과 제1도메인부(610) 사이에는 유기 물질층들 사이에 비해 더 큰 식각 선택비를 구현할 수 있다. 이에 따라, 하드 마스크(401)는 제1도메인부(610)의 배열 형상을 보다 정교하게 패턴 전사된 형상의 패턴으로 형성될 수 있다.
도 9는 하드 마스크 메인층 패턴(301)을 패터닝하는 단계를 보여준다. 하드 마스크(401)의 패턴 형상을 하부의 하드 마스크 메인층(300)에 패턴 전사하는 선택적 식각 과정 또는 패터닝 과정을 수행한다. 하드 마스크(401)의 패턴 형상을 따르는 하드 마스크 메인층 패턴(301)이 형성될 수 있다.
도 10은 식각 대상층 패턴(201)을 형성하는 단계를 보여준다. 하드 마스크 메인층 패턴(301)의 패턴 형상을 하부의 식각 대상층(200)에 패턴 전사하는 선택적 식각 과정 또는 패터닝 과정을 수행한다. 하드 마스크 메인층 패턴(301)의 패턴 형상을 따르는 식각 대상층 패턴(201)의 배열이 형성될 수 있다. 식각 대상층 패턴(201)은 라인 형상들이 반복 배치된 도전 패턴들의 배열을 제공할 수 있다. 예컨대, DRAM이나 SRAM, FLASH, MRAM, ReRAM, FeRAM 또는 PcRAM과 같은 메모리(memory) 집적회로가 집적된 메모리 소자나 논리 집적회로가 집적된 로직(logic) 소자를 구성하는 도전 라인 패턴들의 배열로 식각 대상층 패턴(201)은 이용될 수 있다. 이와 같이 본 발명의 실시예는 반도체 소자의 미세 패턴들의 배열을 형성하는 데 적용될 수 있다.
도 11은 폴리머 매트릭스층(polymer matrix layer: 1450)을 형성하는 단계를 보여준다. 반도체 기판(1100) 상에 식각 대상층(1200), 하드 마스크 메인층(main hard mask layer: 1300) 및 하드 마스크층(1400)을 순차적으로 형성할 수 있다. 하드 마스크 메인층(1300)은 비정질 카본층(amorphous carbon layer)이나 또는 스핀온카본(SOC: Spin On Carbon)층을 포함하여 형성될 수 있다. 하드 마스크 메인층(1300)이 대략 1500Å 두께의 비정질 카본층이나 또는 스핀온카본(SOC)층을 포함하여 형성될 경우, 이를 보호하는 비유기 물질층(inorganic material layer)을 포함하여 하드 마스크층(1400)을 형성할 수 있다. 실리콘 산화물(SiO2)층 또는 실리콘 산질화물(SiON)층을 포함하여 하드 마스크층(1400)을 형성할 수 있다.
하드 마스크층(1400) 상에 폴리머 매트릭스층(1450)을 코팅한다. 폴리머 매트릭스층(1450)은 폴리머를 코팅하여 형성될 수 있으며, 후속 코팅될 블록코폴리머(BCP)를 이루는 한 성분의 폴리머, 예컨대, 폴리스티렌(PS) 폴리머나 폴리메틸메타아크릴레이트(PMMA) 폴리머를 코팅하여 형성될 수 있다.
폴리머 매트릭스층(1450) 상에 포토레지스트 패턴(1530)을 형성한다. 이때, 폴리머 매트릭스층(1450)의 도입으로 바닥반사방지층(BARC)는 도입이 생략될 수 있다. 폴리머 매트릭스층(1450) 상에 포토레지스트층을 도포하고 노광 및 현상하여 포토레지스트 패턴(1530)을 형성한다.
도 12는 가이드 패턴(1451)을 형성하는 단계를 보여준다. 포토레지스트 패턴(1530)에 의해 노출된 폴리머 매트릭스층(1450) 부분을 선택적으로 식각 제거하여 가이드 패턴(1451)으로 패터닝할 수 있다. 이때, 가이드 패턴(1451)은 하드 마스크층(1400)을 차폐하는 부분의 폭, 즉, 가이드 패턴(1451)의 폭 보다, 하드 마스크층(1400)이 가이드 패턴(1450)에 의해 노출되는 폭, 즉, 가이드 패턴(1451)과 패턴 사이의 이격 간격의 폭이 (N(N은 정수) + 1)배 더 크게 형성될 수 있다. 가이드 패턴(1451)은 후속 과정에서 블록코폴리머의 폴리머 블록들이 도메인(domain)부들을 이루며 상분리될 때, 각각의 도메인부들의 크기 및 수를 제어하기 위해 도입될 수 있다.
도 13은 하드 마스크층(1400)에 중성층 부분(neutral portion: 1410)을 형성하는 단계를 보여준다. 가이드 패턴(1451)에 의해 노출된 하드 마스크층(1400) 부분을 선택적으로 표면 처리한다. 표면 처리는 노출된 하드 마스크층(1400) 부분에 하전 입자를 제공하여 표면의 소수성을 증가시키도록 수행될 수 있다. 하전 입자를 주입(implantation)하여 하드 마스크층(1400) 부분의 소수성 정도를 증가시켜, 하드 마스크층(1400)의 친수성 성질을 소수성을 가지게 변화시킬 수 있다.
하드 마스크층(1400)의 노출 부분을 표면 처리하여 중성층 부분(1410)으로 개질하며, 가이드 패턴(1451)에 의해 차폐되어 있어 이온 주입 표면 처리가 수행되지 않은 하드 마스크층(1400) 부분은 비처리 부분(1430)으로 친수성을 유지할 수 있다.
도 14는 하드 마스크층(1400)을 덮는 블록코폴리머층(BCP: 1600)을 형성하는 단계를 보여준다. 블록코폴리머층(1600)을 코팅(coating)하여 형성한 후, 어닐링(annealing)하여 블록코폴리머층(1600)을 제1도메인부(domain: 1610) 및 제2도메인부(1630)들로 상분리시킨다. 블록코폴리머층(1600)은 폴리스티렌-폴리메타메틸아크릴레이트(PS-PMMA) 코폴리머를 코팅하여 형성될 수 있다. 제1도메인부(610)는 BCP를 구성하는 PS 블록 부분이 상분리되어 이루어질 수 있고, 제2도메인부(630)는 PMMA 블록 부분이 상분리되어 이루어질 수 있다.
하드 마스크층(1400)의 중성층 부분(1430)은 BCP층(1600)을 구성하는 각각의 폴리머 블록들이 실질적으로 수직하게 배향되도록 유도할 수 있다. 하드 마스크층(400) 상에 잔류하는 가이드 패턴(1451)은 예컨대 제1도메인부(610)를 이루는 PS 폴리머층을 포함하고 있으므로, BCP층(1600)을 이루는 어느 하나의 폴리머 블록, 즉, PS 블록으로 이루어지는 제1도메인부(1610)가 우선적으로 가이드 패턴(1451)에 정렬될 수 있다. 비처리 부분(1410)들 사이에 위치하는 중성층 부분(1430)은 소수성이 증가되어 각각의 폴리머 블록들이 실질적으로 수직하게 배열되도록 상분리되도록 유도할 수 있다. 제1도메인부(1610)가 가이드 패턴(1451) 상에 우선적으로 정렬되게 배열되므로, 중성층 부분(1430) 상에는 제2도메인부(1630) 및 제1도메인부(1610)가 교번적으로 반복 배치되는 형상으로 배열될 수 있다.
가이드 패턴(1451)이 길게 연장되는 라인(line) 형상으로 패터닝될 경우, 가이드 패턴(1451)에 우선적으로 정렬되는 제1도메인부(1610) 또한 라인 형상을 가질 수 있다. 가이드 패턴(1451)에 정렬되는 제1도메인부(1610)들 사이의 BCP층(1600) 부분은 가이드 패턴(1451)에 정렬된 제1도메인부(1610) 옆에 제2도메인부(1630)가 배치되는 방식으로 제1 및 제2도메인부(1610, 1630)들이 교번적으로 배치되는 형상으로 배열될 수 있다.
도 15는 제2도메인부(1630)를 선택적으로 제거하는 단계를 보여준다. 제2도메인부(1630)을 선택적으로 제거하여 오프닝부들의 배열을 형성한다. 예컨대, 제2도메인부(1630)을 이루는 PMMA 블록을 선택적으로 식각 제거할 수 있다. PMMA 폴리머와 PS 폴리머의 용해도 차이를 이용하여, 솔벤트를 이용하는 습식 식각으로 PMMA 블록만을 선택적으로 식각 제거할 수 있다. 오프닝부는 제2도메인부(1630)의 형상을 따르는 길게 연장된 라인 형상으로 형성될 수 있다.
제2도메인부(1630)을 제거한 후 잔류하는 제1도메인부(1610)들의 배열을 식각 마스크(etch mask)로 이용하여, 제1도메인부(1610)에 의해 노출된 하드 마스크층(1400) 부분을 선택적으로 식각 제거하여 하드 마스크의 패턴을 형성할 수 있다. 또한, 하드 마스크 메인층(1300)을 패터닝할 수 있다. 하드 마스크 메인층(1300)의 패턴을 식각 마스크로 이용하여 식각 대상층(1200)을 패터닝할 수 있다.
도 16은 포토레지스트 패턴(2530)을 형성하는 단계를 보여준다. 반도체 기판(2100) 상에 식각 대상층(2200), 하드 마스크 메인층(main hard mask layer: 2300), 하부층(2410) 및 하드 마스크층(1430)을 순차적으로 형성할 수 있다. 하드 마스크 메인층(2300)은 비정질 카본층(amorphous carbon layer)이나 또는 스핀온카본(SOC: Spin On Carbon)층을 포함하여 형성될 수 있다. 하드 마스크 메인층(2300)이 대략 1500Å 두께의 비정질 카본층이나 또는 스핀온카본(SOC)층을 포함하여 형성될 경우, 이를 보호하는 비유기 물질층(inorganic material layer)을 포함하여 하부층(2410)을 형성할 수 있다. 하드 마스크층(2430)은 실리콘 산화물(SiO2)층 또는 실리콘 산질화물(SiON)층을 포함하여 형성될 수 있다. 하부층(2410)과 하드 마스크층(2430)은 실질적으로 하나의 하드 마스크를 이루는 복합층으로 도입될 수 있다. 하부층(2410)과 하드 마스크층(2430)은 비유기 물질층으로 각각 형성될 수 있으며, 상호 간에 표면 에너지가 다른 상태인 물질층으로 형성될 수 있다. 예컨대, 하부층(2410)은 실리콘 산화물(SiO2)층을 포함하여 형성될 수 있고, 하드 마스크층(2430)은 실리콘 산질화물(SiON)층을 포함하여 형성될 수 있다.
하드 마스크층(2430) 상에 바닥반사방지층(BARC: 2510)을 형성한다. 바닥반사방지층(2510) 상에 포토레지스트층을 도포하고 노광 및 현상하여 포토레지스트 패턴(2530)을 형성한다.
도 17은 하드 마스크 패턴(2431)을 패터닝하는 단계를 보여준다. 포토레지스트 패턴(2530)에 의해 노출된 바닥반사방지층(2510) 부분을 선택적으로 식각 제거하는 BARC 트림(trim) 식각을 수행할 수 있다. 포토레지스트 패턴(2530) 및 바닥반사방지층(2510)의 패턴에 노출된 하드 마스크층(2430) 부분을 선택적으로 식각 제거하여 하드 마스크 패턴(2431)을 형성한다. 하드 마스크 패턴(2431)은 포토레지스트 패턴(2530)의 패턴 형상을 따르는 패턴 형상을 가지게 형성된다. 하드 마스크 패턴(2431)의 패턴들 사이의 이격 간격 부분인 홈의 폭 보다 하드 마스크 패턴(2431)의 폭이 (N(N은 정수) + 1)배 더 크게 형성될 수 있다. 하드 마스크 패턴(2431)은 후속 과정에서 블록코폴리머의 폴리머 블록들이 도메인(domain)부들을 이루며 상분리될 때, 각각의 도메인부들의 크기 및 수를 제어하기 위해 패터닝될 수 있다.
도 18은 중성층 패턴(2435)을 형성하는 단계를 보여준다. 하드 마스크 패턴(2431)을 표면 처리한다. 표면 처리는 노출된 하드 마스크 패턴(2431) 부분에 하전 입자를 제공하여 표면의 소수성을 증가시키도록 수행될 수 있다. 하전 입자를 주입(implantation)하여 하드 마스크 패턴(2431)의 소수성 정도를 증가시켜, 하드 마스크 패턴(2431)의 친수성 성질을 보다 높은 소수성을 가지게 변화시킴으로써, 하드 마스크 패턴(2431)을 중성층 패턴(2435)로 전환시킬 수 있다. 하드 마스크 패턴(2431)의 표면 부분을 표면 처리하여 중성층 패턴(2434)으로 개질한다.
도 19는 중성층 패턴(2435)을 덮는 블록코폴리머층(2600)을 형성하는 단계를 보여준다. 블록코폴리머층(2600)을 코팅(coating)하여 형성한 후, 어닐링(annealing)하여 블록코폴리머층(2600)을 제1도메인부(domain: 2610) 및 제2도메인부(2630)들로 상분리시킨다. 블록코폴리머층(2600)은 폴리스티렌-폴리메타메틸아크릴레이트(PS-PMMA) 코폴리머를 코팅하여 형성될 수 있다. 제2도메인부(2610)는 BCP를 구성하는 PS 블록 부분이 상분리되어 이루어질 수 있고, 제2도메인부(2630)는 PMMA 블록 부분이 상분리되어 이루어질 수 있다.
중성층 패턴(2435)는 BCP층(2600)을 구성하는 각각의 폴리머 블록들이 실질적으로 수직하게 배향되도록 유도할 수 있다. 중성층 패턴(2435)의 패턴들 사이에 하드 마스크층(2430) 부분이 선택적으로 제거되어 이격된 부분으로 형성된 홈 부분에 BCP층(2600)을 이루는 어느 하나의 폴리머 블록, 예컨대, PS 블록으로 이루어지는 제1도메인부(2610)가 우선적으로 정렬될 수 있다. 중성층 패턴(2435) 상에는 각각의 폴리머 블록들이 실질적으로 수직하게 배열되도록 상분리되도록 유도할 수 있다. 중성층 패턴(2435)의 패턴들 사이의 이격 간격 부분인 홈의 폭 보다 중성층 패턴(2435)의 폭이 (N(N은 정수) + 1)배 더 크게 형성될 수 있다. 제2도메인부(2610)가 중성층 패턴(2435) 사이의 홈에 우선적으로 정렬되게 배열되므로, 중성층 패턴(2435) 상에는 제2도메인부(2630) 및 제1도메인부(2610)가 교번적으로 반복 배치되는 형상으로 배열될 수 있다.
도 20은 제2도메인부(2630)를 선택적으로 제거하는 단계를 보여준다. 제2도메인부(2630)을 선택적으로 제거하여 오프닝부(2611)들의 배열을 형성한다. 예컨대, 제2도메인부(2630)을 이루는 PMMA 블록을 선택적으로 식각 제거할 수 있다. PMMA 폴리머와 PS 폴리머의 용해도 차이를 이용하여, 솔벤트를 이용하는 습식 식각으로 PMMA 블록만을 선택적으로 식각 제거할 수 있다. 오프닝부(2611)는 제2도메인부(2630)의 형상을 따르는 길게 연장된 라인 형상으로 형성될 수 있다.
제2도메인부(2630)을 제거한 후 잔류하는 제1도메인부(2610)들의 배열을 식각 마스크(etch mask)로 이용하여, 제1도메인부(2610)에 의해 노출된 중성층 패턴(2435) 부분을 선택적으로 식각 제거하여 하드 마스크의 패턴을 형성할 수 있다. 또한, 하부층(2410)을 패터닝할 수 있다. 하드 마스크 메인층(2300)을 패터닝할 수 있다. 하드 마스크 메인층(2300)의 패턴을 식각 마스크로 이용하여 식각 대상층(2200)을 패터닝할 수 있다.
본 발명에 따르면, 대면적의 기판 상에 블록 코폴리머를 이용하여 용이하게 나노 크기의 구조물 또는 나노 구조체를 형성할 수 있다. 나노 구조체는, 선격자를 포함하는 편광판의 제조, 반사형 액정표시장치의 반사 렌즈의 형성 등에 이용할 수 있다. 나노 구조체는 독립적인 편광판의 제조에 사용될 뿐만 아니라, 표시 패널과 일체형인 편광부의 형성에도 이용할 수 있다. 예컨대, 박막 트랜지스터를 포함하는 어레이(array) 기판이나, 컬러필터 기판 상에 직접적으로 편광부를 형성하는 공정에 이용할 수 있다. 나노 구조체는 나노 와이어 트랜지스터, 메모리의 제작을 위한 주형, 나노 스케일의 도선 패터닝을 위한 나노 구조물과 같은 전기 전자 부품의 주형, 태양 전지와 연료 전지의 촉매 제작을 위한 주형, 식각 마스크와 유기 다이오드(OLED) 셀 제작을 위한 주형 및 가스 센서 제작을 위한 주형에 이용할 수 있다.
상술한 본 발명에 따른 방법 및 구조체들은 집적 회로 칩(integrated circuit chip) 제조에 사용될 수 있다. 결과의 집적 회로 칩은 웨이퍼 형태(raw wafer form)나 베어 다이(bare die) 또는 패키지 형태(package form)으로 제조자에 의해 배포될 수 있다. 칩은 단일 칩 패키지(single chip package)나 멀티칩 패키지 chip package) 형태로 제공될 수 있다. 또한, 하나의 칩은 다른 집적 회로 칩에 집적되거나 별도의 회로 요소(discrete circuit element)에 집적될 수 있다. 하나의 칩은 마더보드(mother board)와 같은 중간 제품(intermediate product)이나 최종 제제품(end product) 형태의 한 부품으로 다른 신호 프로세싱 소자(signal processing device)를 이루도록 집적될 수 있다. 최종 제품은 집적 회로 칩을 포함하는 어떠한 제품일 수 있으며, 장난감이나 저성능 적용 제품(application)으로부터 고성능 컴퓨터 제품일 수 있으며, 표시장치(display)나 키보드(keyboard) 또는 다른 입력 수단(input device) 및 중앙연산장치(central processor)를 포함하는 제품일 수 있다.
상술한 바와 같이 본 출원의 실시 형태들을 도면들을 예시하며 설명하지만, 이는 본 출원에서 제시하고자 하는 바를 설명하기 위한 것이며, 세밀하게 제시된 형상으로 본 출원에서 제시하고자 하는 바를 한정하고자 한 것은 아니다. 본 출원에서 제시한 기술적 사상이 반영되는 한 다양한 다른 변형들이 가능할 것이다.
100: 반도체 기판, 400: 하드 마스크층,
430; 중성층 부분, 600: 블록코폴리머층,
610, 630: 도메인부.

Claims (40)

  1. 하드 마스크(hard mask)층을 표면 처리하여 소수성을 증가시켜 중성층(neutral layer)을 형성하는 단계;
    상기 중성층 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및
    상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법.
  2. 제1항에 있어서,
    상기 표면 처리는
    상기 하드 마스크층에 이온주입을 수행하여 상기 하드 마스크층 표면의 소수성을 증가시키는 미세 패턴 형성 방법.
  3. 제2항에 있어서,
    상기 이온주입은
    불화 탄소(carbon fluoride) 가스를 포함하는 이온 주입 매질을 이용하여 수행되는 미세 패턴 방법.
  4. 제2항에 있어서,
    상기 이온주입은
    이온 주입 매질의 종류, 도즈(dose), 알에프 파워(RF power), 바이어스(bias) 및 공정 압력(pressure)의 조건을 변화시켜 상기 하드 마스크층 표면의 표면 에너지 상태를 변화시켜 소수성을 증가시키는 미세 패턴 방법.
  5. 제2항에 있어서,
    상기 하드 마스크층은 친수성을 가지는 비유기 물질(inorganic material)층을 포함하는 미세 패턴 형성 방법.
  6. 제5항에 있어서,
    상기 하드 마스크층은
    실리콘(Si)을 포함하는 비유기 물질층을 포함하는 미세 패턴 형성 방법.
  7. 제6항에 있어서,
    상기 비유기 물질층은
    실리콘 산화물(SiO2)층, 실리콘 산질화물(SiON)층 또는 실리콘 산화물(SiO2)층 및 실리콘 산질화물(SiON)층의 복합층을 포함하는 미세 패턴 형성 방법.
  8. 제6항에 있어서,
    상기 하드 마스크층의 하부에
    스핀 온 카본(SOC)층 또는 비정질 카본층을 포함하는 하드 마스크 메인층(main hard mask layer)을 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  9. 제1항에 있어서,
    상기 제2도메인부들을 선택적으로 제거하는 단계; 및
    상기 제1도메인부들에 노출된 상기 중성층 부분을 선택적으로 제거하여 하드 마스크를 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  10. 제1항에 있어서,
    상기 제1 및 제2도메인부들이 교번적으로 위치하며 각각 길게 연장된 라인(line) 형상을 가지게 상분리되는 미세 패턴 형성 방법.
  11. 하드 마스크(hard mask)층 상에 가이드 패턴(guide pattern)을 형성하는 단계;
    상기 가이드 패턴에 노출된 상기 하드 마스크층 부분을 선택적으로 표면 처리하여 소수성을 증가시켜 중성층(neutral layer) 부분을 형성하는 단계;
    상기 하드 마스크층 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및
    상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법.
  12. 제11항에 있어서,
    상기 가이드 패턴은
    포토레지스트층(photoresist layer) 또는 포토레지스트층 및 바닥반사방지층(BARC)을 포함하여 형성되는 미세 패턴 형성 방법.
  13. 제11항에 있어서,
    상기 가이드 패턴은
    상기 하드 마스크층을 노출하는 부분의 폭이 상기 하드 마스크층을 차폐하는 부분의 폭보다 (N(정수) + 1)배로 크게 형성되는 미세 패턴 형성 방법.
  14. 제11항에 있어서,
    상기 선택적 표면 처리 이후에
    상기 블록코폴리머층을 형성하기 이전에
    상기 가이드 패턴을 제거하는 단계를 더 포함하는 미세 패턴 형성 방법.
  15. 제14항에 있어서,
    상기 제1도메인부는
    상기 가이드 패턴이 제거되며 노출되는 표면 처리되지 않은 상기 하드 마스크층 부분에 정렬되고,
    상기 중성층 부분에 상기 제1 및 제2도메인부들이 교번적으로 정렬되는 미세 패턴 형성 방법.
  16. 제11항에 있어서,
    상기 가이드 패턴을 형성하는 단계는
    상기 제1도메인부 또는 상기 제2도메인부를 이루는 상기 블록코폴리머층의 어느 한 성분을 포함하는 폴리머 매트릭스(polymer matrix)층을 형성하는 단계;
    상기 폴리머 매트릭스층 상에 포토레지스트 패턴을 형성하는 단계;
    상기 포토레지스트 패턴에 노출된 상기 폴리머 매트릭스층 부분을 선택적으로 제거하여 폴리머 매트릭스 패턴을 형성하는 단계를 포함하는 미세 패턴 형성 방법.
  17. 제16항에 있어서,
    상기 제1도메인부는
    상기 폴리머 매트릭스 패턴에 정렬되고,
    상기 중성층 부분에 상기 제1 및 제2도메인부들이 교번적으로 정렬되는 미세 패턴 형성 방법.
  18. 제11항에 있어서,
    상기 표면 처리는
    상기 하드 마스크층의 노출 부분에 이온주입을 수행하여 상기 하드 마스크층의 노출 부분 표면의 소수성을 증가시키는 미세 패턴 형성 방법.
  19. 제18항에 있어서,
    상기 이온주입은
    불화 탄소(carbon fluoride) 가스를 포함하는 이온 주입 매질을 이용하여 수행되는 미세 패턴 방법.
  20. 제18항에 있어서,
    상기 이온주입은
    이온 주입 매질의 종류, 도즈(dose), 알에프 파워(RF power), 바이어스(bias) 및 공정 압력(pressure)의 조건을 변화시켜 상기 하드 마스크층 표면의 표면 에너지 상태를 변화시켜 소수성을 증가시키는 미세 패턴 방법.
  21. 제11항에 있어서,
    상기 하드 마스크층은 친수성을 가지는 비유기 물질(inorganic material)층을 포함하는 미세 패턴 형성 방법.
  22. 제21항에 있어서,
    상기 하드 마스크층은
    실리콘(Si)을 포함하는 비유기 물질층을 포함하는 미세 패턴 형성 방법.
  23. 제22항에 있어서,
    상기 비유기 물질층은
    실리콘 산화물(SiO2)층, 실리콘 산질화물(SiON)층 또는 실리콘 산화물(SiO2)층 및 실리콘 산질화물(SiON)층의 복합층을 포함하는 미세 패턴 형성 방법.
  24. 제22항에 있어서,
    상기 하드 마스크층의 하부에
    스핀 온 카본(SOC)층 또는 비정질 카본층을 포함하는 하드 마스크 메인층(main hard mask layer)을 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  25. 제11항에 있어서,
    상기 제2도메인부들을 선택적으로 제거하는 단계; 및
    상기 제1도메인부들에 노출된 상기 중성층 부분을 선택적으로 제거하여 하드 마스크를 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  26. 제11항에 있어서,
    상기 제1 및 제2도메인부들이 교번적으로 위치하며 각각 길게 연장된 라인(line) 형상을 가지게 상분리되는 미세 패턴 형성 방법.
  27. 하드 마스크(hard mask)층 상에 가이드 패턴(guide pattern)을 형성하는 단계;
    상기 가이드 패턴에 노출된 상기 하드 마스크층 부분을 선택적으로 제거하여 하드 마스크 패턴을 형성하는 단계;
    상기 하드 마스크 패턴에 표면 처리하여 소수성을 증가시켜 중성층(neutral layer) 패턴을 형성하는 단계;
    상기 중성층 패턴 상에 블록코폴리머(block co-polymer)층을 형성하는 단계; 및
    상기 블록코폴리머층을 제1도메인부(domain) 및 제2도메인부들로 상분리시키는 단계;를 포함하는 미세 패턴 형성 방법.
  28. 제27항에 있어서,
    상기 가이드 패턴은
    포토레지스트층(photoresist layer) 또는 포토레지스트층 및 바닥반사방지층(BARC)을 포함하여 형성되는 미세 패턴 형성 방법.
  29. 제27항에 있어서,
    상기 중성층 패턴의 폭은 상기 하드 마스크층 부분이 선택적으로 제거되어 형성되는 사이의 홈의 폭보다 (N(정수) + 1)배로 크게 패터닝되는 미세 패턴 형성 방법.
  30. 제27항에 있어서,
    상기 제1도메인부는
    상기 하드 마스크층 부분이 선택적으로 제거되어 형성되는 상기 중성층 패턴의 홈 부분에 정렬되고,
    상기 중성층 패턴 상에 상기 제1 및 제2도메인부들이 교번적으로 정렬되는 미세 패턴 형성 방법.
  31. 제27항에 있어서,
    상기 표면 처리는
    상기 하드 마스크층의 노출 부분에 이온주입을 수행하여 상기 하드 마스크층의 노출 부분 표면의 소수성을 증가시키는 미세 패턴 형성 방법.
  32. 제31항에 있어서,
    상기 이온주입은
    불화 탄소(carbon fluoride) 가스를 포함하는 이온 주입 매질을 이용하여 수행되는 미세 패턴 방법.
  33. 제31항에 있어서,
    상기 이온주입은
    이온 주입 매질의 종류, 도즈(dose), 알에프 파워(RF power), 바이어스(bias) 및 공정 압력(pressure)의 조건을 변화시켜 상기 하드 마스크층 표면의 표면 에너지 상태를 변화시켜 소수성을 증가시키는 미세 패턴 방법.
  34. 제27항에 있어서,
    상기 하드 마스크층은 친수성을 가지는 비유기 물질(inorganic material)층을 포함하는 미세 패턴 형성 방법.
  35. 제34항에 있어서,
    상기 하드 마스크층은
    실리콘(Si)을 포함하는 비유기 물질층을 포함하는 미세 패턴 형성 방법.
  36. 제35항에 있어서,
    상기 비유기 물질층은
    실리콘 산화물(SiO2)층, 실리콘 산질화물(SiON)층 또는 실리콘 산화물(SiO2)층 및 실리콘 산질화물(SiON)층의 복합층을 포함하는 미세 패턴 형성 방법.
  37. 제35항에 있어서,
    상기 하드 마스크층의 하부에
    상기 하드 마스크층과 다른 성분을 가지는 비유기 물질층을 하부층으로 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  38. 제37항에 있어서,
    상기 하부층의 하부에
    스핀 온 카본(SOC)층 또는 비정질 카본층을 포함하는 하드 마스크 메인층(main hard mask layer)을 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  39. 제27항에 있어서,
    상기 제2도메인부들을 선택적으로 제거하는 단계; 및
    상기 제1도메인부들에 노출된 상기 중성층 부분을 선택적으로 제거하여 하드 마스크를 형성하는 단계를 더 포함하는 미세 패턴 형성 방법.
  40. 제27항에 있어서,
    상기 제1 및 제2도메인부들이 교번적으로 위치하며 각각 길게 연장된 라인(line) 형상을 가지게 상분리되는 미세 패턴 형성 방법.


KR1020130088354A 2013-07-25 2013-07-25 미세 패턴 형성 방법 KR20150014009A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130088354A KR20150014009A (ko) 2013-07-25 2013-07-25 미세 패턴 형성 방법
US14/135,145 US9190274B2 (en) 2013-07-25 2013-12-19 Methods of fabricating fine patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130088354A KR20150014009A (ko) 2013-07-25 2013-07-25 미세 패턴 형성 방법

Publications (1)

Publication Number Publication Date
KR20150014009A true KR20150014009A (ko) 2015-02-06

Family

ID=52390852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130088354A KR20150014009A (ko) 2013-07-25 2013-07-25 미세 패턴 형성 방법

Country Status (2)

Country Link
US (1) US9190274B2 (ko)
KR (1) KR20150014009A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119940A (ko) * 2015-04-06 2016-10-17 에스케이하이닉스 주식회사 선폭이 다른 패턴들 형성 방법
KR20170029389A (ko) * 2015-09-07 2017-03-15 아이엠이씨 브이제트더블유 트렌치 보조 케모에피탁시(trac) dsa 흐름
KR20170089463A (ko) * 2016-01-26 2017-08-04 삼성전자주식회사 미세 패턴 형성 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393546B2 (ja) * 2013-07-31 2018-09-19 東京応化工業株式会社 相分離構造を含む構造体の製造方法、パターン形成方法及び微細パターン形成方法
SG11201600825YA (en) * 2013-09-25 2016-03-30 Intel Corp Sacrificial material for stripping masking layers
US9738765B2 (en) * 2015-02-19 2017-08-22 International Business Machines Corporation Hybrid topographical and chemical pre-patterns for directed self-assembly of block copolymers
WO2016179025A1 (en) 2015-05-01 2016-11-10 The Regents Of The University Of California Enhanced patterning of integrated circuit layer by tilted ion implantation
JP6523873B2 (ja) * 2015-08-27 2019-06-05 Hoya株式会社 マスクブランクの製造方法、転写用マスクの製造方法、およびマスクブランク
US9536750B1 (en) * 2015-09-30 2017-01-03 International Business Machines Corporation Method for fin formation with a self-aligned directed self-assembly process and cut-last scheme
US9876075B2 (en) * 2015-10-16 2018-01-23 International Business Machines Corporation Method of forming dielectric with air gaps for use in semiconductor devices
US9911608B2 (en) * 2016-01-26 2018-03-06 Micron Technology, Inc. Method of forming patterns
US10529617B2 (en) 2017-09-29 2020-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Metal routing with flexible space formed using self-aligned spacer patterning
EP3742476A1 (en) * 2019-05-20 2020-11-25 Infineon Technologies AG Method of implanting an implant species into a substrate at different depths

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080068875A (ko) 2005-10-26 2008-07-24 라모트 앳 텔-아비브 유니버시티 리미티드 재료의 습윤성을 변경하는 방법 및 이를 위한 장치
KR101535227B1 (ko) 2008-12-31 2015-07-08 삼성전자주식회사 블록 공중합체를 이용한 미세 패턴 형성 방법
FR2959349B1 (fr) * 2010-04-22 2012-09-21 Commissariat Energie Atomique Fabrication d'une memoire a deux grilles independantes auto-alignees

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119940A (ko) * 2015-04-06 2016-10-17 에스케이하이닉스 주식회사 선폭이 다른 패턴들 형성 방법
KR20170029389A (ko) * 2015-09-07 2017-03-15 아이엠이씨 브이제트더블유 트렌치 보조 케모에피탁시(trac) dsa 흐름
KR20170089463A (ko) * 2016-01-26 2017-08-04 삼성전자주식회사 미세 패턴 형성 방법

Also Published As

Publication number Publication date
US9190274B2 (en) 2015-11-17
US20150031210A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
KR20150014009A (ko) 미세 패턴 형성 방법
US9840059B2 (en) Fine pattern structures having block co-polymer materials
US9437452B2 (en) Method of forming a fine pattern by using block copolymers
US8361704B2 (en) Method for reducing tip-to-tip spacing between lines
KR102166523B1 (ko) 나노 스케일 형상 구조 및 형성 방법
US9257281B2 (en) Methods of fabricating a pattern using the block co-polymer materials
KR102358710B1 (ko) 선폭이 다른 패턴들 형성 방법
KR102105196B1 (ko) 반도체 소자 제조 방법
US20160238938A1 (en) Methods of forming patterns
US20160077435A1 (en) Methods of forming patterns
US9165769B1 (en) Fine pattern structures having block co-polymer materials
KR20160105660A (ko) 서로 다른 형상의 패턴들 형성 방법
CN107221492B (zh) 形成精细图案的方法
US10504726B2 (en) Nano-scale structures
US9530660B2 (en) Multiple directed self-assembly patterning process
KR20160119941A (ko) 패턴 형성 방법
US9081274B2 (en) Pattern forming method
TWI386973B (zh) 半導體元件形成技術
KR20170089463A (ko) 미세 패턴 형성 방법
US9478436B1 (en) Methods for forming patterns in honeycomb array
KR20220096324A (ko) 초미세 패턴을 이용한 블록공중합체 정렬 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid