JP6455722B2 - ガスヒートポンプ式空気調和システム - Google Patents

ガスヒートポンプ式空気調和システム Download PDF

Info

Publication number
JP6455722B2
JP6455722B2 JP2015112419A JP2015112419A JP6455722B2 JP 6455722 B2 JP6455722 B2 JP 6455722B2 JP 2015112419 A JP2015112419 A JP 2015112419A JP 2015112419 A JP2015112419 A JP 2015112419A JP 6455722 B2 JP6455722 B2 JP 6455722B2
Authority
JP
Japan
Prior art keywords
air
air conditioning
conditioning
gas
indoor space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015112419A
Other languages
English (en)
Other versions
JP2016014520A (ja
Inventor
松林 成彰
成彰 松林
美緒 古井
美緒 古井
晃 小森
晃 小森
古田 裕貴
裕貴 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015112419A priority Critical patent/JP6455722B2/ja
Publication of JP2016014520A publication Critical patent/JP2016014520A/ja
Application granted granted Critical
Publication of JP6455722B2 publication Critical patent/JP6455722B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本開示は、ガスヒートポンプ式空気調和システムに関する。
従来のガスヒートポンプ式空気調和システムでは、ガスエンジンで圧縮機が駆動される。しかし、空調負荷が低いときにはガスエンジンが低速回転になり、システムの効率が低下する。そのため、ガスエンジンからモータに切り替えて圧縮機を駆動することが提案されている(特許文献1)。また、空調負荷に応じて、圧縮機に必要な駆動力をガスエンジンとモータとの間で切り替える、又はガスエンジンとモータとを併用することも提案されている(特許文献2)。
図9は、特許文献1及び特許文献2に記載された従来のガスヒートポンプ式空気調和システムの構成を示している。ヒートポンプサイクルは、室内機115a、室内機115b、膨張弁114、熱交換器113、複数の冷媒配管116及び圧縮機112で構成されている。圧縮機112は、プーリ130、プーリ131及びベルト132を介して、ガスエンジン111によって駆動される。クラッチ133を調整することによって、発電機120は、プーリ134、プーリ135及びベルト136を介して、ガスエンジン111によって駆動される。
特許文献1において、発電機120によって生成された電力は、蓄電池125に蓄えられる。空調負荷が高いときには、室内機115a及び室内機115bで必要とされる温熱又は冷熱が多い。そのため、圧縮機112を高回転で運転する必要がある。つまり、ガスエンジン111が高回転で運転される。発電機120で生成された電力は蓄電池125に蓄えられる。他方、空調負荷が低いときには、室内機115a及び室内機115bで必要とされる温熱又は冷熱が少ない。そのため、圧縮機112を低回転で運転する必要がある。ただし、ガスエンジン111を低回転で運転すると効率が悪い。従って、制御回路126は、圧縮機112が発電機120で駆動されるように制御を実行する。すなわち、発電機120は、蓄電池125の電力を使用してモータとして駆動され、クラッチ137、プーリ138、プーリ139及びベルト140を介して、圧縮機112を回転させる。
特許文献2において、発電機120をモータとして駆動させるための電力は、分電盤122及びインバータ121を介して、商用電源123から供給される。制御回路126は、圧縮機112をガスエンジン111で駆動する場合の運転コストと、圧縮機112を発電機120(モータ)で駆動する場合の運転コストとの総和が最小になるように制御を実行する。
特開2011−7356号公報 特許第4958448号公報
特許文献1及び2に開示された技術によれば、高負荷時の効率の改善は期待できない。
本開示は、室内の快適性を維持しつつ、ガスヒートポンプ式空気調和システムの効率を改善するための技術を提供する。
すなわち、本開示にかかるガスヒートポンプ式空気調和システムは、
ガスを燃料として用いて圧縮機を駆動するガスエンジンと、
前記ガスエンジンによって駆動される前記圧縮機及び室内空間に配置される少なくとも一つの熱交換器を含み、前記熱交換器によって前記室内空間の空調を行うヒートポンプサイクルと、
前記ガスエンジンによって駆動され、電力を生成する発電機と、
前記熱交換器と同一の室内空間に配置され、前記発電機によって生成された前記電力を使用して前記室内空間の空調を行う局所空調機器と、
前記室内空間の空調負荷に応じて、前記発電機及び前記熱交換器を制御する制御回路と、
を備えた、ものである。
上記の技術によれば、室内の快適性を維持しつつ、ガスヒートポンプ式空気調和システムの効率を改善できる。
本開示の実施形態1に係るガスヒートポンプ式空気調和システムの構成図 本開示の実施形態2に係るガスヒートポンプ式空気調和システムの構成図 ガスヒートポンプサイクルの効率特性を示す図 クラッチレベルと発電機の回転数との関係を示す図 発電機の回転数とガスエンジンで消費されるガス量との関係を示す図 発電機の回転数と発電量との関係を示す図 制御回路による制御を示すフローチャート 制御回路による制御を示すフローチャート 従来のガスヒートポンプ式空気調和システムの構成図 従来のガスヒートポンプ式空気調和システムの問題点を説明する図
(本開示の基礎となった知見)
図9に示す従来のガスヒートポンプ式空気調和システムにおいて、室内機115a及び115bは、天井に設置されている。そのため、空調が必要なエリアと空調が不要なエリアとが同じ部屋に存在する場合、それらのエリアの空調を選択的に行うことは容易ではない。その結果、空調エネルギー(ガス)が無駄になる。
ここで、空調負荷が高い場合及び空調負荷が低い場合のそれぞれについて説明する。室内空間の空調を行う場合には、空調エリアに任意の設定温度(目標温度)が設定される。空調エリアがその設定温度に到達するように空気調和システムが制御される。高負荷の事例として、空気調和システムの起動時であって、空調エリアの現状温度と設定温度との差が大きく、室内機で必要とされる温熱又は冷熱が大きい場合が挙げられる。空気調和システムが起動して運転が継続されると、空調エリアの現状温度と設定温度との差が次第に縮小し、室内機で必要とされる温熱又は冷熱も減少する。つまり、空調エリアは低負荷状態になる(いわゆる定常状態又は部分負荷状態)。
図10に示すように、例えば、室内空間が通常空調エリア160と局所空調エリア161と空調不要エリア162とに分かれていると仮定する。通常空調エリア160は、通常の空調負荷を持った空調エリアである。局所空調エリア161は、高い空調負荷を持った空調エリアである。空調不要エリア162は、局所空調エリア161の上方のエリアである。通常空調エリア160では、居住者170が主に厚手着衣で立位作業を行っていると仮定する。局所空調エリア161では、居住者171が主に薄手着衣で着座作業を行っていると仮定する。局所空調エリア161で居住者171が着座作業を行っているので、局所空調エリア161の上方の空間は、居住者171の温感又は冷感に直接影響しない空間である。つまり、空調不要エリア162は、本来であれば空調を行うのに無駄な部分である。
快適性指標PMV(Predicted Mean Vote:予測平均温冷感申告)の観点から、快適性を確保するために必要な温度は、居住者の着衣状態及び作業状況に基づいて決定される。例えば、暖房空調の場合には、局所空調エリア161で必要な温度は、通常空調エリア160で必要な温度よりも高い。つまり、図10の例において、局所空調エリア161の空調負荷は通常空調エリア160の空調負荷よりも高い。さらに、局所空調エリア161及び空調不要エリア162の空調を室内機115bで行う必要がある。従って、局所空調エリア161は、通常空調エリア160に比べて極めて高負荷なエリアである。局所空調エリア161は高い空調負荷を持っているにもかかわらず、室内機115bからの気流が届きにくいなどの理由により、空調を十分に行うことができない可能性がある。この場合、満足できる快適性を居住者に提供できない。室内機115bから供給される温熱又は冷熱を増やせば増やすほど、空調不要エリア162に供給される無駄な温熱又は冷熱も増加し、結果的に空調エネルギー(ガス)の無駄が増える。
本開示の第1態様にかかるガスヒートポンプ式空気調和システムは、
ガスを燃料として用いて圧縮機を駆動するガスエンジンと、
前記ガスエンジンによって駆動される前記圧縮機及び室内空間に配置される少なくとも一つの熱交換器を含み、前記熱交換器によって前記室内空間の空調を行うヒートポンプサイクルと、
前記ガスエンジンによって駆動され、電力を生成する発電機と、
前記熱交換器と同一の室内空間に配置され、前記発電機によって生成された前記電力を使用して前記室内空間の空調を行う局所空調機器と、
前記室内空間の空調負荷に応じて、前記発電機及び前記熱交換器を制御する制御回路と、
を備えた、ものである。
第1態様によれば、局所空調機器は、発電機で生成された電力を使用して室内空間の局所的な空調を行う。室内空間の空調負荷に応じて、発電機及び室内機が制御される。高負荷の空調エリアで局所空調機器を使用することによって、ヒートポンプサイクルを構成する圧縮機の負荷を軽減することができる。従って、高負荷時のガスヒートポンプ式空気調和システムの効率を改善できる。
局所空調機器は、室内機のように冷媒配管の制約で天井に固定的に設置する必要が無いものであることが望ましい。局所空調機器は、高負荷の空調エリアに設置されうる。局所空調機器は、例えば、高負荷の空調エリアに存在する居住者の近くに設置されうる。この場合、局所空調機器から空調が不要なエリアに温熱又は冷熱が供給されにくいので、空調エネルギー(ガス)の無駄を減らすことができる。また、居住者の近くに局所空調機器が設置される場合には、居住者の快適性も損なわれにくい。
局所空調機器としては、暖房時に電気で動作する温風ファンヒータが挙げられる。温風ファンヒータを居住者の足元に設置し、発電機で生成された電力で温風ファンヒータを動作させる。これにより、室内機を停止しても居住者の快適性を維持できる。また、室内機による暖房では、室内機と居住者との間の空調が不要なエリアも暖めざるを得ない。しかし、局所空調機器を使用すれば、空調が不要なエリアを暖める必要がないので、エネルギーを節約できる。また、室内機を停止すれば、圧縮機に加わる負荷を減らすことができる。つまり、圧縮機を高負荷で駆動することを回避できるので、ヒートポンプサイクルの効率が改善する。本発明者らは、上記知見に基づき、以下に説明する各態様の発明を想到するに至った。
本開示の第1態様は、特許文献1及び2に開示された技術に比して、以下の点で優れている。特許文献1及び2においては、発電機120をモータとして使用する。しかし、発電機120は、本来、発電する目的で設置されているため、モータとして使用した場合には十分な駆動力を発生することができない。低負荷時には発電機120をモータとして使用して圧縮機112を駆動できるものの、高負荷時には圧縮機112を相当な高回転で駆動する必要があるため、発電機120だけで圧縮機112を駆動することはできない。このため、特許文献1及び2に開示された技術は、高負荷時の効率を改善できない。
これに対し、本開示のガスヒートポンプ式空気調和システムによると、前記ガスエンジンで駆動される発電機と、前記発電機で生成された電力を使用して前記室内空間の空調を行う局所空調機器と、を備えている。そのため、高負荷の空調エリアで局所空調機器を使用することによって、ヒートポンプサイクルを構成する圧縮機の負荷を軽減することができる。従って、高負荷時のガスヒートポンプ式空気調和システムの効率を改善できる。
第2態様において、例えば、第1態様にかかるガスヒートポンプ式空気調和システムの前記制御回路は、前記制御回路は、前記熱交換器による空調が行われているときに前記発電機を停止させ、前記熱交換器による空調が停止しているときに前記発電機から前記局所空調機器に電力を供給してもよい。第2態様によれば、ヒートポンプサイクルに加わる負荷を軽減し、ヒートポンプサイクルの高負荷時の効率を改善できる。
第3態様において、例えば、第1態様又は第2態様にかかるガスヒートポンプ式空気調和システムの前記制御回路は、前記室内空間の前記空調負荷の大きさに応じて、前記熱交換器により前記室内空間の空調が行われる第1運転モードと、前記局所空調機器により前記室内空間の空調が行われる第2運転モードとを相互に切り替えてもよい。第3態様によれば、ヒートポンプサイクルに加わる負荷を軽減し、ヒートポンプサイクルの高負荷時の効率を改善できる。
第4態様において、例えば、第1態様又は第2態様にかかるガスヒートポンプ式空気調和システムの制御回路は、前記発電機及び前記熱交換器を制御して、前記熱交換器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量が、前記局所空調機器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量よりも大きいとき、前記局所空調機器によって前記室内空間の空調を行い、前記熱交換器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量が、前記局所空調機器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量以下のとき、前記熱交換器によって前記室内空間の空調を行なってもよい。第4態様によれば、快適性を維持しつつ、ガスを確実に節約できる。
第5態様において、例えば、第1態様にかかるガスヒートポンプ式空気調和システムの前記制御回路は、前記熱交換器によって空調された単位時間当たりの前記室内空間の温度変化量が所定値以下のとき、前記発電機から前記局所空調機器に電力を供給させて、前記局所空調機器による空調を開始してもよい。
第6態様において、例えば、第5態様にかかるガスヒートポンプ式空気調和システムの前記制御回路は、前記熱交換器によって空調された単位時間当たりの前記室内空間の温度変化量が前記所定値を超えるとき、前記熱交換器により前記室内空間の空調が行われる第1運転モードに切り替え、前記熱交換器によって空調された単位時間当たりの前記室内空間の温度変化量が所定値以下のとき、前記局所空調機器により前記室内空間の空調が行われる第2運転モードに切り替えてもよい。
第7態様において、例えば、第1態様〜第6態様にかかるガスヒートポンプ式空気調和システムは、複数の前記熱交換器を含み、前記制御回路は、前記複数の熱交換器から選ばれる少なくとも1つの前記熱交換器に代えて、前記局所空調機器によって前記室内空間の空調を行ってもよい。第7態様によれば、ヒートポンプサイクルのオン/オフを極力回避できる。このことも、空気調和システムの効率の改善に寄与する。
第8態様において、例えば、第1態様〜第7態様にかかるガスヒートポンプ式空気調和システムは、前記ガスエンジンの動力を前記発電機に伝達するクラッチをさらに備え、前記制御回路は、前記クラッチを制御することによって、前記発電機の回転数を制御してもよい。第8態様によれば、発電機で必要十分な量の電力が生成されるので、エネルギー(ガス)が無駄になりにくい。
第9態様において、例えば、第1態様〜第8態様にかかるガスヒートポンプ式空気調和システムの前記ヒートポンプサイクルは、複数の前記熱交換器を含み、複数の前記熱交換器は、第1熱交換器と第2熱交換器とを含み、前記室内空間は、複数の空調エリアを含み、前記複数の空調エリアは、前記第1熱交換器によって空調が行われる通常空調エリアと、前記第2熱交換器及び前記局所空調機器から選ばれる1つで空調が行われる局所空調エリアとを含んでいてもよい。複数の空調エリアのそれぞれに適した方法で空調を行えば、空気調和システムの効率を改善しやすい。
第10態様にかかるガスヒートポンプ式空気調和システムは、ガスを燃料として用い、前記圧縮機を駆動するガスエンジンと、圧縮機及び室内空間に配置される熱交換器を含み、前記熱交換器によって前記室内空間の空調を行うヒートポンプサイクルと、前記ガスエンジンによって駆動され、電力を生成する発電機と、前記発電機によって生成された前記電力を使用して前記室内空間の空調を行う局所空調機器と、を備え、前記空調負荷が高い空調エリアの空調を前記局所空調機器によって行い、それ以外の空調エリアの空調を前記熱交換器によって行うものである。
第10態様によれば、第1態様と同じ効果が得られる。さらに、第10態様によれば、室内機の数を減らせるとともに、複雑な制御が必要とされない。故に、初期投資コストを削減できる。
第11態様において、例えば、第10態様にかかるガスヒートポンプ式空気調和システムの前記ヒートポンプサイクルは、前記熱交換器によって前記室内空間の暖房を行い、前記局所空調機器は、室内空間の暖房を行い、前記熱交換器は前記室内空間の天井に配置され、前記局所空調機器は前記室内空間の床に配置された、請求項10に記載のガスヒートポンプ式空気調和システム。
第12態様において、例えば、第1態様〜第10態様にかかるガスヒートポンプ式空気調和システムの前記ヒートポンプサイクルの前記局所空調機器は、持ち運び可能な電気式温風ファンヒータであってもよい。持ち運び可能であれば、局所空調機器を居住者の近くに容易に設置することができる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。本明細書において、「空調」の語句は、冷房と暖房の両方の意味を含む。
(実施形態1)
図1に示すように、本実施形態のガスヒートポンプ式空気調和システム100は、室外機10、室内空間に配置される、熱交換器である第1室内機15a、室内空間に配置される、熱交換器である第2室内機15b、制御回路50及び局所空調機器80を備えている。室外機10は、圧縮機12、熱交換器13及び膨張弁14を含む。圧縮機12、熱交換器13、膨張弁14、第1室内機15a及び第2室内機15bは、複数の冷媒配管16によって環状に接続されており、これにより、ヒートポンプサイクル17が形成されている。
室外機10は、さらに、ガスエンジン11、動力伝達機構40、クラッチ33、動力伝達機構41、発電機20及びインバータ21を含む。動力伝達機構40は、プーリ30、プーリ31及びベルト32によって構成されている。動力伝達機構41は、プーリ34、プーリ35及びベルト36によって構成されている。動力伝達機構40及び41は、ベルト伝達機構に限定されず、チェーン伝達機構、歯車伝達機構などの他の伝達機構であってもよい。圧縮機12は、動力伝達機構40を介して、ガスエンジン11によって駆動される。クラッチ33は、ガスエンジン11の動力を発電機20に伝達する。発電機20は、クラッチ33及び動力伝達機構41を介して、ガスエンジン11によって駆動される。クラッチ33を制御することによって、ガスエンジン11から発電機20に伝達されるトルクを調整することができる。
発電機20は、インバータ21及び分電盤22を介して、局所空調機器80に接続されている。局所空調機器80は、発電機20で生成された電力によって運転される。
制御回路50は、負荷検出部51、切替判断部52、定数設定部53、クラッチ制御部54及び室内機制御部55を含む。負荷検出部51は、室内空間の複数の空調エリアのそれぞれに設定された設定温度を検出し、各空調エリアの空調負荷を算出する。定数設定部53には、ヒートポンプサイクル17の特性を示す定数及び各空調エリアの空調負荷に影響する定数が格納されている。これらの定数は、空調負荷を算出する際に使用される。切替判断部52は、各空調エリアの空調負荷の算出結果に基づき、局所空調機器80を使用した局所空調の要否を判断する。室内機制御部55は、切替判断部52の判断を受けて、室内機15bにON信号又はOFF信号を送信する。クラッチ制御部54は、切替判断部52の判断を受けて、発電機20の必要な回転数を算出し、クラッチ33に制御信号を送信する。
制御回路50は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリーが例示される。制御回路は、集中制御を行う単独の制御回路で構成されていてもよく、互いに協働して分散制御を行う複数の制御回路で構成されていてもよい(他の実施形態およびその変形例の制御回路においても同様)。記憶部には、空気調和システム100を適切に運転するためのプログラムが格納されている。負荷検出部51、切替判断部52、定数設定部53、クラッチ制御部54及び室内機制御部55の各機能は、ハードウェア上で実行されるソフトウェアによって提供されうる。制御回路50は、室外機10の中に配置されていてもよい。BEMS(Building Energy Management System)のように、制御回路50は、ネットワークを通じて空気調和システム100の各機器の制御を可能にする中央監視装置に設置されていてもよい。
図1に示すように、同じ部屋の中に複数の空調エリア60,61,62が存在すると仮定する。本実施形態において、複数の空調エリア60,61,62は、通常空調エリア60と局所空調エリア61と空調不要エリア62とを含む。通常空調エリア60は、通常の負荷を持った空調エリアである。局所空調エリア61は、高い空調負荷を持った空調エリアである。空調不要エリア62は、居住者が存在せず、空調が不要なエリアである。通常空調エリア60の上方に第1室内機15aが設置されており、局所空調エリア61の上方に第2室内機15bが設置されている。局所空調エリア61には局所空調機器80も設置されている。通常空調エリア60の空調は、第1室内機15aによって行われる。局所空調エリア61の空調は、第2室内機15a及び局所空調機器80から選ばれる1つによって行われる。複数の空調エリアのそれぞれに適した方法で空調を行えば、空気調和システム100の効率を改善しやすい。
通常空調エリア60では、居住者70が主として厚手着衣で立位作業を行っていると仮定する。局所空調エリア61では、居住者71が主として薄手着衣で着座作業を行っていると仮定する。暖房空調を行う場合、快適性指標PMVの観点から、局所空調エリア61は、高負荷な空調エリアである。第1室内機15aから通常空調エリア60に必要な温熱が供給され、第2室内機15bから局所空調エリア61に必要な温熱が供給される。
局所空調機器80は、局所空調エリア61に配置されている。局所空調機器80には、発電機20で生成された電力が電力線24を通じて供給される。これにより、局所空調エリア61に局所的に温熱又は冷熱が供給される。局所空調エリア61には、ヒートポンプサイクル17及び局所空調機器80の両方から温熱又は冷熱が供給されうる。局所空調機器80としては、電気式温風ファンヒータ、冷風扇などが挙げられる。局所空調機器80は、人力で持ち運び可能な機器であることが望ましい。持ち運び可能であれば、局所空調機器80を居住者の近くに容易に設置することができる。
制御回路50は、第1室内機15aの設定温度TL(目標温度)、第2室内機15bの設定温度TH(目標温度)、及び外気温度Toを取得する。設定温度TL、設定温度TH及び外気温度Toに基づき、制御回路50は、局所空調エリア61に局所空調機器80による局所空調の効果があるかどうかを判断する。言い換えれば、制御回路50は、局所空調機器80によって局所空調を行うべきかどうかを判断する。制御回路50は、第2室内機15bに対して、第2室内機15bをオン又はオフにする指令を出力する。制御回路50は、クラッチ33に対して、クラッチレベルUを出力する。制御回路50は、発電機20の発電量Pgを調整する。
次に、空気調和システム100の運転を説明する。
制御回路50の負荷検出部51は、第1室内機15aが空調を行う空調エリアの負荷及び第2室内機15bが空調を行う空調エリアの負荷を算出し、算出結果を切替判断部52に送信する。負荷の算出方法の1つとして、室内機の設定温度T(K)及び外気温度Toから負荷Q(W)を算出する方法が挙げられる。設定温度Tは、居住者によって室内機のリモコンに入力されうる。制御回路50は、例えば、室内機のリモコンから無線通信によって室内機の設定温度Tを直接取得する。外気温度Toは、例えば、外気温度センサ(図示省略)から取得されうる。空調を行うべき空間の空間表面積をA(m2)、空間表面積に対する熱貫流係数をk(W/(m2・K))とすると、負荷Qは、下記式(1)で算出できる。
Q=(T-To)・k・A ・・・(1)
通常空調エリア60の空調負荷をQL、設定温度をTL、空間表面積をAL、熱貫流係数をkLとすると、負荷検出部51は、下記式(2−1)にしたがって空調負荷QLを算出する。同様に、局所空調エリア61の空調負荷をQH、設定温度をTH、空間表面積をAH、熱貫流係数をkHとすると、負荷検出部51は、下記式(2−2)にしたがって空調負荷QHを算出する。
QL=(TL-To)・kL・AL ・・・(2-1)
QH=(TH-To)・kH・AH ・・・(2-2)
空間表面積AL,AH及び熱貫流係数kL,kHは、それぞれ、空気調和システム100における設計値である。従って、これらの値は、定数設定部53に予め格納され、必要に応じて負荷検出部51によって定数設定部53から取得され、式(2−1)及び式(2−2)の計算で使用される。
次に、制御回路50の切替判断部52は、負荷検出部51から負荷Qを取得し、ヒートポンプサイクル17の圧縮機12を駆動するために必要なガス量Vhp(m3/分)を算出する。ガス量Vhpは、ヒートポンプサイクル17の効率を示すCOP(coefficient of performance)((分・W)/m3)を使用して、下記式(3)で算出できる。
Vhp=Q/COP ・・・(3)
ここで、図3を参照して、ガスヒートポンプサイクルの効率特性を説明する。図3は、ヒートポンプサイクルの効率(COP)と負荷Qとの関係を示している。例えば、通常空調エリア60の空調負荷QLに対する効率は、COP_Lである。この関係は、圧縮機12などの機器の性能及びヒートポンプサイクル17の構成によって決まる。一般的に、ガスヒートポンプサイクルにおいては、中間負荷と呼ばれる負荷で効率が最大となる。中間負荷よりも高い定格負荷及び更に高い負荷では、効率は低い。低負荷又は部分負荷と呼ばれる負荷の低い領域でも効率は低い。先に説明した特許文献1及び2は、低負荷又は部分負荷での効率を改善する技術を開示しているものの、高負荷での効率を改善する技術を開示していない。
効率COPと負荷Qとの関係を考慮に入れて、第1室内機15a及び第2室内機15bで空調を行う際に必要となるガス量Vhp_ALLを算出する。第1室内機15aで空調が行われるエリアは通常空調エリア60であり、その空調負荷はQLである。第2室内機15bで空調が行われるエリアは、局所空調エリア61及び空調不要エリア62である。空調不要エリア62は、居住者71の温感又は冷感には直接影響しないが、第2室内機15bが天井に設置されているため、やむを得ず空調が必要となるエリアである。空調不要エリア62の負荷をQLossとすると、第2室内機15bの空調負荷はQH+QLossである。第1室内機15a及び第2室内機15bの空調負荷の総和は、QL+QH+QLossである。図3に示すように、QL+QH+QLossの負荷に対する効率がCOP_ALLであるとき、ガス量Vhp_ALLは、式(2−1)、式(2−2)及び式(3)を用い、下記式(4)で算出されうる。
Vhp_ALL=(QL+QH+QLoss)/COP_ALL
=((TL-To)・kL・AL+(TH-To)・kH・AH+QLoss)/COP_ALL ・・・(4)
このように、負荷検出部51で算出された負荷QL及びQHから、第1室内機15a及び第2室内機15bによって、全ての空調負荷を賄った場合に必要となるガス量Vhp_ALLを算出できる。言い換えれば、局所空調機器80を使用せずにヒートポンプサイクル17のみで空調負荷を賄った場合に必要となるガス量Vhp_ALLを算出できる。
次に、発電機20で生成された電力Pg(W)で局所空調機器80を動作させる場合にガスエンジン11で必要となるガス量Vgを算出する。
図4は、クラッチ33におけるクラッチレベルと発電機20の回転数との関係を示す図である。クラッチ33の入力であるクラッチレベルをU(無次元)、発電機の回転数をN(rpm)とすると、下記式(5)の関係が成り立つ。ここで、α1(rpm)は定数である。クラッチレベルUは、クラッチ33への入力信号である。クラッチレベルUを上げると、ガスエンジン11から発電機20に伝達される駆動力が増加し、発電機20の回転数Nが増加する。回転数Nmaxは、クラッチ33が動作してガスエンジン11の動力が発電機20に伝達されているときのガスエンジン11の回転数であり、圧縮機12に必要な回転数によって変化する。
N=α1・U ・・・(5)
図5は、発電機20の回転数とガスエンジン11で消費されるガス量との関係を示す図である。ガスエンジン11で消費されるガス量をVg、発電機の回転数をNとすると、下記式(6)の関係が成り立つ。ここで、α2(m3/(分・rpm))は定数である。
Vg=α2・N ・・・(6)
図6は、発電機20の回転数と発電量との関係を示す図である。発電機20の発電量をPg、発電機20の回転数をNとすると、下記式(7)の関係が成り立つ。ここで、α3(W/rpm)は定数である。
Pg=α3・N ・・・(7)
式(5)〜(7)より、発電機20の発電量Pgと必要なガス量Vgとの関係は、下記式(8)で表される。
Vg=(α2/α3)・Pg ・・・(8)
局所空調機器80を動作させて負荷Qを賄った場合、必要とされる電力と負荷Qとの関係は、下記式(9)で表される。Pinは商用電源23からの買電量、Pgは発電機20の発電量、β(無次元)は局所空調機器80の効率である。
Q=β・(Pg+Pin) ・・・(9)
通常、発電機20の発電量Pgは負荷Qを賄うのに十分な量である。この場合、商用電源23からの買電量Pinはゼロなので、発電量Pgと負荷Qとの関係が下記式(10)で表される。
Q=β・Pg ・・・(10)
第2室内機15bに代えて、局所空調機器80で局所空調エリア61の空調を行って負荷QHを賄った場合、ガスエンジン11で必要となるガス量Vg_Hは、式(8)及び式(10)を用いて、下記式(11)で算出できる。
Vg_H=(α2/α3)・Pg
=(α2/α3)・(QH/β)
=(α2/α3)・((TH-To)・kH・AH/β) ・・・(11)
局所空調機器80で局所空調エリア61の空調を行っている場合、第2室内機15bは停止している。一方、通常空調エリア60の空調は第1室内機15aで行われている。図3を参照して説明したように、負荷QLに対する効率は、COP_Lと関係付けられている。従って、負荷QLを第1室内機15aで賄うために必要なガス量Vhp_Lは、式(3)及び式(4)を用いて、下記式(12)で算出できる。
Vhp_L=QL/COP_L
=(TL-To)・kL・AL/COP_L ・・・(12)
局所空調機器80を使用せず、第1室内機15a及び第2室内機15bのみで空調を行うときに必要なガス量はVhp_ALLである。局所空調機器80で局所空調エリア61の空調を行い、第1室内機15aで通常空調エリア60の空調を行うときに必要なガス量は(Vg_H+Vhp_L)である。
局所空調機器80の使用がエネルギーの節約に有効であるのは、ガス量(Vg_H+Vhp_L)がガス量Vhp_ALLよりも少ない場合である。従って、下記式(13)が成立する場合には、局所空調機器80で局所空調エリア61の空調を行う。他方、下記式(13)が成立しない場合には、第2室内機15bで局所空調エリア61の空調を行う。
Vg_H+Vhp_L<Vhp_ALL ・・・(13)
制御回路50の切替判断部52は、式(13)が成立するかどうか判断する。式(13)が成立する場合には、切替判断部52から室内機制御部55に信号が送られ、室内機制御部55から第2室内機15bに室内機指令として停止信号が送られる。同時に、切替判断部52からクラッチ制御部54に信号が送られ、クラッチ制御部54からクラッチレベルUがクラッチ33に送られる。局所空調機器80に必要な電力Pgを発電機20で発生させることができるクラッチレベルU_Hは、電力Pgを発生させるために発電機20に必要とされる回転数をN_Hとして、式(2)、式(5)、式(6)及び式(11)を用いて、下記式(14)で算出されうる。
U_H=N_H/α1=Vg_H/(α1・α2)
=(1/(α1・α3・β))・QH
=(1/(α1・α3・β))・(TH-To)・kH・AH ・・・(14)
クラッチ制御部54は、式(14)で算出したクラッチレベルU_Hをクラッチ33に送る。クラッチ33は、動力伝達機構41を介して、ガスエンジン11の動力を発電機20に伝えることができる。その結果、局所空調機器80が局所空調エリア61の負荷Q_Hを賄うのに必要な最小の電力を発電機20で発生させることができる。
式(13)が成立しない場合には、局所空調機器80の使用が有効でないと判断される。そのため、室内機制御部55には信号が送られず、第2室内機15bは停止せずに運転し続ける。切替判断部52からクラッチ制御部54にも信号が送られず、クラッチ33にクラッチレベルUが送られない。発電機20は、局所空調機器80のための発電を行わない。
このように、制御回路50は、室内機15bが運転されているときに発電機20が停止し、第2室内機15bが停止しているときに発電機20が運転されて局所空調機器80に電力が供給されるように、発電機20の回転数及び第2室内機15bのオン/オフを制御する。言い換えれば、制御回路50は、室内空間の空調負荷の大きさに応じて、第2室内機15bで室内空間(局所空調エリア61)の空調が行われる運転モードと、局所空調機器80で室内空間(局所空調エリア61)の空調が行われる運転モードとを相互に切り替える。これにより、ヒートポンプサイクル17に加わる負荷を軽減し、ヒートポンプサイクル17の高負荷時の効率を改善できる。
より詳細には、制御回路50は、第2室内機15bで局所空調エリア61の空調を行う場合にガスエンジン11で必要とされるガス流量が局所空調機器80で局所空調エリア61の空調を行う場合にガスエンジン11で必要とされるガス流量よりも大きいとき、局所空調機器80で局所空調エリア61の空調が行われるように発電機20及び第2室内機15bを制御する。また、制御回路50は、第2室内機15bで局所空調エリア61の空調を行う場合にガスエンジン11で必要とされるガス流量が局所空調機器80で局所空調エリア61の空調を行う場合にガスエンジン11で必要とされるガス流量以下のとき、第2室内機15bで局所空調エリア61の空調が行われるように発電機20及び第2室内機15bを制御する。このようにすれば、快適性を維持しつつ、ガスを確実に節約できる。
本実施形態では、複数の室内機15a及び15bから選ばれる少なくとも1つの室内機15bに代えて、局所空調機器80で室内空間(局所空調エリア61)の空調が行われる。他の室内機15aは、局所空調機器80のオン/オフによらず、室内空間(通常空調エリア60)の空調を行うように運転される。このようにすれば、ヒートポンプサイクル17のオン/オフを極力回避できる。このことも、空気調和システム100の効率の改善に寄与する。
局所空調機器80で局所空調エリア61の空調を行うとき、制御回路50は、適切なクラッチレベルUを出力する。これにより、発電機20に適切なトルクが伝達される。つまり、制御回路50は、クラッチ33を制御することによって、発電機20の回転数を制御する。このようにすれば、発電機20で必要十分な量の電力が生成されるので、エネルギー(ガス)が無駄になりにくい。
なお、空調不要エリア62の負荷QLoss、空調負荷(QL+QH+QLoss)に対応する効率COP_ALL、及び、空調負荷QLに対応する効率COP_Lは、それぞれ、空気調和システム100における設計値である。従って、これらの値は、定数設定部53に格納され、必要に応じて切替判断部52によって定数設定部53から取得され、式(4)及び式(14)の計算で使用される。クラッチ33の特性を示す定数α1、発電機20とガスエンジン11との関係を示す定数α2、発電機20の特性を示す定数α3、及び、局所空調機器80の効率βも、それぞれ、空気調和システム100における設計値である。従って、これらの値は、定数設定部53に格納され、必要に応じて切替判断部52及びクラッチ制御部54で使用される。
本実施形態によれば、高負荷である局所空調エリア61において、発電機20で生成された電力で局所空調機器80を使用して空調が行われる。これにより、ヒートポンプサイクル17に加わる負荷を軽減し、ヒートポンプサイクル17の高負荷時の効率を改善できる。さらに、空調不要エリア62の空調を行わない期間には、エネルギーの無駄をなくすことができる。その結果、エネルギー(ガス)を総合的に節約できる。低負荷時だけでなく高負荷時でも効率の良いガスヒートポンプ式空気調和システム100を提供できる。
また、制御回路50は、空調エリア(通常空調エリア60及び局所空調エリア61)の負荷を確認しながら、局所空調機器80で空調を行うべきかどうか判断する。ヒートポンプサイクル17の効率が高い場合には、空調の主体を第2室内機15bから局所空調機器80に切り替えず、全てのエリアの空調をヒートポンプサイクル17(室内機15a及び15b)で行うことも可能である。
また、局所空調機器80は、発電機20で生成された電力で動作できるため、設置の自由度が大きい。例えば、居住者71の近くに局所空調機器80を設置できるため、居住者の快適性は維持される。
(実施形態2)
図2に示すように、本実施形態のガスヒートポンプ式空気調和システム200では、第2室内機15bが省略されている。つまり、空気調和システム200は、空調負荷が高い空調エリア(局所空調エリア61)の空調を局所空調機器80で行い、それ以外の空調エリア(通常空調エリア)の空調を室内機15aで行うように構成されている。
本実施形態では、実施形態1の式(13)の不等式が常に成り立つことが前提である。式(13)に式(4)、式(11)及び式(12)を代入すると、下記式(15)が導かれる。
(α2/α3)・((TH-To)・kH・AH/β)+(TL-To)・kL・AL/COP_L
<((TL-To)・kL・AL+(TH-To)・kH・AH+QLoss)/COP_ALL ・・・(15)
式(15)において、空調不要エリア62の負荷QLossが非常に大きい場合には、設定温度TL、設定温度TH及び外気温度Toによらず、式(15)の不等式が常に成立する。図3に示すように、高負荷時の効率が非常に悪い場合、つまり、COP_ALLがCOP_Lに比べて非常に小さい場合にも、式(15)の不等式が常に成立する。
この場合には、局所空調エリア61の空調を常に局所空調機器80で行うことが効果的である。そのため、第2室内機15bを省略できる。クラッチ33は、ガスエンジン11の駆動力の最大限を発電機20に常に伝える。発電機20で生成された電力は、全て、電力線24を通じて、局所空調機器80に供給される。従って、実施形態1の制御回路50も省略できる。本実施形態によれば、第2室内機15b及び制御回路50を省略できる。言い換えれば、室内機の数を減らせるとともに、複雑な制御が必要とされない。故に、初期投資コストを削減できる。
なお、局所空調機器80で必要とされる電力に対して、発電機20で生成された電力だけで不足する場合には、分電盤22を通じて商用電源23から電力を補うことができる。逆に、発電機20で生成された電力が余った場合には、電力線24を通じて、余った電力を屋内の他の電気機器(図示省略)に供給して使用することが可能である。このことは、実施形態1にも当てはまる。
(その他)
空調エリアは、2つ(通常空調エリア60及び局所空調エリア61)に限定されない。より多くの複数の空調エリアがある場合でも、室内機の数及び局所空調機器80の数を増やすことができる。制御回路50は、設定温度TL、設定温度TH及び外気温度Toに代えて、又は、これらの温度とともに、複数の空調エリアでの快適性指標PMVを検出(取得)するように構成されていてもよい。
制御回路50は、熱交換器によって空調された単位時間当たりの室内空間の温度変化量Taが所定値C1以下のとき、発電機20から局所空調機器80に電力を供給させて、局所空調機器80による空調を開始してもよい。
具体的な動作例として、制御回路50は、図7に示すように、発電機20及び局所空調機器80を制御する。まず、制御回路50は、単位時間当たりの室内空間の温度変化量Taを取得する(ステップS1)。制御回路50は、室内空間に設置された温度センサにより検出された温度を取得し、当該温度に基づいて求められる。例えば、制御回路50は、所定時刻における室内温度T1、及び当該所定時刻より所定時間Δt経過したときの室内温度T2を温度センサより取得して、|T1−T2|/Δtを計算することにより、温度変化量Taを求めることができる。そして制御回路50は、単位時間当たりの室内空間の温度変化量Taが所定値C1以下であるか否かを判断する(ステップS2)。単位時間当たりの室内空間の温度変化量Taが所定値C1以下であるとき(ステップS2でYes)、制御回路50は、発電機20から局所空調機器80に電力を供給させて、局所空調機器80による空調を開始する(ステップS3)。一方、単位時間当たりの室内空間の温度変化量Taが所定値C1より大きいとき(ステップS2でNo)、制御回路50は、再びステップS1を行う。
また、制御回路50は、熱交換器によって空調された単位時間当たりの室内空間の温度変化量Taと、あらかじめ設定された所定値C2との関係により、運転モードを設定してもよい。例えば、制御回路50は、熱交換器によって空調された単位時間当たりの室内空間の温度変化量Taが所定値C2を超えるとき、運転モードを、熱交換器により室内空間の空調が行われる第1運転モードに設定する。一方、制御回路50は、熱交換器によって空調された単位時間当たりの室内空間の温度変化量Taが所定値C2以下のとき、運転モードを、局所空調機器80により室内空間の空調が行われる第2運転モードに設定する。
具体的な動作例として、制御回路50は、図8に示すように、発電機20、局所空調機器80、及び熱交換器を制御する。まず、制御回路50は、単位時間当たりの室内空間の温度変化量Taを取得し(ステップS11)、単位時間当たりの室内空間の温度変化量Taが所定値C2を超えるか否かを判断する(ステップS12)。単位時間当たりの室内空間の温度変化量Taが所定値C2を超えるとき(ステップS12でYes)、制御回路50は、運転モードを、熱交換器により室内空間の空調が行われる第1運転モードに設定する(ステップS13)。一方、単位時間当たりの室内空間の温度変化量Taが所定値C2を超えないとき(ステップS12でNo)、制御回路50は、運転モードを、局所空調機器80により室内空間の空調が行われる第2運転モードに設定する(ステップS14)。
本明細書に記載された技術によれば、居住者の快適性と高効率とを両立できる空気調和システムを提供できる。
10 室外機
11 ガスエンジン
12 圧縮機
13 熱交換器
14 膨張弁
15a 第1室内機
15b 第2室内機
16 冷媒配管
20 発電機
21 インバータ
22 分電盤
23 商用電源
24 電力線
30,31,34,35 プーリ
32,36 ベルト
33 クラッチ
40,41 動力伝達機構
50 制御回路
51 負荷検出部
52 切替判断部
53 定数設定部
54 クラッチ制御部
55 室内機制御部
60 通常空調エリア
61 局所空調エリア(高負荷エリア)
62 空調不要エリア
70 居住者(立位作業者、厚手着衣)
71 居住者(着座作業者、薄手着衣)
80 局所空調機器

Claims (7)

  1. ガスを燃料として用いて圧縮機を駆動するガスエンジンと、
    前記ガスエンジンによって駆動される前記圧縮機及び室内空間に配置される少なくとも一つの熱交換器を含み、前記熱交換器によって前記室内空間の空調を行うヒートポンプサイクルと、
    前記ガスエンジンによって駆動され、電力を生成する発電機と、
    前記熱交換器と同一の室内空間に配置され、前記発電機によって生成された前記電力を使用して前記室内空間の空調を行う局所空調機器と、
    前記室内空間の空調負荷に応じて、前記発電機及び前記熱交換器を制御する制御回路と、
    を備え、
    前記制御回路は、前記発電機及び前記熱交換器を制御して、
    前記熱交換器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量が、前記局所空調機器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量よりも大きいとき、前記局所空調機器によって前記室内空間の空調を行い、
    前記熱交換器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量が、前記局所空調機器によって前記室内空間の空調を行う場合に前記ガスエンジンで必要とされるガス流量以下のとき、前記熱交換器によって前記室内空間の空調を行なう、ガスヒートポンプ式空気調和システム。
  2. 前記制御回路は、
    前記熱交換器による空調が行われているときに前記発電機を停止させ、
    前記熱交換器による空調が停止しているときに前記発電機から前記局所空調機器に電力を供給する、請求項1に記載のガスヒートポンプ式空気調和システム。
  3. 前記制御回路は、前記熱交換器により前記室内空間の空調が行われる第1運転モードと、前記局所空調機器により前記室内空間の空調が行われる第2運転モードとを相互に切り替える、請求項1又は2に記載のガスヒートポンプ式空気調和システム。
  4. 前記ヒートポンプサイクルは、複数の前記熱交換器を含み、
    前記制御回路は、前記複数の熱交換器から選ばれる少なくとも1つの前記熱交換器に代えて、前記局所空調機器によって前記室内空間の空調を行う、請求項1〜のいずれか1項に記載のガスヒートポンプ式空気調和システム。
  5. 前記ガスエンジンの動力を前記発電機に伝達するクラッチをさらに備え、
    前記制御回路は、前記クラッチを制御することによって、前記発電機の回転数を制御する、請求項1〜のいずれか1項に記載のガスヒートポンプ式空気調和システム。
  6. 前記ヒートポンプサイクルは、複数の前記熱交換器を含み、
    複数の前記熱交換器は、第1熱交換器と第2熱交換器とを含み、
    前記室内空間は、複数の空調エリアを含み、
    前記複数の空調エリアは、前記第1熱交換器によって空調が行われる通常空調エリアと、前記第2熱交換器及び前記局所空調機器から選ばれる1つで空調が行われる局所空調エリアとを含む、
    請求項1〜のいずれか1項に記載のガスヒートポンプ式空気調和システム。
  7. 前記局所空調機器は、持ち運び可能な電気式温風ファンヒータである、請求項1〜のいずれか1項に記載のガスヒートポンプ式空気調和システム。

JP2015112419A 2014-06-13 2015-06-02 ガスヒートポンプ式空気調和システム Active JP6455722B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015112419A JP6455722B2 (ja) 2014-06-13 2015-06-02 ガスヒートポンプ式空気調和システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014122230 2014-06-13
JP2014122230 2014-06-13
JP2015112419A JP6455722B2 (ja) 2014-06-13 2015-06-02 ガスヒートポンプ式空気調和システム

Publications (2)

Publication Number Publication Date
JP2016014520A JP2016014520A (ja) 2016-01-28
JP6455722B2 true JP6455722B2 (ja) 2019-01-23

Family

ID=54835863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015112419A Active JP6455722B2 (ja) 2014-06-13 2015-06-02 ガスヒートポンプ式空気調和システム

Country Status (3)

Country Link
US (1) US20150362231A1 (ja)
JP (1) JP6455722B2 (ja)
CN (1) CN105276856B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700351B (zh) * 2016-03-10 2024-01-02 比泽尔制冷设备有限公司 冷却设备
NO343786B1 (no) * 2018-06-14 2019-06-11 Johan Ramberg Drivverk for en varmeveksler
CN111121336A (zh) * 2019-12-19 2020-05-08 青岛索迷尔能源科技有限公司 一种双离合变速箱切换的双动力单通驱动热泵

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2284914A (en) * 1937-07-16 1942-06-02 Honeywell Regulator Co Air conditioning system
US2362084A (en) * 1937-07-16 1944-11-07 Honeywell Regulator Co Air conditioning system
US4987748A (en) * 1986-03-19 1991-01-29 Camp Dresser & Mckee Air conditioning apparatus
US4991400A (en) * 1990-02-23 1991-02-12 Gas Research Institute Engine driven heat pump with auxiliary generator
JP2745997B2 (ja) * 1992-09-14 1998-04-28 日産自動車株式会社 車両用ヒートポンプ式冷暖房装置
JPH06174259A (ja) * 1992-09-18 1994-06-24 Nikken Sekkei Ltd 空気調和装置
CN2185861Y (zh) * 1993-11-13 1994-12-21 成都市工业合作联社 一种具有加湿功能的冷暖风扇
JPH07180887A (ja) * 1993-12-24 1995-07-18 Toshiba Corp 空調制御システム
US6324340B1 (en) * 2000-03-29 2001-11-27 Man Won Kim Combined electric fan and radiation heater
JP2001324240A (ja) * 2000-05-18 2001-11-22 Sanyo Electric Co Ltd マルチエネルギーシステム
JP2002213271A (ja) * 2001-01-19 2002-07-31 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和機
JP2003075018A (ja) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和装置
JP2004155264A (ja) * 2002-11-05 2004-06-03 Denso Corp 車両用空調装置
CN100376416C (zh) * 2003-02-28 2008-03-26 株式会社电装 用于车辆空调装置的压缩机控制系统
JP4165281B2 (ja) * 2003-04-10 2008-10-15 アイシン精機株式会社 発電機能付きのエンジン駆動式空気調和装置
JP2005126052A (ja) * 2003-10-02 2005-05-19 Denso Corp 車両用空調装置及びその空調装置を搭載するトラック車両
CN2670812Y (zh) * 2003-10-20 2005-01-12 黄华强 空调机
US7849700B2 (en) * 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
JP2005337599A (ja) * 2004-05-27 2005-12-08 Aisin Seiki Co Ltd 空調発電シテスム
KR100600752B1 (ko) * 2004-08-17 2006-07-14 엘지전자 주식회사 열병합 발전 시스템
KR100550575B1 (ko) * 2004-08-17 2006-02-10 엘지전자 주식회사 제습기를 갖는 발전 공조 시스템
KR100579574B1 (ko) * 2004-08-17 2006-05-15 엘지전자 주식회사 코제너레이션 시스템
KR100579577B1 (ko) * 2004-08-17 2006-05-15 엘지전자 주식회사 급탕 기능을 갖는 발전 공조 시스템
KR100649596B1 (ko) * 2004-12-10 2006-11-28 엘지전자 주식회사 열병합 발전 시스템
KR100644826B1 (ko) * 2004-12-10 2006-11-10 엘지전자 주식회사 열병합 발전 시스템
KR100644827B1 (ko) * 2004-12-10 2006-11-10 엘지전자 주식회사 열병합 발전 시스템
KR100680199B1 (ko) * 2004-12-14 2007-02-08 엘지전자 주식회사 열병합 발전 시스템의 제어 방법
JP2006188156A (ja) * 2005-01-06 2006-07-20 Denso Corp 蒸気圧縮式冷凍機
CN100357613C (zh) * 2005-06-30 2007-12-26 朱盈盈 一种冷暖风扇
JP2007107390A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp 車両の制御装置
JP5103778B2 (ja) * 2006-04-17 2012-12-19 ダイキン工業株式会社 空調システム
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
US7503184B2 (en) * 2006-08-11 2009-03-17 Southwest Gas Corporation Gas engine driven heat pump system with integrated heat recovery and energy saving subsystems
US8910705B2 (en) * 2008-05-27 2014-12-16 Toyota Motor Engineering & Manufacturing North America, Inc. Radiator fan control for heat pump HVAC
FR2948990A1 (fr) * 2009-08-04 2011-02-11 Mobile Comfort Holding Dispositif thermodynamique multi-energie modulaire
JP2012067683A (ja) * 2010-09-24 2012-04-05 Toyota Industries Corp ランキンサイクル装置
JP5370402B2 (ja) * 2011-03-28 2013-12-18 株式会社デンソー 車両用空調装置
JP2012228989A (ja) * 2011-04-27 2012-11-22 Advics Co Ltd 車両用作動液リザーバ
JP5628736B2 (ja) * 2011-04-27 2014-11-19 大阪瓦斯株式会社 発電・空調装置の起動方法、及び、発電・空調装置の起動装置

Also Published As

Publication number Publication date
JP2016014520A (ja) 2016-01-28
CN105276856A (zh) 2016-01-27
US20150362231A1 (en) 2015-12-17
CN105276856B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6249932B2 (ja) 空調システム
EP3067635B1 (en) Air conditioning device
JP5016894B2 (ja) 空調・発電装置及びその制御方法
JP2008249264A (ja) 空気調和装置
JP6455722B2 (ja) ガスヒートポンプ式空気調和システム
WO2007138734A1 (ja) 空調設備における冷温水ポンプの運転制御方法
JP5619056B2 (ja) 空調装置
JP2014020687A (ja) 空調装置
CN110793135A (zh) 一种地暖空调一体机
CN104713204B (zh) 空调机组及控制方法
JP2011237093A (ja) 空気調和機
JP4424416B2 (ja) 空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラム
JP2018146229A (ja) 空気調和装置
JP2011127880A (ja) 空調システム
JP5478959B2 (ja) ガスヒートポンプ式空気調和機を用いた系統連系システム
JP5409684B2 (ja) 空気調和機およびその運転方法
JP2004271033A (ja) エンジン駆動式ヒートポンプ装置
JP6379729B2 (ja) 空気調和装置
JP2023065680A (ja) 冷凍サイクル装置
JP4267587B2 (ja) 空調・発電システム
JP6152667B2 (ja) 空気調和装置
JP2005140367A (ja) 熱源送水温度制御方法および装置
JP6201354B2 (ja) 空気調和装置
JP4594146B2 (ja) 空調システムの変風量最適制御方法
JP2006280074A (ja) 空調・発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R151 Written notification of patent or utility model registration

Ref document number: 6455722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151