JP6454154B2 - 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体 - Google Patents

導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体 Download PDF

Info

Publication number
JP6454154B2
JP6454154B2 JP2015003350A JP2015003350A JP6454154B2 JP 6454154 B2 JP6454154 B2 JP 6454154B2 JP 2015003350 A JP2015003350 A JP 2015003350A JP 2015003350 A JP2015003350 A JP 2015003350A JP 6454154 B2 JP6454154 B2 JP 6454154B2
Authority
JP
Japan
Prior art keywords
conductive
particles
protrusions
nickel
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015003350A
Other languages
English (en)
Other versions
JP2015149276A (ja
Inventor
昌男 笹平
昌男 笹平
悠人 土橋
悠人 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015003350A priority Critical patent/JP6454154B2/ja
Publication of JP2015149276A publication Critical patent/JP2015149276A/ja
Application granted granted Critical
Publication of JP6454154B2 publication Critical patent/JP6454154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、基材粒子の表面上に導電部が配置されており、かつ上記導電部が外表面に複数の突起を有する導電性粒子及び導電性粒子の製造方法に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記導電性粒子の一例として、下記の特許文献1には、芯材粒子の表面に、ニッケル又はニッケル合金皮膜が形成された導電性粒子が開示されている。この導電性粒子は、上記皮膜の表面から突出し、かつ該皮膜と連続体になっており、かつアスペクト比が1以上である突起部を多数有する。アスペクト比が1以上である上記突起部の割合は、全突起部の数に対して40%以上である。
下記の特許文献2には、基材粒子の表面が導電性膜で被覆されており、該導電性膜が表面に隆起した突起を有する導電性粒子が開示されている。上記導電性膜の表面の隆起した突起は、軟質の金属粒子と硬質の非金属粒子とをそれぞれ芯物質としている。軟質の金属粒子の粒子径は、硬質の非金属粒子の平均粒子径に対して、1.05〜6倍である。
下記の特許文献3には、主成分が銀またはニッケルであり、表面に凸部を備えるとともに、内部に、導電材料を結晶成長させるための核物質としての金属系粒子またはセラミック系粒子を含む導電粉(導電性粒子)が開示されている。この導電粉では、少なくとも表面に対して、有機酸又は有機酸塩による処理が施されている。この導電粉の嵩密度は0.5〜2.5g/cmの範囲内の値である。
WO2010/044388A1 特開2006−216388号公報 特開2009−277403号公報
特許文献1〜3に記載の導電性粒子では、導電部の外表面に突起が形成されている。しかしながら、特許文献1〜3に記載のような導電性粒子と全く異なる新たな導電性粒子の開発が望まれている。例えば、導電性粒子における導電部の外表面の突起の形状が異なれば、導電性粒子に異なる性質が付与される可能性がある。
特に、導電性粒子を用いて電極間を電気的に接続する際には、一般に、電極間に導電性粒子を配置して、加熱及び加圧が行われる。従来の導電性粒子では、低圧では導電性粒子と電極とが十分に接触せずに、接続後に接続抵抗が高くなりやすいという問題がある。
また、導電性粒子における導電部の表面、並びに電極の表面には酸化膜が形成されていることが多い。従来の導電性粒子では、突起が酸化膜を十分に貫通せずに、接続抵抗が高くなったり、接続信頼性が低くなったりしやすいという問題がある。
本発明の目的は、基材粒子の表面上に導電部が配置されており、かつ上記導電部が外表面に複数の突起を有する導電性粒子において、導電部の外表面の突起の形状が従来の形状とは異なる新規な導電性粒子及び導電性粒子の製造方法を提供することである。
また、本発明の限定的な目的は、電極間を低圧で接続したとしても、接続後に接続抵抗を効果的に低くすることができる導電性粒子及び導電性粒子の製造方法を提供することである。
本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、前記導電部が、外表面に複数の突起を有し、複数の前記突起の形状が、先細りしている針状である、導電性粒子が提供される。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起の頂角の平均が10°以上、60°以下である。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起の平均高さが、5nm以上、1000nm以下である。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起の基部の平均径が5nm以上、1000nm以下である。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起の平均高さの、複数の前記突起の基部の平均径に対する比が、0.5以上、10以下である。
本発明に係る導電性粒子のある特定の局面では、前記突起の形状が、円錐状又は回転放物面状である。
本発明に係る導電性粒子のある特定の局面では、複数の前記突起を有する前記導電部が、金属又は合金の結晶配向により形成されている。
本発明に係る導電性粒子のある特定の局面では、前記導電部が、銅、ニッケル、パラジウム、コバルト、リチウム、鉄、ルテニウム、白金、銀、ロジウム、イリジウム、金、モリブデン、タングステン、リン及びホウ素からなる群から選択される少なくとも1種を含む。
本発明に係る導電性粒子のある特定の局面では、前記突起のX線回折における(111)面の割合が50%以上である。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された絶縁性物質をさらに備える。
本発明の広い局面によれば、基材粒子の表面上に導電層を形成する工程を備え、前記導電部を形成する際に、前記導電部が外表面に複数の突起を有するように、かつ複数の前記突起の形状が、先細りしている針状であるように、導電部を形成する、導電性粒子の製造方法が提供される。
本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体が提供される。
本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備え、上記導電部が、外表面に複数の突起を有し、更に複数の上記突起の形状が、先細りしている針状であるので、上記導電部の外表面の上記突起の形状が従来の形状とは異なり、突起の形状が先細りしている針状であることによる新たな効果が発揮される。
図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。 図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。 図5は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 図6は、製造された導電性粒子の画像を示す図である。 図7は、製造された導電性粒子の画像を示す図である。 図8は、製造された導電性粒子の画像を示す図である。 図9は、製造された導電性粒子の画像を示す図である。 図10は、製造された導電性粒子の画像を示す図である。
以下、本発明の詳細を説明する。
本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。上記導電部は外表面に、複数の突起を有する。複数の上記突起の形状は、先細りしている針状である。
また、本発明に係る導電性粒子の製造方法は、基材粒子の表面上に導電層を形成する工程を備える。本発明に係る導電性粒子の製造方法では、上記導電部を形成する際に、上記導電部が外表面に複数の突起を有するように、かつ複数の上記突起の形状が、先細りしている針状であるように、導電部を形成する。
本発明では、基材粒子の表面上に導電部が配置されており、かつ上記導電部が外表面に複数の突起を有する導電性粒子において、導電部の外表面の突起の形状が従来の形状とは異なる新規な導電性粒子が提供されている。本発明に係る導電性粒子では、導電性粒子は、上記導電部の外表面の上記突起の形状が従来の形状とは異なり、突起の形状が先細りしている針状であることによる新たな効果が発揮される。
例えば、針状の突起は、接触物に突き刺さりやすい。このため、本発明に係る導電性粒子は、針状の突起が突き刺さることが求められる用途に好適に用いられる。例えば、導電性粒子を用いて電極間を電気的に接続する際には、一般に、電極間に導電性粒子を配置して、加熱及び加圧が行われる。本発明に係る導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗を低くすることができる。特に、導電性粒子の表面及び電極の表面に、酸化膜が形成されていることが多い。本発明に係る導電性粒子を用いれば、導電性粒子の表面及び電極の表面の酸化膜を針状の突起が貫通しやすいため、電極間の接続抵抗を低くすることができる。さらに、電極を表面に有する接続対象部材によっては、低圧での電極間の電気的な接続が求められることがある。本発明に係る導電性粒子を用いることで、電極間を低圧で接続したとしても、接続後に接続抵抗を効果的に低くすることができる。
なお、本発明に係る導電性粒子では、表面に導電部が形成されているので、導電性粒子と呼ぶが、本発明に係る導電性粒子の用途は、導電接続用途に限定されない。本発明に係る導電性粒子は、導電性が求められる用途以外にも用いることができる。例えば、本発明に係る導電性粒子は、ギャップ制御材(スペーサ)としても用いることができる。
針状の形状を有する複数の上記突起の頂角の平均Aは好ましくは10°以上、より好ましくは20°以上、好ましくは60°以下、より好ましくは45°以下である。上記頂角の平均Aが上記下限以上であると、突起が過度に折れにくくなる。上記頂角の平均Aが上記上限以下であると、突起による接触性及び貫通性がより一層高くなる。なお、折れた突起は、電極間の接続抵抗を上昇させることがある。
上記突起の上記頂角の平均Aは、導電性粒子1個に含まれる先細りしている針状の形状を有する突起のそれぞれの頂角を、平均することにより求められる。
針状の形状を有する複数の上記突起の平均高さBは、好ましくは5nm以上、より好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下である。上記突起の平均高さBが上記下限以上であると、突起による接触性及び貫通性がより一層高くなる。上記突起の平均高さBが上記上限以下であると、突起が過度に折れにくくなる。
上記突起の平均高さBは、導電性粒子1個に含まれる先細りしている針状の形状を有する突起の高さの平均である。上記突起の高さは、導電性粒子の中心と突起の先端とを結ぶ線(図1に示す破線L1)上における、突起が無いと想定した場合の導電部の仮想線(図1に示す破線L2)上(突起が無いと想定した場合の球状の導電性粒子の外表面上)から突起の先端までの距離を示す。すなわち、図1においては、破線L1と破線L2との交点から突起の先端までの距離を示す。
針状の形状を有する複数の上記突起の基部の平均径Cは、好ましくは5nm以上、より好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下である。上記平均径Cが上記下限以上であると、突起が過度に折れにくくなる。上記平均径Cが上記上限以下であると、突起による接触性及び貫通性がより一層高くなる。
上記突起の基部の平均径Cは、導電性粒子1個に含まれる先細りしている針状の形状を有する突起の基部の径の平均である。基部の径は、突起における基部のそれぞれの最大径である。導電性粒子の中心と突起の先端とを結ぶ線(図1に示す破線L1)上における、突起が無いと想定した場合の導電部の仮想線部分(図1に示す破線L2)の端部が、上記突起の基部であり、上記仮想線部分の端部間距離(端部を直線で結んだ距離)が基部の径である。
複数の上記突起の平均高さBの、複数の上記突起の基部の平均径Cに対する比(平均高さB/平均径C)は、好ましくは0.5以上、より好ましくは1.5以上、好ましくは10以下、より好ましくは5以下である。上記比(平均高さB/平均径C)が上記下限以上であると、突起による接触性及び貫通性がより一層高くなる。上記比(平均高さB/平均径C)が上記上限以下であると、突起が過度に折れにくくなる。
針状の形状を有する複数の上記突起の高さの中央の位置における平均径Dの、針状の形状を有する複数の上記突起の基部の平均径Cに対する比(平均径D/平均径C)は、好ましくは1/5以上、より好ましくは1/4以上、更に好ましくは1/3以上、好ましくは4/5以下、より好ましくは3/4以下、更に好ましくは2/3以下である。上記比(平均径D/平均径C)が上記下限以上であると、突起が過度に折れにくくなる。上記比(平均径D/平均径C)が上記上限以下であると、突起による接触性及び貫通性がより一層高くなる。
上記突起の高さの中央の位置における平均径Dは、導電性粒子1個に含まれる先細りしている針状の形状を有する突起の高さの中央の位置における径の平均である。突起の高さの中央の位置における径は、突起の高さの中央の位置のそれぞれの最大径である。
突起の過度の折れを抑え、突起による接触性及び貫通性をより一層高める観点からは、複数の上記突起の形状は角錐状、円錐状又は回転放物面状であることが好ましく、円錐状又は回転放物面状であることがより好ましく、円錐状であることが更に好ましい。上記突起の形状は、角錐状であってもよく、円錐状であってもよく、回転放物面状であってもよい。本発明では、回転放物面状も、先細りしている針状に含まれる。回転放物面状の突起では、基部から先端にかけて先細りしている。
上記導電性粒子1個あたりの上記導電部の外表面の先細りしている針状の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。なお、上記導電性粒子に含まれる突起の全てが、先細りしている針状である必要はない。
上記導電性粒子1個あたりに含まれる突起の数に占める先細りしている針状である突起の数の割合Xは、好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上、特に好ましくは70%以上、最も好ましくは80%以上である。針状の突起の数の割合が多いほど、針状の突起による効果がより一層効果的に得られる。
導電部の外表面の表面積の全体100%中、針状の突起が形成されている表面積の割合は好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上、好ましくは90%以下、より好ましくは80%以下、更に好ましくは70%以下である。
複数の上記突起を有する上記導電部が、金属又は合金の結晶配向により形成されていることが好ましい。なお、後述する実施例では、導電部は、金属又は合金の結晶配向により形成されている。
上記突起のX線回折における(111)面の割合が50%以上であることが好ましい。
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。
図1に示すように、導電性粒子1は、基材粒子2と、導電部3とを備える。
導電部3は、基材粒子2の表面上に配置されている。導電性粒子1は、基材粒子2の表面が導電部3により被覆された被覆粒子である。導電部3は連続皮膜である。
導電性粒子1は導電性の表面に、複数の突起1aを有する。導電部3は外表面に、複数の突起3aを有する。複数の突起1a,3aの形状は、先細りしている針状であり、本実施形態では円錐状である。導電部は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。複数の突起1a,3aを除く部分が、導電部3の上記第1の部分である。複数の突起1a,3aは、導電部3の厚みが厚い上記第2の部分である。
図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。
図2に示すように、導電性粒子1Aは、基材粒子2と、導電部3Aとを備える。
導電部3Aは、基材粒子2の表面上に配置されている。導電性粒子1Aは導電性の表面に、複数の突起1Aaを有する。導電部3Aは外表面に、複数の突起3Aaを有する。複数の突起1Aa,3Aaの形状は、先細りしている針状であり、本実施形態では回転放物面状である。
導電性粒子1,1Aのように、上記導電部における複数の突起の形状は、先細りしている針状であればよく、円錐状であってもよく、回転放物面状であってもよい。
図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。
図3に示すように、導電性粒子1Bは、基材粒子2と、導電部3Bとを備える。
導電性粒子1と導電性粒子1Bとでは、導電部のみが異なっている。すなわち、導電性粒子1では、1層構造の導電部3が形成されているのに対し、導電性粒子1Bでは、2層構造の導電部3Bが形成されている。
導電部3Bは、第1の導電部3BA及び第2の導電部3BBを有する。第1,第2の導電部3BA,3BBは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部3BBとの間に、第1の導電部3BAが配置されている。従って、基材粒子2の表面上に第1の導電部3BAが配置されており、第1の導電部3BAの外表面上に第2の導電部3BBが配置されている。第1の導電部3BAの外形は球状である。導電性粒子1Bは導電性の表面に、複数の突起1Baを有する。導電部3Bは、外表面に複数の突起3Baを有する。第2の導電部3BBは外表面に、複数の突起3BBaを有する。複数の突起3BBaの形状は、先細りしている針状であり、本実施形態では円錐状である。内側の第1の導電部が外表面に、複数の突起を有していてもよい。
図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。
図4に示すように、導電性粒子1Cは、基材粒子2と、導電部3と、絶縁性物質4を備える。導電性粒子1Cは、導電性の表面に複数の突起1Caを有する。
導電性粒子1Cは、導電性粒子1の外表面に絶縁性物質4が配置された導電性粒子である。導電部3の外表面上に、絶縁性物質4が配置されている。本実施形態では、絶縁性物質4は、絶縁性粒子である。導電部3の外表面の少なくとも一部の領域が、絶縁性物質4により被覆されている。絶縁性物質4は絶縁性を有する材料により形成されている。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有することが好ましい。
また、図6〜10に、実際に製造された導電性粒子の画像を示した。図6〜10に示す導電性粒子は、導電部の外表面に複数の突起を有し、複数の該突起の形状は、先細りしている針状である。
以下、導電性粒子をより詳しく説明する。
(導電性粒子)
[基材粒子]
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。
上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが更に好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、電極間の電気的な接続に、より一層適した導電性粒子が得られる。
上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の接続抵抗がより一層低くなる。
上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。
上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
上記コアの粒径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記コアの粒径が上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。例えば、上記コアの粒径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
上記コアの粒径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒径は、コアを任意の粒径測定装置により測定した平均粒径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。
上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。
上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。
上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは100μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに、基材粒子の表面に導電部を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。基材粒子の平均粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、更に電極間の間隔が狭くなる。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
[導電部]
上記導電部は導電層であることが好ましい。上記導電部の材料である金属は特に限定されない。上記導電部の材料である金属としては、金、銀、銅、パラジウム、ルテニウム、ロジウム、イリジウム、リチウム、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウム、銅がより好ましい。針状の突起を有する上記導電部は、銅、ニッケル、パラジウム、コバルト、リチウム、鉄、ルテニウム、白金、銀、ロジウム、イリジウム、金、モリブデン、タングステン、リン及びホウ素からなる群から選択される少なくとも1種を含むことが好ましく、銅と、ニッケル、リン又はボロンとを含むことがより好ましい。上記導電部の材料は、リン及びボロンなどを含む合金であってもよい。上記導電部では、ニッケルとタングステン又はモリブデンとが合金化していてもよい。上記導電部の融点は、好ましくは300℃以上、より好ましくは450℃以上である。
導電部の硬度をより一層高くし、電極間の接続時に、導電部の表面及び電極の表面の酸化膜をより一層効果的に排除し、電極間の接続抵抗をより一層低くする観点からは、針状の突起を有する上記導電部は、銅又はニッケルを含む導電部を有することが好ましい。銅を含む導電部は銅を主金属として含むことが好ましい。上記銅を含む導電部100重量%中、銅の含有量は50重量%以上であることが好ましい。上記銅を含む層100重量%中、銅の含有量は好ましくは75重量%以上、より好ましくは85重量%以上、更に好ましくは95重量%以上である。銅の含有量が上記下限以上であると、導電部の表面及び電極の表面の酸化膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
針状の突起を容易に形成可能であることから、上記導電部は、ニッケル、銅及びリンを含む導電部であるか、ニッケル及びパラジウムを含む導電部であるか、ニッケル及び鉄を含む導電部であるか、ニッケル、銅、リチウム及びリンを含む導電部であるか、コバルト、ニッケル及びリンを含む導電部であることが好ましい。
針状の突起を有する上記導電部はリン又はボロンを含むことが好ましく、上記ニッケルを含む導電部はリン又はボロンを含むことが好ましい。上記導電部がリン又はボロンを含む場合に、リン又はボロンを含む導電部100重量%中、リンとボロンとの合計の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上、更に好ましくは3重量%以上、好ましくは10重量%以下である。リンとボロンとの合計の含有量が上記上限以下であると、導電部の抵抗がより一層低くなり、またニッケルなどの金属の含有量が相対的に多くなるので、電極間の接続抵抗がより一層低くなる。
上記導電部は、1つの層により形成されていてもよく、複数の層により形成されていてもよい。すなわち、導電部は、単層であってもよく、2層以上の積層構造を有していてもよい。導電部が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層又はパラジウム層であることがより好ましく、金層であることが特に好ましい。最外層がこれらの好ましい導電部である場合には、電極間の接続抵抗がより一層低くなる。また、最外層が金層である場合には、耐腐食性がより一層高くなる。
粒子の表面上に導電部を形成する方法は特に限定されない。導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを粒子の表面にコーティングする方法等が挙げられる。なかでも、導電部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
導電部の外表面に先細りしている針状の形状を有する突起を形成する方法としては、下記の方法が挙げられる。
還元剤としてヒドラジンを用いた無電解高純度ニッケルめっきによる方法、還元剤としてヒドラジンを用いた無電解パラジウム−ニッケル合金による方法、還元剤として次亜リン酸化合物を用いた無電解CoNiP合金めっき方法、並びに還元剤として次亜リン酸化合物を用いた無電解銅−ニッケル−リン合金めっきによる方法等が挙げられる。
無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、銅及びニッケルを含む合金めっき層及び導電部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む導電層を形成できる。
上記無電解めっき工程では、銅含有化合物、錯化剤及び還元剤を含有するめっき液を用いる無電解銅−ニッケル−リン合金めっき方法において、還元剤として次亜リン酸化合物を含み、還元剤の反応開始金属触媒としてニッケル含有化合物を含み、かつ非イオン系界面活性剤を含む銅−ニッケル−リン合金めっき液を用いることが好ましい。
銅−ニッケル−リン合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、銅−ニッケル−リン合金を析出させることができ、銅、ニッケル及びリンを含む導電層を形成できる。
上記銅含有化合物としては、硫酸銅、塩化第二銅、及び硝酸銅等が挙げられる。上記銅含有化合物は、硫酸銅であることが好ましい。
上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。
上記リン含有還元剤としては、次亜リン酸、及び次亜リン酸ナトリウム等が挙げられる。上記リン含有還元剤に加えて、ボロン含有還元剤を用いてもよい。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。
上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤、並びに、これらの塩からなる群より選択される少なくとも1種の錯化剤を含有することが好ましい。
上記界面活性剤としては、アニオン系、カチオン系、ノニオン系又は両性の界面活性剤が挙げられ、特に非イオン性界面活性剤が好適である。好ましい非イオン性界面活性剤は、エーテル酸素原子を含むポリエーテルである。好ましい非イオン性界面活性剤としては、ポリオキシエチレンラウリルエーテル、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルアミン、及びエチレンジアミンのポリオキシアルキレン付加物等が挙げられる。好ましくは、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル、ポリオキシエチレンポリオキシプロピレングリコールモノブチルエーテルなどのポリオキシエチレンモノアルキルエーテル、ポリエチレングリコール又はフェノールエトキシレートである。上記界面活性剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールが特に好ましい。
導電部の外表面に先細りしている針状の形状を有する突起を形成するためには、銅化合物とニッケル化合物とのモル比を制御することが望ましい。上記の銅化合物の使用量は、ニッケル化合物に対するモル比で2倍から100倍であることが好ましい。
また、上記の非イオン系界面活性剤等を用いなくても、針状の形状を有する突起が得られる。より頂角が鋭利に先細りしている形状の突起を形成するためには、非イオン系界面活性剤を用いることが好ましく、分子量1000程度(例えば、500以上、2000以下)のポリエチレングリコールを用いることが特に好ましい。
複数の突起の平均高さBの、複数の上記突起の基部の平均径Cに対する比(平均高さB/平均径C)は、導電部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。
次に、無電解めっきにより、樹脂粒子の表面に、高純度ニッケルめっき層及び導電部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む導電層を形成できる。
上記無電解めっき工程では、ニッケル含有化合物、錯化剤及び還元剤を含有するめっき液を用いる無電解高純度ニッケルめっき方法において、還元剤としてヒドラジンを含む高純度ニッケルめっき液が好適に用いられる。
高純度ニッケルめっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、高純度ニッケルめっきを析出させることができ、高純度ニッケルの導電層を形成できる。
上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、塩化ニッケルであることが好ましい。
上記の還元剤としては、ヒドラジン一水和物、塩酸ヒドラジン、及び硫酸ヒドラジンが挙げられる。上記の還元剤は、ヒドラジン一水和物であることが好ましい。
上記錯化剤としては、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤等が挙げられる。上記錯化剤は、アミノ酸系であるグリシンであることが好ましい。
導電部の外表面に先細りしている針状の形状を有する突起を形成するためには、めっき液のpHを8.0以上に調整することが好ましい。還元剤としてヒドラジンを用いる無電解めっき液では、ヒドラジンの酸化反応によりニッケルを還元する際にpHの急激な低下をともなう。上記のpHの急激な低下を抑制するために、リン酸、ホウ酸、炭酸等の緩衝剤を用いることが好ましい。上記緩衝剤は、pH8.0以上の緩衝作用の効果があるホウ酸であることが好ましい。
複数の突起の平均高さBの、複数の上記突起の基部の平均径Cに対する比(平均高さB/平均径C)は、導電部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は、好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。
次に、無電解めっきにより、樹脂粒子の表面に、パラジウム−ニッケル合金めっき層及び導電部の外表面に先細りしている針状の形状を有する突起を形成する方法の例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む導電層を形成できる。
上記無電解めっき工程では、ニッケル含有化合物、パラジウム化合物、安定剤、錯化剤及び還元剤を含有するめっき液を用いる無電解パラジウム−ニッケルめっき方法において、還元剤としてヒドラジンを含むパラジウム−ニッケル合金めっき液が好適に用いられる。
パラジウム−ニッケル合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、パラジウム−ニッケル合金めっきを析出させることができ、パラジウム−ニッケルの導電層を形成できる。
上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。
上記パラジウム含有化合物としては、ジクロロエチレンジアミンパラジウム(II)、塩化パラジウム、ジクロロジアンミンパラジウム(II)、ジニトロジアンミンパラジウム(II)、テトラアンミンパラジウム(II)硝酸塩、テトラアンミンパラジウム(II)硫酸塩、オキザラトジアンミンパラジウム(II)、テトラアンミンパラジウム(II)シュウ酸塩、及びテトラアンミンパラジウム(II)クロライド等が挙げられる。上記パラジウム含有化合物は、塩化パラジウムであることが好ましい。
上記安定剤としては、鉛化合物、ビスマス化合物、及びタリウム化合物等が挙げられる。これらの化合物としては、具体的には、化合物を構成する金属(鉛、ビスマス、タリウム)の硫酸塩、炭酸塩、酢酸塩、硝酸塩、及び塩酸塩等が挙げられる。環境への影響を考慮すると、ビスマス化合物及びタリウム化合物の内の少なくとも1種が好ましい。
上記の還元剤としては、ヒドラジン一水和物、塩酸ヒドラジン、及び硫酸ヒドラジンが挙げられる。上記の還元剤は、ヒドラジン一水和物であることが好ましい。
上記錯化剤としては、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤等が挙げられる。上記錯化剤は、アミノ酸系であるエチレンジアミンであることが好ましい。
導電部の外表面に先細りしている針状の形状を有する突起を形成するためには、めっき液のpHを8.0から10.0に調整することが好ましい。pH7.5以下では、めっき液の安定性が低下し、浴分解を引き起こすため、pH8.0以上にすることが好ましい。
複数の突起の平均高さBの、複数の上記突起の基部の平均径Cに対する比(平均高さB/平均径C)は、導電部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。
次に、無電解めっきにより、樹脂粒子の表面に、コバルトとニッケルを含む合金めっき層及び導電部の外表面に先細りしている針状の形状を有する突起を形成する方法の一例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化スズとを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、リン含有還元剤が用いられる。また、上記還元剤として、リン含有還元剤を用いることで、リンを含む導電層を形成できる。
上記無電解めっき工程では、コバルト含有化合物、無機添加剤、錯化剤及び還元剤を含有するめっき液を用いる無電解コバルト−ニッケル−リン合金めっき方法において、還元剤として次亜リン酸化合物を含み、還元剤の反応開始金属触媒としてコバルト含有化合物を含むコバルト−ニッケル−リン合金めっき液が好適に用いられる。
コバルト−ニッケル−リン合金めっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、コバルト−ニッケル−リン合金を析出させることができ、コバルト、ニッケル、及びリンを含む導電層を形成できる。
上記コバルト含有化合物は、硫酸コバルト、塩化コバルト、硝酸コバルト、酢酸コバルト、又は炭酸コバルトであることが好ましい。上記コバルト含有化合物は、硫酸コバルトであることがより好ましい。
上記ニッケル含有化合物としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び硝酸ニッケル等が挙げられる。上記ニッケル含有化合物は、硫酸ニッケルであることが好ましい。
上記リン含有還元剤としては、次亜リン酸、及び次亜リン酸ナトリウム等が挙げられる。上記リン含有還元剤に加えて、ボロン含有還元剤を用いてもよい。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。
上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤、マロン酸ニナトリウム等のジカルボン酸系錯化剤、コハク酸ニナトリウム等のトリカルボン酸系錯化剤、乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤、グリシン、EDTA等のアミノ酸系錯化剤、エチレンジアミン等のアミン系錯化剤、マレイン酸等の有機酸系錯化剤、並びに、これらの塩からなる群より選択される少なくとも1種の錯化剤を含有することが好ましい。
上記無機添加剤は、硫酸アンモニウム、塩化アンモニウム、及びホウ酸からなる群より選択された少なくとも1種であることが好ましい。上記無機添加剤は、無電解コバルトめっき層の析出を促進させる作用をするものと考えられる。
導電部の外表面に先細りしている針状の形状を有する突起を形成するためには、コバルト化合物とニッケル化合物とのモル比を制御することが望ましい。上記のコバルト化合物の使用量は、ニッケル化合物に対するモル比で2倍から100倍であることが好ましい。
また、上記の無機添加剤を用いなくても、針状の形状を有する突起が得られる。より頂角が小さく、鋭利に先細りしている形状の突起を形成するためには無機添加剤を用いることが好ましく、硫酸アンモニウムを用いることが特に好ましい。
複数の突起の平均高さBの、複数の上記突起の基部の平均径Cに対する比(平均高さB/平均径C)は、導電部の厚みに依存し、めっき浴への浸漬時間で制御することができる。めっき温度は好ましくは30℃以上、好ましくは100℃以下であり、まためっき浴への浸漬時間は好ましくは5分以上である。
上記突起が無い部分における導電部全体の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは500nm以下、特に好ましくは400nm以下、最も好ましくは300nm以下である。導電部全体の厚みが上記下限以上であると、導電性粒子の導電性がより一層良好になる。導電部全体の厚みが上記上限以下であると、基材粒子と導電部との熱膨張率の差が小さくなり、基材粒子から導電部が剥離し難くなる。上記導電部の厚みは、導電部が複数の導電部(第1の導電部と第2の導電部)を有する場合には、導電部全体の厚み(第1,第2の導電部の合計の厚み)を示す。
上記導電部が複数の導電部を有する場合に、最外層の上記突起が無い部分における導電部の厚みは、好ましくは1nm以上、より好ましくは10nm以上、好ましくは500nm以下、より好ましくは100nm以下である。上記最外層の導電部の厚みが上記下限以上及び上記上限以下であると、最外層の導電部による被覆を均一にでき、耐腐食性が充分に高くなり、かつ電極間の接続抵抗が充分に低くなる。また、上記最外層が内層の導電部よりも高価である場合に、最外層の厚みが薄いほど、コストが低くなる。
上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定可能である。
[絶縁性物質]
本発明に係る導電性粒子は、上記導電部の外表面上に配置された絶縁性物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電部と電極との間の絶縁性物質を容易に排除できる。導電性粒子が導電部の外表面に複数の突起を有するので、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。
電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。
上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
熱圧着時の絶縁性粒子の脱離性をより一層高める観点からは、絶縁性粒子は、無機粒子であることが好ましく、シリカ粒子であることが好ましい。上記無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子及びシリカ粒子等が挙げられる。上記シリカ粒子としては、粉砕シリカ、球状シリカが挙げられ、球状シリカを用いることが好ましい。
上記導電部の表面上に絶縁性物質を配置する方法としては、公知の方法を採用可能である。
上記絶縁性物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択可能である。上記絶縁性物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁性物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電部同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
上記絶縁性物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁性物質の平均径は、粒度分布測定装置等を用いて求められる。
(導電材料)
本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は回路接続材料であることが好ましい。上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。
上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化性樹脂、熱硬化性樹脂、光硬化性樹脂又は湿気硬化性樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体)
本発明に係る導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1の接続対象部材と第2の接続対象部材を接続している接続部とを備え、該接続部が上述した導電性粒子により形成されているか、又は、上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。
図5に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。
図5に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1とバインダー樹脂(硬化したバインダー樹脂など)とを含む。接続部54は、導電性粒子1を含む導電材料により形成されている。接続部54は、導電材料を硬化させることにより形成されていることが好ましい。なお、図5では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子1A,1B,1Cなどの他の導電性粒子を用いてもよい。
第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板である電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−203」)の表面を、ゾルゲル反応による縮合反応を用いてシリカシェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子A)を用意した。
上記有機無機ハイブリッド粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に有機無機ハイブリッド粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に有機無機ハイブリッド粒子を添加し、パラジウムが付着された有機無機ハイブリッド粒子を得た。
パラジウムが付着された有機無機ハイブリッド粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、ニッケル粒子スラリー(球状のニッケル粒子を含む、芯物質であるニッケルの平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された有機無機ハイブリッド粒子を含む懸濁液を得た。
また、無電解銅−ニッケル−リン合金めっき液として、硫酸銅150g/Lと、硫酸ニッケル15g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム150g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10g/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液500mlを15ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面に銅−ニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例2)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(基材粒子B、積水化学工業社製「ミクロパールSP−203」)を用意した。
基材粒子Aを基材粒子Bに変更したこと以外は実施例1と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面に銅−ニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例3)
無電解高純度ニッケルめっき液として、塩化ニッケル55g/Lと、ヒドラジン一水和物100g/Lと、グリシン50g/Lと、ホウ酸20g/Lとの混合液を水酸化ナトリウムにてpH11に調整しためっき液を用意した。このめっき液1000mlを20ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、70℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面に高純度Ni導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例4)
無電解パラジウム−ニッケル合金めっき液として、塩化パラジウム60g/Lと、硫酸ニッケル5g/Lと、ヒドラジン一水和物100g/Lと、エチレンジアミン50g/Lと、DL−りんご酸30g/Lと、安定剤5ml/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1000mlを20ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、50℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面にパラジウム−ニッケル合金導電層(厚み:100nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例5)
無電解コバルト−ニッケル−リン合金めっき液として、硫酸コバルト50g/Lと、硫酸ニッケル10g/Lと、次亜リン酸ナトリウム100g/Lと、硫酸アンモニウム50g/Lと、ピロリン酸ナトリウム20g/Lとの混合液を水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液1200mlを20ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、70℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面にコバルト−ニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例6)
無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル2.5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム150g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)20g/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1000mlを15ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面に銅−ニッケル−リン合金導電層(厚み:103nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例7)
無電解銅−ニッケル−リン合金めっき液として、硫酸銅100g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム150g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)15g/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1000mlを15ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面に銅−ニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例8)
無電解銅−ニッケル−リン合金めっき液として、硫酸銅200g/Lと、硫酸ニッケル20g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム150g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)5g/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液500mlを20ml/分の添加速度で定量ポンプを通して、実施例1で得られた懸濁液に滴下した。反応温度は、55℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面に銅−ニッケル−リン合金導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例9)
絶縁性粒子の作製:
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
導電性粒子の作製:
実施例1で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
(実施例10)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(基材粒子B、積水化学工業社製「ミクロパールSP−203」)を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
また、無電解銅−ニッケル−リンめっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1500mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面に銅−ニッケル−リン導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例11)
無電解ニッケル−銅−リン合金めっき液として、硫酸ニッケル80g/Lと、硫酸銅40g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム75g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)20mg/Lとの混合液を水酸化ナトリウムにてpH5に調整しためっき液を用意した。このめっき液2000mlを5ml/分の添加速度で定量ポンプを通して、実施例10で得られた懸濁液に滴下した。反応温度は、50℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−銅−リン合金導電層(厚み:100nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例12)
無電解高純度ニッケルめっき液として、塩化ニッケル55g/Lと、ヒドラジン一水和物50g/Lと、グリシン50g/Lと、ホウ酸20g/Lとの混合液を水酸化ナトリウムにてpH11に調整しためっき液を用意した。このめっき液1500mlを20ml/分の添加速度で定量ポンプを通して、実施例10で得られた懸濁液に滴下した。反応温度は、65℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面に高純度Ni導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例13)
無電解パラジウム−ニッケル合金めっき液として、塩化パラジウム40g/Lと、硫酸ニッケル3g/Lと、ヒドラジン一水和物50g/Lと、エチレンジアミン5g/Lと、DL−りんご酸30g/Lと、安定剤5ml/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1500mlを20ml/分の添加速度で定量ポンプを通して、実施例10で得られた懸濁液に滴下した。反応温度は、50℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にパラジウム−ニッケル合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例14)
無電解コバルト−ニッケル−リン合金めっき液として、硫酸コバルト50g/Lと、硫酸ニッケル10g/Lと、次亜リン酸ナトリウム100g/Lと、硫酸アンモニウム50g/Lと、ピロリン酸ナトリウム20g/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1400mlを20ml/分の添加速度で定量ポンプを通して、実施例10で得られた懸濁液に滴下した。反応温度は、70℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にコバルト−ニッケル−リン合金導電層(厚み:103nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電層を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例15)
粒子径が2.5μmであるジビニルベンゼン共重合体樹脂粒子の表面を、ゾルゲル反応による縮合反応を用いてシリカシェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子C)を得た。基材粒子Bを基材粒子Cに変更したこと以外は実施例10と同様にして、有機無機ハイブリッド粒子の表面に銅−ニッケル−リン合金導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例16)
基材粒子Bを、基材粒子Bと粒子径のみが異なり、粒子径が2.5μmである基材粒子Dに変更したこと以外は実施例10と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面に銅−ニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例17)
基材粒子Bを、基材粒子Bと粒子径のみが異なり、粒子径が10.0μmである基材粒子Eに変更したこと以外は実施例10と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面に銅−ニッケル−リン合金導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例18)
攪拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン19.2gと、シリコーンアルコキシオリゴマー(信越化学工業社製「X−41−1053」)0.7gとの混合物をゆっくりと添加した。撹拌しながら、加水分解及び縮合反応を進行させた後、25重量%アンモニア水溶液2.4mLを添加した後、アンモニア水溶液中から粒子を単離して、得られた粒子を酸素分圧10−17atm、350℃で2時間焼成して、粒子径が3.0μmの有機無機ハイブリッド粒子(基材粒子F)を得た。上記基材粒子Bを上記基材粒子Fに変更したこと以外は実施例10と同様にして、樹脂粒子の表面に銅−ニッケル−リン合金導電層が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
(実施例19)
第1の導電部形成用の無電解ニッケル−ボロン合金めっき液として、硫酸ニッケル100g/Lと、ジメチルアミンボラン80g/Lと、めっき安定剤(ビスマス化合物)10ml/Lと、クエン酸ナトリウム30g/Lとの混合液を水酸化ナトリウムにてpH6に調整しためっき液を用意した。このめっき液250mlを5ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、45℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗することにより、樹脂粒子の表面に第1の導電部のニッケル−ボロン合金導電層(厚み:50nm)が配置された導電性粒子を得た。第1の導電部のニッケル−ボロン合金導電層が配置された導電性粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
次に、第2の導電部形成用の無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液750mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第1の導電部の外表面上に第2の導電部の銅−ニッケル−リン合金導電層(厚み:52nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例20)
第1の導電部形成用の無電解銅めっき液として、硫酸銅200g/Lと、エチレンジアミン四酢酸150g/Lと、グルコン酸ナトリウム100g/Lと、ホルムアルデヒド50g/Lとの混合液を、アンモニアにてpH10.5に調整した銅めっき液を用意した。このめっき液250mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、65℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗することにより、樹脂粒子の表面に第1の導電部の銅導電層(厚み:51nm)が配置された導電性粒子を得た。第1の導電部の銅導電層が配置された導電性粒子を蒸留水100重量部に加え、分散させることにより、懸濁液を得た。パラジウム触媒液を5重量%含む酸性溶液100重量部に、上記懸濁液を、超音波分散器を用いて分散させた後、溶液をろ過することにより、第1の導電部の銅導電層が配置された導電性粒子を取り出した。次いで、第1の導電部の銅導電層が配置された導電性粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、第1の導電部の銅導電層の表面を活性化させた。表面が活性化された第1の導電部の銅導電層が配置された導電性粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
次に、第2の導電部形成用の無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液750mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第1の導電部の外表面上に第2の導電部の銅−ニッケル−リン合金導電層(厚み:50nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例21)
第1の導電部形成用の無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1300mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗することにより、樹脂粒子の表面に第1の導電部の銅−ニッケル−リン合金導電層(厚み:85nm)が配置された導電性粒子を得た。第1の導電部の銅−ニッケル−リン合金導電層が配置された導電性粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
次に、第2の導電部形成用の置換金めっき液として、シアン化金カリウム10g/Lと、クエン酸ナトリウム45g/Lと、エチレンジアミン四酢酸5g/Lと、水酸化ナトリウム20g/Lとを含む金めっき液(pH6.0)を500ml用意した。
得られた懸濁液を45℃にて攪拌しながら、上記金めっき液500mLを懸濁液に徐々に滴下し、置換金めっきを行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第1の導電部の外表面上に第2の導電部の金導電層(厚み:17nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例22)
第1の導電部形成用の無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1300mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗することにより、樹脂粒子の表面に第1の導電部の銅−ニッケル−リン合金導電層(厚み:85nm)が配置された導電性粒子を得た。第1の導電部の銅−ニッケル−リン合金導電層が配置された導電性粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
次に、第2の導電部形成用の無電解パラジウムめっき液として、硫酸パラジウム12g/Lと、エチレンジアミン30ml/Lと、ギ酸ナトリウム80g/Lと、サッカリン酸ナトリウム5mg/Lとの混合液を、硫酸にてpH8.0に調整しためっき液を500ml用意した。
得られた懸濁液を50℃にて攪拌しながら、上記無電解パラジウムめっき液500mLを懸濁液に徐々に滴下し、無電解パラジウムめっきを行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第1の導電部の外表面上に第2の導電部のパラジウム導電層(厚み:15nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例23)
第1の導電部形成用の無電解銅−ニッケル−リン合金めっき液として、硫酸銅50g/Lと、硫酸ニッケル5g/Lと、次亜リン酸ナトリウム100g/Lと、クエン酸ナトリウム50g/Lと、ホウ酸10g/Lと、非イオン系界面活性剤としてポリエチレングリコール1000(分子量:1000)10mg/Lとの混合液を水酸化ナトリウムにてpH9に調整しためっき液を用意した。このめっき液1300mlを10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗することにより、樹脂粒子の表面に第1の導電部の銅−ニッケル−リン合金導電層(厚み:85nm)が配置された導電性粒子を得た。第1の導電部の銅−ニッケル−リン合金導電層が配置された導電性粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
次に、第2の導電部形成用の無電解ニッケル−ボロン合金めっき液として、硫酸ニッケル15g/Lと、ジメチルアミンボラン40g/Lと、めっき安定剤(ビスマス化合物)2ml/Lと、クエン酸ナトリウム15g/Lとの混合液を水酸化ナトリウムにてpH6に調整しためっき液を用意した。このめっき液500mlを5ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、45℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、第1の導電部の外表面上に第2の導電部のニッケル−ボロン導電層(厚み:16nm)が配置された導電性粒子を得た。得られた導電性粒子における導電部は、外表面に先細りしている針状の複数の突起を有していた。
上記のめっき方法で導電部を形成したこと以外は実施例10と同様にして、導電性粒子を得た。
(実施例24)
絶縁性粒子の作製:
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
導電性粒子の作製:
実施例10で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
(比較例1)
実施例1と同様の有機無機ハイブリッド粒子(基材粒子A)を用意した。
上記有機無機ハイブリッド粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に有機無機ハイブリッド粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に有機無機ハイブリッド粒子を添加し、パラジウムが付着された有機無機ハイブリッド粒子を得た。
パラジウムが付着された有機無機ハイブリッド粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、ニッケル粒子スラリー(球状のニッケル粒子を含む、芯物質であるニッケルの平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された有機無機ハイブリッド粒子を含む懸濁液を得た。
また、無電解ニッケル−リン合金めっき液として、硫酸ニッケル450g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム200g/Lと、めっき安定剤5ml/Lとの混合液をアンモニアにてpH7に調整しためっき液を用意した。このめっき液500mlを15ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された有機無機ハイブリッド粒子の表面にニッケル−リン合金導電層(厚み:101nm)が配置された導電性粒子を得た。得られた導電性粒子における複数の突起の形状は、球体の一部の形状であった。
(比較例2)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(基材粒子B、積水化学工業社製「ミクロパールSP−203」)を用意した。
上記ジビニルベンゼン共重合体樹脂粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂粒子を添加し、パラジウムが付着された樹脂粒子を得た。
パラジウムが付着された樹脂粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、ニッケル粒子スラリー(球状のニッケル粒子を含む、芯物質であるニッケルの平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された樹脂粒子を含む懸濁液を得た。
また、無電解ニッケル−リン合金めっき液として、硫酸ニッケル650g/Lと、次亜リン酸ナトリウム150g/Lと、クエン酸ナトリウム200g/Lと、めっき安定剤5ml/Lとの混合液をアンモニアにてpH7に調整しためっき液を用意した。このめっき液500mlを15ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認した。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、芯物質が付着された樹脂粒子の表面にニッケル−リン合金導電層(厚み:102nm)が配置された導電性粒子を得た。得られた導電性粒子における複数の突起の形状は、球体の一部の形状であった。
(比較例3)
導電部の外表面に突起を形成せずに、導電部の外形が球状であるようにしたこと以外は実施例1と同様にして、導電性粒子を得た。
(比較例4)
導電部の外表面に突起を形成せずに、導電部の外形が球状であるようにしたこと以外は実施例2と同様にして、導電性粒子を得た。
(評価)
(1)導電部の面格子の評価
X線回折装置(理学電機社製「RINT2500VHF」)を用いて、回折角に依存する装置固有の回折線のピーク強度比を算出した。金層の回折線全体の回折ピーク強度に占める(111)方位の回折ピーク強度の割合((111)面の割合)を求めた。
(2)接続抵抗の評価
得られた導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN−5A」に添加し、分散させて、異方性導電ペーストを作製した。
L/Sが30μm/30μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンを下面に有する半導体チップを用意した。
上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。接続構造体を得るために、電極間を0.5MPaの低圧で接続した。
得られた接続構造体15個の上下の電極間の接続抵抗を、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続抵抗を下記の基準で判定した。
[接続抵抗の判定基準]
○○:接続抵抗が2.0Ω以下
○:接続抵抗が2.0Ωを超え、3.0Ω以下
△:接続抵抗が3.0Ωを超え、5.0Ω以下
×:接続抵抗が5.0Ωを超える
(3)突起の頂角の平均Aの測定
得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製した。その検査用樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
そして、電界放射型透過電子顕微鏡(FE−TEM)(日本電子社製「JEM−ARM200F」)を用いて、画像倍率100万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起部を観察した。得られた導電性粒子における突起部の突起の頂角を計測し、それを算術平均して突起の頂角の平均Aとした。
(4)突起の平均高さBの測定
得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製した。その検査用樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
そして、電界放射型透過電子顕微鏡(FE−TEM)(日本電子社製「JEM−ARM200F」)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起部を観察した。得られた導電性粒子における突起部の突起の高さを計測し、それを算術平均して突起の平均高さBとした。
(5)突起の基部の平均径C及び突起の高さの中央位置における平均径Dの測定
得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製した。その検査用樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
そして、電界放射型透過電子顕微鏡(FE−TEM)(日本電子社製「JEM−ARM200F」)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起部を観察した。得られた導電性粒子における突起部の突起の基部径を計測し、それを算術平均して突起の基部の平均径Cとした。突起部の測定位置を変更したこと以外は基部の平均径Cと同様にして、突起の高さの中央位置における平均径Dを求めた。
(6)針状である突起の数の割合Xの測定
走査型電子顕微鏡(SEM)を用いて、画像倍率を25000倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起部を観察した。全ての突起部は、突起形状が、先細りしている針状か否かを評価して、突起形状が先細りしている針状により形成されている突起部と、突起形状が、先細りしている針状により形成されていない突起部とに分別した。このようにして、1つの導電性粒子あたりの1)先細りしている針状により形成されている突起部の個数と、2)先細りしている針状形状により形成されていない突起部の個数とを計測した。1)と2)の突起部の全個数100%中の1)針状である突起の数の割合Xを算出した。
結果を下記の表1に示す。また、下記の表1では、複数の上記突起の頂角の平均A、複数の上記突起の平均高さB、複数の上記突起の基部の平均径C、複数の上記突起の高さの中央の位置における平均径D、導電性粒子1個あたりに含まれる突起の数に占める先細りしている針状である突起の数の割合Xを示した。
1,1A,1B,1C…導電性粒子
1a,1Aa,1Ba,1Ca…突起
2…基材粒子
3,3A,3B…導電部(導電層)
3a,3Aa,3Ba…突起
3BA…第1の導電部
3BB…第2の導電部
3BBa…突起
4…絶縁性物質
51…接続構造体
52…第1の接続対象部材
52a…第1の電極
53…第2の接続対象部材
53a…第2の電極
54…接続部

Claims (12)

  1. 基材粒子と、
    前記基材粒子の表面上に配置された導電部とを備え、
    前記導電部が、外表面に複数の突起を有し、
    複数の前記突起の形状が、先細りしている針状であり、
    複数の前記突起の平均高さの、複数の前記突起の基部の平均径に対する比が、0.5以上、10以下である、導電性粒子。
  2. 複数の前記突起の頂角の平均が10°以上、60°以下である、請求項1に記載の導電性粒子。
  3. 複数の前記突起の平均高さが、5nm以上、1000nm以下である、請求項1又は2に記載の導電性粒子。
  4. 複数の前記突起の基部の平均径が、5nm以上、1000nm以下である、請求項1〜3のいずれか1項に記載の導電性粒子。
  5. 前記突起の形状が、円錐状又は回転放物面状である、請求項1〜のいずれか1項に記載の導電性粒子。
  6. 複数の前記突起を有する前記導電部が、金属又は合金の結晶配向により形成されている、請求項1〜のいずれか1項に記載の導電性粒子。
  7. 前記導電部が、銅、ニッケル、パラジウム、コバルト、リチウム、鉄、ルテニウム、白金、銀、ロジウム、イリジウム、金、モリブデン、タングステン、リン及びホウ素からなる群から選択される少なくとも1種を含む、請求項1〜のいずれか1項に記載の導電性粒子。
  8. 前記突起のX線回折における(111)面の割合が50%以上である、請求項1〜のいずれか1項に記載の導電性粒子。
  9. 前記導電部の外表面上に配置された絶縁性物質をさらに備える、請求項1〜のいずれか1項に記載の導電性粒子。
  10. 請求項1〜のいずれか1項に記載の導電性粒子を製造する方法であって、
    基材粒子の表面上に導電層を形成する工程を備え、
    前記導電部を形成する際に、前記導電部が外表面に複数の突起を有するように、かつ複数の前記突起の形状が、先細りしている針状であるように、導電部を形成する、導電性粒子の製造方法。
  11. 請求項1〜のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
  12. 第1の接続対象部材と、
    第2の接続対象部材と、
    前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部が、請求項1〜のいずれか1項に記載の導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体。
JP2015003350A 2014-01-10 2015-01-09 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体 Active JP6454154B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003350A JP6454154B2 (ja) 2014-01-10 2015-01-09 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014003290 2014-01-10
JP2014003290 2014-01-10
JP2015003350A JP6454154B2 (ja) 2014-01-10 2015-01-09 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JP2015149276A JP2015149276A (ja) 2015-08-20
JP6454154B2 true JP6454154B2 (ja) 2019-01-16

Family

ID=53892475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003350A Active JP6454154B2 (ja) 2014-01-10 2015-01-09 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体

Country Status (1)

Country Link
JP (1) JP6454154B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210154865A (ko) * 2016-03-15 2021-12-21 세키스이가가쿠 고교가부시키가이샤 금속 함유 입자, 접속 재료, 접속 구조체 및 접속 구조체의 제조 방법
WO2017222010A1 (ja) * 2016-06-22 2017-12-28 積水化学工業株式会社 接続構造体、金属原子含有粒子及び接合用組成物
KR101816761B1 (ko) * 2016-11-04 2018-02-21 아주대학교산학협력단 전도성 고분자 구조체 외부에 코팅된 금속 박막 층을 포함하는 내산화성 하이브리드 구조체 및 이의 제조 방법
CN111095441B (zh) * 2017-09-20 2021-11-23 积水化学工业株式会社 含金属粒子、连接材料、连接结构体及连接结构体的制造方法、导通检查用部件以及导通检查装置
JP7226654B2 (ja) * 2020-07-02 2023-02-21 株式会社村田製作所 インターポーザ及び基板モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059486B2 (ja) * 2002-11-01 2008-03-12 化研テック株式会社 導電粉、導電性組成物、および導電粉の製造方法
JP3616031B2 (ja) * 2001-05-10 2005-02-02 富士通株式会社 異方導電性シート、その製造方法、電子装置及び動作試験用検査装置
JP2007191786A (ja) * 2005-12-20 2007-08-02 Shinano Kenshi Co Ltd ニッケル粉およびニッケル粉の製造方法
JP4638341B2 (ja) * 2005-12-22 2011-02-23 積水化学工業株式会社 導電性微粒子及び異方性導電材料
JP5254659B2 (ja) * 2008-05-13 2013-08-07 化研テック株式会社 導電粉および導電性組成物
JP5703149B2 (ja) * 2011-07-06 2015-04-15 積水化学工業株式会社 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体

Also Published As

Publication number Publication date
JP2015149276A (ja) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6454154B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6009933B2 (ja) 導電性粒子、導電材料及び接続構造体
JP5719483B1 (ja) 導電性粒子、導電材料及び接続構造体
JP6668075B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6276351B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2020061376A (ja) 導電性粒子、導電材料及び接続構造体
JP6956221B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2019140116A (ja) 導電性粒子、導電材料及び接続構造体
JP6660171B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP2016042466A (ja) 導電性粒子、導電材料及び接続構造体
JP2022051742A (ja) 導電性粒子、導電材料及び接続構造体
TWI703584B (zh) 導電性粒子、導電材料及連接構造體
JP2016154139A (ja) 導電性粒子粉体、導電性粒子粉体の製造方法、導電材料及び接続構造体
JP6423687B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6445833B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6460803B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6747816B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6411194B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6801984B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6592298B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2015109267A (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R151 Written notification of patent or utility model registration

Ref document number: 6454154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151