JP6425873B2 - 熱硬化性樹脂組成物、プリプレグ及び積層板 - Google Patents

熱硬化性樹脂組成物、プリプレグ及び積層板 Download PDF

Info

Publication number
JP6425873B2
JP6425873B2 JP2013052469A JP2013052469A JP6425873B2 JP 6425873 B2 JP6425873 B2 JP 6425873B2 JP 2013052469 A JP2013052469 A JP 2013052469A JP 2013052469 A JP2013052469 A JP 2013052469A JP 6425873 B2 JP6425873 B2 JP 6425873B2
Authority
JP
Japan
Prior art keywords
resin
component
parts
mass
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013052469A
Other languages
English (en)
Other versions
JP2013216883A (ja
Inventor
寛之 泉
寛之 泉
信次 土川
信次 土川
久美子 石倉
久美子 石倉
昌久 尾瀬
昌久 尾瀬
森田 高示
高示 森田
直己 高原
直己 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013052469A priority Critical patent/JP6425873B2/ja
Publication of JP2013216883A publication Critical patent/JP2013216883A/ja
Application granted granted Critical
Publication of JP6425873B2 publication Critical patent/JP6425873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の熱硬化性樹脂は、特に優れた低熱膨張性、銅箔接着性、耐熱性を示し、また、毒性が低く安全性や作業環境に優れる、電子部品等に好適に用いられる熱硬化性樹脂組成物、プリプレグ及び積層板に関する。
熱硬化性樹脂組成物は、架橋構造を有し、高い耐熱性や寸法安定性を発現するため、電子部品等の分野において広く使われる。特に銅張積層板や層間絶縁材料においては、近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性、良好な低熱膨張性等の特性を有することが必要とされる。
即ち、積層板材料には近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性、良好な低熱膨張性等が必要とされるが、微細配線形成のため銅箔接着性は、銅箔ピール強度が1.0kN/m以上であることが望ましく、1.2kN/m以上であることがより望ましい。また、高密度化のためビルドアップ材等を用いてより高多層化することも必要であり、高いリフロー耐熱性が必要であるが、リフロー耐熱性評価の指針となる銅付き耐熱性(T−300)は、30分以上ふくれ等が生じないことが望ましい。
さらに、高密度化に伴い基材はより薄型化される方向にあり、熱処理時における基材のそりが小さいことが必要となる。低そり化のためには基材の面方向が低熱膨張性であることが有効であり、その熱膨張係数は7ppm/℃以下であることが望ましく、5ppm/℃以下であることがより望ましい。また、高密度化に伴い基材はより信頼性が要求される方向にあり、ドリル加工時のドリル穴の内壁粗さも小さいことが必要となる。ドリル穴の内壁粗さの評価は、めっき銅の染み込み性により評価され、めっき染み込み長さの最大が20μm以下であることが望ましく、15μm以下であることがより望ましい。
また、近年の環境問題から、鉛フリーはんだによる電子部品の搭載やハロゲンフリーによる難燃化が要求され、そのため従来のものよりも高い耐熱性及び難燃性が必要となっている。さらに、製品の安全性や作業環境の向上化のため、毒性の低い成分のみで構成され、毒性ガス等が発生しない熱硬化性樹脂組成物が望まれている。
熱硬化性樹脂であるシアネート化合物は、低誘電特性、難燃性に優れる樹脂であるが、エポキシ硬化系の熱硬化性樹脂にそのまま使用した場合、耐熱性や強靭性が充分でなく、また、次世代に対応する熱硬化性樹脂として更に低熱膨張性が望まれている。
このため、シアネート化合物と無機充填材からなる低熱膨張性を発現させる樹脂組成物が開示されているが(例えば、特許文献1、2および3参照)、これらは低熱膨張性を発現させるため無機充填材の配合使用量が多く、銅張積層板や層間絶縁材料として使用した場合にドリル加工性や成形性が不足する。
また、低熱膨張性を発現させるためにシアネート樹脂とアラルキル変性エポキシ樹脂を必須成分として含有する熱硬化性樹脂が開示されている(例えば、特許文献4および5参照)。しかし、この必須成分であるシアネート樹脂が靭性や硬化反応性が十分でない樹脂であるため、硬化反応性や強靭性の改良が望まれており、これらを銅張積層板や層間絶縁材料として使用した場合も、耐熱性や信頼性、加工性等が十分でなかった。
特開2003−268136号公報 特開2003−73543号公報 特開2002−285015号公報 特開2002−309085号公報 特開2002−348469号公報
本発明の目的は、こうした現状に鑑み、熱硬化性樹脂であるシアネート化合物を用いる場合の上記問題点を解決し、低熱膨張性、銅箔接着性、耐熱性に優れ、さらに、ガラス転移温度(Tg)、難燃性、誘電特性、ドリル加工性にも優れる熱硬化性樹脂組成物、及びこれを用いたプリプレグ及び積層板を提供することである。
発明者らは、上記の課題を解決するために鋭意研究した結果、末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)、1分子中に少なくとも2個のエポキシ基を有する化合物(c)及び1分子中に少なくとも2個のフェノール性水酸基を有する化合物(d)を特定の質量比として、特定溶媒中で反応させて得られた相容化樹脂(A)を含有する熱硬化性樹脂組成物が、前記目的に記載した特性に優れるものであること見出し、本発明に到達した。本発明は、かかる知見に基づいて完成したものである。
即ち本発明は、以下の熱硬化性樹脂組成物、プリプレグ及び積層板を提供するものである。
1.下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)、1分子中に少なくとも2個のエポキシ基を有する化合物(c)及び1分子中に少なくとも2個のフェノール性水酸基を有する化合物(d)を、(a)〜(d)成分の合計量100質量部あたり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分5〜50質量部、(d)成分5〜50質量部として、トルエン、キシレン、メシチレンから選ばれる少なくとも一種の溶媒中反応させて得られた相容化樹脂(A)を含有することを特徴とする熱硬化性樹脂組成物。
Figure 0006425873
(式中R1は各々独立に炭素数1〜5のアルキレン基であり,Ar1は各々独立に単結合、アリーレン基またはアルキレンオキシ基であり、mは5〜100である)
2.反応触媒として有機金属塩(e)を用いる上記1の熱硬化性樹脂組成物。
3.シアネート基を有する化合物(b)の反応率が30〜70モル%である上記1又は2の熱硬化性樹脂組成物。
4.上記1〜3のいずれかの熱硬化性樹脂組成物を基材に含浸又は塗工した後、Bステージ化したプリプレグ。
5.上記4のプリプレグを用いて形成された積層板。
本発明の熱硬化性樹脂組成物、プリプレグ及び積層板は、優れた低熱膨張性、銅箔接着性、耐熱性、ガラス転移温度(Tg)、難燃性、誘電特性、ドリル加工性を有しており、電子部品等の製造に好適に用いられる。
以下、本発明について詳細に説明する。
先ず、本発明の熱硬化性樹脂組成物は、下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)、1分子中に少なくとも2個のエポキシ基を有する化合物(c)及び1分子中に少なくとも2個のフェノール性水酸基を有する化合物(d)を、(a)〜(d)成分の合計量100質量部あたり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分5〜50質量部、(d)成分5〜50質量部として、トルエン、キシレン、メシチレンから選ばれる少なくとも一種の溶媒中反応させて得られた相容化樹脂(A)を含有することを特徴とするものである。
Figure 0006425873
(式中R1は各々独立に炭素数1〜5のアルキレン基であり,Ar1は各々独立に単結合、アリーレン基またはアルキレンオキシ基であり、mは5〜100である)
相容化樹脂(A)の製造に用いられる(a)成分のシロキサン樹脂は、上記一般式(I)で示される構造の水酸基を含有するシロキサン樹脂であれば特に制限されない。例えば両末端がフェノール性水酸基である信越化学工業(株)製の商品名X−22−1821(水酸基価:30KOHmg/g)、商品名X−22−1822(水酸基価:20KOHmg/g)、東レ・ダウコーニング(株)製の商品名BY16−752A(水酸基価:30KOHmg/g)、及び両末端がアルコール性水酸基である信越化学工業(株)製の商品名X−22−160AS(水酸基価:112KOHmg/g)、商品名KF−6001(水酸基価:62KOHmg/g)、商品名KF−6002(水酸基価:35KOHmg/g)、商品名KF−6003(水酸基価:20KOHmg/g)、商品名X−22−4015(水酸基価:27KOHmg/g)が挙げられる。これらは信越化学工業(株)や東レ・ダウコーニング(株)等から入手できる。
(b)成分の1分子中に少なくとも2個のシアネート基を有する化合物としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂が挙げられ、1種又は2種以上を混合して使用することができる。これらの中で、誘電特性、耐熱性、難燃性、低熱膨張性、及び安価である点から、ビスフェノールA型シアネート樹脂、下記一般式(II)に示すノボラック型シアネート樹脂が特に好ましい。
Figure 0006425873
(hは正の数)
上記の一般式(II)のhは、ノボラック型シアネート樹脂の平均繰り返し数であり、特に限定されないが、平均値として0.1〜30が好ましい。0.1以上であれば結晶化しにくくなり取り扱いが容易となり、30以下であれば硬化物が脆くならず良好である。
(c)成分の1分子中に少なくとも2個のエポキシ基を有する化合物としては、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系並びにグリシジルエステル系の化合物(樹脂)が挙げられ、これらの化合物の2種以上を混合して使用することもできる。
これらの中で、高剛性、誘電特性、耐熱性、難燃性、耐湿性及び低熱膨張性の点からナフタレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジヒドロキシナフタレンアラルキル型エポキシ樹脂、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂等のナフタレン環含有エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のビフェニル基含有エポキシ樹脂が好ましく、芳香族系有機溶剤への溶解性の点からナフトールアラルキル・クレゾール共重合型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましく、安価であることやエポキシ当量が小さく少量の配合でよいことから、下記式(III)に示すビフェニル型エポキシ樹脂が特に好ましい。
Figure 0006425873
成分(d)の1分子中に少なくとも2個のフェノール性水酸基を有する化合物としては、例えば、ビスフェノールA、テトラメチルビスフェノールF、ビスフェノールF、ビスフェノールS、ビスフェノールK、ビフェノール、テトラメチルビフェノール、ハイドロキノン、メチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、ジ−ter.ブチルハイドロキノン、レゾルシノール、メチルレゾルシノール、カテコール、メチルカテコール、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシジメチルナフタレン、ビスフェノールフルオレン、ビスクレゾールフルオレン等の二官能化合物、フェノール類、又はナフトール類とアルデヒド類との縮合物、フェノール類又はナフトール類とキシリレングリコールとの縮合物、フェノール類又はナフトール類とビスメトキシメチルビフェニルとの縮合物、フェノール類とイソプロペニルアセトフェノンとの縮合物、フェノール類とジシクロペンタジエンの反応物が挙げられる。
上記のフェノール類としては、ビスフェノールA、テトラメチルビスフェノールF、ビスフェノールF、ビスフェノールS、ビスフェノールK、ビフェノール、テトラメチルビフェノール、ハイドロキノン、メチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、ジ−ter.ブチルハイドロキノン、レゾルシノール、メチルレゾルシノール、カテコール、メチルカテコール、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシジメチルナフタレン、ビスフェノールフルオレン、ビスクレゾールフルオレン等が挙げられる。
また、ナフトール類としては、1−ナフトール、2−ナフトール、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシジメチルナフタレン、トリヒドロキシナフタレンが挙げられる。
更に、アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルベンズアルデヒド、ブロムベンズアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒドが挙げられる。
以上の(d)成分の化合物は1種又は2種以上を混合して使用することができる。また、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、p-クミルフェノール、1−ナフトール、2−ナフトール等の一分子中に1個しかフェノール性水酸基を持たないフェノール化合物も、本発明の効果を損なわない限りで併用することができる。
これらの中で反応性及び溶解性の点から、ビスフェノールA、テトラメチルビスフェノールF、ビスフェノールF、ビスフェノールS、ビスフェノールフルオレン、ビスクレゾールフルオレンが特に好ましい。
以上の(a)〜(d)成分の反応において、反応触媒として有機金属塩(e)を使用することが好ましい。(e)成分の有機金属塩はとしては、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルトが挙げられる。
相容化樹脂(A)は、(a)〜(d)成分の合計量100質量部当たり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分5〜50質量部、(d)成分5〜50質量部とし、これらを予めトルエン、キシレン及びメシチレンから選ばれる溶媒中で均一に溶解してイミノカーボネ−ト化反応、及びトリアジン環化反応をさせることにより得られるものであり、反応温度を80〜120℃とし、(b)成分のシアネート基を有する化合物の反応率(消失率)を30〜70モル%となるようにプレ反応することが好ましい。
この相容化樹脂(A)の製造において、反応溶媒にはトルエン、キシレン、メシチレンから選ばれる芳香族系溶媒を用いる。必要により少量の他の溶剤を用いてもよいが、所望反応の進行が遅くなり、耐熱性等が低下するおそれがある。また、ベンゼンは毒性が強く、メシチレンよりも分子量の大きい芳香族系溶媒はプリプレグの製造塗工時に残溶剤となりやすいので好ましくない。
プレ反応による(b)成分の反応率が30モル%未満であると、得られる樹脂が相容化されておらず、樹脂が分離、白濁しBステージの塗工布が製造困難となることがある。また、反応率が70モル%を超えると、得られる熱硬化性樹脂が溶剤に不溶化し、Aステージのワニス(熱硬化性樹脂組成物)の製造が困難となったり、プリプレグのゲルタイムが短くなり過ぎ、プレスの際に成形性が低下する場合がある。
なお、イミノカーボネ−ト化反応は、水酸基とシアネート基の付加反応によりイミノカーボネ−ト結合(−O−(C=NH)−O−)が生成される反応であり、トリアジン環化反応は、シアネート基が3量化しトリアジン環を形成する反応である。また、このシアネート基が3量化しトリアジン環を形成する反応により3次元網目構造化が進行するが、この時(c)成分である1分子中に少なくとも2個のエポキシ基を有する化合物が3次元網目構造中に均一に分散され、これによって(a)成分、(b)成分、(c)成分及び(d)成分が均一に分散された相容化樹脂が製造される。
このプレ反応において、(a)〜(c)成分の合計量100質量部当たりの、(a)成分の使用量が10質量部未満であると、得られる基材の面方向の低熱膨張性が低下する場合があり、また(a)成分の使用量が50質量部を超えると、耐熱性や耐薬品性が低下する場合がある。(b)成分の使用量が40質量部未満であると得られる樹脂の相容性が低下する場合があり、また(b)成分の使用量が80質量部を超えると、得られる基材の面方向の低熱膨張性が低下する場合がある。(c)成分の使用量が5質量部未満であると、耐湿耐熱性が低下する場合があり、また(c)成分の使用量が50質量部を超えると、銅箔接着性や誘電特性が低下する場合がある。(d)成分の使用量が5質量部未満であると、銅箔接着性や耐熱性が低下する場合があり、また、(d)成分の使用量が50質量部を超えると、耐薬品性や低熱膨張性が低下する場合がある。
反応触媒の(e)成分の使用量は、(a)〜(d)成分の合計量100質量部に対して、0.0001〜0.004質量部が好ましい。0.0001質量部以上であると反応時間が調整可能であり、終点管理が容易となる。また、0.004質量部以下であると反応速度の調整が可能で終点管理が容易となる。ここで、(b)成分のシアネート基を有する化合物の反応率は、GPC測定により反応開始時の(b)成分のシアネート基を有する化合物のピーク面積と、所定時間反応後のピーク面積を比較し、ピーク面積の消失率から求められる。
本発明の熱硬化性樹脂組成物には、熱硬化後の残存シアネート基を減らす目的でフェノール化合物やエポキシ樹脂を更に含有させることができる。
熱硬化性樹脂組成物に含有させるフェノール化合物としては、前記の(d)成分として挙げた1分子中に少なくとも2個のフェノール性水酸基を有する化合物のほか、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、p-クミルフェノール、1−ナフトール、2−ナフトール等の一分子中に1個しかフェノール性水酸基を持たないフェノール化合物が挙げられる。
このフェノール化合物の含有量は相容化樹脂(A)100質量部あたりに対して40質量部未満が好ましく、20質量部未満がより好ましい。40質量部未満であれば樹脂組成物中のフェノール性水酸基が大過剰にならず、銅箔接着性、耐熱性、耐薬品性が低下せず良好である。
また、熱硬化性樹脂組成物に含有させるエポキシ樹脂は、前記の(c)成分として挙げた1分子中に少なくとも2個のエポキシ基を有する化合物のほか、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、p−tert−ブチルフェニルグリシジルエーテル、ラウリルアルコールグリシジルエーテル等の一分子中に1個しかエポキシ性水酸基を持たないエポキシを有する化合物が挙げられる。
このエポキシ樹脂の含有量は相容化樹脂(A)100質量部あたりに対して40質量部未満が好ましく、20部未満がより好ましい。40質量部未満であれば樹脂組成物中のエポキシ基が大過剰にならず、銅箔接着性、耐熱性、耐薬品性が低下せず良好である。
本発明の熱硬化性樹脂組成物には、熱膨張率や耐熱性、難燃性等の向上化のために無機充填材を用いるのが望ましく、特に溶融シリカ(B)を用いるのが好ましく、中でも官能基を有するシラン化合物で表面を処理した溶融シリカを用いるのがより好ましい。
表面処理に用いる官能基を有するシラン化合物は、官能基とアルコキシル基を有するシラン化合物であれば特に制限されないが、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシランなどが上げられる。この中でも特に、一般式(IV)で示されるN−フェニル−3−アミノプロピルトリメトキシシランが特に好ましい。
Figure 0006425873
溶融シリカへの表面処理方法の例としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系有機溶剤やエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール系有機溶剤に、溶融シリカを添加して混合した後、上記のトリメトキシシラン化合物を添加して60〜120℃で、0.5〜5時間程度攪拌しながら反応(表面処理)させることが挙げられる。また、表面処理はアドマテックス社等から商業的にも入手でき、例えば、アドマテックス社製の商品名SC-2050KNKや、SC-2050HNKなどがある。
これら溶融シリカの使用量は、固形分換算の相容化樹脂(A)100質量部に対し、10〜300質量部とすることが好ましく、100〜250質量部とすることがより好ましく、150〜250質量部とすることが特に好ましい。10質量部以上であると、基材の剛性や、耐湿耐熱性、難燃性が十分であり、また、300質量部以下であると成形性や耐めっき液性等の耐薬品性が向上する。
本発明の熱硬化性樹脂組成物には、溶融シリカ(B)以外の他の無機充填材(C)を使用してもよく、例えば、破砕シリカ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、炭酸カルシウム、石英粉末、金属水和物等が挙げられ、これらの中で、低熱膨張性や高弾性、耐熱性、難燃性の点から、水酸化アルミニウム、水酸化マグネシウム等の金属水和物が好ましく、さらに金属水和物の中でも、高い耐熱性と難燃性が両立する点から熱分解温度が300℃以上である金属水和物、例えばベーマイト型水酸化アルミニウム(AlOOH)、あるいはギブサイト型水酸化アルミニウム(Al(OH)3)を熱処理によりその熱分解温度を300℃以上に調整した化合物、水酸化マグネシウム等がより好ましく、特に、安価であり、350℃以上の特に高い熱分解温度と、高い耐薬品性を有するベーマイト型水酸化アルミニウム(AlOOH)が特に好ましい。
これらの他の無機充填材(C)の含有量は、固形分換算の相容化樹脂(A)100質量部に対し、0〜200質量部とすることが好ましく、10〜150質量部とすることがより好ましく、50〜150質量部とすることが特に好ましい。10質量部以上であると難燃性が十分となり、200質量部以下であると耐めっき液性等の耐薬品性や成形性が低下せず、良好となる。
本発明の熱硬化性樹脂組成物には、耐熱性や難燃性、銅箔接着性等の向上化のため硬化促進剤を配合することが望ましく、硬化促進剤の例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。これらの硬化促進剤を配合することにより、耐熱性や難燃性、銅箔接着性等を向上ことができる。
本発明の熱硬化性樹脂組成物には、上記の金属水和物以外の他の難燃剤や難燃助剤を任意に併用することができる。しかし、臭素や塩素を含有する含ハロゲン系難燃剤や熱分解温度が300℃未満である金属水酸化物等は本発明の目的にそぐわないものである。
難燃剤や難燃助剤としては、例えばトリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、また、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤等が挙げられる。
特に、モリブデン酸亜鉛をタルク等の無機充填材に担持した無機難燃助剤は、難燃性のみならずドリル加工性をも向上させるので、特に好ましい無機難燃助剤である。
モリブデン酸亜鉛の使用量は相容化樹脂(A)100質量部に対し、5〜20質量部とすることが好ましい。5質量部以上とすることにより、難燃性やドリル加工性が向上し、また20質量部以下とすることにより、ワニスのゲルタイムが短くなり過ぎてプレスにより積層板を成形する際に成形性が低下することがない。
本発明の熱硬化性樹脂組成物には、任意に公知の熱可塑性樹脂、エラストマー、有機充填剤を含有させることができる。
熱可塑性樹脂としては、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂が挙げられる。
エラストマーとしては、ポリブタジエン、ABS樹脂、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。
有機充填剤としては、シリコーンパウダー、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテルの有機物粉末等が挙げられる。
本発明においては、熱硬化性樹脂組成物に対して、任意に紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤等の添加も可能であり、特に限定されない。これらの例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤の密着性向上剤等が挙げられる。
本発明のプリプレグは、前記した本発明の熱硬化性樹脂組成物を基材に含浸又は塗工した後、Bステージ化したものである。以下、本発明のプリプレグについて詳述する。
本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)して本発明のプリプレグを製造することができる。
プリプレグに用いられる基材には、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。
基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmのものを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
本発明のプリプレグは、該基材に対する熱硬化性樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で20〜90質量%となるように基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて得ることができる。
本発明の積層板は本発明のプリプレグを用いて形成されたものであり、前述のプリプレグを用いて、積層成形して、形成することができる。
即ち、本発明の積層板は前述のプリプレグを、例えば1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
また、成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力2〜100kg/cm2(0.2〜10MPa)、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
なお、以下の実施例および比較例において得られた銅張積層板を以下の方法により測定・評価を行った。
(1)銅箔接着性(銅箔ピール強度)
銅張積層板を銅エッチング液に浸漬することにより1cm幅の銅箔を形成して評価基板を作製し、引張り試験機を用いて銅箔の接着性(ピール強度)を測定した。
(2)ガラス転移温度(Tg)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の熱膨張特性を観察することにより評価した。
(3)はんだ耐熱性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5cm角の評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atm(0.2MPa)の条件で4時間までプレッシャー・クッカー処理を行った後、温度288℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。
(4)線熱膨張係数
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の30〜100℃の線熱膨張率を測定した。
(5)銅付き耐熱性(T−300)
銅張積層板から5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、300℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。
(6)難燃性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
(7)誘電特性(比誘電率及び誘電正接)
得られた銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、Hewllet・Packerd社製比誘電率測定装置(製品名:HP4291B)を用いて、周波数1GHzでの比誘電率及び誘電正接を測定した。
(8)ドリル加工性
ドリルにΦ0.105mm(ユニオンツールMV J676)を用い、回転数:160,000rpm、送り速度:0.8m/分、重ね枚数:1枚でドリル加工を行い、6000ヒットさせて評価基板を作製し、ドリル穴の内壁粗さを評価した。内壁粗さの評価は、無電解銅めっきを行い(めっき厚:15μm)、穴壁へのめっき染み込み長さの最大値を測定することにより評価した。
製造例1:相容化樹脂(A−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、下記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):150.0g、ビスフェノールA(和光純薬社製;試薬):50.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−1)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔即ち(b)成分の反応率〕が68%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−1)が製造されていることを確認した。
Figure 0006425873
(式中のpは平均して35〜40)
製造例2:相容化樹脂(A−2)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ノボラック型シアネート樹脂(ロンザジャパン社製;商品名Primaset PT−15,質量平均分子量500〜1,000):800.0g、下記式(VI)に示すシロキサン樹脂(信越化学社製;商品名KF−6003、水酸基当量;2800):100.0g、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂(日本化薬社製;商品名NC−7000L、エポキシ当量;230):50.0g、レゾルシノール(和光純薬社;試薬):50.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−2)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.1分付近に出現する合成原料のノボラック型シアネート樹脂のピーク面積が、反応開始時のノボラック型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が43%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−2)が製造されていることを確認した。
Figure 0006425873
(式中のqは平均して70〜75)
製造例3:相容化樹脂(A−3)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ジシクロペンタジエン型シアネート樹脂(ロンザジャパン社製;商品名Primaset DT−4000、重量平均分子量500〜1,000):400.0gと、下記式(VII)に示すシロキサン樹脂(信越化学社製;商品名X−22−160AS、水酸基当量;500):100.0gと、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製;商品名NC-3000H、エポキシ当量;280):300.0g、ビスフェノールS(東京化成工業社製;試薬):200.0g及びメシチレン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.30g添加し、約110℃で4時間反応を行った。その後、室温に冷却し、相容化樹脂(A−3)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.0分付近に出現する合成原料のジシクロペンタジエン型シアネート樹脂のピーク面積が、反応開始時のジシクロペンタジエン型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が43%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−3)が製造されていることを確認した。
Figure 0006425873
(式中のrは平均して10〜15の数)
製造例4:相容化樹脂(A−4)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):400.0g、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):400.0g、ナフタレン型エポキシ樹脂(大日本インキ化学社製;商品名エピクロンHP−4032、エポキシ当量;150):100.0g、ビスフェノールフルオレン(大阪ガスケミカル社製;商品名BPF)100.0g及び、トルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−4)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が55%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−4)が製造されていることを確認した。
製造例5:トリメトキシシラン化合物により表面処理(湿式処理)された溶融シリカ(B−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、溶融シリカ(アドマテックス社製;商品名SO−25R):700.0gと、プロピレングリコールモノメチルエーテル:1000.0gを配合し、攪拌しながらN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学社製;商品名KBM−573):7.0gを添加した。次いで80℃に昇温し、80℃で1時間反応を行い溶融シリカの表面処理(湿式処理)を行った後、室温に冷却し、N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理(湿式処理)された溶融シリカ(B−1)の溶液を得た。
比較製造例1:樹脂(R−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):200.0g及びトルエン:1000.0gを投入した。
次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で1時間反応を行った。その後、室温に冷却し(R−1)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が18%であった。また、この溶液は翌日結晶化により沈殿物が生じた。
比較製造例2:樹脂(R−2)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0g、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186):200.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約120℃で6時間反応を行った。その後、室温に冷却し、樹脂(R−2)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が76%であった。
比較製造例3:樹脂(R−3)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記式(V)に示すシロキサン樹脂(信越化学社製;商品名X−22−1821、水酸基当量;1,600):200.0gと、トルエン:800.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し、樹脂(R−3)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が53%であった。
実施例1〜6、比較例1〜4
製造例1〜4により得られた相容化樹脂(A)又は比較製造例1〜3により得られた樹脂、に、必要により、フェノール樹脂、エポキシ樹脂、製造例5又は商業的に入手した溶融シリカ(B)、他の無機充填材(C)及び硬化促進剤に、希釈溶剤としてメチルエチルケトンを使用して、第1表及び第2表に示した配合割合(質量部)で混合して樹脂分60質量%の均一なワニスを得た。
次に、得られたワニスを厚さ0.2mmのSガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55質量%のプリプレグを得た。
このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力25kg/cm2(2.5MPa)、温度185℃で90分間プレスを行って、銅張積層板を得た。
このようにして得られた銅張積層板を用いて、銅箔ピール強度、ガラス転移温度、はんだ耐熱性、線熱膨張係数、誘電特性及びプレス成形性について前記の方法で測定・評価した。結果を第1表及び第2表に示す。
Figure 0006425873
Figure 0006425873
なお、第1表及び第2表に、製造例1〜4により得られた相容化樹脂(A)又は比較製造例1〜3により得られた樹脂の製造において使用した(a)〜(d)成分の質量比を括弧内に示した。
各実施例、比較例に用いたフェノール化合物、エポキシ樹脂、溶融シリカ(B)、他の無機充填材(C)、及び硬化促進剤は次の通りである。
フェノール化合物:ビスフェノールA
エポキシ樹脂:ビフェニル型エポキシ樹脂
(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186)
溶融シリカ(B)
(B−1):製造例5によるトリメトキシシラン化合物により表面処理(湿式処理)された溶融シリカ、
(B−2):溶融シリカに対し1.0質量%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050KNK,希釈溶剤;メチルイソブチルケトン)
(B−3):溶融シリカに対し1.0質量%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050HNK,希釈溶剤;シクロヘキサノン)
(B−4):溶融シリカ(アドマテック社製;商品名SO−25R)
(B−5):溶融シリカに対し1.0質量%のγ−グリシドキシプロピルトリメトキシシラン(下記式(VIII)に示す)により表面処理された溶融シリカ(アドマテック社製;商品名SC1030−MJA)
Figure 0006425873
他の無機充填材(C)
(C−1):ベーマイト型水酸化アルミニウム(AlOOH、河合石灰社製;商品名BMT−3L、熱分解温度:400℃)
(C−2):モリブデン酸亜鉛をタルクに担持した無機難燃助剤(シャーウィン・ウィリアムス社製;商品名: ケムガード1100)
硬化促進剤:ナフテン酸亜鉛の8質量%ミネラルスピリット溶液
なお、第2表において比較例1〜3は、以下の理由により評価できなかったものである。
比較例1:成形性が不良であり積層板を作製できなかった。
比較例2:樹脂が分離し、プリプレグ及び積層板を作製できなかった。
第1表から明らかなように、本発明の実施例は、優れた銅箔接着性(銅箔ピール強度)、ガラス転移温度(Tg)、はんだ耐熱性、低熱膨張率、銅付き耐熱性(T−300)及び誘電特性を達成し、ドルイル加工性も良好であることが分る。一方、第2表から明らかなように、比較例では銅箔接着性(銅箔ピール強度)、ガラス転移温度(Tg)、はんだ耐熱性、低熱膨張率及び銅付き耐熱性(T−300)の全てを満たすものがなく、ドリル加工性も劣っていることが分かる。
本発明の熱硬化性樹脂組成物を基材に含浸、又は塗工して得たプリプレグ、及び該プリプレグを積層成形することにより製造した積層板は、銅箔接着性(銅箔ピール強度)、ガラス転移温度(Tg)、はんだ耐熱性、低熱膨張率、銅付き耐熱性(T−300)、誘電特性及びドリル加工性に優れ、電子機器用プリント配線板として有用である。

Claims (5)

  1. 下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)、1分子中に少なくとも2個のエポキシ基を有する化合物(c)及び1分子中に少なくとも2個のフェノール性水酸基を有する化合物(d)[但し、該(d)成分は前記(a)成分を含まない。]を、(a)〜(d)成分の合計量100質量部あたり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分5〜30質量部、(d)成分5〜20質量部として、トルエン、キシレン、メシチレンから選ばれる少なくとも一種の溶媒中反応させて得られた相容化樹脂(A)を含有することを特徴とする熱硬化性樹脂組成物。
    Figure 0006425873

    (式中Rは各々独立に炭素数1〜5のアルキレン基であり,Arは各々独立に単結合、アリーレン基またはアルキレンオキシ基であり、mは5〜100の数である)
  2. 反応触媒として有機金属塩(e)を用いる請求項1に記載の熱硬化性樹脂組成物。
  3. シアネート基を有する化合物(b)の反応率が30〜70モル%である請求項1又は2に記載の熱硬化性樹脂組成物。
  4. 請求項1〜3のいずれかに記載の熱硬化性樹脂組成物を基材に含浸又は塗工した後、Bステージ化したプリプレグ。
  5. 請求項4記載のプリプレグを用いて形成された積層板。
JP2013052469A 2012-03-14 2013-03-14 熱硬化性樹脂組成物、プリプレグ及び積層板 Active JP6425873B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052469A JP6425873B2 (ja) 2012-03-14 2013-03-14 熱硬化性樹脂組成物、プリプレグ及び積層板

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012058019 2012-03-14
JP2012058019 2012-03-14
JP2013052469A JP6425873B2 (ja) 2012-03-14 2013-03-14 熱硬化性樹脂組成物、プリプレグ及び積層板

Publications (2)

Publication Number Publication Date
JP2013216883A JP2013216883A (ja) 2013-10-24
JP6425873B2 true JP6425873B2 (ja) 2018-11-21

Family

ID=49589363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052469A Active JP6425873B2 (ja) 2012-03-14 2013-03-14 熱硬化性樹脂組成物、プリプレグ及び積層板

Country Status (1)

Country Link
JP (1) JP6425873B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330416B2 (ja) * 1993-03-19 2002-09-30 住友ベークライト株式会社 難燃性低誘電率熱硬化性樹脂組成物
JP3558139B2 (ja) * 1995-01-11 2004-08-25 鐘淵化学工業株式会社 熱硬化性樹脂組成物とその製造方法
JPH1030050A (ja) * 1996-07-15 1998-02-03 Hitachi Ltd 半導体封止用熱硬化性樹脂組成物、それを用いた半導体装置およびその製法
JP2003128784A (ja) * 2001-10-19 2003-05-08 Hitachi Chem Co Ltd 難燃性熱硬化性樹脂組成物、プリプレグ、絶縁フィルム、積層板、樹脂付き金属箔及び多層配線板とその製造方法
JP5589363B2 (ja) * 2009-11-20 2014-09-17 住友ベークライト株式会社 シリコーンゴム微粒子含有エポキシ樹脂組成物、プリプレグ、金属張積層板、プリント配線板及び半導体装置
JP2011202175A (ja) * 2011-05-27 2011-10-13 Hitachi Chem Co Ltd シロキサン変性シアネート樹脂組成物、ならびにそれを用いる接着フィルム、樹脂付き金属箔および多層プリント配線板

Also Published As

Publication number Publication date
JP2013216883A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
EP2602277B1 (en) Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
JP2013216884A (ja) 熱硬化性樹脂組成物、プリプレグ及び積層板
WO2013115069A1 (ja) プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP2014122339A (ja) 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板、及び実装基板、並びに熱硬化性樹脂組成物の製造方法
JP4317380B2 (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板
JP6028349B2 (ja) 熱硬化性樹脂組成物、プリプレグ及び積層板
JP6163804B2 (ja) 相容化樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板
JP6106931B2 (ja) 相容化樹脂、及びこれを用いた熱硬化性樹脂組成物、プリプレグ、積層板
JP6221203B2 (ja) 樹脂組成物、これを用いたプリプレグ及び積層板
JP2015063611A (ja) プリプレグ及びそれを用いた積層板、プリント配線板
JP5909916B2 (ja) 樹脂の製造法、熱硬化性樹脂組成物、プリプレグ及び積層板
JP6425873B2 (ja) 熱硬化性樹脂組成物、プリプレグ及び積層板
JP6408752B2 (ja) 相溶化樹脂、およびそれを用いたプリプレグ、積層板
JP6194603B2 (ja) 熱硬化性樹脂組成物、プリプレグ及び積層板
JP2013108067A (ja) 相溶化樹脂の製造方法、相溶化樹脂、熱硬化性樹脂組成物、プリプレグ及び積層板
JP6353633B2 (ja) 相容化樹脂、熱硬化性樹脂組成物、プリプレグ及び積層板
JP6183081B2 (ja) 相容化樹脂の製造方法、熱硬化性樹脂組成物、プリプレグ、積層板、及びプリント配線板
JP2015063608A (ja) 熱硬化性樹脂組成物、これを用いたプリプレグ及びそれを用いた積層板
JP2015063607A (ja) 有機繊維基材を用いたプリプレグ、及びそれを用いた積層板
JP2013189579A (ja) 熱硬化性樹脂組成物、およびこれを用いたプリプレグ、積層板
JP6217280B2 (ja) 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、積層板、プリント配線板、及び実装基板
JP2015063610A (ja) プリプレグ及びそれを用いた積層板、プリント配線板
JP2015063612A (ja) プリプレグ及びそれを用いた積層板、配線板
JP2014012761A (ja) 有機繊維基材を用いたプリプレグ及びその製造方法、並びにそれを用いた積層板、金属箔張積層板及び配線板
JP2004307673A (ja) 変性ポリイミド樹脂組成物ならびにそれを用いたプリプレグおよび積層板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6425873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371