JP6422901B2 - 管理支援システム、管理支援方法及び管理支援プログラム - Google Patents

管理支援システム、管理支援方法及び管理支援プログラム Download PDF

Info

Publication number
JP6422901B2
JP6422901B2 JP2016024816A JP2016024816A JP6422901B2 JP 6422901 B2 JP6422901 B2 JP 6422901B2 JP 2016024816 A JP2016024816 A JP 2016024816A JP 2016024816 A JP2016024816 A JP 2016024816A JP 6422901 B2 JP6422901 B2 JP 6422901B2
Authority
JP
Japan
Prior art keywords
water quality
water
injection rate
model
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024816A
Other languages
English (en)
Other versions
JP2017140595A (ja
Inventor
良一 有村
良一 有村
太 黒川
太 黒川
聡美 温水
聡美 温水
寿治 杉野
寿治 杉野
啓志 穂刈
啓志 穂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016024816A priority Critical patent/JP6422901B2/ja
Publication of JP2017140595A publication Critical patent/JP2017140595A/ja
Application granted granted Critical
Publication of JP6422901B2 publication Critical patent/JP6422901B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、管理支援システム、管理支援方法及び管理支援プログラムに関する。
浄水場における浄水処理プロセスの運転管理は、水道水の水質基準を下回るよう浄水処理後の水の水質を維持することが主な目的である。そして、各浄水場は、一般的に、その水質基準よりも高いレベルの管理目標水質(濃度でいえばより低濃度の水質)を設定しており、その上で、洗浄や汚泥処分にかかる費用やエネルギーについても省エネルギー・省コストを達成するよう努力している。特に、近年においては水道事業体の運営基盤の強化の観点から低コストの運転管理技術が、要求されている。
一般的に、浄水場などの水処理プラントでは、原水に含まれる懸濁浮遊物などを沈降除去するためのプロセスがある。これは固液分離プロセスと呼ばれている。この固液分離プロセスは、懸濁浮遊物などの水中からの除去効率を高めるために、凝集剤と称する薬品を注入して、フロックを形成して沈降速度を上げる凝集プロセスを含む。フロックとは、懸濁浮遊物と凝集剤が集塊化して形成されるものである。フロックは、目視では確認できない数十マイクロメートルのマイクロフロックと呼ばれるものから、肉眼でも観察できるようになるまで成長した数ミリメートルから数センチメートル程度の巨大フロックと呼ばれるものまで様々な大きさのものがある。良い凝集プロセスは、良好なフロックを形成する。良好なフロックを形成するには、懸濁浮遊物に対する凝集剤の注入量のみでなく、その原水のpHやアルカリ度、水温といった水質パラメータをも考慮することが大切である。良好なフロックとは、密度が高く、粒径の大きいフロックを指す。フロックの密度が高く、粒径が大きいと沈降性が良くなり、固液分離が促進される。
浄水場等で用いられている凝集剤等の薬品の注入率の決定は、熟練員の経験やノウハウに基づいて調整されている場合が多く、技術の継承が難しい。この対策として、過去の水質データや薬品注入の実績データを統計学的に処理したり、または機械的に学習したりして、薬品の注入率を予測しガイダンスするという技術がある。近年では、ビッグデータ分析を用いて薬品注入と水質との関係を分析する技術も提案されている。しかしながら、浄水場における薬品注入は、その時の運用に無駄がある場合や、注入不足によるトラブルを回避したいという浄水場の事情から過剰気味に薬品を注入する場合があり、必要以上に注入されていることが多い。このため、過去のデータに基づいて機械学習やビッグデータ解析を行い薬品の注入率を予測すると、予測した注入率は、上述した無駄や過剰分を含んだ値となってしまう。そして、必要以上に薬品を注入することは、浄水場の運営管理を低コスト化する際の阻害要因となる。
特開2000−218263号公報 特開2007−061800号公報
本発明が解決しようとする課題は、水処理プラントにおいて薬品をより適量に注入するための支援を行うことができる管理支援システム、管理支援方法及び管理支援プログラムを提供することである。
実施形態の管理支援システムは、統計的予測部と、水質反応モデル予測部と、管理支援部とを持つ。統計的予測部は、水処理プラントにおいて取得された情報として、原水の水質に関する水質情報、前記原水への薬品の注入に関する薬品情報及び前記薬品情報に応じて注入された前記薬品による処理後の処理水の水質を示す処理水質情報を取得して、統計的に処理することで前記薬品情報と前記処理水質情報との関係を特定し、特定した前記関係に基づいて、前記処理水の水質を所定の範囲とする中でより低い注入率となる統計的注入率を取得し、予測対象の原水の水質情報と、取得した前記統計的注入率と、特定した前記関係とに基づいて、統計的処理水質情報を予測する。水質反応モデル予測部は、注入された薬品による反応をモデル化した水質反応モデルを利用して、前記処理水の水質を所定の範囲とする中でより低い注入率となるモデル注入率を取得し、前記予測対象の原水の水質情報と、取得した前記モデル注入率と、前記水質反応モデルとに基づいて、モデル処理水質情報を予測する。管理支援部は、前記統計的予測部が予測に用いた前記統計的注入率と、前記水質反応モデル予測部が予測に用いた前記モデル注入率とに基づいて、前記水処理プラントにおける薬品の注入率を制御するための操作条件を生成する。
本実施形態における浄水場及び浄水場の管理支援システムの構成例を示す図。 本実施形態における管理支援システム20の詳細な構成例を示す図。 本実施形態の混和池モデル部201における処理の概要を示す図。 本実施形態のフロック形成池モデル部202における処理の概要を示す図。 本実施形態の沈殿池モデル部203における処理の概要を示す図。 本実施形態の水質反応モデル予測部23における、水質反応をより具体的に数式化したモデルの具体例を示す図。 本実施形態における管理支援システム20の動作を示すフロー図。
以下、実施形態の管理支援システム、管理支援方法及び管理支援プログラムを、図面を参照して説明する。
まず、本実施形態における浄水場及び浄水場の管理支援システムの概略について説明する。
図1は、本実施形態における浄水場及び浄水場の管理支援システムの構成例を示す図である。図1に示すように、浄水場1は、原水を処理するための貯水設備として、着水井3、活性炭接触池4、混和池5、フロック形成池6、沈殿池7、砂ろ過池8及び浄水池9を備える。浄水場1は、さらに、流量計2a〜2dと、サンプリングポンプ4aと、水温計10と、濁度計11と、PH計12と、流量計13と、サンプリングポンプ7aと、沈殿池出口濁度計14と、注入量制御部15と、凝集剤注入設備16と、プラント操作部26とを備える。
管理支援システム20は、データ収集・保存部21と、統計的演算部22と、水質反応モデル予測部23と、パラメータ調整部24と、運転管理支援部25とを備える。データ収集・保存部21は、流量計2a〜2d、水温計10、濁度計11、PH計12、流量計13及び沈殿池出口濁度計14で計測されたデータ(以下、プラントデータという)を収集し保存する。管理支援システム20は、データ収集・保存部21に収集されたプラントデータに基づいて、凝集剤等の薬品の注入率に関する情報をプラント操作部26に送信する機能を有し、例えば複数台のコンピューター端末で構成される。
浄水場1では、着水井3を用いた取水プロセス、活性炭接触池4を用いた活性炭吸着プロセス、混和池5を用いた凝集剤注入プロセス、フロック形成池6を用いたフロック形成プロセス、沈殿池7を用いた沈殿ろ過プロセス、砂ろ過池8を用いた砂ろ過プロセスなどの複数の浄水プロセスが行なわれる。
取水プロセスでは、例えば、複数の取水源A系〜D系から原水が取水されて、それぞれ配管を通じて着水井3に流入される。各取水源A系〜D系からの原水は、それぞれの配管に設けられた流量計2a〜2dにより測定されている。流量計2a〜2dからの取水流量データは、プラントデータとしてデータ収集・保存部21に送られる。
着水井3に取水された原水は、配管を通じて活性炭接触池4に流入される。流入された原水は、活性炭接触池4において活性炭吸着プロセスにより、消臭などの処理が行われる。活性炭接触池4では、サンプリングポンプ4aにより原水サンプルが取り出されて、水温計10、濁度計11、PH計12により原水の水温、濁度、pHが測定される。これらの測定値は、プラントデータとしてデータ収集・保存部21に送られる。ここで、活性炭が投入されるケースは、カビ臭などの臭気対策や、色度などの色の除去が必要となった場合である。活性炭設備を備えていても、常時注入していない浄水場もある。
活性炭接触池4からは、配管を通じて混和池5に流入される。配管に設けられた流量計13により測定された流入流量データは、プラントデータとしてデータ収集・保存部21に送られる。混和池5では、凝集剤注入設備16から凝集剤が注入される凝集剤注入プロセスが実行される。この凝集剤注入設備16は、注入量制御部15及びプラント操作部26介して、後述するように、運転管理支援部25により凝集剤の注入率が制御される。
混和池5で凝集剤が注入された原水は、原水中の濁質と凝集剤が衝突しあい、また電荷的に引き合うことで集塊化しマイクロフロックを形成する。その後はフロック形成池6に送られる。フロック形成池6では、原水中に含まれるマイクロフロックや残留凝集剤、および残留濁質等が凝集することでフロック化されるフロック形成プロセスが行われる。さらに、沈殿池7では、沈殿ろ過プロセスにより、沈降分離により原水の濁質除去が行なわれる。
沈殿池7の出口では、サンプリングポンプ7aにより処理水のサンプルが取り出されて、沈殿池出口濁度計14により、沈殿池7の出口における沈殿水濁度が測定される。この沈殿池7の出口における沈殿水濁度の測定値データは、プラントデータとしてデータ収集・保存部21に蓄積される。
データ収集・保存部21は、プラントの原水の水質情報、薬品情報及び処理結果としての沈殿池7の出口における濁度(沈殿水濁度)等が時系列データとして保存される。原水の水質情報としては、原水濁度、原水pH、原水水温及び原水アルカリ度を含む。薬品情報としては、凝集剤、pH調整剤及びアルカリ度調整剤等の注入率[mg/L]に関する情報を含む。また、薬品情報は、凝集剤の種類やアルミ系の凝集剤であればアルミの塩基度といった情報を含む。データ収集・保存部21は、プラントの構造的な情報として、撹拌強度を表すG値、ここでは混和池5のG値とフロック形成池6のG値がそれぞれ保存されている。構造的な情報は、可変である場合は少ないので、更新等の工事が行われない限り一定の値となっていることが多い。
データ収集・保存部21は、流量計2a〜2d及び流量計13から収集した原水の流量のデータも保存する。浄水場における原水の流量は、24時間一定である場合もあれば、水道水の需要に応じて変動する場合もある。原水の流量と、プラントの構造的な容積とを用いることで、各池における原水の滞留時間を算出することができる。この滞留時間をtとすると、上述したG値と乗じてGt値という指標を得ることができる。このGt値は、原水が、どの程度の時間撹拌の強度を受けたかを表す指標として用いられる。データ収集・保存部21は、こういった指標も保存する。データ収集・保存部21は、その他、凝集剤の注入率、pH調整剤の注入率及びアルカリ度調整剤の注入率に関する情報を保存する。なお、pH調整剤及びアルカリ度調整剤は、原水のpH及びアルカリ度を調整するために混和池5より前のプロセスである例えば着水井3に注入される。この調整によって、原水のpH及びアルカリ度を、フロック形成に適した値とする。
データ収集・保存部21は、各プロセス処理を行った結果として処理水の水質データも保存される。データ収集・保存部21は、例えば、沈殿池7の出口における沈殿水の濁度、ろ過池8の出口におけるろ過水の濁度及びろ過池8の水位上昇速度(ろ抗上昇)を保存する。データ収集・保存部21は、沈殿池7に沈殿したある一定期間の汚泥の引抜量から、その期間で発生した汚泥量を算出した場合に、その汚泥量を保存する構成であってもよい。
統計的演算部22は、データ収集・保存部21に保存されたデータを用いて、統計的処理により沈殿水濁度を含む処理水質(統計的処理水質情報)を算出する機能を有する。統計的演算部22は、例えば、データ収集・保存部21に保存されたデータを原水の水質パターン別に分類する。統計的演算部22は、原水の水質情報及び薬品の注入率が入力されると、水質パターンの類似する過去の原水水質を抽出する。統計的演算部22は、抽出した原水水質に対応して保存される過去に行った薬品注入率及び沈殿水濁度の実績に基づいて、薬品注入率と沈殿水濁度の関係式を得る。統計的演算部22は、原水の水質情報と、この関係式とに基づいて、入力された薬品の注入率に応じた処理水質(沈殿水濁度)である統計的処理水質情報を予測する。統計的演算部22は、予測した統計的処理水質情報と、データ収集・保存部21に保存された実際の処理水質とを比較して、その比較結果に基づいて、薬品注入率と沈殿水濁度の関係式を修正する学習処理を行う。統計的演算部22は、このような学習処理を行うことで、より予測精度の高い関係式を生成する。
統計的演算部22は、薬品の注入対象となる原水の水質情報に基づいて、上述した関係式を用いて、最適な薬品の注入率を求める以下の処理を行う。統計的演算部22は、現在の原水の水質情報と、任意の複数種類の値に設定した薬品の注入率とに基づいて、複数の統計的処理水質情報を予測する。統計的演算部22は、予測した複数の統計的処理水質情報が許容範囲内となる中で最も低い薬品の注入率を、統計的注入率として出力する。この統計的注入率は、統計的演算部22が統計的な処理で求めた統計的処理水質情報を所定の範囲とする中で最適な(例えば最低となる)薬品の注入率である。この最も低い薬品の注入率を求める方法の一例を以下に示す。まず、統計的演算部22は、初期値となる薬品の注入率に基づいて、統計的処理水質情報を予測する。この薬品の注入率の初期値は、予測される統計的処理水質情報が許容範囲外となる値とする。その後に、薬品の注入率を所定値分増加させて、統計的演算部22は、統計的処理水質情報を予測する処理を繰り返す。そして、統計的演算部22は、現在の原水の水質情報と、任意の値に設定した薬品の注入率とに基づいて予測した統計的処理水質情報が目的としたレベルに達したと判断した場合、その薬品の注入率を統計的注入率とする。統計的演算部22は、統計的注入率を含む操作条件を運転管理支援部25へ出力する機能を有する。統計的演算部22は、統計的処理水質情報が、目的としたレベルに達しないと予測した場合は、例えば、入力された薬品の注入率を1段階増加させて再度予測した統計的処理水質情報が目的としたレベルに達するか否かを判断する。出力された操作条件は、運転管理支援部25へ送信される。
なお、統計的演算部22は、統計的処理水質情報の予測において、主成分分析又は主成分回帰分析といった手法を用いてもよい。この手法は、プロセスの状態が変化してきたことを素早く捉える方法として、主に石油化学プロセスの分野で発展してきた「多変量統計解析手法」を用いた多変量統計的プロセス監視(MSPC:Multi-Variate Statistical Process Control)と呼ばれる方法を利用するものである。MSPCでは、主成分分析、主成分回帰分析、潜在変数射影法/部分最小二乗法などを用いた監視方法が用いられる。これらの手法は、多数の計測データから多数のプロセスデータ間の相関情報を利用して数個の統計量データを生成し、生成された統計量データによってプロセス状態の変化を検出するという方法である。また、統計的演算部22は、他の公知の手法を用いて統計的処理水質情報を予測してもよく、例えば、上述した特許文献1、2に示した手法を用いて統計的処理水質情報を予測する構成としてもよい。
水質反応モデル予測部23は、浄水場における水質反応をより具体的に数式化したモデルに基づいて仮想的処理された処理水の処理水質であるモデル処理水質情報を予測する。水質反応モデル予測部23は、凝集プロセスの水質反応モデルを定義しておき、原水の水質情報に対して、任意の凝集剤等の薬品における注入率を選んだ際の、処理水質の結果をモデル処理水質情報として予測する。水質反応モデル予測部23は、原水の水質情報と、薬品の注入率とを入力とし、水質情報及び薬品の注入率に基づいて予測した、沈殿水濁度と沈殿水アルミ濃度とを含む処理水質であるモデル処理水質情報を出力とする。
パラメータ調整部24は、水質反応モデル予測部23に対して、統計的演算部22が統計的処理水質情報を予測する際に利用した入力値(水質情報及び薬品の注入率)を用いて、比較用処理水質情報を予測するよう指示する。パラメータ調整部24は、指示に応じて水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報とを比較して、2つの値が乖離しているか否かを判断する。パラメータ調整部24は、例えば、水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報との差分値が、所定の閾値を超えているか否かによって、乖離しているか否かを判断する。
パラメータ調整部24は、乖離していると判断した場合に、データ収集・保存部21のデータを使って水質反応モデル予測部23で用いるパラメータを変更し、新たなパラメータを水質反応モデル予測部23に設定する。パラメータ調整部24は、水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報とが乖離していないと判断されるパラメータを得るまで調整を繰り返す。
パラメータ調整部24は、乖離していないと判断した場合に、水質反応モデル予測部23に対して、モデル処理水質情報を所定のレベルに維持する範囲で最も低い薬品の注入率を算出するよう指示する。水質反応モデル予測部23は、水質反応モデルに基づいて、原水の水質情報に対して、処理水のモデル処理水質情報が許容範囲内となる中で最も低い薬品の注入率であるモデル注入率を求めることができる。このモデル注入率は、水質反応モデル予測部23が水質反応モデルに基づいて求めた、処理水のモデル処理水質情報を所定の範囲とする中で最適な(例えば最低となる)薬品の注入率である。水質反応モデル予測部23は、算出した薬品のモデル注入率を含む操作条件を運転管理支援部25へ出力する。統計的演算部22及びパラメータ調整部24は、上述した動作を周期的に行う。なお、統計的演算部22及びパラメータ調整部24は、周期的に動作する構成に限られるものではなく、データ収集・保存部21に保存される水質情報の変化を監視し、水質情報が大きく変化した場合に、上述した動作を行うようにしてもよい。
運転管理支援部25は、処理水質の目的とする水質レベルを取得する機能を有する。運転管理支援部25は、統計的演算部22からの操作条件と、水質反応モデル予測部23からの操作条件とに基づいて、目的とする水質レベルを達成する範囲で最適な操作条件を生成し、プラント操作部26へ出力する。
プラント操作部26は、運転管理支援部25からの操作条件に応じて自動で凝集剤の注入率を制御する。具体的には、プラント操作部26は、運転管理支援部25からの操作条件に含まれる注入率に応じて注入量制御部15に対して凝集剤の注入率を制御する制御信号を出力する。注入量制御部15は、プラント操作部26から受信した制御信号に応じて凝集剤注入設備16において混和池5に注入する凝集剤の注入量を制御する。
運転管理支援部25とプラント操作部26との間は、ネットワークを介して通信可能に接続される構成である。なお、運転管理支援部25とプラント操作部26との間は、ネットワークを介して通信可能とする構成に限られるものではない。運転管理支援部25から、プラント操作部26を操作する操作員に対して操作条件を提示する(例えば、操作員が所持する携帯端末に表示させる)構成であってもよい。これにより、運転管理支援部25とプラント操作部26との間をネットワーク等で接続しない構成であっても、操作員は、提示された操作条件に応じた操作をプラント操作部26に対して行うことができる。
以上の構成により、管理支援システム20は、浄水場1において凝集剤を注入する際に、より適量を注入するための支援を行うことができる。統計的演算部22は過去のデータに基づいて統計的注入率を算出するため、統計的処理水質情報を所定のレベルに維持しつつどこまで凝集剤の注入率を下げることができるかのデータを示すことが困難である。しかし、水質反応モデル予測部23は、水質反応モデルに基づいて、モデル処理水質情報を所定のレベルとする範囲内で最低となる凝集剤のモデル注入率を求めることができる。管理支援システム20は、水質反応モデル予測部23で求めたモデル注入率を考慮した凝集剤の注入率を浄水場1のプラント操作部26に指示することができる。
次に、本実施形態における管理支援システム20の詳細な構成について説明する。
図2は、本実施形態における管理支援システム20の詳細な構成例を示す図である。図2に示すように、管理支援システム20の水質反応モデル予測部23は、混和池モデル部201と、フロック形成池モデル部202と、沈殿池モデル部203と、ろ過池モデル部204と、汚泥情報取得部205と、操作条件決定部206とを備える。また、パラメータ調整部24は、過去に水質反応モデル予測部23に設定したパラメータを保存するパラメータ履歴保存部240を備える。
図3は、本実施形態の混和池モデル部201における処理の概要を示す図である。混和池モデル部201は、混和池5における凝集プロセスの水質反応をモデル化して利用する。図3に示すように、混和池モデル部201は、原水のpH及びアルカリ度と、凝集剤の注入率と、原水の濁度とに基づいて、荷電中和率及び余剰アルミ濃度を算出し、出力する。
混和池5において、原水に凝集剤が添加されると、その凝集剤は異なる形態が混合した状態となる。浄水場で多く用いられている凝集剤は、アルミ系の凝集剤であり通称PAC(ポリ塩化アルミニウム)と呼ばれている重合体である。このPACは、原水に添加されたとき、単一の構造をとるのではなく、形態の異なる3種類のアルミ(以下、第1形態のアルミ〜第3形態のアルミという)が混合した状態となる。第1形態のアルミ〜第3形態のアルミは、添加した原水のpH及びアルカリ度等によって、それぞれの混合の比率が変化する。
第1形態のアルミは、凝集反応にはあまり寄与してこない比較的構造の小さな形態である。第2形態のアルミは、PACが多価のイオン性ポリマー化を起こしている形態のもので、この形態のアルミは荷電中和作用によく効くとされている。第3形態のアルミは、比較的大きい不溶態のアルミを含む形態である。この形態のアルミは凝集反応における架橋作用に大きく寄与すると考えられており、フロックが大きくなって沈降しやすい状態となるのに重要な働きを行う形態である。この不溶態のアルミが不十分であると、荷電中和は良好に進んだものの、架橋作用がうまく働かなかったため、大きなフロックができず、フロックの沈降性が悪いので濁度が落ちないという現象が生じてしまう。
以上のようなアルミ系凝集剤を原水に注入した際における第1形態のアルミ〜第3形態のアルミの比率は、水中に添加した時のpHとアルカリ度に影響を受ける。混和池モデル部201は、原水のpH及びアルカリ度と、凝集剤の注入率とに基づいて、第1形態のアルミ〜第3形態のアルミの比率を算出する。ここで、第1形態のアルミ〜第3形態の濃度(存在量)は、それぞれの比率とPAC注入率から求めることができる。
次に、凝集反応で重要となる、荷電中和作用と架橋反応作用について記述する。荷電中和は、もとより原水中の濁質粒子は負に帯電しているため、互いが反発しあっており水中においては安定して存在する。つまり、これらは原水の濁度として計上されるものの大部分を占める。これに対して、プラスの電荷をもつ凝集剤を添加すると、凝集剤のプラス電荷により、濁質粒子のマイナス電荷が中和されていくため濁質粒子同士の反発力は低下していく。この際、凝集剤と濁質粒子でマイクロフロックが形成される。
凝集剤の注入率が荷電中和に対して最も適量の時、マイクロフロックの荷電状態は±0mV付近となる。また、適量以上の凝集剤が原水に注入されると、マイクロフロックの荷電状態はプラスに傾いていく。ここで荷電中和に大きく寄与するアルミの形態は第2形態のアルミである。混和池モデル部201は、原水のpH及びアルカリ度の情報と、凝集剤の注入率とに基づいて求めた第2形態のアルミの比率から添加された第2形態のアルミの注入量を算出する。混和池モデル部201は、第2形態のアルミの注入量と、原水の濁度とに基づいて、添加された凝集剤の荷電中和のポテンシャルである荷電中和率(%)を算出する。
原水中の濁質粒子の総和は、原水の濁度から見積もることができるので、濁度に対して注入した凝集剤の量と、その凝集剤中の第2形態のアルミの状態を把握することで、荷電中和の状態を予測することができる。ここではALT比(原水濁度に対する注入した凝集剤中のアルミ濃度)と呼ばれる濁度に対する凝集剤中アルミの比率を表す指標を用いる。ここでのALT比で用いる凝集剤中アルミは凝集剤中の全アルミ濃度でもよいが、第2形態のアルミに限定したアルミ濃度を用いるのが望ましい。混和池モデル部201は、第2形態のアルミ濃度(ALT比)に基づいて、荷電中和率を算出する。
混和池モデル部201は、上述した第1形態のアルミや第3形態のアルミの比率から第1形態アルミの量や第3形態のアルミの量を求める。混和池モデル部201は、荷電中和に寄与しなかった第1形態のアルミの量や第3形態のアルミの量からこの時点での余剰アルミ濃度を算出する。余剰アルミ濃度は、架橋作用に働く第3形態のアルミも含んだ値である。混和池モデル部201は、凝集剤の注入量から第2形態のアルミ濃度を減算して余剰アルミ濃度を求める。
図4は、本実施形態のフロック形成池モデル部202における処理の概要を示す図である。フロック形成池モデル部202は、フロック形成池6におけるフロック形成プロセスの水質反応をモデル化して利用する。図4に示すように、フロック形成池モデル部202は、余剰アルミ濃度及び原水の水温に基づいて、フロック粒径、フロック密度及び残留アルミ濃度を算出する。
フロック形成池モデル部202は、まず、混和池5の出口における荷電中和後の粒子径を、任意に定める。例えば、粒子径の初期値として50μmといった値を与える。フロック形成池モデル部202は、荷電中和率や余剰アルミ濃度といった指標に基づく係数を設定して、荷電中和後の粒子径を算出する。フロック形成池モデル部202は、余剰アルミ濃度のうち架橋作用に影響の大きい第3形態のアルミの濃度と原水濁度に対する比率から、架橋作用により、荷電中和後の粒子径を有するマイクロフロックがどの程度まで粗大化するかを算出する。
フロック形成池モデル部202は、フロック形成池6において粗大化したフロックの平均粒径がどの程度であるかを求める。フロックの成長速度は水温に依存することが知られているので、フロック形成池モデル部202は、原水水温を入力信号として、水温が平均よりも冷たいときは、フロックの成長が進まないようにし、水温が平均よりも暖かいときはフロックの成長が進むようにしたモデルを用いて、荷電中和後の粒子径から成長したフロックの平均粒径を求める。フロック形成池モデル部202は、余剰アルミの濃度、濁度に対する余剰アルミの量に基づいて、フロックの密度を算出する。
フロック形成池モデル部202は、最終的に反応しなかった、または処理に用いられなかった余剰アルミ濃度を、残留アルミ濃度として算出する。残留するアルミとは、第3形態のアルミであったり、第1形態のアルミや第2形態のアルミに濁質成分が付着したものであったりする。
図5は、本実施形態の沈殿池モデル部203における処理の概要を示す図である。沈殿池モデル部203は、沈殿池7における沈殿ろ過プロセスの水質反応をモデル化して利用する。図5に示すように、沈殿池モデル部203は、フロック粒径、フロック密度及び原水濁度に基づいて、沈殿水濁度(比較用処理水質情報又はモデル処理水質情報)を算出する。沈殿池モデル部203は、残留アルミ濃度をそのまま沈殿水アルミ濃度として出力する。
沈殿池7においては、沈降分離により粗大化したフロックは沈殿して汚泥となる。沈殿池モデル部203は、フロックの粒径と密度に基づいて、以下の(式1)に示すようなストークスの沈降式に基づいてフロックの沈降速度を求める。
Figure 0006422901
vs:沈降速度[m/s]又は[cm/s]
:粒子径[m]又は[cm]
ρ:粒子の密度[kg/m]又は[g/cm
ρ:流体の密度[kg/m]又は[g/cm
g:重力加速度[m/s]又は[cm/s
η:流体の粘度[Pa・s]又は[g/(cm・s)]
沈殿池モデル部203は、沈殿池7の形状と、流量に基づく滞留時間から、沈殿池7の上流から下流に流れる方向の速度を算出する。沈殿池モデル部203は、沈降速度と沈殿池7の流れの速度とから、沈殿池7に流入してきたフロックのうち汚泥として底に沈むものと、越流して沈殿池7の出口まで達するものに分画する。沈殿池モデル部203は、沈殿池7に流入した際のフロック粒径は平均粒径とし、粒径の小さいものから大きいものまでの分布を持たすことで、小さい粒径のフロックほど越流する可能性が高くなるようにモデル化する。
例えば、図5に示すように、フロックの粒径を横軸、フロックの量を縦軸としたグラフ50において、フロックの平均粒径Aは破線51で示されている。グラフ50において、沈殿池モデル部203は、フロックの平均粒径Aを中心に、フロックの密度に応じた分布を有し、総フロック量に応じた面積を有する分布線52を決定する。これは、フロックの密度が大きい程、フロックの粒径のバラツキが小さく、フロックの密度が小さい程、フロックの粒径のバラツキが大きくなる傾向があることを利用している。このような傾向は、フロックの密度が小さい程、一度形成されたフロックが崩れやすく、フロックの粒径にバラツキが生じやすいため生じたものであると考える。なお、粒径の分布のばらつきは、荷電中和後の粒子径を設定する際に用いた係数を取り入れて求めても良い。
沈殿池モデル部203は、閾値Bよりも粒径が小さいフロックの量を破線53及び分布線52で囲まれた領域54の面積に応じて推定する。この閾値Bは、沈降速度と沈殿池7の流れの速度とから、沈殿池7に流入してきたフロックのうち汚泥として底に沈むものと、越流して沈殿池7の出口まで達するものに分画するものである。ここで推定したフロックの量は、越流して沈殿池7の出口まで達するフロックの量を示している。沈殿池モデル部203は、沈殿池7の出口まで達したフロックの量に基づいて、沈殿水の濁度である沈殿水濁度を求める。すなわち、沈殿池モデル部203は、十分に成長しなかったフロックが沈降せずに沈殿池の出口まで越流してきた分を沈殿池7の出口における沈殿水濁度として算出する。沈殿池モデル部203は、残留アルミ濃度は、沈殿池7では沈まないと定義することで、残留アルミ濃度の値を沈殿池7の出口から出る沈殿水のアルミ濃度である沈殿水アルミ濃度として算出する。
ろ過池モデル部204は、沈殿水濁度及び沈殿水アルミ濃度に基づいて、砂ろ過池8における水位上昇を予測する。この予測には、沈殿水濁度及び沈殿水アルミ濃度が大きい程、砂ろ過池8において目詰まりが発生しやすくなり、目詰まりが発生すると砂ろ過池8の水位が上昇する傾向があることを利用している。ろ過池モデル部204は、予測したろ過池水位上昇に関する情報をパラメータ調整部24へ出力する。
汚泥情報取得部205は、沈降したフロックの量を原水の濁度と凝集剤の注入率に基づいて、濁度及び凝集剤の総量を求めて、この総量を沈殿池7における汚泥の発生量として算出する。汚泥情報取得部205は、この汚泥の密度を、フロック形成池6の出口の時点でのフロックの密度を基準として、堆積し圧密されたことによる密度の変化を加味して算出する。汚泥情報取得部205は、取得した汚泥の発生量及び汚泥の密度に関する情報を含む汚泥情報をパラメータ調整部24へ出力する。
パラメータ調整部24は、パラメータ調整時に、水質反応モデル予測部23から得たろ過池水位上昇に関する情報や汚泥情報の変化を考慮してパラメータを調整するように構成してもよい。また、パラメータ調整部24は、パラメータ調整時に、水質反応モデル予測部23から得たろ過池水位上昇に関する情報や汚泥情報と、データ収集・保存部21に格納されている実測値とを比較して、その比較結果に基づいて、パラメータを変更してもよい。
操作条件決定部206は、複数パターンの薬品の注入率に基づいて予測され沈殿池モデル部203から受信した沈殿水濁度及び沈殿水アルミ濃度が所定の範囲内の値であるか否かを判断する。操作条件決定部206は、沈殿池モデル部203から受信した沈殿水濁度及び沈殿水アルミ濃度が所定の範囲内となったものに対応する薬品の注入率の内、最も低い薬品の注入率であるモデル注入率を特定する。操作条件決定部206は、最も低いと特定した薬品のモデル注入率を含む操作条件を運転管理支援部25へ出力する。
パラメータ調整部24は、水質反応モデル予測部23内の各処理部に対してパラメータの設定や動作制御を行う。パラメータ調整部24は、例えば、水質反応モデル予測部23に対して、複数パターンの薬品の注入率に基づいて、沈殿水濁度及び沈殿水アルミ濃度を予測するよう指示する。
パラメータ調整部24は、水質反応モデル予測部23に新たなパラメータを設定した場合は、古いパラメータに関する情報をパラメータ履歴保存部240に格納する。パラメータ調整部24は、パラメータの調整時にパラメータ履歴保存部240に格納された過去のパラメータに関する情報を参考にすることができる。
水質反応モデル予測部23における、水質反応をより具体的に数式化したモデルの具体例について説明する。
図6は、本実施形態の水質反応モデル予測部23における、水質反応をより具体的に数式化したモデルの具体例を示す図である。図6において、入力情報61は、水質反応モデル予測部23に入力される情報であって、原水の水質情報と、薬品の注入率とを含む情報である。入力情報61は、a=原水濁度、b=原水pH、c=原水水温、d=原水アルカリ度、e=凝集剤注入率、f=pH調整剤注入率及びg=アルカリ度調整剤注入率を含む。
なお、入力情報61は、上述した情報以外にも、水質反応を数式化したモデルで利用する為に、凝集剤の種類やアルミ系の凝集剤であればアルミの塩基度といった情報を含んでも良い。また、入力情報61は、プラントの構造的な情報として、撹拌強度を表すG値、ここでは混和池5のG値とフロック形成池6のG値を含んでも良い。入力情報61は、水質反応を数式化したモデルに必要な情報を含む。
混和池・フロック形成池モデル62は、混和池モデル部201及びフロック形成池モデル部202で利用されるモデルであって、フロック粒径Aを求める関数F1Aと、フロック密度Bを求める関数F1Bと、残留アルミ濃度Cを求める関数F1cとを有する。関数F1A、関数F1B及び関数F1cは、原水濁度a、原水pH・b、原水水温c、原水アルカリ度d、凝集剤注入率e、pH調整剤注入率f及びアルカリ度調整剤注入率gを含む入力情報61を変数とする関数である。関数F1A、関数F1B及び関数F1cにおいて、各変数に対する係数等のパラメータは、データ収集・保存部21に保存されているデータに基づいたシミュレーションによりパラメータ調整部24が調整する。
フロック粒径Aを求める関数F1Aは、変数a、b、d、eに基づいて、荷電中和率及び余剰アルミ濃度を算出し、算出した荷電中和率及び余剰アルミ濃度に基づいて荷電中和後のフロックの粒子径を算出し、算出した荷電中和後のフロックの粒子径及び変数cとに基づいて、フロック粒径Aを算出するという一連の計算をまとめて行う関数である。
フロック密度Bを求める関数F1Bは、変数b、d、eに基づいて、余剰アルミ濃度を算出し、算出した余剰アルミ濃度及び変数aに基づいてフロック密度Bを算出するという一連の計算をまとめて行う関数である。
残留アルミ濃度Cを求める関数F1Cは、変数b、d、eに基づいて、余剰アルミ濃度を算出し、算出した余剰アルミ濃度に基づいて残留アルミ濃度Cを算出するという一連の計算をまとめて行う関数である。
沈殿池モデル63は、沈殿池モデル部203で用いるモデルである沈殿水濁度Xを求める関数F2X及び沈殿水アルミ濃度Yを求める関数F2Yと、汚泥情報取得部205で用いるモデルである汚泥の発生量Zを求める関数F2Zとを有する。関数F2X及びF2Yは、フロック粒径A、フロック密度B及び残留アルミ濃度Cを変数とする関数である。関数F2Zは、原水濁度a、凝集剤注入率eを変数とする関数である。関数F2X、関数F2Y及び関数F2Zにおいて、各変数に対する係数等のパラメータは、データ収集・保存部21に保存されているデータに基づいたシミュレーションによりパラメータ調整部24が調整する。
沈殿水濁度Xを求める関数F2Xは、変数A、Bに基づいて、越流して沈殿池7の出口まで達するフロックの量を算出し、算出した沈殿池7の出口まで達したフロックの量に基づいて、沈殿水の濁度である沈殿水濁度Xを算出するという一連の計算をまとめて行う関数である。沈殿水アルミ濃度Yを求める関数F2Yは、変数Cに基づいて、沈殿水アルミ濃度Yを算出する関数である。汚泥の発生量Zを求める関数F2Zは、変数a、eに基づいて、汚泥の発生量Zを算出する関数である。
砂ろ過池モデル64は、ろ過池モデル部204で用いるモデルである砂ろ過池8の水位上昇を求める関数Fを有する。関数Fは、沈殿水濁度X及び沈殿水アルミ濃度Yを変数とする関数である。関数Fにおいて、各変数に対する係数等のパラメータは、データ収集・保存部21に保存されているデータに基づいたシミュレーションによりパラメータ調整部24が調整する。砂ろ過池8の水位上昇を求める関数Fは、変数X、Yに基づいて、砂ろ過池8における水位上昇を予測する関数である。
次に、本実施形態における管理支援システム20の動作について説明する。
図7は、本実施形態における管理支援システム20の動作を示すフロー図である。図7に示すように、データ収集・保存部21は、原水の水質情報と、凝集剤を含む薬品の注入率と、沈殿池出口濁度計14で測定された沈殿池7の出口における原水濁度とを含むデータを取得する(ステップS71)。データ収集・保存部21が取得した原水の水質情報及び凝集剤を含む薬品の注入率は、統計的演算部22及び水質反応モデル予測部23に入力される。
統計的演算部22は、データ収集・保存部21からの原水の水質情報及び凝集剤の注入率を用いて、データ収集・保存部21に保存されているデータの統計的処理により沈殿水濁度を含む統計的処理水質情報を予測する(ステップS72)。統計的演算部22は、予測に用いた原水の水質情報及び凝集剤の注入率と、予測結果とをパラメータ調整部24へ出力する。
パラメータ調整部24は、水質反応モデル予測部23に対して、統計的演算部22が統計的処理水質情報を予測する際に利用した入力値(原水の水質情報及び凝集剤の注入率)を用いて、沈殿水濁度を含む比較用処理水質情報を予測するよう指示する。水質反応モデル予測部23は、パラメータ調整部24からの指示に応じて、統計的演算部22が統計的処理水質情報を予測する際に利用した入力値を用いて、沈殿水濁度を含む比較用処理水質情報を予測する(ステップS73)。水質反応モデル予測部23は、予測結果である比較用処理水質情報をパラメータ調整部24へ出力する。
パラメータ調整部24は、指示に応じて水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報とを比較して、2つの値が乖離しているか否かを判断する(ステップS74)。ここで、水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報とが乖離していると判断した場合(ステップS74のYES)、パラメータ調整部24は、データ収集・保存部21のデータを使って水質反応モデル予測部23で用いるパラメータを調整し、新たなパラメータを水質反応モデル予測部23に設定する(ステップS75)。パラメータ調整部24は、ステップS75の処理を終えると、ステップS73の処理に移行する。
ここで、水質反応モデル予測部23が予測した比較用処理水質情報と、統計的演算部22が予測した統計的処理水質情報とが乖離していないと判断した場合(ステップS74のNO)、パラメータ調整部24は、水質反応モデル予測部23に対して、凝集剤の注入率を複数パターンに変化させた場合の沈殿水濁度を含むモデル処理水質情報を予測するよう指示する。これにより、水質反応モデル予測部23は、凝集剤の注入率を複数パターンに対応する複数の沈殿水濁度を含むモデル処理水質情報を予測する。操作条件決定部206は、複数パターンの薬品の注入率に基づいて予測され沈殿池モデル部203から受信したモデル処理水質情報が所定の範囲内の値であるか否かを判断し、所定の範囲内と判断したモデル処理水質情報に対応する凝集剤の注入率の内、最も低い凝集剤のモデル注入率を特定する。操作条件決定部206は、特定した最も低い薬品のモデル注入率を含む操作条件を決定し、運転管理支援部25へ出力する(ステップS76)。
運転管理支援部25は、統計的演算部22からの操作条件と、水質反応モデル予測部23からの操作条件(ステップS76で決定された操作条件)とに基づいて、目的とする水質レベルを達成する範囲で最適な操作条件を生成し、プラント操作部26へ出力する(ステップS77)。
このように、管理支援システム20は、浄水場1において凝集剤を注入する際に、より適量を注入するための支援を行うことができる。凝集剤を節約することで、以下の3点の理由により、浄水場1の運営管理を低コスト化することができる。
(1)凝集剤の使用量を低減することができる。
(2)凝集剤が過剰となる可能性をより低減することで、過剰な凝集剤により発生した残留アルミの影響で砂ろ過池8における目詰まりの発生頻度を低減することができる。目詰まりの発生頻度が低減すると砂ろ過池8を洗浄する頻度を低減することができる。
(3)凝集剤の過剰により残留アルミを多く含む汚泥は、含水量が多くなる傾向があり、乾燥処理により長い時間が必要となる。しかし、凝集剤が過剰となる可能性を低減することで、汚泥の乾燥処理により長い時間が必要となることを防ぐことができる。
管理支援システム20内のデータ収集・保存部21が、流量計2a〜2d、水温計10、濁度計11、PH計12、流量計13及び沈殿池出口濁度計14で計測されたデータを収集する構成としては、どのような構成であってもよい。データ収集・保存部21は、例えば、有線又は無線通信により計測されたデータを収集する構成であって、インターネット等のネットワークを介して通信する構成や、専用回線を用いて通信する構成等が考えられる。例えば、データ収集・保存部21は、クラウドコンピューティング等のインターネットをベースとした構成としてもよい。この場合、管理支援システム20は、例えば、統計的演算部22と、水質反応モデル予測部23と、パラメータ調整部24と、運転管理支援部25とを備える管理支援装置を設置し、その管理支援装置からクラウド上のデータ収集・保存部21を利用する構成としてもよい。
上述した実施形態において、管理支援システム20内の各機能部は、ソフトウェア機能部であるものとしたが、LSI等のハードウェア機能部であってもよい。また、管理支援システム20内の各機能部は、PCL(programmable logic controller)を用いて構成してもよい。上述した実施形態において、管理支援システム20が支援の対象とするプロセスとして、浄水場プロセスの一例を示しているが、原水に対して薬品を用いて浄化するプロセスであれば適用できる。
以上説明した少なくともひとつの実施形態によれば、水処理プラントにおいて薬品をより適量に注入するための支援を行うことを可能とする。
また、以上に説明した管理支援システム20内の機能をソフトウェアによって実現する場合は、それらの機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)−ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピューターシステム内部の揮発性メモリー(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…浄水場、3…着水井、4…活性炭接触池、5…混和池、6…フロック形成池、7…沈殿池、8…砂ろ過池、9…浄水池、20…管理支援システム、21…データ収集・保存部、22…統計的演算部(統計的予測部)、23…水質反応モデル予測部、24…パラメータ調整部、25…運転管理支援部、26…プラント操作部、201…混和池モデル部、202…フロック形成池モデル部、203…沈殿池モデル部、204…ろ過池モデル部、205…汚泥情報取得部、206…操作条件決定部、240…パラメータ履歴保存部

Claims (7)

  1. 水処理プラントにおいて取得された情報として、原水の水質に関する水質情報、前記原水への薬品の注入に関する薬品情報及び前記薬品情報に応じて注入された前記薬品による処理後の処理水の水質を示す処理水質情報を取得して、統計的に処理することで前記薬品情報と前記処理水質情報との関係を特定し、特定した前記関係に基づいて、前記処理水の水質を所定の範囲とする中でより低い注入率となる統計的注入率を取得し、予測対象の原水の水質情報と、取得した前記統計的注入率と、特定した前記関係とに基づいて、統計的処理水質情報を予測する統計的予測部と、
    注入された薬品による反応をモデル化した水質反応モデルを利用して、前記処理水の水質を所定の範囲とする中でより低い注入率となるモデル注入率を取得し、前記予測対象の原水の水質情報と、取得した前記モデル注入率と、前記水質反応モデルとに基づいて、モデル処理水質情報を予測する水質反応モデル予測部と、
    前記統計的予測部が予測に用いた前記統計的注入率と、前記水質反応モデル予測部が予測に用いた前記モデル注入率とに基づいて、前記水処理プラントにおける薬品の注入率を制御するための操作条件を生成する管理支援部と、
    を備える管理支援システム。
  2. 前記水質反応モデル予測部における前記水質反応モデルのパラメータを変更するパラメータ調整部をさらに備え、
    前記パラメータ調整部は、前記水質反応モデル予測部が前記予測対象の原水の水質情報及び前記統計的注入率に基づいて予測した比較用処理水質情報と、前記統計的処理水質情報とが乖離している場合に、前記水質反応モデルのパラメータを変更する請求項1に記載の管理支援システム。
  3. 前記水質反応モデルは、前記薬品の注入により生成されるフロックの粒径及び密度を予測して、前記フロックの粒径及び密度に基づいて、前記フロックの沈降処理後の原水の濁度を前記モデル処理水質情報として予測するモデルであり、
    前記処理水質情報は、前記フロックの沈降処理後の前記処理水の濁度の測定値を含み、
    前記統計的処理水質情報は、前記統計的予測部が前記フロックの沈降処理後の処理水の濁度を予測したものである請求項1又は請求項2に記載の管理支援システム。
  4. 前記比較用処理水質情報と前記統計的処理水質情報とが乖離していない場合に、前記水質反応モデル予測部は、複数パターンの前記薬品の注入率に対応した複数の前記モデル処理水質情報を予測し、
    前記モデル処理水質情報が所定の範囲内となる前記薬品の注入率の中から、最小となる前記薬品の注入率を特定して前記モデル注入率とし、出力する特定部をさらに備え、
    前記管理支援部は、前記特定部が出力する前記モデル注入率に基づいて、前記操作条件を生成する請求項2に記載の管理支援システム。
  5. 前記水質情報は、前記原水の濁度、前記原水の水温、前記原水のpH及び前記原水のアルカリ度を含む請求項1から4のいずれか一項に記載の管理支援システム。
  6. 水処理プラントにおいて取得された情報として、原水の水質に関する水質情報、前記原水への薬品の注入に関する薬品情報及び前記薬品情報に応じて注入された前記薬品による処理後の処理水の水質を示す処理水質情報を取得して、統計的に処理することで前記薬品情報と前記処理水質情報との関係を特定し、特定した前記関係に基づいて、前記処理水の水質を所定の範囲とする中でより低い注入率となる統計的注入率を取得し、予測対象の原水の水質情報と、取得した前記統計的注入率と、特定した前記関係とに基づいて、統計的処理水質情報を予測する統計的予測ステップと、
    注入された薬品による反応をモデル化した水質反応モデルを利用して、前記処理水の水質を所定の範囲とする中でより低い注入率となるモデル注入率を取得し、前記予測対象の原水の水質情報と、取得した前記モデル注入率と、前記水質反応モデルとに基づいて、モデル処理水質情報を予測する水質反応モデル予測ステップと、
    前記統計的予測ステップにおいて予測に用いた統計的注入率と、前記水質反応モデル予測ステップにおいて予測に用いた前記モデル注入率とに基づいて、前記水処理プラントにおける薬品の注入率を制御するための操作条件を生成する管理支援ステップと、
    を有する管理支援方法。
  7. 水処理プラントにおいて取得された情報として、原水の水質に関する水質情報、前記原水への薬品の注入に関する薬品情報及び前記薬品情報に応じて注入された前記薬品による処理後の処理水の水質を示す処理水質情報を取得して、統計的に処理することで前記薬品情報と前記処理水質情報との関係を特定し、特定した前記関係に基づいて、前記処理水の水質を所定の範囲とする中でより低い注入率となる統計的注入率を取得し、予測対象の原水の水質情報と、取得した前記統計的注入率と、特定した前記関係とに基づいて、統計的処理水質情報を予測する統計的予測ステップと、
    注入された薬品による反応をモデル化した水質反応モデルを利用して、前記処理水の水質を所定の範囲とする中でより低い注入率となるモデル注入率を取得し、前記予測対象の原水の水質情報と、取得した前記モデル注入率と、前記水質反応モデルとに基づいて、モデル処理水質情報を予測する水質反応モデル予測ステップと、
    前記統計的予測ステップにおいて予測に用いた前記統計的注入率と、前記水質反応モデル予測ステップにおいて予測に用いた前記モデル注入率とに基づいて、前記水処理プラントにおける薬品の注入率を制御するための操作条件を生成する管理支援ステップと、
    をコンピューターに実行させるための管理支援プログラム。
JP2016024816A 2016-02-12 2016-02-12 管理支援システム、管理支援方法及び管理支援プログラム Active JP6422901B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024816A JP6422901B2 (ja) 2016-02-12 2016-02-12 管理支援システム、管理支援方法及び管理支援プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024816A JP6422901B2 (ja) 2016-02-12 2016-02-12 管理支援システム、管理支援方法及び管理支援プログラム

Publications (2)

Publication Number Publication Date
JP2017140595A JP2017140595A (ja) 2017-08-17
JP6422901B2 true JP6422901B2 (ja) 2018-11-14

Family

ID=59628303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024816A Active JP6422901B2 (ja) 2016-02-12 2016-02-12 管理支援システム、管理支援方法及び管理支援プログラム

Country Status (1)

Country Link
JP (1) JP6422901B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4248602A4 (en) * 2020-11-18 2024-04-17 Hach Co METHOD, SYSTEM AND COMPUTER-READABLE STORAGE MEDIUM FOR DETERMINING THE OPTIMAL COAGULATION AGENT DOSAGE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083269B2 (ja) * 2018-04-03 2022-06-10 オルガノ株式会社 凝集を伴う水処理プラントの制御方法および制御装置
JP7109970B2 (ja) * 2018-04-05 2022-08-01 日本製鉄株式会社 凝集沈殿装置及び凝集沈殿方法
JP6764486B2 (ja) * 2018-07-26 2020-09-30 三菱電機株式会社 水処理プラント
JP6541913B1 (ja) * 2018-07-26 2019-07-10 三菱電機株式会社 水処理プラントおよび水処理プラントの運転方法
US20210263490A1 (en) * 2018-07-26 2021-08-26 Mitsubishi Electric Corporation Water treatment plant and method of operating water treatment plant
JP2020114570A (ja) * 2019-01-17 2020-07-30 株式会社明電舎 操作値算出装置
JP7264697B2 (ja) * 2019-04-02 2023-04-25 横河電機株式会社 プラント運転支援システム及びプラント運転支援方法
JP7145375B2 (ja) * 2021-01-29 2022-10-03 栗田工業株式会社 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200807A (ja) * 1987-02-16 1988-08-19 Meidensha Electric Mfg Co Ltd 凝集剤の注入制御装置
JP3231164B2 (ja) * 1993-10-19 2001-11-19 富士電機株式会社 浄水場凝集プロセスの制御装置
JP2000218263A (ja) * 1999-02-01 2000-08-08 Meidensha Corp 水質制御方法及びその装置
JP4341164B2 (ja) * 2000-10-20 2009-10-07 株式会社明電舎 薬品注入率制御方法及びその装置
JP4505772B2 (ja) * 2000-11-24 2010-07-21 横河電機株式会社 浄水場の凝集剤注入制御方法
JP2008136765A (ja) * 2006-12-05 2008-06-19 Sekisui Jushi Co Ltd 模型飛行機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4248602A4 (en) * 2020-11-18 2024-04-17 Hach Co METHOD, SYSTEM AND COMPUTER-READABLE STORAGE MEDIUM FOR DETERMINING THE OPTIMAL COAGULATION AGENT DOSAGE

Also Published As

Publication number Publication date
JP2017140595A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6422901B2 (ja) 管理支援システム、管理支援方法及び管理支援プログラム
JP7076356B2 (ja) 排水処理方法
JP7179486B2 (ja) 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム
JP2014054603A (ja) 凝集剤注入制御方法及び凝集剤注入制御システム
JP2007029851A (ja) 凝集剤注入制御装置および方法
JP6976143B2 (ja) 水処理システム及び水処理方法
JP5145311B2 (ja) 浄水薬注制御システム
JP6633342B2 (ja) 凝集剤注入支援装置及び制御方法
JP4784241B2 (ja) 浄水プロセスの凝集剤注入方法及び装置
JP6437394B2 (ja) 水処理方法、水処理施設、注入凝集剤量評価システムおよび残留凝集剤量推算装置
JP4780946B2 (ja) 水処理プロセス運転支援装置,プログラム及び記録媒体
JP6139314B2 (ja) 凝集制御装置及び凝集制御方法
JP7249818B2 (ja) 凝集剤注入制御装置、凝集剤注入制御方法及びコンピュータプログラム
JP7336790B2 (ja) 水処理システム及び水処理方法
JP6173808B2 (ja) 凝集剤注入率設定方法
JP4493473B2 (ja) 水処理プロセス運転支援装置
JP6754680B2 (ja) 加圧浮上分離装置の運転方法および加圧浮上分離装置
JP2017056418A (ja) 凝集剤注入率決定方法および凝集剤注入率決定装置
JP2023059534A (ja) 薬品注入支援システム、薬品注入支援方法、及びプログラム
JP6385860B2 (ja) 凝集状態判別方法、および凝集状態判別装置
JP2023004018A (ja) 管理支援表示装置、管理支援表示方法及び管理支援表示プログラム
JP2011067776A (ja) 凝集剤注入制御システム
JP2022166617A (ja) 凝集剤注入制御方法および凝集剤注入制御装置
JP2023097172A (ja) 教師データ選定装置、予測モデル構築装置、および教師データ選定方法
US20150031137A1 (en) Waste water discharge apparatus and process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150