JP6399961B2 - 光デバイスチップの製造方法 - Google Patents

光デバイスチップの製造方法 Download PDF

Info

Publication number
JP6399961B2
JP6399961B2 JP2015078031A JP2015078031A JP6399961B2 JP 6399961 B2 JP6399961 B2 JP 6399961B2 JP 2015078031 A JP2015078031 A JP 2015078031A JP 2015078031 A JP2015078031 A JP 2015078031A JP 6399961 B2 JP6399961 B2 JP 6399961B2
Authority
JP
Japan
Prior art keywords
optical device
device wafer
groove
laser processing
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015078031A
Other languages
English (en)
Other versions
JP2016197701A (ja
Inventor
法久 有福
法久 有福
ジュンヨン ソ
ジュンヨン ソ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2015078031A priority Critical patent/JP6399961B2/ja
Publication of JP2016197701A publication Critical patent/JP2016197701A/ja
Application granted granted Critical
Publication of JP6399961B2 publication Critical patent/JP6399961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Led Devices (AREA)

Description

本発明は、光デバイスチップの製造方法に関する。
発光ダイオード(LED)やレーザーダイオード(LD)等の光デバイスチップを製造する際には、サファイアやSiC等でなる結晶成長用の基板の表面に、エピタキシャル成長等の方法で発光層が形成される。発光層が形成された基板(光デバイスウェーハ)は、分割予定ライン(ストリート)に沿って複数の光デバイスチップへと分割される。
光デバイスウェーハの分割方法としては、光デバイスウェーハに対する吸収性が高いパルスレーザー光線を分割予定ラインに沿って照射し、アブレーションによるレーザー加工溝を形成するものが知られている(例えば、特許文献1参照)。レーザー加工溝が形成された光デバイスウェーハに外力を付与することで、このレーザー加工溝に沿って光デバイスウェーハを分割できる。
特開平10−305420号公報
ところで、上述のような発光型の光デバイスチップでは、光取り出し効率をできるだけ高めることが重要になる。しかしながら、例えば、従来の方法によって製造される光デバイスチップでは、発光層の裏面側(基板側)に射出された後に基板の側面で全反射して内部で減衰してしまう光の割合を必ずしも低く抑えることができず、光取り出し効率に改善の余地があった。
本発明はかかる問題点に鑑みてなされたものであり、その目的とするところは、光デバイスチップの光取り出し効率を高めることができる光デバイスチップの製造方法を提供することである。
本発明によれば、表面に設定され互いに交差する複数の分割予定ラインで区画された各領域にそれぞれ発光層を含む光デバイスが形成された光デバイスウェーハを、該分割予定ラインに沿って分割して複数の光デバイスチップを製造する光デバイスチップの製造方法であって、光デバイスウェーハに対して吸収性を有する波長のレーザー光線を光デバイスウェーハの裏面に対して斜めに照射し、該分割予定ラインに直交する断面の形状がV字状である一対のレーザー加工溝を該分割予定ラインに沿って光デバイスウェーハの裏面側に形成するレーザー加工溝形成ステップと、該レーザー加工溝形成ステップを実施した後、該一対のレーザー加工溝の間の領域に存在する光デバイスウェーハを切削ブレードで破砕して除去し、該一対のレーザー加工溝の形状に対応したV字状のV溝を形成するV溝形成ステップと、該V溝形成ステップを実施した後、樹脂又は不織布で形成された研磨パッドとスラリーとを用い、該V溝の内壁面を該V溝に沿って研磨する研磨ステップと、該研磨ステップを実施した後、光デバイスウェーハに外力を付与して該V溝と該分割予定ラインとの間に亀裂を生じさせ、光デバイスウェーハを各分割予定ラインに沿って個々の光デバイスチップへと分割する分割ステップと、を含むことを特徴とする光デバイスチップの製造方法が提供される。
本発明において、該V溝形成ステップでは、光デバイスウェーハと該切削ブレードとが接触する加工点において光デバイスウェーハの内部から裏面へと向かう方向に該切削ブレードが回転するアップカットを実施することが好ましい。
また、本発明において、該レーザー加工溝形成ステップを実施する前に、光デバイスウェーハに対して透過性を有する波長のレーザー光線を光デバイスウェーハに照射して、該分割ステップにおいて該亀裂を案内するガイド改質層を該分割予定ラインに沿って形成するガイド改質層形成ステップを更に含むことが好ましい。
本発明に係る光デバイスチップの製造方法では、断面の形状がV字状のV溝を分割予定ラインに沿って光デバイスウェーハの裏面側に形成してから、光デバイスウェーハに外力を付与して個々の光デバイスチップへと分割するので、完成した光デバイスチップの裏面側の側面は、表面側に形成された発光層を含む光デバイスに対して傾斜する。
これにより、例えば、表面側から光を取り出す光デバイスチップにおいて、光デバイスの裏面側(基板側)に射出された光を光デバイスチップの表面側から取り出し易くなる。つまり、光デバイスの裏面側に射出された後に光デバイスチップの内部で減衰する光の割合を低く抑えて、光デバイスチップの光取り出し効率を高めることができる。
また、本発明に係る光デバイスチップの製造方法では、光デバイスチップの裏面側の側面となるV溝の内壁面を研磨するので、光デバイスチップの光取り出し効率を更に高めることができる。
レーザー加工溝形成ステップを模式的に示す斜視図である。 図2(A)は、第1のレーザー加工溝形成ステップを模式的に示す一部断面側面図であり、図2(B)は、第2のレーザー加工溝形成ステップを模式的に示す一部断面側面図であり、図2(C)は、一対のレーザー加工溝を拡大した断面図である。 V溝形成ステップを模式的に示す一部断面側面図である。 研磨ステップを模式的に示す一部断面側面図である。 分割ステップを模式的に示す一部断面側面図である。 第1変形例に係る研磨ステップを模式的に示す一部断面側面図である。 第2変形例に係る研磨ステップを模式的に示す一部断面側面図である。 ガイド改質層形成ステップを模式的に示す一部断面側面図である。
添付図面を参照して、本発明の実施形態について説明する。本実施形態に係る光デバイスチップの製造方法は、レーザー加工溝形成ステップ(図1、図2(A)、図2(B)、及び図2(C)参照)、V溝形成ステップ(図3参照)、研磨ステップ(図4参照)、及び分割ステップ(図5参照)を含む。
レーザー加工溝形成ステップでは、光デバイスウェーハに対して吸収性を有する波長のレーザー光線を照射して、分割予定ラインに沿う一対のレーザー加工溝を光デバイスウェーハの裏面側に形成する。このレーザー加工溝形成ステップにおいて、一対のレーザー加工溝は、分割予定ラインに直交する断面の形状がV字状となるように形成される。
V溝形成ステップでは、一対のレーザー加工溝の間に存在する光デバイスウェーハを切削ブレードで破砕して除去し、一対のレーザー加工溝の形状に対応したV字状のV溝を形成する。研磨ステップでは、研磨パッドとスラリーとを用い、V溝形成ステップで形成したV溝の内壁面をV溝に沿って研磨する。
分割ステップでは、光デバイスウェーハに外力を付与してV溝と分割予定ラインとの間に亀裂を生じさせ、光デバイスウェーハを各分割予定ラインに沿って複数の光デバイスチップへと分割する。以下、本実施形態に係る光デバイスチップの製造方法について詳述する。
まず、断面の形状がV字状である一対のレーザー加工溝を光デバイスウェーハの裏面側に形成するレーザー加工溝形成ステップを実施する。図1は、レーザー加工溝形成ステップを模式的に示す斜視図である。図1に示すように、本実施形態に係る光デバイスウェーハ11は、例えば、円盤状に形成されたサファイア、SiC等でなる基板によって構成されている。
光デバイスウェーハ11の表面(下面)11a側は、互いに交差する複数の分割予定ライン(ストリート)で複数の領域に区画されており、各領域には、発光ダイオード(LED)やレーザーダイオード(LD)となる光デバイス13が形成されている。各光デバイス13は、エピタキシャル成長等の方法で形成された発光層を含んでいる。
光デバイスウェーハ11の表面11a側には、光デバイスウェーハ11より大径のダイシングテープ15が貼着されている。ダイシングテープ15の外周部分は、環状のフレーム17に固定されている。すなわち、光デバイスウェーハ11は、ダイシングテープ15を介してフレーム17に支持されている。
本実施形態に係るレーザー加工溝形成ステップでは、上述した光デバイスウェーハ11の裏面(上面)11b側にレーザー光線を照射して、断面の形状がV字状である一対のレーザー加工溝を形成する。このレーザー加工溝形成ステップは、例えば、図1に示すレーザー加工装置2で実施される。
レーザー加工装置2は、光デバイスウェーハ11を保持するチャックテーブル(不図示)を備えている。このチャックテーブルは、モータ等の回転駆動源と連結されており、鉛直方向(Z軸方向)に平行な回転軸の周りに回転する。また、チャックテーブルの下方には、移動機構が設けられており、チャックテーブルは、この移動機構によって水平方向(X軸方向、Y軸方向)に移動する。
チャックテーブルの上面は、ダイシングテープ15を介して光デバイスウェーハ11の表面11a側を保持する保持面となっている。この保持面には、チャックテーブルの内部に形成された流路を通じて吸引源の負圧が作用し、光デバイスウェーハ11を吸引する吸引力が発生する。チャックテーブルの周囲には、環状のフレーム17を把持する複数のクランプ(不図示)が設けられている。
チャックテーブルの上方には、レーザー加工ユニット4が配置されている。レーザー加工ユニット4と隣接する位置には、光デバイスウェーハ11を撮像するためのカメラ6が設置されている。
レーザー加工ユニット4は、レーザー発振器(不図示)でパルス発振されたレーザー光線L1を集光して、チャックテーブル上の光デバイスウェーハ11に照射する。レーザー発振器は、光デバイスウェーハ11に吸収され易い波長(吸収性を有する波長)のレーザー光線L1を発振できるように構成されている。
また、レーザー加工ユニット4の下部には、レーザー光線L1を反射するミラー(不図示)が設けられている。このミラーにより、光デバイスウェーハ11の裏面11bに対してレーザー光線L1を傾けることができる。
本実施形態に係るレーザー加工溝形成ステップでは、まず、光デバイスウェーハ11の表面11aとチャックテーブルの保持面とがダイシングテープ15を介して対面するように、光デバイスウェーハ11及びダイシングテープ15をチャックテーブルに載置する。
次に、環状のフレーム17をクランプで固定し、保持面に吸引源の負圧を作用させる。これにより、光デバイスウェーハ11は、裏面11b側が上方に露出した状態でチャックテーブルに保持される。
光デバイスウェーハ11をチャックテーブルで保持した後には、傾斜した第1のレーザー加工溝を形成する第1のレーザー加工溝形成ステップを実施する。図2(A)は、第1のレーザー加工溝形成ステップを模式的に示す一部断面側面図である。
第1のレーザー加工溝形成ステップでは、まず、チャックテーブルを移動、回転させて、レーザー加工ユニット4を加工開始位置(例えば、加工対象となる分割予定ラインの端部)に位置付ける。
次に、レーザー加工ユニット4から光デバイスウェーハ11の裏面11bに向けてレーザー光線L1を照射させつつ、チャックテーブルを加工対象の分割予定ラインと平行な方向(図2(A)では、Y軸方向及びZ軸方向に垂直なX軸方向)に移動させる。ここで、レーザー光線L1は、光デバイスウェーハ11の裏面11bに対して傾けた状態で(斜めに)照射される。
より具体的には、図2(A)に示すように、加工対象の分割予定ラインに直交する断面内で、レーザー光線L1を鉛直方向(裏面11bに対して垂直な方向)から傾ける。これにより、光デバイスウェーハ11の裏面11b側を加工対象の分割予定ラインに沿ってアブレーションさせ、裏面11bに対して傾斜した第1のレーザー加工溝19aを形成できる。
上述の手順を繰り返し、例えば、全ての分割予定ラインに沿って第1のレーザー加工溝19aが形成されると、第1のレーザー加工溝形成ステップは終了する。なお、この第1のレーザー加工溝形成ステップでは、任意に選択された分割予定ラインにのみ第1のレーザー加工溝19aを形成しても良い。
第1のレーザー加工溝形成ステップを実施した後には、第1のレーザー加工溝19aとは反対の方向に傾斜した第2のレーザー加工溝を形成する第2のレーザー加工溝形成ステップを実施する。図2(B)は、第2のレーザー加工溝形成ステップを模式的に示す一部断面側面図である。
第2のレーザー加工溝形成ステップの基本的な手順は、第1のレーザー加工溝形成ステップと同じである。ただし、第2のレーザー加工溝形成ステップでは、レーザー光線L1を、光デバイスウェーハ11の裏面11bに対して第1のレーザー加工溝形成ステップとは反対の方向に傾けた状態で(斜めに)照射する。
より具体的には、図2(B)に示すように、加工対象の分割予定ラインに直交する断面内で、レーザー光線L1を鉛直方向(裏面11bに対して垂直な方向)から第1のレーザー加工溝形成ステップとは反対の方向に傾ける。これにより、光デバイスウェーハ11の裏面11b側を加工対象の分割予定ラインに沿ってアブレーションさせ、裏面11bに対して第1のレーザー加工溝19aとは反対の方向に傾斜した第2のレーザー加工溝19bを形成できる。
上述の手順を繰り返し、例えば、第1のレーザー加工溝19aが形成された全ての分割予定ラインに沿って第2のレーザー加工溝19bが形成されると、第2のレーザー加工溝形成ステップは終了する。
図2(C)は、第1のレーザー加工溝19a及び第2のレーザー加工溝19b(一対のレーザー加工溝19)を拡大した断面図である。図2(C)に示すように、第1のレーザー加工溝19a及び第2のレーザー加工溝19bは、分割予定ラインに直交する断面の形状がV字状となるように形成される。
第1のレーザー加工溝19a及び第2のレーザー加工溝19bの深さは任意だが、例えば、光デバイスウェーハ11の厚さの半分程度にすると良い。また、第1のレーザー加工溝19aと第2のレーザー加工溝19bとで挟まれる領域11cには、光デバイスウェーハ11の一部が残存する。
なお、本実施形態では、第1のレーザー加工溝19a及び第2のレーザー加工溝19bを、互いの下端が接触しない態様で形成している。ただし、レーザー光線L1のパワーやスポット径等を調整し、第1のレーザー加工溝19a及び第2のレーザー加工溝19bの下端を接触させても良い。
レーザー加工溝形成ステップを実施した後には、一対のレーザー加工溝19の間の領域11cに存在する光デバイスウェーハ11を切削ブレードで破砕して除去し、一対のレーザー加工溝19の形状に対応したV字状のV溝を形成するV溝形成ステップを実施する。図3は、V溝形成ステップを模式的に示す一部断面側面図である。
V溝形成ステップは、例えば、図3に示す切削装置8で実施される。切削装置8は、光デバイスウェーハ11を保持するチャックテーブル(不図示)を備えている。このチャックテーブルは、モータ等の回転駆動源と連結されており、鉛直方向に平行な回転軸の周りに回転する。また、チャックテーブルの下方には、加工送り機構が設けられており、チャックテーブルは、この加工送り機構によって水平方向(加工送り方向)に移動する。
チャックテーブルの上面は、ダイシングテープ15を介して光デバイスウェーハ11の表面11a側を保持する保持面となっている。この保持面には、チャックテーブルの内部に形成された流路を通じて吸引源の負圧が作用し、光デバイスウェーハ11を吸引する吸引力が発生する。チャックテーブルの周囲には、環状のフレーム17を把持する複数のクランプ(不図示)が設けられている。
チャックテーブルの上方には、光デバイスウェーハ11を切削する切削ユニット10が配置されている。切削ユニット10は、水平方向(加工送り方向に直交する割り出し送り方向)に平行な回転軸の周りに回転可能なスピンドル12と、スピンドル12の一端側に装着された切削ブレード14とを備えている。スピンドル12の他端側にはモータ等の回転駆動源(不図示)が連結されており、スピンドル12に装着された切削ブレード14は、この回転駆動源の回転力で回転する。
切削ブレード14は、光デバイスウェーハ11を適切に加工できるように構成されている。例えば、光デバイスウェーハ11の主成分がサファイアの場合には、切削ブレード14として、♯400〜♯1000のメタルボンドブレードを用いることができる。
切削ユニット10は、昇降機構(不図示)によって支持されており、鉛直方向に移動(昇降)する。また、昇降機構の下方には、割り出し送り機構(不図示)が設けられており、切削ユニット10は、この割り出し送り機構で水平方向(割り出し送り方向)に移動する。
V溝形成ステップでは、まず、光デバイスウェーハ11の表面11aとチャックテーブルの保持面とがダイシングテープ15を介して対面するように、光デバイスウェーハ11及びダイシングテープ15をチャックテーブルに載置する。次に、環状のフレーム17をクランプで固定し、保持面に吸引源の負圧を作用させる。これにより、光デバイスウェーハ11は、裏面11b側が上方に露出した状態でチャックテーブルに保持される。
その後、チャックテーブルを移動、回転させて、切削ブレード14を加工開始位置(例えば、加工対象となる領域11cの端部)に位置付ける。そして、回転させた切削ブレード14の下端(先端)を加工対象となる領域11cに切り込ませつつ、加工対象となる領域11cに対応する方向(図3では、方向D1)にチャックテーブルを移動(加工送り)させる。
これにより、一対のレーザー加工溝19の間の領域11cに存在する光デバイスウェーハ11を切削ブレード14で破砕して除去し、一対のレーザー加工溝19の形状に対応したV字状のV溝21を形成できる。
V溝21は、一対のレーザー加工溝19に対応した深さに形成される。例えば、一対のレーザー加工溝19の深さを光デバイスウェーハ11の厚さの半分程度にしているのであれば、V溝21の深さも光デバイスウェーハ11の厚さの半分程度になる。
なお、このV溝形成ステップでは、切削ブレード14を、光デバイスウェーハ11と切削ブレード14とが接触する加工点において光デバイスウェーハ11の内部から裏面11bへと向かう方向に回転させる(アップカット)ことが好ましい。これにより、領域11cに存在する光デバイスウェーハ11を確実に除去してV溝21を形成できる。上述の手順を繰り返し、一対のレーザー加工溝19が形成された全ての分割予定ラインに沿ってV溝21が形成されると、V溝形成ステップは終了する。
V溝形成ステップを実施した後には、V溝21の内壁面を研磨する研磨ステップを実施する。図4は、研磨ステップを模式的に示す一部断面側面図である。研磨ステップは、例えば、図4に示す研磨装置16で実施される。
研磨装置16は、光デバイスウェーハ11を保持するチャックテーブル(不図示)を備えている。このチャックテーブルは、モータ等の回転駆動源と連結されており、鉛直方向に平行な回転軸の周りに回転する。また、チャックテーブルの下方には、加工送り機構が設けられており、チャックテーブルは、この加工送り機構によって水平方向(加工送り方向)に移動する。
チャックテーブルの上面は、ダイシングテープ15を介して光デバイスウェーハ11の表面11a側を保持する保持面となっている。この保持面には、チャックテーブルの内部に形成された流路を通じて吸引源の負圧が作用し、光デバイスウェーハ11を吸引する吸引力が発生する。チャックテーブルの周囲には、環状のフレーム17を把持する複数のクランプ(不図示)が設けられている。
チャックテーブルの上方には、光デバイスウェーハ11を研磨する研磨ユニット18が配置されている。研磨ユニット18は、水平方向(割り出し送り方向)に平行な回転軸の周りに回転可能なスピンドル20と、スピンドル20の一端側に装着された円筒状の研磨パッド22とを備えている。スピンドル20の他端側にはモータ等の回転駆動源(不図示)が連結されており、スピンドル20に装着された研磨パッド22は、この回転駆動源の回転力で回転する。
研磨ユニット18は、昇降機構(不図示)によって支持されており、鉛直方向に移動(昇降)する。また、昇降機構の下方には、割り出し送り機構(不図示)が設けられており、研磨ユニット18は、この割り出し送り機構で水平方向(割り出し送り方向)に移動する。
研磨パッド22は、例えば、ISO 7619に準拠したデュロメータ タイプA(ショアA)で測定される硬度が20〜100、好ましくは60〜70の材料で形成されており、ある程度の弾性を備えている。そのため、図4に示すように、研磨パッド22の外周面を光デバイスウェーハ11の裏面11bに押し当てると、研磨パッド22の一部はV溝21に侵入する。具体的には、研磨パッド22は、ウレタン等の樹脂を含浸させた不織布や、発泡ポリウレタン等の樹脂(発泡樹脂)を用いて形成される。
研磨ステップでは、まず、光デバイスウェーハ11の表面11aとチャックテーブルの保持面とがダイシングテープ15を介して対面するように、光デバイスウェーハ11及びダイシングテープ15をチャックテーブルに載置する。次に、環状のフレーム17をクランプで固定し、保持面に吸引源の負圧を作用させる。これにより、光デバイスウェーハ11は、裏面11b側が上方に露出した状態でチャックテーブルに保持される。
その後、チャックテーブルを移動、回転させて、研磨パッド22を研磨開始位置(例えば、研磨対象となるV溝21の端部)に位置付ける。そして、光デバイスウェーハ11の裏面11b側にスラリー(研磨液)23を供給しつつ、回転させた研磨パッド22を光デバイスウェーハ11の裏面11bに押し当て、研磨対象となるV溝21に対応する方向(図4では、方向D2)にチャックテーブルを移動(加工送り)させる。
研磨パッド22の回転速度は、例えば、6000rpmであり、チャックテーブルの移動速度は、例えば、0.1mm/secである。スラリー23としては、例えば、コロイダルシリカ等の砥粒を水に分散したものを用いると良い。これにより、V溝21の内壁面をV溝21に沿って研磨できる。
本実施形態に係る研磨ステップでは、上述のように、ある程度の弾性を備える研磨パッド22を用いるので、研磨パッド22の形状をV溝21に対応したV字状にする必要がない。また、研磨パッド22の位置をV溝21に合わせなくて良いので、研磨の効率を高めることができる。
さらに、本実施形態に係る研磨ステップでは、光デバイスウェーハ11と研磨パッド22とが研磨対象となるV溝21の伸びる方向に相対的に移動するので、研磨パッド22がV溝21に侵入し易くなって、V溝21の内壁面を適切に研磨できる。
一方、光デバイスウェーハと円盤状の研磨パッドとが鉛直方向に平行な回転軸の周りにそれぞれ回転する一般的な研磨方法では、光デバイスウェーハと研磨パッドとの移動方向が研磨対象となるV溝21の伸びる方向と一致しないので、V溝21の内壁面を適切に研磨できない。
なお、研磨パッド22は、逆向きに回転させても良い。また、研磨パッド22は、複数のV溝21を同時に研磨できる幅(水平方向(割り出し送り方向)の長さ)に形成されることが望ましい。これにより、研磨の効率を高めることができる。上述の手順を繰り返し、全てのV溝21の内壁面が研磨されると、研磨ステップは終了する。
研磨ステップを実施した後には、光デバイスウェーハ11に外力を付与して複数の光デバイスチップへと分割する分割ステップを実施する。図5は、分割ステップを模式的に示す一部断面側面図である。
分割ステップは、例えば、図5に示すブレーキング装置24で実施される。ブレーキング装置24は、光デバイスウェーハ11を支持する一対の支持板26,28と、支持板26,28の上方に配置された押圧刃30とを備える。押圧刃30は、支持板26と支持板28との間に位置付けられており、押圧機構(不図示)で鉛直方向に移動(昇降)する。
分割ステップでは、まず、表面11a側を上方に位置付けるように、光デバイスウェーハ11を支持板26,28上に載置する。なお、光デバイスウェーハ11の裏面11bと支持板26,28との間には、あらかじめ、保護部材25を設置しておく。この保護部材25は、例えば、透明な樹脂等の材料で形成される。
次に、光デバイスウェーハ11を支持板26,28に対して移動させ、支持板26と支持板28との間にV溝21を位置付ける。すなわち、図5に示すように、V溝21を押圧刃30の直下に移動させる。
その後、押圧刃30を下降させて、光デバイスウェーハ11を表面11a側から押圧刃30で押圧する。光デバイスウェーハ11は、支持板26,28によってV溝21の両側を下方から支持されている。このため、光デバイスウェーハ11を押圧刃30で押圧すると、V溝21の近傍に下向きの曲げ応力が加わり、表面11aの分割予定ラインと裏面11b側のV溝21との間に亀裂27が生じる。
このように、分割予定ラインに沿って形成されたV溝21の近傍に曲げ応力を加えることで、亀裂27を生じさせて光デバイスウェーハ11を分割できる。V溝21が形成された全ての分割予定ラインに沿って光デバイスウェーハ11が分割され、各光デバイス13に対応する複数の光デバイスチップが形成されると、分割ステップは終了する。
以上のように、本実施形態に係る光デバイスチップの製造方法では、断面の形状がV字状のV溝21を分割予定ラインに沿って光デバイスウェーハ11の裏面11b側に形成してから、光デバイスウェーハ11に外力を付与して個々の光デバイスチップへと分割するので、完成した光デバイスチップの裏面側の側面(V溝21の内壁面)は、表面側に形成された発光層を含む光デバイス13に対して傾斜する。
これにより、例えば、表面側から光を取り出す光デバイスチップにおいて、光デバイス13の裏面側(基板側)に射出された光を光デバイスチップの表面側から取り出し易くなる。つまり、光デバイス13の裏面側(基板側)に射出された後に光デバイスチップの内部で減衰する光の割合を低く抑えて、光デバイスチップの光取り出し効率を高めることができる。
また、本実施形態に係る光デバイスチップの製造方法では、光デバイスチップの裏面側の側面となるV溝21の内壁面を研磨するので、光デバイスチップの光取り出し効率を更に高めることができる。
なお、本発明は上記実施形態の記載に限定されず、種々変更して実施可能である。図6は、第1変形例に係る研磨ステップを模式的に示す一部断面側面図である。第1変形例に係る研磨ステップは、例えば、図6に示す研磨装置32で実施される。研磨装置32の基本的な構成は、上記実施形態の研磨ステップで使用される研磨装置16と同様である。
すなわち、研磨装置32は、光デバイスウェーハ11を保持するチャックテーブル(不図示)を備えている。チャックテーブルの上方には、光デバイスウェーハ11を研磨する研磨ユニット34が配置されている。
研磨ユニット34は、水平方向(割り出し送り方向)に平行な回転軸の周りに回転可能なスピンドル36と、スピンドル36の一端側に装着された円筒状の研磨パッド38とを備えている。研磨ユニット34と近接する位置には、光デバイスウェーハ11の裏面11bにスラリー23を供給するためのスラリー供給ノズル40が配置されている。
第1変形例にかかる研磨ステップは、上記実施形態に係る研磨ステップと同様の手順で実施される。図6に示すように、研磨パッド38は、光デバイスウェーハ11の直径と同程度の幅(水平方向(割り出し送り方向)の長さ)に形成されている。そのため、所定の方向に伸びる全てのV溝21を同時に研磨できる。
また、研磨パッドは、必ずしも回転させなくて良い。図7は、第2変形例に係る研磨ステップを模式的に示す一部断面側面図である。第2変形例に係る研磨ステップは、例えば、図7に示す研磨装置42で実施される。研磨装置42の基本的な構成は、上記実施形態の研磨ステップで使用される研磨装置16と同様である。
すなわち、研磨装置42は、光デバイスウェーハ11を保持するチャックテーブル(不図示)を備えている。チャックテーブルの上方には、光デバイスウェーハ11を研磨する研磨ユニット44が配置されている。
研磨ユニット44は、支持基台46と、支持基台46の下面に固定された研磨パッド48とを備えている。また、研磨ユニット44と近接する位置には、光デバイスウェーハ11の裏面11bにスラリー23を供給するためのスラリー供給ノズル50が配置されている。
第2変形例に係る研磨ステップでは、まず、裏面11b側が上方に露出するように光デバイスウェーハ11をチャックテーブルに保持させる。次に、チャックテーブルを移動、回転させて、研磨パッド48を研磨開始位置(例えば、研磨対象となるV溝21の端部)に位置付ける。
そして、光デバイスウェーハ11の裏面11b側にスラリー23を供給しつつ、研磨パッド48を光デバイスウェーハ11の裏面11bに押し当て、研磨対象となるV溝21に対応する方向にチャックテーブルを往復移動させる。これにより、研磨パッドを回転させることなく、V溝21の内壁面をV溝21に沿って研磨できる。
なお、チャックテーブルの移動速度は、上記実施形態に係る光デバイスウェーハ11と研磨パッド22との相対的な移動速度に対応させることが望ましい。これにより、V溝21の適切な研磨が容易になる。
光デバイスウェーハ11に一対のレーザー加工溝19を形成する前には、亀裂27を案内するためのガイド改質層を形成しても良い。図8は、ガイド改質層形成ステップを模式的に示す一部断面側面図である。
ガイド改質層形成ステップは、例えば、図8に示すレーザー加工装置52で実施される。レーザー加工装置52の基本的な構成は、レーザー加工溝形成ステップで使用されるレーザー加工装置2と同様である。
すなわち、レーザー加工装置52は、レーザー発振器(不図示)でパルス発振されたレーザー光線L2を集光して、チャックテーブル上の光デバイスウェーハ11に照射するレーザー加工ユニット54を備えている。ただし、レーザー加工装置52のレーザー発振器は、光デバイスウェーハ11に吸収され難い波長(透過性を有する波長)のレーザー光線L2を発振できるように構成されている。
ガイド改質層形成ステップでは、まず、光デバイスウェーハ11を保持したチャックテーブルを移動、回転させて、レーザー加工ユニット54を加工開始位置(例えば、加工対象となる分割予定ラインの端部)に位置付ける。
次に、レーザー加工ユニット54から光デバイスウェーハ11の裏面11bに向けてレーザー光線L2を照射させつつ、チャックテーブルを加工対象の分割予定ラインと平行な方向に移動させる。ここで、レーザー光線L2は、表面11aの分割予定ラインとV溝21の底となる領域との間に集光させる。
これにより、加工対象の分割予定ラインに沿って、分割予定ラインとV溝21の底となる領域との間であり、分割ステップで亀裂27を生じさせる位置に、多光子吸収によるガイド改質層29を形成できる。V溝21が形成される予定の全ての分割予定ラインに沿ってガイド改質層29が形成されると、ガイド改質層形成ステップは終了する。
上述のようなガイド改質層29を形成すれば、分割ステップにおいて亀裂27を適切に案内できるので、分割予定ライン外に亀裂27が生じる等の光デバイスウェーハの分割不良を防止できる。その他、上記実施形態に係る構成、方法等は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施できる。
11 光デバイスウェーハ
11a 表面
11b 裏面
11c 領域
13 光デバイス
15 ダイシングテープ
17 フレーム
19 レーザー加工溝
19a 第1のレーザー加工溝
19b 第2のレーザー加工溝
21 V溝
23 スラリー
25 保護部材
27 亀裂
29 ガイド改質層
L1,L2 レーザー光線
2 レーザー加工装置
4 レーザー加工ユニット
6 カメラ
8 切削装置
10 切削ユニット
12 スピンドル
14 切削ブレード
16 研磨装置
18 研磨ユニット
20 スピンドル
22 研磨パッド
24 ブレーキング装置
26,28 支持板
30 押圧刃
32 研磨装置
34 研磨ユニット
36 スピンドル
38 研磨パッド
40 スラリー供給ノズル
42 研磨装置
44 研磨ユニット
46 支持基台
48 研磨パッド
50 スラリー供給ノズル
52 レーザー加工装置
54 レーザー加工ユニット

Claims (3)

  1. 表面に設定され互いに交差する複数の分割予定ラインで区画された各領域にそれぞれ発光層を含む光デバイスが形成された光デバイスウェーハを、該分割予定ラインに沿って分割して複数の光デバイスチップを製造する光デバイスチップの製造方法であって、
    光デバイスウェーハに対して吸収性を有する波長のレーザー光線を光デバイスウェーハの裏面に対して斜めに照射し、該分割予定ラインに直交する断面の形状がV字状である一対のレーザー加工溝を該分割予定ラインに沿って光デバイスウェーハの裏面側に形成するレーザー加工溝形成ステップと、
    該レーザー加工溝形成ステップを実施した後、該一対のレーザー加工溝の間の領域に存在する光デバイスウェーハを切削ブレードで破砕して除去し、該一対のレーザー加工溝の形状に対応したV字状のV溝を形成するV溝形成ステップと、
    該V溝形成ステップを実施した後、樹脂又は不織布で形成された研磨パッドとスラリーとを用い、該V溝の内壁面を該V溝に沿って研磨する研磨ステップと、
    該研磨ステップを実施した後、光デバイスウェーハに外力を付与して該V溝と該分割予定ラインとの間に亀裂を生じさせ、光デバイスウェーハを各分割予定ラインに沿って個々の光デバイスチップへと分割する分割ステップと、を含むことを特徴とする光デバイスチップの製造方法。
  2. 該V溝形成ステップでは、光デバイスウェーハと該切削ブレードとが接触する加工点において光デバイスウェーハの内部から裏面へと向かう方向に該切削ブレードが回転するアップカットを実施することを特徴とする請求項1記載の光デバイスチップの製造方法。
  3. 該レーザー加工溝形成ステップを実施する前に、光デバイスウェーハに対して透過性を有する波長のレーザー光線を光デバイスウェーハに照射して、該分割ステップにおいて該亀裂を案内するガイド改質層を該分割予定ラインに沿って形成するガイド改質層形成ステップを更に含むことを特徴とする請求項1又は請求項2記載の光デバイスチップの製造方法。
JP2015078031A 2015-04-06 2015-04-06 光デバイスチップの製造方法 Active JP6399961B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078031A JP6399961B2 (ja) 2015-04-06 2015-04-06 光デバイスチップの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078031A JP6399961B2 (ja) 2015-04-06 2015-04-06 光デバイスチップの製造方法

Publications (2)

Publication Number Publication Date
JP2016197701A JP2016197701A (ja) 2016-11-24
JP6399961B2 true JP6399961B2 (ja) 2018-10-03

Family

ID=57358558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078031A Active JP6399961B2 (ja) 2015-04-06 2015-04-06 光デバイスチップの製造方法

Country Status (1)

Country Link
JP (1) JP6399961B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098238B2 (ja) * 2018-08-10 2022-07-11 株式会社ディスコ 光デバイスウェーハの加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305420A (ja) * 1997-03-04 1998-11-17 Ngk Insulators Ltd 酸化物単結晶からなる母材の加工方法、機能性デバイスの製造方法
JP2004055816A (ja) * 2002-07-19 2004-02-19 Sanyo Electric Co Ltd 窒化物化合物半導体発光素子及びその製造方法
JP2006086516A (ja) * 2004-08-20 2006-03-30 Showa Denko Kk 半導体発光素子の製造方法
JP2014093445A (ja) * 2012-11-05 2014-05-19 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法

Also Published As

Publication number Publication date
JP2016197701A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6407066B2 (ja) 光デバイスチップの製造方法
KR102369760B1 (ko) 웨이퍼의 가공 방법
KR102368338B1 (ko) 웨이퍼의 가공 방법
KR102384101B1 (ko) 웨이퍼의 박화 방법
JP6482425B2 (ja) ウエーハの薄化方法
US9884389B2 (en) SiC ingot slicing method
JP6230381B2 (ja) 加工方法
JP6300763B2 (ja) 被加工物の加工方法
KR20140123416A (ko) 가공 방법
KR20220014815A (ko) Si 기판 제조 방법
JP2015069975A (ja) 被加工物の加工方法
JP2018075694A (ja) 基板の製造方法
TW201543560A (zh) 晶圓之加工方法
KR102693080B1 (ko) 광디바이스 웨이퍼의 가공 방법
JP5554585B2 (ja) 砥石工具による加工方法および加工装置
JP6399961B2 (ja) 光デバイスチップの製造方法
JP2021003778A (ja) チップの製造方法
JP6894692B2 (ja) ガラス板の分割方法及び板状ワークの分割方法
JP2015126022A (ja) 加工方法
JP2020064935A (ja) パッケージ基板の加工方法
JP2019068077A (ja) レーザ加工装置及びレーザ加工方法
JP6979607B2 (ja) 研削装置及び研削方法
US20230142363A1 (en) Processing method
JP2020174198A (ja) 研削装置及び研削方法
CN114256098A (zh) 晶片的分离方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250