JP6365375B2 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
JP6365375B2
JP6365375B2 JP2015071238A JP2015071238A JP6365375B2 JP 6365375 B2 JP6365375 B2 JP 6365375B2 JP 2015071238 A JP2015071238 A JP 2015071238A JP 2015071238 A JP2015071238 A JP 2015071238A JP 6365375 B2 JP6365375 B2 JP 6365375B2
Authority
JP
Japan
Prior art keywords
engine
heater
cylinder
temperature
nozzle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015071238A
Other languages
English (en)
Other versions
JP2016191343A (ja
Inventor
義久 廣澤
義久 廣澤
嘉孝 柴野
嘉孝 柴野
仁志 嶋村
仁志 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015071238A priority Critical patent/JP6365375B2/ja
Publication of JP2016191343A publication Critical patent/JP2016191343A/ja
Application granted granted Critical
Publication of JP6365375B2 publication Critical patent/JP6365375B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、筒内に直接燃料を噴射する燃料噴射弁を有する直噴エンジンにおいて、筒内に露出される燃料噴射弁の先端の結露を抑制する技術に関する。
従来、筒内の燃焼室に直接燃料を噴射する燃料噴射弁を有する直噴エンジンにおいては、たとえば、特開2007−303419号公報(特許文献1)に開示されているように、シリンダヘッドに設けられた円孔に棒状の筒内噴射用燃料噴射弁が挿入されている構成が公知である。
また、このような直噴エンジンおいて、一般的に、圧縮比の低減やEGR(Exhaust Gas Recirculation)を用いることによって窒素酸化物(NOx)の低減や燃費の向上が図られる。
特開2007−303419号公報
しかしながら、このような直噴エンジンにおいて、燃料噴射弁の先端の噴孔部は、筒内に露出されているため、エンジンの停止後に一定期間放置されると筒内の空気中の水分が結露して噴孔部に付着する場合がある。特に、EGRが搭載されているエンジンにおいては、燃焼により生成された水分を含む排気ガスが吸気側に還流されるため、筒内の水分量がEGR非搭載の場合と比較して多くなる場合がある。また、圧縮比を低減することにより圧縮比が高い場合と比較して筒内の温度が低くなり、筒内の部品(燃料噴射弁の噴孔部を含む)の温度が低くなる場合がある。その結果、エンジンの停止後において、より多くの水分が結露により燃料噴射弁の噴孔部に付着する場合がある。噴孔部に水分が付着する場合には劣化の原因になり得る。
本発明は、上述した課題を解決するためになされたものであって、その目的は、エンジン停止後において燃料噴射弁の噴孔部において結露する水分の量の増加を抑制するエンジンを提供することである。
この発明のある局面に係るエンジンは、気筒を有するシリンダブロックと、気筒の頭頂部に設けられるシリンダヘッドと、気筒内を移動可能に設けられるピストンと、シリンダヘッドに設けられ、気筒内に燃料を噴射する燃料噴射弁と、シリンダヘッド内であって、かつ、燃料噴射弁の先端の噴孔部の周囲に設けられるヒータと、エンジンの作動中にヒータを作動させる制御装置とを備える。
このようにすると、エンジンの作動中にヒータを作動させることによって、燃料噴射弁の先端の噴孔部の温度の低下を抑制または温度を上昇させることができる。そのため、エンジンが停止した後に噴孔部の温度が低下しても露点を下回るまでの時間がヒータを作動させない場合よりも長くなる。その結果、噴孔部と異なる箇所での結露が促進されることになるため、噴孔部で結露する水分量の増加を抑制することができる。
好ましくは、燃料噴射弁の先端は、円筒形状を有する。ヒータは、先端の外周側面に対向する位置に設けられる。
このようにすると、噴孔部の外周に設けられるヒータによってエンジンの作動中に噴孔部の温度の低下を抑制または温度を上昇させることができる。
さらに好ましくは、ヒータは、吸気バルブ側の外周側面に対向する位置に設けられる。
このようにすると、先端の外周側面において吸気バルブ側の方が排気バルブ側よりも温度が低い傾向にある。そのため、吸気バルブ側の外周側面に対向する位置にヒータが設けられることによって、エンジンの作動中に噴孔部の温度の低下を抑制または温度を上昇させることができる。
さらに好ましくは、制御装置は、エンジンの作動中に、エンジンの冷却水温がしきい値よりも低い場合に、ヒータを作動させる。
このようにすると、噴孔部の温度を速やかに上昇させることができるため、エンジンが停止した場合でも、噴孔部で結露する水分量の増加を抑制することができる。
さらに好ましくは、制御装置は、エンジンの作動中に、エンジンの作動状態に基づいて結露によって生成される凝縮水の生成量の推定値を算出し、算出された推定値がしきい値よりも大きくなる場合に、ヒータを作動させる。
このようにすると、気筒内において噴孔部で結露する水分量の増加が予測される場合に、ヒータを作動させることができるため、エンジン停止時において、確実に噴孔部で結露する水分量の増加を抑制することができる。
この発明によると、エンジンの作動中にヒータを作動させることによって、燃料噴射弁の先端の噴孔部の温度の低下を抑制または温度を上昇させることができる。そのため、エンジンが停止した後に噴孔部の温度が低下しても露点を下回るまでの時間がヒータを作動させない場合よりも長くなる。その結果、噴孔部と異なる箇所での結露が促進されることになるため、噴孔部で結露する水分量の増加を抑制することができる。したがって、エンジン停止後において燃料噴射弁の噴孔部おいて結露する水分の量の増加を抑制するエンジンを提供することができる。
エンジンの概略構成を示す図である。 エンジンに設けられるEGRシステムの構成を説明するための図である。 ECUの機能ブロック図である。 ECUで実行される制御処理を示すフローチャートである。 ECUの動作を説明するためのタイミングチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
図1に、エンジン10の概略構成が示される。本実施の形態において、エンジン10は、燃焼室内に直接燃料を噴射する燃料噴射弁を有する内燃機関である。エンジン10は、たとえば、ディーゼルエンジンを一例として説明するが、ガソリンエンジンあるいはガスエンジン等であってもよい。
図1に示すように、エンジン10は、シリンダブロック12と、ピストン14と、シリンダヘッド18と、吸気バルブ22と、排気バルブ26と、燃料噴射弁28と、ヒータ34とを備える。なお、図1において、矢印はエンジン作動時における吸気の流れと排気の流れとを示す。
シリンダブロック12には、1つまたは2以上の円孔が気筒24として図1の紙面の上下方向を中心軸の方向として設けられる。ピストン14は、気筒24内に収納される。ピストン14は、コネクティングロッド15により図示しないクランクシャフトに接続されている。ピストン14が往復運動することで、この往復運動がコネクティングロッド15により回転運動に変化され、クランクシャフトが回転する。ピストン14の外周にはリング溝が設けられ、このリング溝に複数個(たとえば、3個)のピストンリング16が嵌め合わされる。
シリンダヘッド18には、一方端がインテークマニホールド(図2参照)に接続され、他方端がシリンダブロック12の気筒24に接続される吸気ポート20と、一方端がエキゾーストマニホールド(図2参照)に接続され、他方端がシリンダブロック12の気筒24に接続される排気ポート30が形成される。
吸気ポート20は、吸気口(図示せず)から取り込まれ、インテークマニホールドを経由して流通する空気を気筒24に流通させる。吸気ポート20と気筒24との接続部分には、吸気バルブ22が設けられる。吸気バルブ22は、基本的にはクランクシャフトの回転に同期して作動し、吸気ポート20と気筒24との間を連通したり、連通を遮断したりする。
排気ポート30は、気筒24内から排出される気体をエキゾーストマニホールドに流通させる。排気ポート30と気筒24との接続部分には、排気バルブ26が設けられる。排気バルブ26は、吸気バルブ22と同様に、基本的にはクランクシャフトの回転に同期して作動し、排気ポート30と気筒24との間を連通したり、連通を遮断したりする。
シリンダヘッド18には、気筒を中心軸方向からみて中央部分に燃料噴射弁28が設けられる。燃料噴射弁28は、図示しないコモンレールに接続されており、コモンレールに貯留された高圧燃料が燃料噴射弁に供給される。燃料噴射弁28は、ECU200からの制御信号によって作動し、気筒24内の燃焼室に燃料を供給する。燃料噴射弁28は、円筒形状を有し、シリンダヘッド18に形成される円孔に挿入されて設けられる。燃料噴射弁28の先端において、燃料が噴射される噴孔部32は、気筒24内に露出するように設けられる。
ヒータ34は、シリンダヘッド18内に設けられる噴孔部32の周囲(すなわち燃料噴射弁28の先端の周囲)に配置される。ヒータ34は、たとえば、電熱線等を用いて構成された電熱器であって、ECU200によってヒータ34のスイッチ動作が制御される。すなわち、ヒータ34のスイッチは、ECU200からの制御信号HTを受信することに応じてオン状態およびオフ状態のうちのいずれかの状態に動作する。本実施の形態において、ヒータ34は、噴孔部32の周囲を囲うように設けられるものとする。
ECU200は、プログラムとデータを記憶するROM(Read Only Memory)と、各種処理を行うCPU(Central Processing Unit)と、CPUの処理結果等を記憶するRAM(Random Access Memory)と、外部との情報のやり取りを行うための、入力ポートおよび出力ポートとを含む。入力ポートに各種センサが接続される。
ECU200は、入力ポートに接続された各種センサ(たとえば、水温センサ300)等の機器から信号を受信し、受信した信号に基づいて出力ポートに接続された各種機器(たとえば、燃料噴射弁28やヒータ34)等を制御する。
入力ポートに接続された各種センサは、エンジン10の冷却水の温度(以下、水温と記載する)Twを検出する水温センサ300と、エンジン10のクランクシャフトの回転速度(以下、エンジン回転速度と記載する)NEを検出する回転速度センサ302と、吸気口から吸気ポート20に流通する吸入空気温度(以下、吸気温度と記載する)Tiの温度を検出する吸気温度センサ304とを含む。
水温センサ300は、検出した水温を示す信号をECU200に出力する。回転速度センサ302は、検出したエンジン回転速度を示す信号をECU200に出力する。吸気温度センサ304は、検出した吸気温度を示す信号をECU200に出力する。
以上のような直噴エンジンおいて、一般的に圧縮比の低減やEGRシステムを用いることによって窒素酸化物の低減や燃費の向上が図られる。たとえば、EGRシステムを備えたエンジン10について図2を参照して説明する。
図2に示すように、EGRシステム46は、吸気側EGR管42と、熱交換器40と、排気側EGR管44とを含む。吸気側EGR管42の一方端は、インテークマニホールド36に接続される。インテークマニホールド36は、吸気ポート20の一方端に接続される。吸気側EGR管42の他方端は、熱交換器40の一方端に接続される。熱交換器40の他方端は、排気側EGR管44の一方端に接続される。排気側EGR管44の他方端は、エキゾーストマニホールド38に接続される。エキゾーストマニホールド38は、排気ポート30の一方端に接続される。
EGRシステム46は、吸気側EGR管42および排気側EGR管44のうちのいずれかに設けられるEGR弁(図示せず)をさらに含む。ECU200は、EGR弁の開度を制御して、EGRシステム46を流通する排気ガスの流量を調整する。
このような直噴エンジンにおいて、燃料噴射弁の先端に形成された噴孔部32は気筒24内に露出して設けられているため、エンジンの停止後に一定期間放置されると気筒24内の空気中の水分が結露して噴孔部32に付着する場合がある。特に、上述したようなEGRシステム46が搭載されているエンジン10においては、燃焼により生成された水分を含む排気ガスが吸気側に還流されるため、気筒24内の水分量がEGRシステム非搭載の場合と比較して多くなる場合がある。また、圧縮比を低減することにより圧縮比が高い場合と比較して気筒24内の温度が低くなるため、気筒24内の部品(燃料噴射弁28の噴孔部32を含む)の温度が低下することとなる。その結果、エンジン10の停止後において、より多くの水分が噴孔部32に付着する場合がある。噴孔部32に水分が結露する場合には、劣化の原因になり得る。また、燃料噴射弁28とシリンダヘッド18との隙間に水分が結露し、先端から噴孔部32に向かって滴下し付着する場合もある。この場合も劣化の原因になり得る。
そこで、本実施の形態においては、ECU200がエンジン10の作動中に、シリンダヘッド18内であって、かつ、燃料噴射弁28の先端(噴孔部32を含む)の周囲に設けられるヒータ34を作動させる点を特徴とする。
このようにすると、エンジン10の作動中にヒータ34を作動させることによって、燃料噴射弁28の先端の噴孔部32の温度の低下を抑制または温度を上昇させることができる。そのため、エンジン10が停止した後に噴孔部32の温度が低下しても露点を下回るまでの時間がヒータ34を作動させない場合よりも長くなる。その結果、噴孔部32と異なる箇所での結露が促進されることになるため、噴孔部32及びその周辺で結露する水分量の増加を抑制することができる。
図3に、本実施の形態に係るエンジン10の動作を制御するECU200の機能ブロック図を示す。ECU200は、水温判定部202と、生成量算出部204と、生成量判定部206と、ヒータ制御部208とを含む。なお、これらの構成は、プログラム等のソフトウェアにより実現されてもよいし、ハードウェアにより実現されてもよい。
水温判定部202は、エンジン10の作動中に、水温センサ300によって検出された水温Twがしきい値Tw(0)よりも高いか否かを判定する。しきい値Tw(0)は、たとえば、暖機が完了したと判定される水温よりも低い温度である。しきい値Tw(0)は、たとえば、サーモスタットが作動する温度よりも低い温度としてもよい。
生成量算出部204は、水温判定部202によって水温Twがしきい値Tw(0)よりも低いと判定される場合に、エンジン10の作動状態に基づいて結露によって生成される凝縮水の生成量の推定値A(n)を算出する。
生成量算出部204は、たとえば、エンジン回転速度NE、水温Tw、吸気温度TiおよびEGR率に基づいて凝縮水の生成量の推定値A(n)を算出する。なお、EGR率とは、筒内に還流させる排気ガス量を筒内に吸入されるガス量で除算した値である。
生成量算出部204は、たとえば、エンジン回転速度NEと単位時間当たりの生成量の基本値との関係を示す2次元マップ等を用いてエンジン回転速度NEから単位時間当たりの生成量の基本値Bを算出する。また、生成量算出部204は、水温Twと第1補正係数Caとの関係を示す2次元マップ等を用いて水温Twから第1補正係数Caを算出する。さらに、生成量算出部204は、吸気温度Tiと第2補正係数Cbとの関係を示す2次元マップ等を用いて吸気温度Tiから第2補正係数Cbを算出する。生成量算出部204は、EGR率と第3補正係数Ccとの関係を示す2次元マップ等を用いてEGR率から第3補正係数Ccを算出する。生成量算出部204は、算出された単位時間当たりの生成量の基本値Bに、第1補正係数Ca、第2補正係数Cbおよび第3補正係数Ccを乗算して、単位時間当たりの凝縮水の生成量の推定値Cを算出する。なお、各種マップは、予め実験等によって適合され、ECU200のメモリ等の記憶領域に予め記憶される。
生成量算出部204は、算出された単位時間当たりの凝縮水の生成量の推定値Cに前回の計算から今回の計算までのエンジン10の作動時間を乗算した値Dを、前回の計算で算出された凝縮水の生成量の推定値A(n−1)に加算することによって、凝縮水の生成量の推定値A(n)を算出する。
生成量判定部206は、生成量算出部204によって算出された凝縮水の生成量の推定値A(n)がしきい値Eよりも大きいか否かを判定する。しきい値Eは、結露が生じたときに噴孔部32に劣化の原因となり得る予め定められた量以上の水分が付着する可能性があることを判定するためのしきい値である。凝縮水の生成量のしきい値Eは、たとえば、実験的あるいは設計的に適合される。
ヒータ制御部208は、生成量判定部206によって凝縮水の生成量の推定値A(n)がしきい値Eよりも大きいと判定される場合、ヒータ34を作動させる。ヒータ制御部208は、ヒータ34のスイッチをオン状態にすることでヒータ34を通電させて発熱させる。ヒータ制御部208は、生成量判定部206によって凝縮水の生成量の推定値A(n)がしきい値以下であると判定される場合、ヒータ34を停止させる。ヒータ制御部208は、ヒータ34のスイッチがオン状態である場合には、オフ状態にすることでヒータ34への通電を停止させる。
図4を参照して、本実施の形態に係るエンジン10に搭載されたECU200で実行される制御処理について説明する。
ステップ(以下、ステップをSと記載する)100にて、ECU200は、水温Twがしきい値Tw(0)よりも小さいか否かを判定する。水温Twがしきい値Tw(0)よりも小さいと判定される場合(S100にてYES)、処理はS102に移される。もしそうでない場合(S100にてNO)、処理はS108に移される。
S102にて、ECU200は、凝縮水の生成量の推定値A(n)を算出する。凝縮水の生成量の推定値A(n)の算出方法については、上述したとおりであるため、その詳細な説明は繰り返さない。
S104にて、ECU200は、算出された凝縮水の生成量の推定値A(n)がしきい値E以上であるか否かを判定する。凝縮水の生成量の推定値A(n)がしきい値E以上であると判定される場合(S104にてYES)、処理はS106に移される。もしそうでない場合(S104にてNO)、処理はS108に移される。
S106にて、ECU200は、ヒータ34を作動させる。S108にて、ECU200は、ヒータ34を停止させる。ECU200は、たとえば、ヒータ34が作動中である場合には、ヒータ34を停止させ、ヒータ34が停止中である場合には、ヒータ34の停止状態を維持する。
以上のような構造およびフローチャートに基づく本実施の形態に係るエンジン10のECU200の動作について図5を参照しつつ説明する。
なお、図5の上段のグラフの縦軸は、気筒24内のヒータ作動時の噴孔部32の温度(実線)、ヒータ非作動時の噴孔部32の温度(太破線)およびシリンダヘッド18の温度(一点鎖線)を示す。図5の上段のグラフの細破線は、時間T(0)以降の露点の変化を示す。
図5の中段のグラフの縦軸は、ヒータ非作動時における結露量の総量(破線)および噴孔部32以外での結露量(実線)を示す。図5の下段のグラフの縦軸は、ヒータ作動時における結露量の総量(破線)および噴孔部32以外での結露量(実線)を示す。図5の各グラフの横軸は、いずれも時間を示す。
たとえば、エンジン10が作動中であって、かつ、エンジン10の水温Twがしきい値Tw(0)よりも小さい場合を想定する。エンジン10の作動中において、水温Twがしきい値Tw(0)よりも小さい場合には(S100にてYES)、凝縮水の生成量の推定値A(n)が算出される(S102)。エンジン10の作動状態に基づいて算出される凝縮水の生成量の推定値A(n)がしきい値E以上である場合には(S104にてYES)、ヒータ34が作動させられる(S106)。ヒータ34が作動して発熱することによって、ヒータ34の近傍に設けられる燃料噴射弁28の噴孔部32の温度が上昇することとなる。そして、時間T(0)にて、たとえば、運転者がIGオフするなどすることによってエンジン10が停止状態となる。このとき、ヒータ34も停止状態になる。
エンジン10が停止状態になるため、時間T(0)以降において、図5の上段のグラフの細破線に示されるように、露点は、気筒24内の温度の低下に応じて低下していく。また、エンジン10が停止状態になるため、噴孔部32の温度もシリンダヘッド18の温度も時間の経過とともに低下していく。
時間T(1)にて、シリンダヘッド18の温度が露点を下回るため、シリンダヘッド18において結露によって水分が付着することとなる。
ここで、エンジン10が停止する時間T(0)における、図5の上段のグラフの実線に示される、エンジン10の作動中にヒータ34が作動していた場合(以下、ヒータ作動時と記載する)の噴孔部32の温度は、図5の上段のグラフの太破線に示される、エンジン10の作動中にヒータ34が作動していなかった場合(以下、ヒータ非作動時と記載する)の噴孔部32の温度よりも高くなる。
そのため、ヒータ非作動時においては、時間T(2)以降に、噴孔部32の温度が露点を下回っていたのに対して、ヒータ作動時においては、時間T(2)よりも後の時間T(3)以降に、噴孔部32の温度が露点を下回ることになる。その結果、結露が生じる時点がヒータ作動時の方がヒータ非作動時よりも遅くなるため、この期間において結露は、気筒24内において噴孔部32以外の箇所で生じることとなる。そのため、図5の中段のグラフと下段のグラフとを比較した場合に、噴孔部32以外の箇所で生じる水分量が増加するため、噴孔部32において生じる水分量の増加が抑制される。
以上のようにして、本実施の形態に係るエンジン10によると、エンジン10の作動中にヒータ34を作動させることによって、燃料噴射弁28の先端の噴孔部32及びその周辺(特にヒータ34に対向した先端部分)の温度の低下を抑制または温度を上昇させることができる。そのため、エンジン10が停止した後に噴孔部32の温度が低下しても露点を下回るまでの時間がヒータ34を作動させない場合よりも長くなる。その結果、気筒24内において噴孔部32と異なる箇所(特に噴孔部32と離れた箇所)での結露が促進されることになるため、噴孔部32及びその周辺で結露する水分量の増加を抑制することができる。したがって、エンジン停止後において燃料噴射弁の噴孔部おいて結露する水分の量の増加、及び先端から噴孔部に滴下する水分の量の増加を抑制するエンジンを提供することができる。
本実施の形態において、ヒータ34は、燃料噴射弁28の先端の外周側面に対応する位置に設けられる。このようにすると、噴孔部32を含む先端の外周に設けられるヒータ34によってエンジン10の作動中に噴孔部32及びその周辺の温度の低下を抑制または温度を上昇させることができる。
本実施の形態において、ECU200は、エンジン10の作動中に、エンジン10の水温Twがしきい値Tw(0)よりも小さい場合、ヒータ34を作動させる。このようにすると、噴孔部32の温度を速やかに上昇させることができるため、エンジン10が停止した場合でも、噴孔部32及びその周辺で結露する水分量の増加を抑制することができる。
さらに、本実施の形態において、ECU200は、エンジン10の作動中に、エンジン10の作動状態に基づいて結露によって生成される凝縮水の生成量の推定値A(n)を算出し、算出された推定値A(n)がしきい値Eよりも大きくなる場合に、ヒータ34を作動させる。このようにすると、気筒内において噴孔部32で結露する水分量の増加が予測される場合に、ヒータ34を作動させることができる。そのため、エンジン10の停止時において、確実に噴孔部32で結露する水分量の増加を抑制することができる。
以下、変形例について説明する。
本実施の形態においては、ヒータ34は、シリンダヘッド18内に設けられ、噴孔部32を間接的に加熱するものとして説明したが、たとえば、燃料噴射弁28に内蔵され、先端部分(噴孔部32周辺)を直接的に加熱するものであってもよい。このようしても、エンジン10の作動中に噴孔部32の温度を上昇させることができるため、噴孔部32において結露する水分量の増加を抑制することができる。
本実施の形態において、ヒータ34は、噴孔部32の周囲を含む先端を囲うように設けられるものとして説明したが、たとえば、ヒータ34は、噴孔部32の周囲のみを囲むようにしてもよい。たとえば、燃料噴射弁28の先端の外周側面の一部に対向する位置に設けられるようにしてもよい。たとえば、ヒータ34は、吸気バルブ22側の外周側面に対応する位置に設けられるようにしてもよい。このようにすると、燃料噴射弁28の先端の外周側面において吸気バルブ22側の方が排気バルブ26側よりも温度が低い傾向にある。そのため、吸気バルブ22側の外周側面に対向する位置にヒータ34が設けられることによって、エンジン10の作動中に噴孔部32の温度の低下を抑制または温度を上昇させることができる。
さらに、本実施の形態においては、ECU200は、エンジン回転速度NEから単位時間当たりの生成量の基本値Bを算出し、水温Twから第1補正係数Caを算出し、吸気温度Tiから第2補正係数Cbを算出し、EGR率から第2補正係数Ccを算出し、基本値Bに第1補正係数Ca、第2補正係数Cbおよび第3補正係数Ccを乗算して単位時間当たりの凝縮水の生成量の推定値Cを算出するものとして説明したが、特にこのような算出方法に限定されるものではない。たとえば、エンジン回転速度Neと、水温Twと、吸気温度Tiと、EGR率とによって特定される運転状態に対応する単位時間当たりの凝縮水の生成量の推定値Cが予め実験等によって取得され、ECU200のメモリ等の記憶領域に記憶されており、ECU200は、エンジン回転速度NEと、水温Twと、吸入空気温度Tiと、EGR率とから単位時間当たりの凝縮水の生成量の推定値Cを当該記憶領域から取得するようにしてもよい。
さらに、本実施の形態においては、ECU200は、ヒータ34を作動させる場合にはスイッチをオン状態にし、ヒータ34を停止させる場合にはスイッチをオフ状態にするものとして説明したが、たとえば、噴孔部32の温度を推定あるいは取得することが可能な場合には、噴孔部32の温度が目標温度になるようにヒータ34のスイッチ動作を制御してもよい。ECU200は、たとえば、噴孔部32の温度が目標温度以上となるとスイッチをオフ状態にし、噴孔部32の温度が目標温度よりも低いとスイッチをオン状態にしてもよい。
さらに、本実施の形態におけるヒータ34は、たとえば、グローランプとして機能を有していてもよい。さらに、ヒータ34は、たとえば、エンジン10の停止後の予め定められた時間が経過するまでオン状態としてもよい。
なお、上記した変形例は、その全部または一部を組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 エンジン、12 シリンダブロック、14 ピストン、15 コネクティングロッド、16 ピストンリング、18 シリンダヘッド、20 吸気ポート、22 吸気バルブ、24 気筒、26 排気バルブ、28 燃料噴射弁、30 排気ポート、32 噴孔部、34 ヒータ、36 インテークマニホールド、38 エキゾーストマニホールド、40 熱交換器、42,44 EGR管、46 EGRシステム、200 ECU、202 水温判定部、204 生成量算出部、206 生成量判定部、208 ヒータ制御部、300 水温センサ、302 回転速度センサ、304 吸気温度センサ。

Claims (4)

  1. 気筒を有するシリンダブロックと、
    前記気筒の頭頂部に設けられるシリンダヘッドと、
    前記気筒内を移動可能に設けられるピストンと、
    前記シリンダヘッドに設けられ、前記気筒内に燃料を噴射する燃料噴射弁と、
    前記シリンダヘッド内であって、かつ、前記燃料噴射弁の先端の噴孔部の周囲に設けられるヒータと、
    エンジンの作動中に前記ヒータを作動させる制御装置とを備え
    前記制御装置は、前記エンジンの作動中に、前記エンジンの作動状態に基づいて結露によって生成される凝縮水の生成量の推定値を算出し、算出された前記推定値がしきい値よりも大きくなる場合に、前記ヒータを作動させる、エンジン。
  2. 前記燃料噴射弁の前記先端は、円筒形状を有し、
    前記ヒータは、前記先端の外周側面に対向する位置に設けられる、請求項1に記載のエンジン。
  3. 前記ヒータは、吸気バルブ側の前記外周側面に対向する位置に設けられる、請求項2に記載のエンジン。
  4. 前記制御装置は、前記エンジンの作動中に、前記エンジンの冷却水温がしきい値よりも低い場合に、前記ヒータを作動させる、請求項1〜3のいずれかに記載のエンジン。
JP2015071238A 2015-03-31 2015-03-31 エンジン Expired - Fee Related JP6365375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071238A JP6365375B2 (ja) 2015-03-31 2015-03-31 エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071238A JP6365375B2 (ja) 2015-03-31 2015-03-31 エンジン

Publications (2)

Publication Number Publication Date
JP2016191343A JP2016191343A (ja) 2016-11-10
JP6365375B2 true JP6365375B2 (ja) 2018-08-01

Family

ID=57245312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071238A Expired - Fee Related JP6365375B2 (ja) 2015-03-31 2015-03-31 エンジン

Country Status (1)

Country Link
JP (1) JP6365375B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274525U (ja) * 1988-11-25 1990-06-07
JP2009024685A (ja) * 2007-07-24 2009-02-05 Toyota Motor Corp 内燃機関の制御装置
JP2013238125A (ja) * 2012-05-11 2013-11-28 Toyota Motor Corp 内燃機関の制御装置
JP6160176B2 (ja) * 2013-03-29 2017-07-12 トヨタ自動車株式会社 グロープラグの制御装置
JP2014227900A (ja) * 2013-05-22 2014-12-08 トヨタ自動車株式会社 内燃機関の燃料噴射装置

Also Published As

Publication number Publication date
JP2016191343A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
JP4893857B2 (ja) 内燃機関の制御装置
US9670866B2 (en) Control device and control method for internal combustion engine
JP2008025502A (ja) 内燃機関の燃料噴射制御装置
US8082731B2 (en) Method and device for operating an internal combustion engine
JP2009041540A (ja) ガソリンエンジンの制御装置
US8000886B2 (en) Control device for internal combustion engine
JP2009062863A (ja) 内燃機関の制御装置
JP6365375B2 (ja) エンジン
JP2011220214A (ja) 燃料噴射制御装置
WO2019155964A1 (ja) 燃料噴射制御装置
JP4425839B2 (ja) 内燃機関の制御装置
US9551270B2 (en) Control device for coolant flow in an internal combustion engine
JP2009102997A (ja) 火花点火内燃機関
JP4640243B2 (ja) 内燃機関の制御装置
JP4706424B2 (ja) 圧縮自着火式内燃機関の制御装置
JP4462032B2 (ja) 内燃機関の燃料噴射制御装置
JP4269124B2 (ja) 内燃機関の燃料噴射制御装置
JP5494185B2 (ja) 内燃機関の制御装置
JP5672930B2 (ja) 内燃機関の制御装置
JP4692204B2 (ja) 圧縮自着火式内燃機関の制御装置
JP6527393B2 (ja) 内燃機関の制御装置
JP6244765B2 (ja) 内燃機関の制御装置
JP5120347B2 (ja) 内燃機関の燃料噴射制御装置
JP2008215211A (ja) 内燃機関の制御システム
JP2008303799A (ja) 筒内噴射式火花点火内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees