JP6343151B2 - タイヤのシミュレーション方法 - Google Patents

タイヤのシミュレーション方法 Download PDF

Info

Publication number
JP6343151B2
JP6343151B2 JP2014013622A JP2014013622A JP6343151B2 JP 6343151 B2 JP6343151 B2 JP 6343151B2 JP 2014013622 A JP2014013622 A JP 2014013622A JP 2014013622 A JP2014013622 A JP 2014013622A JP 6343151 B2 JP6343151 B2 JP 6343151B2
Authority
JP
Japan
Prior art keywords
tire
heat transfer
model
tire model
transfer coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014013622A
Other languages
English (en)
Other versions
JP2015141525A (ja
Inventor
林 聡
聡 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014013622A priority Critical patent/JP6343151B2/ja
Publication of JP2015141525A publication Critical patent/JP2015141525A/ja
Application granted granted Critical
Publication of JP6343151B2 publication Critical patent/JP6343151B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤの走行時の温度を予測することができるタイヤのシミュレーション方法に関する。
近年、コンピュータを用いて、タイヤの走行時の温度を予測するためのシミュレーション方法が提案されている。このシミュレーション方法では、例えば、タイヤを有限個の要素でモデル化したタイヤモデル、及び、タイヤが転動する路面を有限個の要素でモデル化した路面モデルが、コンピュータに入力される。タイヤモデルの外面には、例えば、熱伝導率、輻射率、又は、その他の伝熱に関する係数が設定される。
次に、コンピュータが、例えば、路面モデルに接地したタイヤモデルの転動計算を行うシミュレーション工程が実施される。このシミュレーション工程では、転動計算によって求められるタイヤモデルのゴム部分の発熱量、及び、伝熱に関する係数によって求められるタイヤモデルの放熱量に基づいて、タイヤモデルの温度が予測される。
特許第4372515号公報
実際のタイヤの外面は、例えば、空気の流速や、タイヤの表面形状の違いにより、空気への放熱が一様ではない。ところが、従来のシミュレーションでは、タイヤモデルの外面に、伝熱に関する係数が一律に設定されていたため、タイヤモデルの温度を正確に予測できないという問題があった。
本発明は、以上のような実状に鑑み案出されたもので、タイヤモデルの外面の複数の領域に、異なる熱伝達率を定義することを基本として、タイヤの走行時の温度を正確に予測することができるタイヤのシミュレーション方法を提供することを主たる目的としている。
本発明は、コンピュータを用いて、タイヤの走行時の温度を予測するためのシミュレーション方法であって、前記コンピュータに、前記タイヤを有限個の要素でモデル化したタイヤモデルを入力する工程、前記コンピュータに、前記タイヤの外面と空気との間の熱伝達率を少なくとも含む境界条件を前記タイヤモデルに定義する境界条件設定工程、及び前記コンピュータが、前記タイヤモデルの走行時の温度を計算するシミュレーション工程を含み、前記シミュレーション工程は、前記タイヤモデルの走行時の発熱量を計算する工程と、前記熱伝達率に基づいて、前記タイヤモデルの走行時の放熱量を計算する工程と、前記発熱量と前記放熱量とに基づいて、前記タイヤモデルの走行時の温度を予測する工程とを含み、前記境界条件設定工程は、前記タイヤモデルの外面を、複数の領域に区分する工程と、前記複数の領域に、それぞれ異なる前記熱伝達率を定義する工程とを含み、前記タイヤモデルの外面は、トレッド接地端間のトレッド接地面と、前記トレッド接地面から凹む溝とを含み、前記熱伝達率を定義する工程は、前記溝の前記熱伝達率を、前記トレッド接地面の前記熱伝達率よりも小に設定する工程を含むことを特徴とする。
本発明に係る前記タイヤのシミュレーション方法において、前記タイヤモデルのビード部は、リムに接触するリム接触面を有し、前記外面は、前記リム接触面のタイヤ半径方向の外端と、トレッド接地端との間のサイド面を含むのが望ましい。
本発明に係る前記タイヤのシミュレーション方法において、前記各領域の熱伝達率は、前記タイヤモデルの回転軸から前記各領域までのタイヤ半径方向の距離に基づいて定義されるのが望ましい。
本発明に係る前記タイヤのシミュレーション方法において、前記タイヤモデルには、予め定められた走行速度が定義され、前記各領域の熱伝達率は、前記走行速度に対応する前記各領域の周速度に基づいて定義されるのが望ましい。
本発明に係る前記タイヤのシミュレーション方法において、前記タイヤモデルの走行時の発熱量は、路面を有限個の要素でモデル化した路面モデルを転動する前記タイヤモデルに基づいて計算されるのが望ましい。
本発明に係る前記タイヤのシミュレーション方法において、前記タイヤモデルの走行時の発熱量は、前記タイヤモデルのタイヤ周方向の歪変動量に基づいて計算されるのが望ましい。
本発明のタイヤのシミュレーション方法は、コンピュータに、タイヤを有限個の要素でモデル化したタイヤモデルを入力する工程、タイヤの外面と空気との間の熱伝達率を少なくとも含む境界条件をタイヤモデルに定義する境界条件設定工程、及び、コンピュータが、タイヤモデルの走行時の温度を計算するシミュレーション工程を含む。
シミュレーション工程は、タイヤモデルの走行時の発熱量を計算する工程と、熱伝達率に基づいて、タイヤモデルの走行時の放熱量を計算する工程と、発熱量と放熱量とに基づいて、タイヤモデルの走行時の温度を予測する工程とを含んでいる。
さらに、本発明の境界条件設定工程では、タイヤモデルの外面を、複数の領域に区分する工程と、複数の領域に、それぞれ異なる熱伝達率を定義する工程とを含んでいる。これにより、タイヤモデルの外面の各領域に、実際のタイヤに近似する熱伝達率をそれぞれ設定することができる。従って、本発明のシミュレーション方法では、タイヤの走行時の温度を正確に予測することができる。
本実施形態のシミュレーション方法を実行するコンピュータの斜視図である。 本実施形態のシミュレーション方法で走行時の温度が予測されるタイヤの断面図である。 本実施形態のシミュレーション方法の具体的な処理手順を示すフローチャートである。 本実施形態のタイヤモデルの断面図である。 タイヤモデル及び路面モデルの斜視図である。 境界条件設定工程の具体的な処理手順を示すフローチャートである。 タイヤ外面の熱伝達率定義工程の具体的な処理手順を示すフローチャートである。 サイド面の熱伝達率定義工程の処理手順の一例を示すフローチャートである。 タイヤモデルのサイド面の輪郭を示す拡大断面図である。 本実施形態のシミュレーション工程の処理手順を示すフローチャートである。 シミュレーション工程を説明するタイヤモデルの断面図である。
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態のタイヤのシミュレーション方法(以下、単に「シミュレーション方法」ということがある。)は、コンピュータを用いて、タイヤの走行時の温度を予測するための方法である。
図1は、本実施形態のシミュレーション方法を実行するコンピュータの斜視図である。コンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dを含んでいる。この本体1aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置1a1、1a2が設けられている。また、記憶装置には、本実施形態のシミュレーション方法を実行するためのソフトウェア等が予め記憶されている。
図2は、本実施形態のシミュレーション方法で走行時の温度が予測されるタイヤの断面図である。タイヤ2は、例えば、乗用車用タイヤとして構成されている。本実施形態のタイヤ2は、例えば、トレッド部2aからサイドウォール部2bを経てビード部2cのビードコア5に至るカーカス6と、このカーカス6のタイヤ半径方向外側かつトレッド部2aの内部に配されかつ内、外2枚のベルトプライ7A、7Bからなるベルト層7とが設けられている。
さらに、タイヤ2には、ゴム部材11が設けられている。ゴム部材11は、トレッド部2aにおいてベルト層7の外側に配されるトレッドゴム11aと、サイドウォール部2bにおいてカーカス6の外側に配されるサイドウォールゴム11bと、ビード部2cに配されるクリンチゴム11cとを含んでいる。
タイヤ2の外面12は、トレッド接地端2t、2t間のトレッド接地面12a、トレッド接地面12aから凹む溝12b、クリンチゴム11cがリム14に接触するリム接触面12c、及び、トレッド接地端2tとリム接触面12cのタイヤ半径方向との間のサイド面12dを含んでいる。
なお、本実施形態において、トレッド接地端2tは、正規リム14Sにリム組みしかつ正規内圧を充填し、正規荷重を負荷してキャンバー角0度で平面に接地させた正規荷重負荷状態において、トレッド接地面12aのタイヤ軸方向最外端の位置を意味している。また、リム接触面12cも、正規荷重負荷状態において特定されるものとする。
「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" とする。
「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" とするが、タイヤが乗用車用である場合には180kPaとする。
「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY" である。
カーカス6は、少なくとも1枚、本実施形態では2枚のカーカスプライ6A、6Bで構成されている。カーカスプライ6A、6Bは、トレッド部2aからサイドウォール部2bを経てビード部2cのビードコア5に至る本体部6aと、この本体部6aに連なりビードコア5の廻りをタイヤ軸方向内側から外側に折り返された折返し部6bとを、それぞれ含んでいる。
カーカスプライ6A、6Bの本体部6aと折返し部6bとの間には、ビードコア5からタイヤ半径方向外側にのびるビードエーペックスゴム11dが配されている。また、カーカスプライ6A、6Bは、例えば、タイヤ赤道Cに対して80度〜90度の角度で配列されたカーカスコードが、互いに交差する向きに重ねられている。
カーカス6の内面には、タイヤ2の内腔面13をなすインナーライナーゴム11eが、ビード部2c、2c間に架け渡されている。インナーライナーゴム11eは、ゴム中にハロゲン化ブチルを50重量部以上含む耐空気透過性に優れるブチル系ゴムからなり、空気漏れを防止するのに役立つ。
2枚のベルトプライ7A、7Bは、ベルトコードが、タイヤ周方向に対して、例えば10度〜35度の角度で傾けて配列されている。このようなベルトプライ7A、7Bは、ベルトコードが互いに交差する向きに重ね合わされている。
図3は、本実施形態のシミュレーション方法の具体的な処理手順を示すフローチャートである。本実施形態のシミュレーション方法では、先ず、コンピュータ1に、図2に示したタイヤ2をモデル化したタイヤモデルが入力される(工程S1)。図4は、本実施形態のタイヤモデル16の断面図である。
タイヤモデル16は、図2に示したタイヤ2を、数値解析法により取り扱い可能な有限個の要素F(i)(i=1、2、…)でモデル化(離散化)することで設定される。数値解析法としては、例えば、有限要素法、有限体積法、差分法、又は、境界要素法が適宜採用することができる。本実施形態では、有限要素法が採用されている。
工程S1では、先ず、図2に示したトレッドゴム11a、サイドウォールゴム11b、クリンチゴム11c、ビードエーペックスゴム11d、及び、インナーライナーゴム11eを含むゴム部材11が、要素F(i)でモデル化される。これにより、工程S1では、トレッドゴムモデル17a、サイドウォールゴムモデル17b、クリンチゴムモデル17c、ビードエーペックスゴムモデル17d、及び、インナーライナーゴムモデル17eを含むゴムモデル17が設定される。
さらに、工程S1では、図2に示したカーカスプライ6A、6B、及び、ベルトプライ7A、7Bが、要素F(i)でモデル化される。これにより、工程S1では、カーカスプライモデル18、及び、ベルトプライモデル19が設定される。
このようなモデルの設定(モデリング)は、従来の方法と同様に、例えば、加硫金型の設計データ(例えば、CADデータ)と、メッシュ化ソフトウェアとを用いることにより、容易に実施することができる。これらのゴムモデル17、カーカスプライモデル18、及び、ベルトプライモデル19が順次設定されることにより、タイヤモデル16が設定される。
タイヤモデル16の外面22は、図2に示したタイヤ2の外面12が再現されている。即ち、タイヤモデル16の外面22は、トレッド接地面22a、溝22b、リム接触面22c、及び、サイド面22dが設定されている。本実施形態では、図1に示すタイヤ2の正規荷重負荷状態に基づいて、トレッド接地面22a、溝22b、リム接触面22c、及び、サイド面22dの各領域に区分されている。また、タイヤモデル16には、図2に示したタイヤ2の内腔面13が再現された内腔面23が設定されている。
各要素F(i)には、複数個の節点24が設けられる。また、各要素F(i)には、要素番号、節点24の番号、節点24の座標値、及び、材料特性(例えば、密度、ヤング率、減衰係数、損失正接tanδ、及び/又は、熱伝導率等)などの数値データが定義される。このように設定されたタイヤモデル16は、コンピュータ1に記憶される。
コンピュータ1に、タイヤ2(図2に示す)が転動する路面(図示省略)を、有限個の要素でモデル化した路面モデルが入力される(工程S2)。図5は、タイヤモデル16及び路面モデル26の斜視図である。
路面モデル26は、例えば、単一の平面を構成する剛表面の要素Gでモデル化される。これにより、路面モデル26は、外力が作用しても変形不能に定義される。そして、路面モデル26を構成する要素Gの数値データが、コンピュータ1に記憶される。
なお、路面モデル26は、例えば、ドラム試験機のように円筒状表面に形成されても良い。また、路面モデル26には、必要に応じて、段差、窪み、うねり又は轍などが設けられても良い。
次に、コンピュータ1に、タイヤモデル16に境界条件が定義される(境界条件設定工程S3)。図6は、境界条件設定工程S3の具体的な処理手順を示すフローチャートである。
境界条件設定工程S3では、先ず、図5に示したタイヤモデル16を路面モデル26に接触させるための条件が設定される(工程S31)。工程S31では、従来のシミュレーション方法と同様に、例えば、タイヤモデル16の内圧条件、リム条件、負荷荷重条件、キャンバー角、又は、静摩擦係数等が適宜設定される。このような条件は、コンピュータ1に記憶される。
次に、タイヤモデル16の転動計算を実施するための条件が設定される(工程S32)。この工程S32も、従来のシミュレーション方法と同様に、例えば、図5に示したタイヤモデル16のスリップ角、走行速度Vs、又は、タイヤモデル16と路面モデル26との間の動摩擦係数等が適宜設定される。このような条件は、コンピュータ1に記憶される。
次に、タイヤ2の外面(図2に示す)と空気(外気)との間の熱伝達率が、タイヤモデル16に定義される(タイヤ外面の熱伝達率定義工程S33)。タイヤ外面の熱伝達率定義工程S33では、図4に示されるように、タイヤモデル16のトレッド接地面22a、溝22b、及び、サイド面22dのそれぞれに、熱伝達率が定義される。なお、図2に示されるように、タイヤ2のリム接触面12cは、リム14に覆われて空気に接触しないため、リム接触面12cと空気との間の熱伝達率は定義されない。図7は、タイヤ外面の熱伝達率定義工程S33の具体的な処理手順を示すフローチャートである。
タイヤ外面の熱伝達率定義工程S33では、先ず、トレッド接地面22aと空気との間の熱伝達率が定義される(工程S111)。トレッド接地面22aと空気との間の熱伝達率は、トレッド接地面12a(図2に示す)の空気への放熱を考慮して、例えば、実際のタイヤ2の走行試験の実測値や、タイヤモデルを用いて予め実施されたシミュレーションの計算結果に基づいて定義することができる。
また、図2に示したタイヤ2の走行時において、走行速度Vs(図5に示す)に対応するトレッド接地面12aの周速度(空気の流速)は、該トレッド接地面12aよりもタイヤ半径方向内側に配置される溝12bや、サイド面12dに比べて大きくなる。周速度が大きいと、トレッド接地面12aに接触する空気の流速が大きくなるため、空気への放熱が大きくなる。このため、図4に示したタイヤモデル16のトレッド接地面22aと空気との間の熱伝達率は、溝22bと空気との間の熱伝達率、及び、サイド面22dと空気との間の熱伝達率よりも大に定義されるのが望ましい。トレッド接地面22aと空気との間の熱伝達率は、コンピュータ1に記憶される。
次に、溝22bと空気との間の熱伝達率が定義される(工程S112)。溝22bと空気との間の熱伝達率は、タイヤ2の溝12b(図2に示す)の空気への放熱を考慮して、例えば、実際のタイヤ2の走行試験の実測値や、タイヤモデルを用いて予め実施されたシミュレーションの計算結果に基づいて定義することができる。
また、図2に示したタイヤ2の走行時において、溝12bは、該溝12bよりもタイヤ半径方向内側に配置されるサイド面12dに比べて、周速度が大きくなる。このため、溝22bと空気との間の熱伝達率は、サイド面22dと空気との間の熱伝達率よりも大に設定されるのが望ましい。溝22bと空気との間の熱伝達率は、コンピュータ1に記憶される。
次に、サイド面22dと空気との間の熱伝達率が定義される(サイド面の熱伝達率定義工程S113)。図2に示したタイヤ2のサイド面12dは、トレッド接地面12aや、溝12bとは異なり、タイヤ半径方向の広範囲に亘って設けられている。このため、タイヤ2の走行時において、サイド面12dのタイヤ半径方向内側と、タイヤ半径方向外側とでは、周速度が大きく異なるため、空気への放熱も大きく異なる。
本実施形態のサイド面の熱伝達率定義工程S113では、サイド面22dにおいて、タイヤ半径方向内側と、タイヤ半径方向外側との放熱の差異を考慮して、サイド面22dと空気との間の熱伝達率が定義される。図8は、サイド面の熱伝達率定義工程S113の処理手順の一例を示すフローチャートである。図9は、タイヤモデル16のサイド面22dの輪郭を示す拡大断面図である。
サイド面の熱伝達率定義工程S113では、先ず、サイド面全域と空気との間の熱伝達率(以下、単に「サイド面全域の熱伝達率」ということがある。)が求められる(工程S211)。サイド面全域の熱伝達率は、サイド面12dの全域での空気への放熱を考慮して定義される。このようなサイド面全域の熱伝達率は、例えば、タイヤモデルを用いたシミュレーションによって得られたタイヤの発熱量、材料固有の熱伝導率から求められたタイヤ内部の伝熱、及び、実際のタイヤ2の走行試験での実測サーモグラフィによって計測されたタイヤ表面の温度に基づき、予め定められた速度(例えば、70km/h)でのサイド面の熱伝達率が同定されることによって、定義することができる。
次に、サイド面22dが複数の領域に区分される(工程S212)。本実施形態の工程S212では、リム接触面22cのタイヤ半径方向の外端31と、トレッド接地面22aのトレッド接地端32との間を、サイド面22dの輪郭に沿って、タイヤ半径方向に等間隔に区分される。これにより、本実施形態のサイド面22dは、トレッド接地端32側の第1領域33aから、リム接触面22cの外端31側の第N領域33n(本実施形態では、第8領域33h)までのN個(本実施形態では、8個)の領域33に区分される。なお、サイド面22dの区分は、本実施形態のような等間隔に限定されるわけではなく、例えば、求める解析精度や輪郭形状に基づいて、適宜変更することができる。
次に、複数の領域33a〜33nに、それぞれ異なる熱伝達率が定義される(工程S213)。上述したように、図2に示したタイヤ2の走行時において、サイド面12dのタイヤ半径方向外側は、タイヤ半径方向内側に比べて周速度が大きくなる。このため、サイド面22dにおいて、タイヤ半径方向外側の領域33は、タイヤ半径方向内側の領域33に比べて、空気への放熱が大きくなる。従って、各領域33a〜33nの熱伝達率は、第N領域33n(本実施形態では、第8領域33h)から第1領域33aに向かって、徐々に大きくなるように定義されるのが望ましい。これにより、各領域33a〜33nには、サイド面22dのタイヤ半径方向内側と、タイヤ半径方向外側との放熱の差異を考慮した熱伝達率を定義することができる。
各領域33a〜33nの熱伝達率は、第N領域33n(本実施形態では、第8領域33h)から第1領域33aに向かって、徐々に大きくなるように定義されるのであれば、適宜設定することができる。ここで、走行時にサイド面22dに接触する空気の流れは、強制対流と仮定することができる。従って、各領域33a〜33nの熱伝達率は、下記式(1)で示される熱伝達率hとレイノルズ数Reとの関係に基づいて定義されるのが望ましい。
h∝Re1/2 …(1)
レイノルズ数Reは、流体力学において、慣性力と粘性力との比で定義される無次元数である。このレイノルズ数Reは、流速(空気の速度)Vに比例することが知られている。このため、上記式(1)に基づいて、下記式(2)に示す熱伝達率hと流速Vとの関係を定義することができる。
h∝V1/2 …(2)
各領域33a〜33nでの流速(周速度)Vは、各領域33a〜33nでの周速度とみなすことができる。各領域33a〜33nの周速度Vは、下記式(3)に示されるように、タイヤ2の角速度ωと、タイヤモデル16の回転軸21(図5に示す)から各領域33a〜33nまでのタイヤ半径方向の距離rとの積で定義することができる。本実施形態において、各領域33a〜33nの距離rは、各領域33a〜33nのタイヤ半径方向の中央位置35で特定されるものとする。
V=r・ω …(3)
各領域33a〜33nの周速度Vは、各領域33a〜33nでのタイヤ半径方向の距離rに応じて比例する。このため、上記式(2)及び上記式(3)より、熱伝達率hと、各領域33a〜33nの距離rとの関係は、下記式(4)で定義することができる。
h∝r1/2 …(4)
本実施形態では、工程S211で求められたサイド面全域の熱伝達率に基づいて、上記式(4)を満たすように、各領域33a〜33nの熱伝達率が設定される。
このように、各領域33a〜33nの熱伝達率は、熱伝達率hとレイノルズ数Reとの関係、及び、各領域33a〜33nの距離rに基づいて定義される。これにより、本実施形態では、各領域33a〜33nの熱伝達率を、実際のタイヤ2のサイド面12d(図2に示す)の熱伝達率に近似させることができる。従って、各領域33a〜33nの熱伝達率は、後述するシミュレーション工程S4において、タイヤ2の走行時の温度を、正確に計算するのに役立つ。各領域33a〜33nの熱伝達率は、コンピュータ1に記憶される。
本実施形態では、上記式(4)を満たすように、各領域33a〜33nの熱伝達率が定義されるものが例示されたが、これに限定されるわけではない。上記式(3)に示されるように、各領域33a〜33nの周速度Vは、角速度ω(即ち、走行速度Vs)に応じて比例する。このため、上記式(2)及び上記式(3)より、熱伝達率hと、角速度ωとの関係は、下記式(5)で定義することができる。従って、上記式(4)を満たすように設定された各領域33a〜33nの熱伝達率を、さらに、下記式(5)も満たすように再定義するのが望ましい。
h∝ω1/2 …(5)
これにより、各領域33a〜33nの熱伝達率は、熱伝達率hとレイノルズ数Reとの関係、各領域33a〜33nの距離r、及び、角速度ωに基づいて設定されるため、実際のタイヤ2のサイド面12d(図2に示す)の熱伝達率に、さらに近似させることができる。なお、サイド面22dの領域33の数は、求められるシミュレーション精度に基づいて、適宜定義することができる。
図5に示したトレッド接地面22aと路面モデル26との間の熱伝達率が定義される(工程S34)。トレッド接地面22aと路面との間の熱伝達率は、図2に示したトレッド接地面12aの路面(図示省略)への放熱を考慮して、例えば、実際のタイヤ2の走行試験の実測値や、タイヤモデルを用いて予め実施されたシミュレーション結果に基づいて定義することができる。トレッド接地面22aと路面モデル26との間の熱伝達率は、コンピュータ1に記憶される。
次に、図4に示したリム接触面22cとリムとの間の熱伝達率(以下、単に「リム接触面の熱伝達率」ということがある。)が定義される(工程S35)。リム接触面22cの熱伝達率は、図2に示したリム接触面12cのリム14への放熱を考慮して、例えば、実際のタイヤ2の走行試験の実測値や、タイヤモデルを用いて予め実施されたシミュレーション結果に基づいて定義することができる。リム接触面22cとリムとの熱伝達率は、コンピュータ1に記憶される。
次に、図4に示されるように、内腔面23と空気(タイヤ内腔内の空気)との間の熱伝達率が定義される(工程S36)。内腔面23と空気との間の熱伝達率(以下、単に「内腔面の熱伝達率」ということがある。)は、図2に示したタイヤ2の内腔面13の空気への放熱を考慮して、実際のタイヤ2の走行試験の実測値や、タイヤモデルを用いて予め実施されたシミュレーション結果に基づいて定義することができる。内腔面の熱伝達率は、コンピュータ1に記憶される。
次に、コンピュータ1が、タイヤモデル16の走行時の温度を計算する(シミュレーション工程S4)。本実施形態のシミュレーション工程S4では、タイヤモデル16を路面モデル26に転動させて、タイヤモデル16の走行時の温度が計算される。図10は、本実施形態のシミュレーション工程S4の処理手順を示すフローチャートである。図11は、シミュレーション工程S4を説明するタイヤモデル16の断面図である。
本実施形態のシミュレーション工程S4では、先ず、タイヤモデル16(図4に示す)の内圧充填後の形状が計算される(工程S41)。工程S41では、先ず、図11に示されるように、タイヤモデル16のリム接触面22c、22cが変形不能に拘束される。次に、タイヤモデル16のビード部16cの幅W1と、図2に示したリム14のリム幅とが等しくなるように、ビード部16cが強制変位される。次に、タイヤモデル16の回転軸21(図5に示す)とビード部16cの底面とのタイヤ半径方向の距離Rs及びリム径が等しくなるように、ビード部16cが強制変位される。さらに、タイヤモデル16には、内圧条件に相当する等分布荷重wに基づいて変形計算される。
これにより、工程S41では、内圧充填後のタイヤモデル16が計算される。このような内圧充填後のタイヤモデル16は、コンピュータ1に記憶される。
タイヤモデル16の変形計算は、各要素の形状及び材料特性などをもとに、各要素F(i)の質量マトリックス、剛性マトリックス及び減衰マトリックスがそれぞれ作成される。さらに、これらの各マトリックスが組み合わされて、全体の系のマトリックスが作成される。そして、コンピュータ1が、前記各種の条件を当てはめて運動方程式を作成し、これらを単位時間T(x)(x=0、1、…)ごと(例えば、1μ秒ごと)にタイヤモデル16の変形計算を行う。このような変形計算は、例えば、LSTC社製のLS-DYNAなどの市販の有限要素解析アプリケーションソフトを用いて計算できる。
次に、内圧充填後のタイヤモデル16に、荷重が定義される(工程S42)。この工程S42では、先ず、図5に示されるように、内圧充填後のタイヤモデル16と、路面モデル26との接触が計算される。次に、工程S42では、予め定められた荷重Tに基づいて、タイヤモデル16の変形が計算される。これにより、工程S42では、路面モデル26に接地したタイヤモデル16が計算される。このような路面モデル26に接地したタイヤモデル16は、コンピュータ1に記憶される。
次に、予め定められた走行速度Vsに基づいて、タイヤモデル16が路面モデル26上を転動する状態が計算される(工程S43)。この工程S43では、先ず、図5に示されるように、タイヤモデル16に、走行速度Vsに対応する角速度Vaが定義される。次に、路面モデル26に、走行速度Vsに対応する並進速度Vtが定義される。並進速度Vtは、タイヤモデル16と路面モデル26とのトレッド接地面22a(図11に示す)での速度である。これらの条件に基づいて、路面モデル26上を転動するタイヤモデル16が計算される。
次に、タイヤモデル16の走行時の発熱量が計算される(工程S44)。本実施形態の工程S44では、路面モデル26を転動するタイヤモデル16に基づいて、走行時の発熱量が計算される。工程S44では、従来の方法と同様に、図11に示した各ゴムモデル17において、工程S43で計算された各要素F(i)の歪と、各要素F(i)の損失正接tanδとを用いて、単位時間T(x)毎に、各要素F(i)の発熱量が計算される。このような発熱量の計算は、上記アプリケーションを用いることにより、容易に計算することができる。各要素F(i)の発熱量は、コンピュータ1に記憶される。なお、tanδの初期値には、走行速度Vsに基づいて適宜設定することができる。
次に、タイヤモデル16の走行時の放熱量が計算される(工程S45)。この工程S45では、先ず、従来の方法と同様に、タイヤモデル16の外面22及び内腔面23にそれぞれ設定された熱伝達率、外気の温度、及び、各要素F(i)の熱伝導率に基づいて、単位時間T(x)毎に、各要素F(i)の放熱量が計算される。このような放熱量の計算は、空気(流体)をモデル化した流体シミュレーションを実施することなく、上記アプリケーションを用いることによって、容易に計算することができる。タイヤモデル16の放熱量は、コンピュータ1に記憶される。
本実施形態では、路面(図示省略)の接地、及び、空気の接触を考慮して、タイヤモデル16のトレッド接地面22a、溝22b、リム接触面22c、サイド面22d、及び、内腔面23に、それぞれ異なる熱伝達率が定義されている。このため、工程S45では、タイヤモデル16の放熱量を、実際のタイヤ2の放熱量に近似させることができる。
さらに、本実施形態では、熱伝達率hとレイノルズ数Reとの関係に基づいて、図9に示したサイド面22dの各領域33a〜33nの熱伝達率がそれぞれ設定されるため、タイヤモデル16の放熱量を、実際のタイヤ2の放熱量に、さらに近似させることができる。
次に、発熱量、及び、放熱量に基づいて、タイヤモデル16の走行時の温度が予測される(工程S46)。この工程S46では、単位時間T(x)毎に計算された各要素F(i)の発熱量と、各要素F(i)の放熱量との熱収支が計算される。これにより、タイヤモデル16の走行時の温度が、単位時間毎に計算される。このようなタイヤモデル16の走行時の温度は、コンピュータ1に記憶される。
次に、予め定められた転動終了時間が経過したか否かが判断される(工程S47)。この工程S47では、転動終了時間が経過したと判断された場合、次の工程S5が実施される。一方、転動終了時間が経過していないと判断された場合は、単位時間T(x)を一つ進めて(工程S48)、工程S43〜工程S47が再度実施される。これにより、シミュレーション工程S4では、転動開始から転動終了までのタイヤモデル16の走行時の温度を、単位時間T(x)ごとに記憶することができる。なお、転動終了時間は、実行するシミュレーションに応じて、適宜設定することができる。
次に、タイヤモデル16の走行時の温度が、許容範囲内であるか否かが判断される(工程S5)。この工程S5では、タイヤモデル16の走行時の温度が許容範囲内である場合、上記タイヤモデル16に基づいて、タイヤ2が製造される(工程S6)。一方、タイヤモデル16の走行時の温度が許容範囲内でない場合は、タイヤ2が再設計され(工程S7)、本実施形態のシミュレーション方法が再度行われる(工程S1〜S5)。このように、本実施形態のシミュレーション方法では、タイヤモデル16の走行時の温度が許容範囲内になるまで、タイヤモデル16が変更されるため、耐久性能の優れたタイヤを、効率良く設計することができる。
本実施形態のシミュレーション工程S4では、タイヤモデル16を路面モデル26に転動させて温度を計算する動的解析が例示されたが、これに限定されるわけではない。例えば、路面モデル26にタイヤモデル16を転動させることなく、タイヤモデル16の走行時の温度を計算する静的解析でもよい。この場合、タイヤモデル16の走行時の発熱量は、タイヤモデル16のタイヤ周方向の歪変動量に基づいて計算されるのが望ましい。このような静的解析では、動的解析に比べて、計算時間を短縮しうる。なお、このような発熱量の計算は、例えば、解析アプリケーションソフトウェア( Dassault Systems 社製の ABAQUS等)を用いることによって、容易に行うことができる。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
図2に示す空気入りタイヤが製造され、各走行速度(50km/h、60km/h、70km/h)において、タイヤの温度(サイド面の下部、中部、上部の温度)が実測された(実験例)。
図2に示す空気入りタイヤをモデル化したタイヤモデルが、コンピュータに設定された(実施例1、実施例2、比較例)。実施例1及び実施例2では、図3、図6〜図8、及び、図10に示した手順に従って、上記各走行速度において、図5に示したタイヤモデルの走行時の温度(実験例と同一部分)が予測された。さらに、実施例1では、上記式(4)を満たすように、各領域の熱伝達率が計算された。一方、実施例2では、上記式(4)及び上記式(5)を満たすように、各領域の熱伝達率が計算された。
比較例では、サイド面全域に一定の熱伝達率が設定された。そして、上記各走行速度において、タイヤモデルの走行時の温度(実験例と同一部分)が予測された。共通仕様は、次のとおりである。結果を表1に示す。
タイヤサイズ:11R22.5
リムサイズ:22.5×8.25
荷重:31.81kN
内圧:700kPa
サイド面の下部:実施例のサイド面の第8領域
サイド面の中部:実施例のサイド面の第4領域
サイド面の上部:実施例のサイド面の第1領域
タイヤモデルの発熱量の計算:静的解析
Figure 0006343151
実施例1、及び実施例2では、比較例に比べて、タイヤモデルの温度を、実験例のタイヤの温度に近似させることができた。従って、実施例1及び実施例2では、タイヤの走行時の温度を予測できることが確認できた。
さらに、実施例2では、各領域でのタイヤ半径方向の距離r、及び、タイヤの角速度ωに基づいて、各領域の熱伝達率が設定されるため、距離rのみに基づいて熱伝達率が設定される実施例1に比べて、タイヤの走行時の温度を予測できることが確認できた。
2 タイヤ
12 外面
16 タイヤモデル
33 領域

Claims (6)

  1. コンピュータを用いて、タイヤの走行時の温度を予測するためのシミュレーション方法であって、
    前記コンピュータに、前記タイヤを有限個の要素でモデル化したタイヤモデルを入力する工程、
    前記コンピュータに、前記タイヤの外面と空気との間の熱伝達率を少なくとも含む境界条件を前記タイヤモデルに定義する境界条件設定工程、及び
    前記コンピュータが、前記タイヤモデルの走行時の温度を計算するシミュレーション工程を含み、
    前記シミュレーション工程は、前記タイヤモデルの走行時の発熱量を計算する工程と、
    前記熱伝達率に基づいて、前記タイヤモデルの走行時の放熱量を計算する工程と、
    前記発熱量と前記放熱量とに基づいて、前記タイヤモデルの走行時の温度を予測する工程とを含み、
    前記境界条件設定工程は、前記タイヤモデルの外面を、複数の領域に区分する工程と、
    前記複数の領域に、それぞれ異なる前記熱伝達率を定義する工程とを含み、
    前記タイヤモデルの外面は、トレッド接地端間のトレッド接地面と、前記トレッド接地面から凹む溝とを含み、
    前記熱伝達率を定義する工程は、前記溝の前記熱伝達率を、前記トレッド接地面の前記熱伝達率よりも小に設定する工程を含むことを特徴とするタイヤのシミュレーション方法。
  2. 前記タイヤモデルのビード部は、リムに接触するリム接触面を有し、
    前記外面は、前記リム接触面のタイヤ半径方向の外端と、トレッド接地端との間のサイド面を含む請求項1記載のタイヤのシミュレーション方法。
  3. 前記各領域の熱伝達率は、前記タイヤモデルの回転軸から前記各領域までのタイヤ半径方向の距離に基づいて定義される請求項1又は2記載のタイヤのシミュレーション方法。
  4. 前記タイヤモデルには、予め定められた走行速度が定義され、
    前記各領域の熱伝達率は、前記走行速度に対応する前記各領域の周速度に基づいて定義される請求項1乃至3のいずれかに記載のタイヤのシミュレーション方法。
  5. 前記タイヤモデルの走行時の発熱量は、路面を有限個の要素でモデル化した路面モデルを転動する前記タイヤモデルに基づいて計算される請求項1乃至4のいずれかに記載のタイヤのシミュレーション方法。
  6. 前記タイヤモデルの走行時の発熱量は、前記タイヤモデルのタイヤ周方向の歪変動量に基づいて計算される請求項1乃至4のいずれかに記載のタイヤのシミュレーション方法。
JP2014013622A 2014-01-28 2014-01-28 タイヤのシミュレーション方法 Active JP6343151B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013622A JP6343151B2 (ja) 2014-01-28 2014-01-28 タイヤのシミュレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013622A JP6343151B2 (ja) 2014-01-28 2014-01-28 タイヤのシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2015141525A JP2015141525A (ja) 2015-08-03
JP6343151B2 true JP6343151B2 (ja) 2018-06-13

Family

ID=53771841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013622A Active JP6343151B2 (ja) 2014-01-28 2014-01-28 タイヤのシミュレーション方法

Country Status (1)

Country Link
JP (1) JP6343151B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372515B2 (ja) * 2003-11-04 2009-11-25 横浜ゴム株式会社 回転体の耐久性予測方法及び回転体の耐久性予測用コンピュータプログラム、並びに回転体の耐久性予測装置
JP5032735B2 (ja) * 2004-01-27 2012-09-26 横浜ゴム株式会社 等価加硫度の予測方法及びゴム製品の製造方法
FR2905497B1 (fr) * 2006-09-01 2008-11-14 Michelin Soc Tech Procede de simulation du comportement thermo-mecanique d'un pneu, et application
JP5946628B2 (ja) * 2011-11-11 2016-07-06 東洋ゴム工業株式会社 粘弾性体構造物の断面形状の設計装置、その方法及びそのプログラム

Also Published As

Publication number Publication date
JP2015141525A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6291366B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP4372515B2 (ja) 回転体の耐久性予測方法及び回転体の耐久性予測用コンピュータプログラム、並びに回転体の耐久性予測装置
JP5186856B2 (ja) タイヤモデルの作成方法およびタイヤのシミュレーション方法
JP4448247B2 (ja) タイヤのハイドロプレーニングシミュレーション方法
JP5629299B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP6484124B2 (ja) タイヤモデルの作成方法及びタイヤ温度のシミュレーション方法
JP2019023586A (ja) タイヤのシミュレーション方法
JP6343151B2 (ja) タイヤのシミュレーション方法
JP6523902B2 (ja) タイヤモデルの作成方法及びタイヤ温度のシミュレーション方法
JP6454221B2 (ja) タイヤのシミュレーション方法
JP6699396B2 (ja) タイヤ温度のシミュレーション方法
JP2019091302A (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP6658108B2 (ja) タイヤの振動性能評価方法
JP6006576B2 (ja) タイヤのシミュレーション方法
JP6454161B2 (ja) タイヤのシミュレーション方法
JP6434705B2 (ja) タイヤの振動性能評価方法及びシミュレーション装置
JP2014141164A (ja) タイヤのシミュレーション方法
JP2020131758A (ja) タイヤのシミュレーション方法及びタイヤの製造方法
JP7215296B2 (ja) タイヤのシミュレーション方法
JP2017033076A (ja) タイヤのシミュレーション方法
JP2018086960A (ja) タイヤのシミュレーション方法
JP5993185B2 (ja) タイヤの転動シミュレーション方法
JP2015044490A (ja) タイヤのシミュレーション方法
JP2024034878A (ja) タイヤのシミュレーション方法
JP7077759B2 (ja) タイヤのシミュレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180518

R150 Certificate of patent or registration of utility model

Ref document number: 6343151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250