JP6699396B2 - タイヤ温度のシミュレーション方法 - Google Patents

タイヤ温度のシミュレーション方法 Download PDF

Info

Publication number
JP6699396B2
JP6699396B2 JP2016125868A JP2016125868A JP6699396B2 JP 6699396 B2 JP6699396 B2 JP 6699396B2 JP 2016125868 A JP2016125868 A JP 2016125868A JP 2016125868 A JP2016125868 A JP 2016125868A JP 6699396 B2 JP6699396 B2 JP 6699396B2
Authority
JP
Japan
Prior art keywords
tire
temperature
model
groove
target position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016125868A
Other languages
English (en)
Other versions
JP2017226392A (ja
Inventor
洋一 彌榮
洋一 彌榮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016125868A priority Critical patent/JP6699396B2/ja
Publication of JP2017226392A publication Critical patent/JP2017226392A/ja
Application granted granted Critical
Publication of JP6699396B2 publication Critical patent/JP6699396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、走行しているときのタイヤの温度を予測するためのシミュレーション方法に関する。
近年、走行しているときのタイヤの温度を、コンピュータを用いて予測するためのシミュレーション方法が、例えば、下記特許文献1で提案されている。特許文献1のシミュレーション方法では、先ず、タイヤを有限個の要素でモデル化したタイヤモデルが、コンピュータに入力される。次に、コンピュータが、タイヤモデルの転動計算を実施する。次に、コンピュータが、走行状態にあるタイヤモデルの温度を計算する。
特許第5504039号公報
タイヤのトレッド部には、通常、タイヤ周方向に連続してのびる主溝と、主溝と交わる向きにのびる複数の横溝とを含む溝部が設けられている。特許文献1のタイヤモデルのトレッド部には、全ての溝部が再現されている。このため、特許文献1のタイヤモデルは、例えば、非常に多くの要素や節点を有する。このようなタイヤモデルを用いる特許文献1のシミュレーション方法は、多くの計算時間を要するという問題があった。
本発明は、以上のような実状に鑑み案出されたもので、少ない計算時間で、走行しているときのタイヤの温度を精度よく予測することができるシミュレーション方法を提供することを主たる目的としている。
本発明は、トレッド部に複数の溝部が設けられたタイヤが予め定められた任意の条件で走行しているときの予め定められたタイヤの解析対象位置の温度を、コンピュータを用いて予測するためのシミュレーション方法であって、前記コンピュータに、前記タイヤの前記溝部の少なくとも一つが埋められた仮想タイヤを、有限個の要素でモデル化したタイヤモデルを入力する工程、前記コンピュータが、前記条件に基づいて、前記タイヤモデルの走行状態を計算する工程、前記コンピュータが、前記走行状態の前記タイヤモデルの前記解析対象位置の温度を計算する工程、前記コンピュータが、前記条件で走行している前記タイヤと比較して、前記走行状態にある前記タイヤモデルの前記解析対象位置の温度上昇値を推定する推定工程、及び、前記コンピュータが、前記タイヤモデルの前記解析対象位置の前記温度から、前記温度上昇値を差し引いて、前記タイヤの前記条件で走行しているときの温度を計算する工程を含むことを特徴とする。
本発明に係る前記タイヤ温度のシミュレーション方法において、前記溝部は、タイヤ周方向に連続してのびる少なくとも1つの主溝と、前記主溝と交わる向きにのびる複数の横溝とを含み、前記タイヤモデルは、前記横溝の全てが埋められているのが望ましい。
本発明に係る前記タイヤ温度のシミュレーション方法において、前記温度上昇値は、前記溝部の幅、前記溝部の深さ、及び、前記溝部のタイヤ周方向のピッチの少なくとも一つを含む放熱因子に関連付けられているであるのが望ましい。
本発明に係る前記タイヤ温度のシミュレーション方法において、前記推定工程は、前記放熱因子と前記温度上昇値との関係式を求める関係式計算工程、及び前記関係式に基づいて、前記温度上昇値を推定する工程を含むであるのが望ましい。
本発明に係る前記タイヤ温度のシミュレーション方法において、前記関係式計算工程は、前記放熱因子が異なる複数のタイヤを準備する工程、前記条件に基づいて、前記各タイヤを走行させたときの前記解析対象位置の温度を測定する工程、及び前記放熱因子と前記各タイヤの温度とに基づいて、前記関係式を求める工程を含むのが望ましい。
本発明のタイヤ温度のシミュレーション方法は、コンピュータに、タイヤの溝部の少なくとも一つが埋められた仮想タイヤを、有限個の要素でモデル化したタイヤモデルを入力する工程、コンピュータが、予め定められた任意の条件に基づいて、タイヤモデルの走行状態を計算する工程、及び、走行状態のタイヤモデルの解析対象位置の温度を計算する工程を含んでいる。
本発明のタイヤモデルは、解析対象のタイヤの溝部の少なくとも一つが埋められて設定されているため、溝部の全てがモデル化されたようなタイヤモデルに比べて、構造が簡素化され、少ない要素及び節点で構成することが可能になる。従って、本発明のシミュレーション方法は、計算時間を短縮することができる。
また、本発明のシミュレーション方法は、コンピュータが、前記条件で走行しているタイヤと比較して、走行状態にあるタイヤモデルの解析対象位置の温度上昇値を推定する推定工程、及び、タイヤモデルの解析対象位置の温度から、温度上昇値を差し引いて、タイヤの前記条件で走行しているときの温度を計算する工程を含んでいる。
本発明のタイヤモデルは、埋められた溝部からの放熱が考慮されないため、上記解析対象位置において、解析対象のタイヤの温度よりも高い温度が計算される。本発明のシミュレーション方法は、タイヤモデルの上記温度から、上記温度上昇値を差し引くことにより、溝部の放熱を考慮したタイヤの温度を計算することができる。従って、本発明のシミュレーション方法は、タイヤの走行しているときの温度を、より少ない時間で精度よく予測することができる。
タイヤ温度のシミュレーション方法を実行するコンピュータの一例を示す斜視図である。 評価対象のタイヤの一例を示す断面図である。 シミュレーション方法の処理手順の一例を示すフローチャートである。 タイヤモデル設定工程の処理手順の一例を示すフローチャートである。 タイヤモデル、及び、路面モデルの一例を示す斜視図である。 タイヤモデルの一例を示す断面図である。 境界条件設定工程の処理手順の一例を示すフローチャートである。 接地工程の処理手順の一例を示すフローチャートである。 タイヤモデル温度計算工程の処理手順の一例を示すフローチャートである。 推定工程の処理手順の一例を示すフローチャートである。 関係式計算工程の処理手順の一例を示すフローチャートである。 タイヤの解析対象位置の温度と、タイヤモデルの解析対象位置の温度との関係を示すグラフである。
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態のタイヤ温度のシミュレーション方法(以下、単に「シミュレーション方法」ということがある)は、走行しているタイヤの温度を、コンピュータを用いて予測するための方法である。
図1は、シミュレーション方法を実行するコンピュータ1の一例を示す斜視図である。コンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dが含まれる。本体1aには、演算処理装置(CPU)、ROM、作業用メモリー、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置1a1、1a2などが設けられている。なお、記憶装置には、本実施形態のシミュレーション方法を実行するための処理手順(プログラム)が、予め記憶されている。
図2は、評価対象のタイヤ2の一例を示す断面図である。本実施形態のタイヤ2は、例えば、乗用車用の空気入りタイヤとして構成されている。タイヤ2は、トレッド部2aからサイドウォール部2bを経てビード部2cのビードコア5に至るカーカス6と、このカーカス6のタイヤ半径方向外側かつトレッド部2aの内部に配されるベルト層7とが設けられている。
タイヤ2には、ゴム部分11が設けられている。ゴム部分11は、トレッド部2aにおいてベルト層7の外側に配されるトレッドゴム11a、及び、サイドウォール部2bにおいてカーカス6の外側に配されるサイドウォールゴム11b等を含んでいる。
トレッド部2aには、複数の溝部13が設けられている。本実施形態の溝部13は、タイヤ周方向に連続してのびる少なくとも1つの主溝14と、主溝14と交わる向きにのびる複数の横溝15とを含んでいる。なお、溝部13には、サイピング等の細溝を含むものとする。
本実施形態の主溝14は、タイヤ赤道Cのタイヤ軸方向の両側に配置される一対のクラウン主溝14a、14aと、各クラウン主溝14aのタイヤ軸方向外側に配置されるショルダー主溝14bとを含んでいる。これにより、トレッド部2aは、複数の陸部16に区分される。なお、主溝14は、これらの主溝14a、14bに限定されない。
本実施形態の横溝15は、一対のクラウン主溝14a、14a間をのびるクラウン横溝15a、クラウン主溝14aとショルダー主溝14bとの間をのびるミドル横溝15b、及び、ショルダー主溝14bからタイヤ軸方向外側にのびるショルダー横溝15cとを含んでいる。なお、横溝15は、これらの横溝15a〜15cに限定されない。
カーカス6は、少なくとも1枚、本実施形態では1枚のカーカスプライ6Aで構成されている。このカーカスプライ6Aは、トレッド部2aからサイドウォール部2bを経てビード部2cのビードコア5に至る本体部6aと、この本体部6aに連なりビードコア5の廻りをタイヤ軸方向内側から外側に折り返された折返し部6bとを含んでいる。本体部6aと折返し部6bとの間には、ビードコア5からタイヤ半径方向外側にのびるビードエーペックスゴム8が配されている。また、カーカスプライ6Aは、タイヤ赤道Cに対して、例えば75〜90度の角度で配列されたカーカスコード(図示省略)を有している。
本実施形態のベルト層7は、内側ベルトプライ7Aと、内側ベルトプライ7Aのタイヤ半径方向外側に配置された外側ベルトプライ7Bとを含んで構成されている。ベルトプライ7A、7Bは、タイヤ周方向に対して、例えば10〜35度の角度で配列されたベルトコード(図示省略)を有している。内側ベルトプライ7Aのベルトコードと、外側ベルトプライ7Bのベルトコードとは、互いに交差する向きに配置されている。ベルトコードとしては、例えば、スチール、アラミド、又は、レーヨン等が好適に採用されうる。
図3は、シミュレーション方法の処理手順の一例を示すフローチャートである。本実施形態のシミュレーション方法は、予め定められた任意の条件に基づいてタイヤモデルの走行状態を計算し、予め定められたタイヤ2の解析対象位置の温度が予測される。任意の条件については、例えば、内圧条件、負荷荷重条件、キャンバー角、又は、走行速度等が適宜設定される。
解析対象位置とは、前記任意の条件で走行しているタイヤ2(図2に示す)において、温度を最も評価したい位置である。最も評価したい位置とは、例えば、温度上昇によって損傷発生起点となりうる部分である。図2に示されるように、本実施形態の解析対象位置18としては、ベルトプライ(本実施形態では、内側ベルトプライ7A)のタイヤ軸方向の外端7t付近のトレッドゴム11aである。なお、解析対象位置18は、このような位置に限定されるわけではない。また、タイヤモデル20の全領域を、解析対象位置18として設定されてもよい。
図3に示されるように、本実施形態のシミュレーション方法は、先ず、コンピュータ1に、タイヤ2(図2に示した)をモデル化したタイヤモデルが入力される(タイヤモデル設定工程S1)。本実施形態のタイヤモデルは、三次元モデルとして設定される。図4は、タイヤモデル設定工程S1の処理手順の一例を示すフローチャートである。図5は、タイヤモデル20、及び、路面モデル26の一例を示す斜視図である。図6は、タイヤモデル20の一例を示す断面図である。
本実施形態のタイヤモデル設定工程S1では、先ず、コンピュータ1に、図2に示したタイヤ2の溝部13の少なくとも一つが埋められた仮想タイヤ(図示省略)が入力される(工程S11)。本実施形態の仮想タイヤは、図2に示した全ての溝部13のうち、横溝15の全てが埋められている。従って、仮想タイヤには、主溝14のみが設けられている。このような仮想タイヤは、タイヤ2を加硫成形する加硫金型(図示省略)の設計データ(例えば、CADデータ)を用いることにより、容易に設定される。仮想タイヤは、コンピュータ1に記憶される。
次に、図5及び図6に示されるように、本実施形態のタイヤモデル設定工程S1では、コンピュータ1が、仮想タイヤ(図示省略)の輪郭を、数値解析法により取り扱い可能な有限個の要素F(i)(i=1、2、…)で離散化する(工程S12)。これにより、工程S12では、タイヤ2の溝部13の少なくとも一つ、本実施形態では、横溝15の全てが埋められたタイヤモデル20が設定される。従って、タイヤモデル20には、主溝14が設定されている。
数値解析法としては、例えば、有限要素法、有限体積法、差分法、又は、境界要素法を適宜採用することができる。本実施形態では、有限要素法が採用されている。各要素F(i)としては、例えば、4面体ソリッド要素等を採用できる。
各要素F(i)には、複数個の節点21が設けられる。また、各要素F(i)には、要素番号、節点21の番号、節点21の座標値、及び、各部材の材料特性(例えば、密度、ヤング率、減衰係数、熱伝導率、及び/又は、損失正接tanδ等)などの数値データが定義される。
工程S12では、図2に示したタイヤ2の構成部材(本実施形態では、ゴム部分11、ビードコア5、カーカスプライ6A、及び、ベルトプライ7A、7B)が、要素F(i)でモデル化される。これにより、タイヤモデル20の構成部材(本実施形態では、ゴム部分モデル22、ビードコアモデル23、カーカスプライモデル24、及び、ベルトプライモデル25)が設定される。ゴム部分モデル22は、トレッドゴム11a(図2に示す)をモデル化したトレッドゴムモデル22a、及び、サイドウォールゴム11b(図2に示す)をモデル化したサイドウォールゴムモデル22bを含んでいる。
このようなタイヤモデル20は、従来と同様に、例えば、市販のメッシュ化ソフトウエアを用いることにより、容易に設定(モデリング)できる。タイヤモデル20は、コンピュータ1に記憶される。
タイヤモデル20は、図2に示した解析対象のタイヤ2の溝部13の少なくとも一つ、本実施形態では、横溝15の全てが埋められている。このため、タイヤモデル20は、主溝14及び横溝15を含む溝部13の全てがモデル化されたようなタイヤモデル(図示省略)に比べて、構造が簡素化される。従って、タイヤモデル20は、少ない要素F(i)及び節点21で構成することが可能になる。
また、本実施形態のタイヤモデル20は、横溝15の全てが埋められている。一般に、横溝15の形状は、主溝14の形状に比べて複雑である。従って、タイヤモデル20は、より少ない要素F(i)及び節点21で構成することが可能になる。
次に、本実施形態のシミュレーション方法は、コンピュータ1に、タイヤ2(図2に示す)が転動する路面(図示省略)を、有限個の要素でモデル化した路面モデル26(図5に示す)が入力される(工程S2)。
図5に示されるように、本実施形態の路面モデル26は、例えば、単一の平面を構成する剛表面の要素Hでモデル化される。これにより、路面モデル26は、外力が作用しても変形不能に定義される。そして、路面モデル26を構成する要素Hの数値データが、コンピュータ1に記憶される。
なお、路面モデル26は、例えば、ドラム試験機のように円筒状表面に形成されても良い。また、路面モデル26には、必要に応じて、段差、窪み、うねり又は轍などが設けられても良い。
次に、本実施形態のシミュレーション方法は、タイヤモデル20及び路面モデル26に境界条件が定義される(境界条件設定工程S3)。境界条件設定工程S3では、タイヤモデル20を、前記任意の条件で走行させるための境界条件、及び、タイヤモデル20の伝熱計算に使用するための境界条件が定義される。図7は、境界条件設定工程S3の処理手順の一例を示すフローチャートである。
境界条件設定工程S3では、先ず、図5に示されるように、タイヤモデル20を路面モデル26に接触させるための条件が設定される(工程S31)。工程S31では、従来のシミュレーション方法と同様に、例えば、タイヤモデル20の内圧条件、リム条件、負荷荷重条件、キャンバー角、及び、静摩擦係数等が適宜設定される。これらの条件は、コンピュータ1に記憶される。
次に、境界条件設定工程S3では、タイヤモデル20の走行状態を計算するための条件が設定される(工程S32)。工程S32は、従来のシミュレーション方法と同様に、例えば、タイヤモデル20のスリップ角、走行速度Vs、及び、タイヤモデル20と路面モデル26との間の動摩擦係数等が適宜設定される。これらの条件は、コンピュータ1に記憶される。
次に、境界条件設定工程S3では、タイヤモデル20の走行状態の温度を計算するための条件が設定される(工程S33)。工程S33では、従来のシミュレーション方法と同様に、タイヤモデル20の外面20oの熱伝達率、タイヤ内腔面20iの熱伝達率、外気の温度、及び、タイヤ内腔2iの温度等が適宜設定される。これらの条件は、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、路面モデル26に接地するタイヤモデル20を計算する(接地工程S4)。図8は、接地工程S4の処理手順の一例を示すフローチャートである。
本実施形態の接地工程S4では、先ず、図6に示されるように、タイヤモデル20の内圧充填後の形状が計算される(工程S41)。工程S41では、先ず、リムR(図2に示す)をモデル化したリムモデル27によって、タイヤモデル20のビード部20c、20cが拘束される。リムモデル27は、例えば、リムRに関する情報(例えば、リムRの輪郭データ等)に基づいて、数値解析法(本実施形態では、有限要素法)により取り扱い可能な有限個の要素(図示省略)で離散化されることによって設定される。リムモデル27を構成する要素は、例えば、変形不能に設定された剛平面要素として定義されるのが望ましい。
次に、工程S41では、内圧条件に相当する等分布荷重wに基づいて、タイヤモデル20の変形が計算される。これにより、工程S41では、内圧充填後のタイヤモデル20が計算される。
タイヤモデル20の変形計算は、各要素F(i)の形状及び材料特性などに基づいて、各要素F(i)の質量マトリックス、剛性マトリックス及び減衰マトリックスがそれぞれ作成される。さらに、これらの各マトリックスが組み合わされて、全体の系のマトリックスが作成される。そして、コンピュータ1が、前記各種の条件を当てはめて運動方程式を作成し、これらを単位時間T(x)(x=0、1、…)ごと(例えば、1μ秒毎)に、タイヤモデル20の変形計算を行う。このような変形計算は、例えば、Dassault Systems社製のAbaqus、LSTC社製のLS-DYNA、又は、MSC社製のNASTRANなどの市販の有限要素解析アプリケーションソフトを用いて計算できる。
次に、本実施形態の接地工程S4では、内圧充填後のタイヤモデル20に、荷重が定義される(工程S42)。工程S42では、先ず、図5に示されるように、内圧充填後のタイヤモデル20と、路面モデル26との接触が計算される。次に、工程S42では、予め定められた荷重条件Lやキャンバー角などに基づいて、タイヤモデル20の変形が計算される。これにより、工程S42では、路面モデル26に接地したタイヤモデル20が計算される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、前記任意の条件に基づいて、タイヤモデル20の走行状態を計算する(工程S5)。工程S5では、境界条件設定工程S3で設定された走行速度Vsに基づいて、タイヤモデル20が路面モデル26上を転動する状態が計算される。本実施形態の工程S5では、走行速度Vsに対応する角速度Va、及び、走行速度Vsに対応する並進速度Vtに基づいて、路面モデル26上を転動する走行状態のタイヤモデル20が単位時間T(x)毎に計算される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、走行状態のタイヤモデル20について、解析対象位置の温度を計算する(タイヤモデル温度計算工程S6)。本実施形態のタイヤモデル温度計算工程S6では、路面モデル26を転動するタイヤモデル20に基づいて、走行状態のタイヤモデル20の温度が、単位時間T(x)毎に計算される。図9は、タイヤモデル温度計算工程S6の処理手順の一例を示すフローチャートである。
本実施形態のタイヤモデル温度計算工程S6は、先ず、図5に示した走行状態のタイヤモデル20の発熱量が計算される(工程S61)。工程S61では、従来の方法と同様に、ゴム部分モデル22(図6に示す)において、走行状態のタイヤモデル20の各要素F(i)の歪と、各要素F(i)の損失正接tanδとを用いて、各要素F(i)の発熱量が計算される。各要素F(i)の発熱量は、単位時間T(x)毎に計算される。tanδの初期値には、走行速度Vsに基づいて適宜設定することができる。
本実施形態の発熱量の計算は、上記アプリケーションを用いることにより、容易に計算することができる。各要素F(i)の発熱量は、コンピュータ1に記憶される。
次に、本実施形態のタイヤモデル温度計算工程S6では、走行状態のタイヤモデル20の放熱量が計算される(工程S62)。工程S62では、先ず、タイヤモデル20の外面20o及びタイヤ内腔面20iにそれぞれ設定された熱伝達率、外気の温度、及び、各要素F(i)の熱伝導率等に基づいて、各要素F(i)の放熱量が計算される。各要素F(i)の放熱量は、単位時間T(x)毎に計算される。
本実施形態の放熱量の計算は、空気(流体)をモデル化した流体シミュレーションを実施することなく、上記アプリケーションを用いて容易に計算することができる。各要素F(i)の放熱量は、コンピュータ1に記憶される。
次に、本実施形態のタイヤモデル温度計算工程S6では、発熱量、及び、放熱量に基づいて、走行状態のタイヤモデル20の温度が計算される(工程S63)。工程S63では、タイヤモデル20の各要素F(i)について、発熱量と放熱量との熱収支が、単位時間T(x)毎に計算される。これにより、工程S63では、タイヤモデル20を構成する各要素F(i)について、走行状態のタイヤモデル20の温度が計算される。タイヤモデル20の各要素F(i)の温度が、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、予め定められた走行終了時間が経過したか否かが判断する(工程S7)。走行終了時間については、適宜設定することができる。
工程S7では、走行終了時間が経過したと判断された場合(工程S7で、「Y」)、次の推定工程S8が実施される。他方、走行終了時間が経過していないと判断された場合(工程S7で、「N」)は、単位時間T(x)を一つ進めて(工程S9)、工程S5〜工程S7が再度実施される。このように、本実施形態のシミュレーション方法は、走行開始から走行終了までの走行状態のタイヤモデル20について、解析対象位置18の温度を、単位時間T(x)毎に計算することができる。
上述したように、本実施形態のタイヤモデル20は、溝部13の全てがモデル化されたようなタイヤモデル(図示省略)に比べて、少ない要素F(i)及び節点21で構成されている。従って、本実施形態のシミュレーション方法は、全ての溝部13がモデル化されたタイヤモデル(図示省略)を用いたシミュレーション方法に比べて、計算時間を短縮できる。しかも、本実施形態のタイヤモデル20は、横溝15の全てが埋められているため、計算時間をより効果的に短縮することができる。
なお、本実施形態のタイヤモデル温度計算工程S6において、タイヤモデル20は、埋められた溝部13(本実施形態では、横溝15の全て)からの放熱が考慮されない。このため、タイヤモデル20の解析対象位置18の温度が、実際のタイヤ2の解析対象位置18の温度よりも高く計算される傾向がある。
本実施形態のシミュレーション方法は、コンピュータ1が、走行状態にあるタイヤモデル20の解析対象位置18の温度上昇値を推定している(推定工程S8)。推定工程S8では、前記任意の条件で走行しているタイヤ2(図2に示す)と比較して、走行状態にあるタイヤモデル(即ち、横溝15の全てが埋められたタイヤモデル)20の解析対象位置18の温度上昇値を推定している。温度上昇値は、走行状態にあるタイヤモデル20の解析対象位置18の温度と、タイヤ2の解析対象位置18の温度との差である。このような温度上昇値を、タイヤモデル20の解析対象位置18の温度から差し引かれることにより、実際のタイヤ2の温度を精度よく予測することができる。
本実施形態の温度上昇値は、溝部13(本実施形態では、横溝15の全て)の放熱を考慮して推定される。従って、温度上昇値は、溝部13の幅、溝部13の深さ、及び、溝部13のタイヤ周方向のピッチの少なくとも一つを含む放熱因子に関連付けられるのが望ましい。本実施形態では、横溝15の幅、横溝15の深さ、及び、横溝15のピッチの全てが、放熱因子として関連付けられている。
なお、横溝15の幅が一定でない場合は、全ての横溝15の幅の平均値が、放熱因子として関連付けられるのが望ましい。また、横溝15の深さ、及び、横溝15のピッチが一定でない場合についても、横溝15の幅と同様の手順で関連付けられるのが望ましい。図10は、推定工程S8の処理手順の一例を示すフローチャートである。
本実施形態の推定工程S8は、先ず、放熱因子と温度上昇値との関係式が求められる(関係式計算工程S81)。本実施形態の関係式計算工程S81は、放熱因子が異なる複数のタイヤを走行させて、関係式が求められる。図11は、関係式計算工程S81の処理手順の一例を示すフローチャートである。
本実施形態の関係式計算工程S81は、先ず、放熱因子が異なる複数のタイヤを準備する(工程S811)。本実施形態の工程S811では、横溝15の幅が異なる複数の第1タイヤ、横溝15の深さが異なる複数の第2タイヤ、及び、横溝15のピッチが異なる複数の第3タイヤが準備される。溝部13の幅、深さ、及び、ピッチを異ならせる範囲については、解析対象のタイヤ2(図2に示す)のカテゴリーに応じて、適宜設定されうる。溝部13の幅、深さ及びピッチは、製品として設定可能な範囲内で異ならせることが望ましい。
さらに、工程S811では、横溝15が設けられていない(即ち、主溝14のみが設けられた)第4タイヤが一つ準備される。この第4タイヤは、図5及び図6に示したタイヤモデル20と実質的に同一の形状に設定されている。
精度の高い関係式を求めるために、タイヤのサンプル数については、多いほど好ましい。本実施形態では、第1タイヤ、第2タイヤ及び第3タイヤがそれぞれ、少なくとも3つ準備されるのが望ましい。
次に、本実施形態の関係式計算工程S81は、前記任意の条件に基づいて、各タイヤ(第1タイヤ〜第4タイヤ)を走行させたときの解析対象位置18の温度が測定される(工程S812)。工程S812では、先ず、放熱因子がそれぞれ異なる第1タイヤ〜第4タイヤが、正規リムRにリム組みされ、かつ、正規内圧が充填される。
「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" とする。
「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" とする。
次に、工程S812では、前記任意の条件として定義された走行速度Vs(図5に示す)に基づいて、各タイヤ(第1タイヤ〜第4タイヤ)をドラム試験機(例えば、直径1.7m)で走行させる。なお、タイヤを走行させる路面としては、例えば、テストコースや一般道であってもよい。
次に、工程S812では、解析対象位置18の温度が測定され、解析対象位置18の温度が変化しなくなるまで各タイヤ(第1タイヤ〜第4タイヤ)を走行させる。そして、温度が一定となった解析対象位置18の温度が、コンピュータ1に記憶される。なお、第4タイヤは、第1タイヤ、第2タイヤ及び第3タイヤとは異なり、横溝15が設けられていない。このため、第4タイヤの解析対象位置18の温度は、第1タイヤ〜第3タイヤの解析対象位置18の温度よりも大きくなる。
次に、本実施形態の関係式計算工程S81は、放熱因子と各タイヤ(第1タイヤ〜第4タイヤ)の温度とに基づいて、関係式が求められる(工程S813)。工程S813では、先ず、各第1タイヤについて、第1タイヤの解析対象位置18の温度と、第4タイヤの解析対象位置18の温度との差(以下、単に「温度差」ということがある。)がそれぞれ求められる。これらの温度差は、第1タイヤと比較して、第4タイヤの解析対象位置18の温度上昇値である。
同様に、各第2タイヤについて、第2タイヤの解析対象位置18の温度と、第4タイヤの解析対象位置18の温度との差が求められる。この温度差は、各第2タイヤと比較して、第4タイヤの解析対象位置18の温度上昇値である。さらに、各第3タイヤについて、第3タイヤの解析対象位置18の温度と、第4タイヤの解析対象位置18の温度との差が求められる。この温度差は、第3タイヤと比較して、第4タイヤの解析対象位置18の温度上昇値である。
次に、工程S813では、各第1タイヤ〜第3タイヤの放熱因子(本実施形態では、横溝15の幅、深さ及びピッチ)と、各第1タイヤ〜第3タイヤの放熱因子に対応する第4タイヤの前記温度上昇値とが重回帰分析される。これにより、放熱因子(即ち、溝部13(横溝15)の幅x1、深さx2及びピッチx3)と、温度上昇値Taの関係式が求められる。関係式は、下記式(1)に示される。
Ta=f(x1、x2、x3) …(1)
ここで、
Ta:解析対象位置の温度上昇値
x1:溝部の幅
x2:溝部の深さ
x3:溝部のピッチ
上記関係式は、例えば、任意の放熱因子(横溝15の幅x1、深さx2及びピッチx3)が代入されることにより、放熱因子が設定された横溝15を有するタイヤと比較して、第4タイヤの解析対象位置18の温度上昇値Taが一意に求められる。上述したように、第4タイヤは、タイヤモデル20(図5及び図6に示す)と実質的に同一の形状に設定されている。従って、温度上昇値Taは、放熱因子が設定された横溝15を有するタイヤと比較して、タイヤモデル20の解析対象位置18での温度上昇値として扱うことができる。
次に、本実施形態の推定工程S8は、関係式に基づいて、温度上昇値が推定される(工程S82)。工程S82では、解析対象のタイヤ2(図2に示す)の横溝15の放熱因子(幅、深さ及びピッチ)が、上記式(1)の関係式に代入される。これにより、工程S82では、前記任意の条件で走行しているタイヤ2と比較して、走行状態にあるタイヤモデル20の解析対象位置18の温度上昇値Taを推定することができる。温度上昇値Taは、コンピュータ1に記憶される。
次に、本実施形態のシミュレーション方法は、コンピュータ1が、タイヤモデル20の解析対象位置18の温度から、温度上昇値Taを差し引いて、タイヤ2の温度を計算する(工程S10)。温度上昇値Taは、横溝15が埋められたことに起因する放熱量の低下を考慮したものである。従って、本実施形態のシミュレーション方法は、全ての横溝15が設定されたタイヤモデル(図示省略)を用いたシミュレーションを行わなくても、横溝15の放熱を考慮したタイヤの温度を計算することができる。従って、タイヤ2の走行しているときの温度を、少ない時間で精度よく予測することができる。
次に、本実施形態のシミュレーション方法は、図3に示されるように、コンピュータ1が、予測されたタイヤ2の解析対象位置18の温度が、許容範囲内であるか否かが判断される(工程S20)。解析対象位置18の温度の許容値については、例えば、解析対象のタイヤ2(図2に示す)のカテゴリーに応じて、適宜設定されうる。
工程S20において、タイヤ2の解析対象位置18の温度が、許容範囲内であると判断された場合(工程S20で、「Y」)、タイヤ2が製造される(工程S21)。他方、タイヤ2の解析対象位置18の温度が、許容範囲外であると判断された場合(工程S20で、「N」)、タイヤ2の放熱因子(溝部13の幅、深さ及びピッチ)や、タイヤ2の構造が変更され(工程S22)、推定工程S8〜工程S20が再度実施される。従って、本実施形態のシミュレーション方法は、走行時の解析対象位置18の温度が良好なタイヤ2を、確実に設計することができる。なお、再度実施される推定工程S8において、上記式(1)の関係式が既に求められており、かつ、更新する必要がない場合、関係式計算工程S81の実施は省略される。
上記式(1)の関係式は、任意の放熱因子を代入して、温度上昇値Taを求めることができる。このため、工程S22で設定された様々な放熱因子を有するタイヤ2の温度を、予測することができる。従って、本実施形態のシミュレーション方法は、走行しているときの解析対象位置18の温度が良好なタイヤ2を、少ない計算時間で効率良く設計できる。
本実施形態のシミュレーション方法において、放熱因子(溝部13の幅、深さ及びピッチ)は、全ての溝部13(即ち、クラウン横溝15a、ミドル横溝15b及びショルダー横溝15cを含めた)の平均値として定義されたが、このような態様に限定されない。例えば、放熱因子は、クラウン横溝15a、ミドル横溝15b及びショルダー横溝15c毎に定義されてもよい。これにより、放熱因子をより細分化して定義できるため、放熱因子と温度上昇値との関係式を、より精度よく求めることができる。
また、これまでのシミュレーション方法では、横溝15の全てが埋められたタイヤモデル20が設定されたが、このような態様に限定されない。例えば、シミュレーション方法に求められる予測精度に応じて、横溝15の少なくとも一部が埋められたタイヤモデル20が設定されても良いし、主溝14及び横溝15の全てが埋められたタイヤモデル20が設定されてもよい。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
図2に示した基本構造を有し、かつ、横溝の幅、深さ及び周方向のピッチのいずれかを異ならせた複数のタイヤが製造され、解析対象位置(ベルトプライの外端付近のトレッドゴム)の温度が予測された(実施例、比較例1)。実施例及び比較例1では、先ず、コンピュータに、タイヤの溝部のうち、横溝の全てが埋められた仮想タイヤをモデル化したタイヤモデルが入力された。次に、実施例及び比較例では、予め定められた任意の走行条件に基づいて、タイヤモデルの走行状態を計算され、タイヤモデルの前記解析対象位置の温度が計算された。
実施例では、図10及び図11に示した処理手順に従って、前記走行条件で走行している実際のタイヤと比較して、走行状態にあるタイヤモデルの解析対象位置の温度上昇値を推定する推定工程が実施された。
推定工程では、放熱因子(横溝の幅、深さ、タイヤ周方向のピッチ)が異なる複数のタイヤが、主溝のみのタイヤをハンドカットで彫ることによって準備された。実施例では、横溝の幅が異なる3つの第1タイヤ、横溝の深さが異なる3つの第2タイヤ、横溝のピッチが異なる3つの第3タイヤ、及び、横溝が設けられていない1つの第4タイヤが準備された。
これらの第1タイヤ〜第4タイヤを前記走行条件で走行させたときの解析対象位置の温度を測定し、上記式(1)の関係式が求められた。次に、関係式に基づいて、温度上昇値が推定され、タイヤモデルの解析対象位置の温度から、温度上昇値を差し引いて、タイヤの解析対象位置の温度が計算された。
また、比較のために、タイヤの溝部の全てを再現したタイヤモデルが、コンピュータに入力された(比較例2)。そして、比較例2では、前記走行条件に基づいて、タイヤモデルの走行状態を計算され、タイヤモデルの前記解析対象位置の温度が計算された。
図12は、実施例及び比較例1について、タイヤの解析対象位置の温度と、タイヤモデルの解析対象位置の温度との関係を示すグラフである。実施例は、比較例1に比べて、実際のタイヤの温度とタイヤモデルの温度との誤差を、±5℃の範囲内に収めることができた。さらに、実施例のシミュレーションのトータル時間は、比較例2のシミュレーションのトータル時間の4.2%であった。従って、実施例は、少ない計算時間で、走行しているときのタイヤの温度を精度よく予測できた。
S1 タイヤモデルを入力する工程
S5 タイヤモデルの走行状態を計算する工程
S6 タイヤモデルの解析対象位置の温度を計算する工程
S8 推定工程
S10 タイヤが走行しているときの温度を計算する工程

Claims (5)

  1. トレッド部に複数の溝部が設けられたタイヤが予め定められた任意の条件で走行しているときの予め定められたタイヤの解析対象位置の温度を、コンピュータを用いて予測するためのシミュレーション方法であって、
    前記コンピュータに、前記タイヤの前記溝部の少なくとも一つが埋められた仮想タイヤを、有限個の要素でモデル化したタイヤモデルを入力する工程、
    前記コンピュータが、前記条件に基づいて、前記タイヤモデルの走行状態を計算する工程、
    前記コンピュータが、前記走行状態の前記タイヤモデルの前記解析対象位置の温度を計算する工程、
    前記コンピュータが、前記条件で走行している前記タイヤと比較して、前記走行状態にある前記タイヤモデルの前記解析対象位置の温度上昇値を推定する推定工程、及び、
    前記コンピュータが、前記タイヤモデルの前記解析対象位置の前記温度から、前記温度上昇値を差し引いて、前記タイヤの前記条件で走行しているときの温度を計算する工程を含むことを特徴とするタイヤ温度のシミュレーション方法。
  2. 前記溝部は、タイヤ周方向に連続してのびる少なくとも1つの主溝と、前記主溝と交わる向きにのびる複数の横溝とを含み、
    前記タイヤモデルは、前記横溝の全てが埋められている請求項1記載のタイヤ温度のシミュレーション方法。
  3. 前記温度上昇値は、前記溝部の幅、前記溝部の深さ、及び、前記溝部のタイヤ周方向のピッチの少なくとも一つを含む放熱因子に関連付けられている請求項1又は2記載のタイヤ温度のシミュレーション方法。
  4. 前記推定工程は、前記放熱因子と前記温度上昇値との関係式を求める関係式計算工程、及び
    前記関係式に基づいて、前記温度上昇値を推定する工程を含む請求項3記載のタイヤ温度のシミュレーション方法。
  5. 前記関係式計算工程は、前記放熱因子が異なる複数のタイヤを準備する工程、
    前記条件に基づいて、前記各タイヤを走行させたときの前記解析対象位置の温度を測定する工程、及び
    前記放熱因子と前記各タイヤの温度とに基づいて、前記関係式を求める工程を含む請求項4記載のタイヤ温度のシミュレーション方法。
JP2016125868A 2016-06-24 2016-06-24 タイヤ温度のシミュレーション方法 Active JP6699396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125868A JP6699396B2 (ja) 2016-06-24 2016-06-24 タイヤ温度のシミュレーション方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125868A JP6699396B2 (ja) 2016-06-24 2016-06-24 タイヤ温度のシミュレーション方法

Publications (2)

Publication Number Publication Date
JP2017226392A JP2017226392A (ja) 2017-12-28
JP6699396B2 true JP6699396B2 (ja) 2020-05-27

Family

ID=60888970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125868A Active JP6699396B2 (ja) 2016-06-24 2016-06-24 タイヤ温度のシミュレーション方法

Country Status (1)

Country Link
JP (1) JP6699396B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022165052A (ja) * 2021-04-19 2022-10-31 株式会社ブリヂストン タイヤ温度予測システム、タイヤ温度予測プログラムおよびタイヤ温度予測方法

Also Published As

Publication number Publication date
JP2017226392A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6291366B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP4621271B2 (ja) タイヤのシミュレーション方法
JP2004017903A (ja) タイヤの性能予測方法及びタイヤの設計方法
JP5186856B2 (ja) タイヤモデルの作成方法およびタイヤのシミュレーション方法
JP2010191612A (ja) タイヤモデルの作成方法及びタイヤのシミュレーション方法
JP5629299B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP6699396B2 (ja) タイヤ温度のシミュレーション方法
JP2019023586A (ja) タイヤのシミュレーション方法
JP6523902B2 (ja) タイヤモデルの作成方法及びタイヤ温度のシミュレーション方法
JP6454221B2 (ja) タイヤのシミュレーション方法
JP6454161B2 (ja) タイヤのシミュレーション方法
JP6006576B2 (ja) タイヤのシミュレーション方法
JP7003591B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP2014141164A (ja) タイヤのシミュレーション方法
JP2022047824A (ja) タイヤのシミュレーション方法及び装置
JP7215296B2 (ja) タイヤのシミュレーション方法
JP2017009482A (ja) タイヤモデルの作成方法及びタイヤ温度のシミュレーション方法
JP6502679B2 (ja) タイヤのシミュレーション方法及びシミュレーション装置
JP7451965B2 (ja) タイヤの転がり抵抗の計算方法、コンピュータプログラム及び計算装置
JP6424543B2 (ja) タイヤのシミュレーション方法およびタイヤ性能評価方法
JP7225797B2 (ja) トレッド部の設計方法
JP2020131758A (ja) タイヤのシミュレーション方法及びタイヤの製造方法
JP7487567B2 (ja) タイヤのシミュレーション方法及びタイヤのシミュレーション装置
JP7077759B2 (ja) タイヤのシミュレーション方法
JP7290077B2 (ja) タイヤのシミュレーション方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250