JP6342601B1 - 電気二重層キャパシタ用炭素質材料およびその製造方法 - Google Patents

電気二重層キャパシタ用炭素質材料およびその製造方法 Download PDF

Info

Publication number
JP6342601B1
JP6342601B1 JP2018511780A JP2018511780A JP6342601B1 JP 6342601 B1 JP6342601 B1 JP 6342601B1 JP 2018511780 A JP2018511780 A JP 2018511780A JP 2018511780 A JP2018511780 A JP 2018511780A JP 6342601 B1 JP6342601 B1 JP 6342601B1
Authority
JP
Japan
Prior art keywords
carbonaceous material
double layer
electric double
pore diameter
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018511780A
Other languages
English (en)
Other versions
JPWO2018092721A1 (ja
Inventor
裕美加 西田
裕美加 西田
西村 修志
修志 西村
江川 義史
義史 江川
清人 大塚
清人 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Application granted granted Critical
Publication of JP6342601B1 publication Critical patent/JP6342601B1/ja
Publication of JPWO2018092721A1 publication Critical patent/JPWO2018092721A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、耐久性の向上および耐電圧の向上に有効な、電気二重層キャパシタ用炭素質材料およびその製造方法を提供する。本発明は、植物由来の炭素前駆体に基づく炭素質材料であって、BET比表面積が1900〜2500m2/gであり、窒素吸着法によって算出される平均細孔径は2.2〜2.6nmであり、MP法により測定される2nm以下の細孔径を有するマイクロ孔の細孔容積は0.84〜1.30cm3/gであり、MP法により測定される2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合が25〜50%であり、BJH法により測定される2〜50nmの細孔径を有するメソ孔の細孔容積は0.16〜0.4cm3/gである、電気二重層キャパシタ用炭素質材料に関する。

Description

本特許出願は日本国特許出願第2016−222502号(出願日:2016年11月15日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
本発明は、電気二重層キャパシタ用炭素質材料およびその製造方法に関し、特に耐久性の向上および耐電圧の向上に有効な、電気二重層キャパシタ用炭素質材料およびその製造方法に関する。
エネルギー貯蔵デバイスの1つである電気二重層キャパシタは、化学反応を伴わず物理的なイオンの吸脱着のみから得られる容量(電気二重層容量)を利用しているため、電池と比較して出力特性、寿命特性に優れている。その特性から、各種メモリーのバックアップ、自然エネルギーによる発電用途、UPS(Uninterruptible Power Supply)などの蓄電源用途として多く開発されている。近年では、電気二重層キャパシタは上記の優れた特性と、環境問題への早急な対策といった点から、電気自動車(EV)やハイブリッド車(HV)の補助電源、回生エネルギーの貯蔵用途として注目されている。しかしながら、このような車載用の電気二重層キャパシタは、より高エネルギー密度であることだけでなく、民生用途と比較して厳しい使用条件下(たとえば温度環境)で高い耐久性や静電容量の更なる向上が要求されている。
このような要求に対し、BET比表面積、平均細孔径等を制御することによって、厳しい条件下での耐久性を満たす電気二重層キャパシタが報告されている。例えば、特許文献1においては、特定範囲のBET比表面積および細孔径を有する活性炭が開示され、この活性炭を電極として使用した電気二重層キャパシタは体積あたりの出力密度が大きく、かつ耐久性に優れることも開示されている。しかしながら、より長期の耐久性向上・内部抵抗低下等に課題が残されていた。また、特許文献2には、静電容量および内部抵抗に優れた活性炭を含有する電気二重層キャパシタが開示されているが、同文献に記載される活性炭を使用すると、細孔径が大きすぎるために電極の嵩密度が低下し、体積あたりの静電容量が低下するおそれがある。
特許文献3には、賦活原料をアルカリ浸漬および洗浄することにより含有するアルカリ金属分を調整し、賦活することにより特定の細孔径の細孔容積を増加させ、BET比表面積および平均細孔径を制御することによって、内部抵抗および出力密度に優れ、高い耐久性を有する電気二重層キャパシタが得られることが開示されている。
しかしながら、同文献に記載される活性炭の場合、抵抗に関して良好な結果を得ているが、体積あたりの静電容量が不十分である場合がある。
特許文献4および5には、特定範囲のBET比表面積、細孔径および細孔径分布を有するリチウム蓄電デバイスの正極用活性炭が開示されている。これらの文献に記載される活性炭は、リチウムイオン蓄電デバイスの正極用活性炭であるため、通常の電気二重層キャパシタに適用することは困難であるが、適用した場合、当該活性炭が有する細孔容積や平均細孔径から、耐久性が不十分であったり、静電容量の低下のおそれがある。
特許第4618929号公報 特許第5202460号公報 特開2011−176043号公報 特許第5317659号公報 特許第5463144号公報
本発明は、上記実状に鑑みてなされたものであり、耐久性の向上および耐電圧の向上に有効な、電気二重層キャパシタ用炭素質材料およびその製造方法を提供することを課題とする。
本発明者等は、上記課題を解決するために、電気二重層キャパシタ用炭素質材料およびその製造方法について詳細に検討を重ねた結果、本発明に到達した。
すなわち、本発明は、以下の好適な態様を包含する。
〔1〕植物由来の炭素前駆体に基づく炭素質材料であって、
BET比表面積が1900〜2500m/gであり、
窒素吸着法によって算出される平均細孔径は2.2〜2.6nmであり、
MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積は0.84〜1.30cm/gであり、
MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に占める1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合が25〜50%であり、
BJH法により測定される、2〜50nmの細孔径を有するメソ孔の細孔容積は0.16〜0.4cm/gである、電気二重層キャパシタ用炭素質材料。
〔2〕窒素吸脱着等温線の相対圧P/P=0.99における窒素吸着量により算出した全細孔容積が1.0〜1.50cm/gである、前記〔1〕に記載の電気二重層キャパシタ用炭素質材料。
〔3〕タップ密度が0.21〜0.25g/cmである、前記〔1〕または〔2〕に記載の電気二重層キャパシタ用炭素質材料。
〔4〕前記炭素前駆体は椰子殻由来である、前記〔1〕〜〔3〕のいずれかに記載の電気二重層キャパシタ用炭素質材料。
〔5〕前記〔1〕〜〔4〕のいずれかに記載の電気二重層キャパシタ用炭素質材料を製造する方法であって、
該方法は、植物由来の炭素前駆体を、炭化し、水蒸気を用いて一次賦活し、洗浄し、水蒸気を用いて二次賦活して、炭素質材料を得ることを含み、
前記洗浄後の炭素質材料中のカリウム元素含有量は500ppm以下であり、
前記洗浄後の炭素質材料中の鉄元素含有量は200ppm以下である、方法。
〔6〕前記〔1〕〜〔5〕のいずれかに記載の炭素質材料を含む電気二重層キャパシタ用電極。
〔7〕前記〔6〕に記載の電気二重層キャパシタ用電極を備える電気二重層キャパシタ。
本発明の電気二重層キャパシタ用炭素質材料は、抵抗低減のために必要なマイクロ孔を有し、体積あたりの容量低下をもたらす過大なメソ孔の発達を抑制することができるため、本発明の電気二重層キャパシタ用炭素質材料を電極に使用すると、電気二重層キャパシタの抵抗上昇が抑制され、性能維持率等の耐久性が向上し、耐電圧が向上する。また、本発明の電気二重層キャパシタ用炭素質材料を含む電極は、高耐久性が求められる電気二重層キャパシタやリチウムイオンキャパシタ用の電極として好適に利用できる。
シート状の電極組成物を示す図である。 導電性接着剤が塗布された集電体(エッチングアルミニウム箔)を示す図である。 シート状の電極組成物と集電体を接着しアルミニウム製タブを超音波溶接した分極性電極を示す図である。 袋状の外装シートを示す図である。 電気二重層キャパシタを示す図である。 周波数と、−30℃での定電圧交流インピ−ダンス測定における電気二重層キャパシタ用炭素質材料の抵抗との関係を表す図(Bode−Plot)である。 炭素質材料の耐久性試験(60℃、3Vの負荷を所定時間)における、1Hzおよび1000Hzでの、−30℃の定電圧交流インピ−ダンス測定における炭素質材料の抵抗差の経時変化を表す図である。 電気二重層キャパシタ用炭素質材料の平均細孔径と、耐久性試験後の−30℃測定における、炭素質材料の質量あたりの静電容量、および1Hzおよび1000Hzにおける抵抗差との関係を示す図である。 電気二重層キャパシタ用炭素質材料の平均細孔径と、耐久性試験後の−30℃測定における、炭素質材料の体積あたりの静電容量、および1Hzおよび1000Hzにおける抵抗差との関係を示す図である。 電気二重層キャパシタ用炭素質材料の、2nm以下の細孔径を有するマイクロ孔の細孔容積に占める1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合と、耐久性試験後の−30℃測定における、炭素質材料の質量あたりの静電容量、および1Hzおよび1000Hzにおける抵抗差との関係を示す図である。 電気二重層キャパシタ用炭素質材料の、2nm以下の細孔径を有するマイクロ孔の細孔容積に占める1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合と、耐久性試験後の−30℃測定における、炭素質材料の体積あたりの静電容量、および1Hzおよび1000Hzにおける抵抗差との関係を示す図である。
本発明の電気二重層キャパシタ用炭素質材料は、植物由来の炭素前駆体に基づく炭素質材料であって、BET比表面積が1900〜2500m/gであり、窒素吸着法によって算出される平均細孔径は2.2〜2.6nmであり、MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積は0.84〜1.30cm/gであり、MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合が25〜50%であり、BJH法により測定される、2〜50nmの細孔径を有するメソ孔の細孔容積は0.16〜0.4cm/gである。
本発明の電気二重層キャパシタ用炭素質材料は、1900〜2500m/gのBET比表面積を有する。一般に、単位面積あたりの静電容量は一定である。そのため、BET比表面積が1900m/gより小さいと単位質量あたりの静電容量が小さくなりすぎる。一方で、BET比表面積が2500m/gより大きいと、電極用活性炭を用いて製造した電極の嵩密度が低下し、体積あたりの静電容量が小さくなりすぎる。BET比表面積は、単位質量あたりの静電容量と体積あたりの静電容量の両方を高めやすい観点から、好ましくは1950〜2450m/g、より好ましくは2000〜2400m/gである。なお、内部抵抗に関しては比表面積の他、平均細孔径、細孔分布、細孔容積が大きく影響するため、総合的に勘案する必要がある。
本発明の電気二重層キャパシタ用炭素質材料は、2.2〜2.6nmの平均細孔径を有する。平均細孔径が2.2nmより小さいと、細孔内のイオンの移動抵抗が増加するため望ましくない。また、平均細孔径が2.6nmより大きいと、電極密度が低下するため望ましくない。上記平均細孔径は、細孔内のイオンの移動抵抗を小さくしやすく、電極密度を高めやすい観点から、好ましくは2.25〜2.55nm、より好ましくは2.3〜2.5nmである。
なお、上記のBET比表面積および平均細孔径は窒素吸着法により算出され、例えば実施例に記載する方法により測定することができる。
本発明の電気二重層キャパシタ用炭素質材料は、本発明の電気二重層キャパシタ用炭素質材料についてMP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積が、0.84〜1.30cm/gである。上記2nm以下の細孔径を有するマイクロ孔の細孔容積が0.84cm/gより小さいと、細孔の発達が不十分となり、比表面積の低下し、静電容量が低下するおそれがあるため望ましくない。また、2nm以下の細孔径を有するマイクロ孔の細孔容積が1.30cm/gより大きいと、微細孔の発達に伴いメソ孔が過大となり、電極の嵩密度が低下し、体積あたりの静電容量が低下するため望ましくない。上記2nm以下の細孔径を有するマイクロ孔の細孔容積は、静電容量を高めやすい観点から、好ましくは0.90〜1.25cm/g、より好ましくは1.00〜1.20cm/gである。
また、本発明の電気二重層キャパシタ用炭素質材料は、本発明の電気二重層キャパシタ用炭素質材料についてMP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合(以下において「割合A」とも称する)が25〜50%である。上記割合Aは次の式にしたがい算出される。
Figure 0006342601
割合Aが25%より小さいと、電極内部抵抗が高くなり、かつ炭素質材料に吸着した水分が抜けにくくなるため望ましくない。また、割合Aが50%より大きいと、嵩密度が低下し、体積あたりの静電容量が低下するため望ましくない。割合Aは、内部抵抗を低下させやすく、電極の水分含量を低下させやすく、静電容量を高めやすい観点から、好ましくは25〜48%、より好ましくは27〜45%である。
ここで、MP法とは、「t−プロット」(B.C.Lippens, J.H.de Boer, J.Catalysis, 4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積およびマイクロ孔の分布を求める方法であり、M.Mikhail, Brunauer, Bodorにより考案された方法である。本発明において、窒素吸着法によって測定した窒素吸脱着等温線に対し、MP法を適用することによって、細孔容積を算出することができる。
本発明の電気二重層キャパシタ用炭素質材料は、BJH法により測定される、2〜50nmの細孔径を有するメソ孔の細孔容積が0.16〜0.4cm/gである。上記2〜50nmの細孔径を有するメソ孔の細孔容積が上記下限値より小さいと、電極内部抵抗の上昇を招き、出力特性を低下させるため望ましくない。上記2〜50nmの細孔径を有するメソ孔の細孔容積が上記上限値より大きいと、電極の嵩密度が低下し、体積あたりの静電容量が低下するため望ましくない。上記メソ孔の細孔容積は、出力特性および静電容量を高めやすい観点から、好ましくは0.18〜0.38cm/g、より好ましくは0.19〜0.35cm/gである。
ここで、BJH法とは、CI法、DH法同様に、一般にメソ孔解析に用いられる計算方法であり、BarrEtt, Joyner, Halendsらによって提唱された方法である。本発明において、窒素吸着法によって測定した窒素吸脱着等温線に対し、BJH法を適用することによって、細孔容積を算出することができる。
本発明の電気二重層キャパシタ用炭素質材料は、窒素吸脱着等温線の相対圧P/P=0.99における窒素吸着量により算出した全細孔容積が、好ましくは1.0〜1.5cm/g、より好ましくは1.20〜1.45cm/g、さらに好ましくは1.25〜1.40cm/gである。全細孔容積が上記範囲内であると、静電容量と抵抗のバランスがよいため望ましい。なお、上記全細孔容積は、窒素吸着法によって測定した窒素吸脱着等温線において、相対圧P/P=0.99における窒素吸着量から算出することができる。
本発明の電気二重層キャパシタ用炭素質材料は、タップ密度が、好ましくは0.21〜0.25、より好ましくは0.22〜0.24、さらに好ましくは0.225〜0.235である。タップ密度が上記の下限値以上であることが、電極密度を高めやすく、体積あたりの容量を高めやすいため好ましい。また、上記タップ密度が上記の上限値以下であることが、電極内部の抵抗を低下させて、体積あたりの静電容量を高めやすいため好ましい。
ここで、上記タップ密度は、(株)セイシン企業製のTAPDENSER KYT−4000を用いて、炭素質材料を容器に充填した後、タッピングすることにより得られる。
本発明の電気二重層キャパシタ用炭素質材料は、好ましくは30μm以下、より好ましくは20μm以下の平均粒子径を有し、好ましくは2μm以上、より好ましくは4μm以上の平均粒子径を有する。なお、平均粒子径は、例えば粒子径・粒度分布測定装置(例えば日機装株式会社製「マイクロトラックM T3000」)を用いて測定することができる。
本発明において、植物由来の炭素前駆体としては、特に制限されないが、例えば椰子殻、珈琲豆、茶葉、サトウキビ、果実(例えば、みかん、バナナ)、藁、籾殻、広葉樹、針葉樹、竹が例示される。この例示は、本来の用途に供した後の廃棄物(例えば、使用済みの茶葉)、あるいは植物原料の一部(例えば、バナナやみかんの皮)を包含する。これらの植物原料を、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの植物原料の中でも、入手が容易で種々の特性を有する炭素質材料を製造できることから、椰子殻が好ましい。
椰子殻としては、特に限定されないが、例えばパームヤシ(アブラヤシ)、ココヤシ、サラク、オオミヤシ等の椰子殻が挙げられる。これらの椰子殻を、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。椰子を、食品、洗剤原料、バイオディーゼル油原料等として利用した後に大量に発生するバイオマス廃棄物であるココヤシ及びパームヤシの椰子殻は、入手容易性の観点から、特に好ましい。
本発明の電気二重層キャパシタ用炭素質材料、特に活性炭は、植物由来の炭素前駆体を、炭化し、一次賦活し、洗浄し、さらに高次賦活して、炭素質材料を得ることを含む方法によって製造することができる。
上記炭化および賦活の方式は、特に限定されないが、例えば、固定床方式、移動床方式、流動床方式、多段床方式、ロータリーキルンなどの公知の方式が採用できる。
本発明の電気二重層キャパシタ用炭素質材料の製造方法において、まず植物由来の炭素前駆体を炭化する。炭化方法としては特に限定されないが、窒素、二酸化炭素、ヘリウム、アルゴン、一酸化炭素もしくは燃料排ガスなどの不活性ガス、これら不活性ガスの混合ガス、またはこれら不活性ガスを主成分とする他のガスとの混合ガスの雰囲気下、400〜800℃程度の温度で焼成する方法が挙げられる。
上記炭素前駆体を炭化した後、一次賦活を行う。賦活方法としては、ガス賦活法と薬品賦活法があるが、本発明では、不純物の残留が少ないという観点からガス賦活法が好ましい。ガス賦活法は、炭化された炭素前駆体を、賦活ガス(例えば、水蒸気、炭酸ガスなど)と反応させることにより行うことができる。
一次賦活において、効率良く賦活を進行させる観点から、炭化の際に用いるものと同様の不活性ガスと水蒸気との混合物が好ましく、その際の水蒸気の分圧は10〜60%の範囲であることが好ましい。水蒸気分圧が10%以上であると賦活を十分に進行させやすく、60%以下であると、急激な賦活反応を抑制し、反応をコントロールしやすい。
一次賦活において供給する賦活ガスの総量は、炭素前駆体100質量部に対して、好ましくは50〜10000質量部、より好ましくは100〜5000質量部、さらに好ましくは200〜3000質量部である。供給する賦活ガスの総量が上記範囲内であると、賦活反応をより効率良く進行させることができる。
一次賦活における賦活温度は、通常700〜1100℃、好ましくは800〜1000℃である。賦活時間および昇温速度は特に限定されず、選択する植物由来の炭素前駆体の種類、形状、サイズ、および所望の細孔径分布等により異なる。なお、一次賦活における賦活温度を高くしたり、賦活時間を長くすると、得られる炭素質材料のBET比表面積は大きくなる傾向がある。そのため、所望の範囲のBET比表面積を有する炭素質材料を得るために、賦活温度や賦活時間を調整すればよい。
一次賦活後に得られる炭素質材料のBET比表面積が1000〜1750m/g程度となるまで、一次賦活を行うことが好ましい。この場合、続く洗浄において、含有する不純物を効率的に除去できる細孔を形成することができる。
次に、一次賦活後に得られた炭素質材料を洗浄する。洗浄は、一次賦活後に得られた炭素質材料を、酸を含む洗浄液に浸漬することによって行うことができる。洗浄液としては、例えば鉱酸又は有機酸が挙げられる。鉱酸としては、例えば、塩酸、硫酸等が挙げられる。有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸及び酒石酸、クエン酸等の飽和カルボン酸、安息香酸及びテレフタル酸等の芳香族カルボン酸等が挙げられる。洗浄液に用いる酸は、洗浄性の観点から、好ましくは鉱酸であり、より好ましくは塩酸である。なお、酸を用いて洗浄を行った後、さらに水等を用いて洗浄して余剰の酸の除去を行うことが好ましく、この操作によって2次賦活以降での賦活設備への負荷を軽減することができる。
洗浄液は、通常、酸と水性溶液とを混合して調製することができる。水性溶液としては、水、水と水溶性有機溶媒との混合物などが挙げられる。水溶性有機溶媒としては、例えばメタノール、エタノール、プロピレングリコール、エチレングリコールなどのアルコールが挙げられる。
洗浄液中の酸の濃度は特に限定されるものではなく、用いる酸の種類に応じて濃度を適宜調節して用いてよい。洗浄液の酸濃度は、洗浄液の総量に基づいて、好ましくは0.01〜3.5質量%であり、より好ましくは0.02〜2.2質量%であり、さらに好ましくは0.03〜1.6質量%である。洗浄液中の酸の濃度が上記範囲内であると、炭素質材料中に含まれる不純物を効率的に除去できるため好ましい。
洗浄液のpHは、特に限定されるものではなく、用いる酸の種類や除去対象等に応じて適宜調節してよい。
炭素質材料を浸漬する際の洗浄液の温度は特に限定されないが、好ましくは0〜98℃であり、より好ましくは10〜95℃であり、さらに好ましくは15〜90℃である。炭素質材料を浸漬する際の洗浄液の温度が上記範囲内であれば、実用的な時間かつ装置への負荷を抑制した洗浄の実施が可能となるため望ましい。
炭素質材料を洗浄する方法としては、炭素質材料を洗浄液に浸漬させることができる限り特に限定されず、洗浄液を連続的に添加し、所定の時間滞留させ、抜き取りながら浸漬を行う方法でも、炭素質材料を洗浄液に浸漬し、所定の時間滞留させ、脱液した後、新たに洗浄液を添加して浸漬−脱液を繰り返す方法であってもよい。また、洗浄液の全部を更新する方法であってもよいし、洗浄液の一部を更新する方法であってもよい。炭素質材料を洗浄液に浸漬する時間としては、用いる酸、酸の濃度、処理温度等に応じて適宜調節することができる。
洗浄の時間は特に限定されないが、反応設備の経済効率、炭素質材料の構造保持性の観点から、好ましくは0.05〜4時間であり、より好ましくは0.1〜3時間である。
炭素質材料を洗浄液に浸漬する際の、洗浄液と炭素質材料との質量割合は、用いる洗浄液の種類、濃度及び温度等に応じて適宜調節してよい。洗浄液の質量に対する、浸漬させる炭素質材料の質量は、通常0.1〜50質量%であり、好ましくは1〜20質量%であり、より好ましくは1.5〜10質量%である。上記範囲内であれば、洗浄液に溶出した不純物が洗浄液から析出しにくく、炭素質材料への再付着を抑制しやすく、また、容積効率が適切となるため経済性の観点から望ましい。
洗浄を行う雰囲気は特に限定されず、洗浄に使用する方法に応じて適宜選択してよい。本発明において洗浄は、通常、大気雰囲気中で実施する。
洗浄は、1種の洗浄液で1回または複数回行ってもよいし、2種以上の洗浄液を組み合わせて複数回行ってもよい。
洗浄によっては、炭素質材料に含まれる不純物を除去することができる。この不純物は、植物由来の炭素前駆体によってもたらされるものであり、例えば、リチウム、ナトリウムおよびカリウム等のアルカリ金属類;ベリリウム、マグネシウムおよびカルシウム等のアルカリ土類金属類;および鉄、銅およびニッケル等の遷移金属類等が挙げられる。
本発明において、上記洗浄後の炭素質材料中のカリウム元素含有量は好ましくは500ppm以下、より好ましくは150ppm以下、さらにより好ましくは120ppm以下である。本発明において、植物由来の炭素前駆体に基づく炭素質材料を用いているため、不純物としてカリウム元素が主成分となり得る。それゆえ、洗浄後の炭素質材料のカリウム元素含有量が低下すると、他の不純物の含有量も低下するものと考えられる。なお、上記洗浄後の炭素質材料中のカリウム元素含有量はできるだけ少ないことが好ましく、その下限値は0ppm以上、例えば6ppm以上である。
本発明において、上記洗浄後の炭素質材料中の鉄元素含有量は好ましくは200ppm以下、より好ましくは150ppm以下、さらにより好ましくは100ppm以下である。本発明において、製造工程において混入し得る代表的な元素として鉄元素が挙げられ、洗浄後の炭素質材料の鉄元素含有量が低下すると、製造工程において混入し得る他の不純物の含有量も低下するものと考えられる。なお、上記洗浄後の炭素質材料中の鉄元素含有量はできるだけ少ないことが好ましく、その下限値は0ppm以上、例えば3ppm以上である。
カリウム元素および鉄元素の含有量の測定の詳細は実施例に記載するとおりであり、マイクロウェーブ試料前処理装置(例えばCEM社製「DiscoverSP−D80」)、およびICP発光分光分析装置(例えばサーモフィッシャーサイエンティフィック(株)製「iCAP6200」)を用いることができる。
上記不純物は、水蒸気を用いた賦活において、賦活反応の助剤として機能するため、細孔形成を必要以上に加速させる。特に、不純物は賦活の進行に伴って濃縮されるため、高賦活処理の後期(例えば、BET比表面積が1900m/g以上)においては、その機能がさらに助長され、目的の細孔径を形成する際の障害となる場合がある。本発明の炭素質材料の製造方法は特に限定されないが、本発明の好ましい一態様においては、まず一次賦活において、不純物を多く含む状態で細孔形成を進め、細孔の基礎骨格を効率的に形成し、それに続く洗浄によって賦活反応の助剤として機能し得る不純物を除去し、賦活の急速な進行を抑制することによって、その後の高次賦活において、最適な細孔の形成を促すことができ、本発明の炭素質材料が得られる。
本発明において、洗浄後に得られた炭素質材料の二次賦活を行う。二次賦活は、上記一次賦活と同様の条件範囲で行うことができる。なお、二次賦活についても同様に、賦活温度を高くしたり、賦活時間を長くすると、得られる炭素質材料のBET比表面積は大きくなる傾向がある。そのため、所望の範囲のBET比表面積を有する炭素質材料を得るために、賦活温度や賦活時間を調整すればよい。後述する三次賦活およびさらに高次の賦活についても同様である。
二次賦活の後に、さらに三次賦活を行ってよく、さらに高次の賦活を行ってもよい。また、二次賦活以降の各賦活の間に洗浄を行ってもよい。経済性の観点から、二次賦活または三次賦活まで行うことが好ましい。本発明において、三次賦活およびさらに高次の賦活も一次賦活と同様の条件範囲で行うことができる。
本発明において、二次以上の賦活後の炭素質材料中のカリウム元素含有量は好ましくは1000ppm以下、より好ましくは500ppm以下、さらにより好ましくは300ppm以下であることが好ましい。カリウム元素含有量を上記好ましい範囲に調整するために、先の一次賦活後の不純物量を調整することが好ましい。二次以上の賦活後の炭素質材料中のカリウム元素含有量が上記範囲内であると、賦活の急速な進行を抑制でき、所望の細孔を形成しやすい。なお、上記カリウム元素含有量もできるだけ少ないことが好ましく、その下限値は0ppm以上、例えば6ppm以上である。
本発明において、二次以上の賦活後の炭素質材料中の鉄元素含有量は好ましくは300ppm以下、より好ましくは250ppm以下、さらにより好ましくは200ppm以下であることが好ましい。鉄元素含有量を上記好ましい範囲に調整するために、先の一次賦活後の不純物量を調整することが好ましい。二次以上の賦活後の炭素質材料中の鉄元素含有量が上記範囲内であると、カリウム元素含有量と同様、賦活の急速な進行を抑制でき、所望の細孔を形成しやすい。なお、上記鉄元素含有量もできるだけ少ないことが好ましく、その下限値は0ppm以上、例えば6ppm以上である。
二次賦活またはさらに高次の賦活後に得られる炭素質材料を、さらに洗浄し、炭素質材料中に含まれる灰分、金属不純物を除去することが好適である。また、二次賦活またはさらに高次の賦活後に得られる炭素質材料を、不活性ガス雰囲気下または真空雰囲気下で500〜1500℃で熱処理をし、洗浄後の残留物の加熱除去や不要な表面官能基の除去さらに炭素の結晶化を高くして電気伝導度を増加させてもよい。
本発明において、このようにして得られた炭素質材料を次に粉砕する。粉砕方法としては特に制限されないが、ボールミル、ロールミルもしくはジェットミル等の公知の粉砕方法、またはこれらの組み合わせを採用することができる。粉砕後の炭素質材料の平均粒子径は、特に制限されないが、電極密度の向上および内部抵抗の低減の観点から、好ましくは30μm以下、より好ましくは20μm以下であり、好ましくは2μm以上、より好ましくは4μm以上である。
本発明において、粉砕して得られた炭素質材料を分級してもよい。例えば、粒子径が1μm以下の粒子を除くことにより狭い粒度分布幅を有する活性炭粒子を得ることが可能となる。このような微粒子除去により、電極構成時のバインダー量を少なくすることが可能となる。分級方法は、特に制限されないが、例えば篩を用いた分級、湿式分級、乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。経済性の観点から、乾式分級装置を用いることが好ましい。
粉砕と分級とを、1つの装置を用いて実施することもできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕および分級を実施することができる。更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
また、得られた炭素質材料は、用途に応じて、熱処理を施す、表面を化学的または物理的修飾する等の後処理を施してもよい。
得られた炭素質材料を乾燥してもよい。乾燥は、炭素質材料に吸着している水分等を除去するための操作であり、例えば炭素質材料を加熱することにより、炭素質材料に吸着している水分等を除去することができる。加熱に加えて、または、加熱に代えて、例えば減圧、減圧加熱、凍結などの手段により乾燥を行い、炭素質材料に吸着している水分等を除去することができる。
乾燥温度は、炭素質材料に吸着している水分の除去の観点から、100〜330℃であることが好ましく、110〜300℃であることがより好ましく、120〜250℃であることがさらに好ましい。
乾燥時間は、採用する乾燥温度にもよるが、炭素質材料に吸着している水分の除去の観点から、好ましくは0.1時間以上、より好ましくは0.5時間以上、さらに好ましくは1時間以上である。また、経済性の観点から、好ましくは24時間以下、より好ましくは12時間以下、さらに好ましくは6時間以下である。
乾燥を、常圧または減圧雰囲気下で行うことが可能である。乾燥を常圧で行う場合、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下または露点−20℃以下の空気雰囲気下で行うことが好ましい。
本発明は、本発明の炭素質材料を含む電気二重層キャパシタ用電極、およびこの電極を備える電気二重層キャパシタも提供する。本発明の電気二重層キャパシタ用電極は、本発明の炭素質材料をバインダーおよび必要に応じて導電助材と混合し、得られた混合物を成形して製造することができる。
本発明の電気二重層キャパシタ用電極は、電気二重層キャパシタの抵抗上昇が抑制され、性能維持率等の耐久性が向上し、耐電圧が向上する。また、本発明の電気二重層キャパシタ用電極は、高耐久性が求められる電気二重層キャパシタやリチウムイオンキャパシタ用の電極として好適に利用できる。
以下、実施例を用いて本発明をより詳細に説明するが、本発明は実施例により何ら制限されるものではない。実施例および比較例における各物性値は以下の方法により測定した。
[比表面積測定]
日本ベル(株)製のBELSORP−miniを使用し、炭素質材料を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける炭素質材料の窒素吸脱着等温線を測定した。得られた吸脱着等温線からBET式により多点法による解析を行い、得られた曲線の相対圧P/P=0.01〜0.1の領域での直線から比表面積を算出した。
[全細孔容積・平均細孔径]
日本ベル(株)製のBELSORP−miniを使用し、炭素質材料を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける炭素質材料の窒素吸脱着等温線を測定した。得られた吸脱着等温線における相対圧P/P=0.99における窒素吸着量から求めた全細孔容積を用い、平均細孔径に関しては全細孔容積および先に記載したBET法から求めた比表面積より、下記式に基づいて算出した。
Figure 0006342601
[MP法によるマイクロ孔細孔容積測定]
日本ベル(株)製のBELSORP−miniを使用し、炭素質材料を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける炭素質材料の窒素吸脱着等温線を測定した。得られた吸脱着等温線に対し、MP法を適用し、マイクロ孔の細孔容積を算出した。なお、MP法での解析にあたっては日本ベル(株)から提供されたt法解析用標準等温線『NGCB−BEL.t』を解析に用いた。
[BJH法によるメソ孔細孔容積測定]
日本ベル(株)製のBELSORP−miniを使用し、炭素質材料を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける炭素質材料の窒素吸脱着等温線を測定した。得られた脱着等温線に対し、BJH法を適用し、メソ孔の細孔容積を算出した。
[タップ密度測定]
炭素質材料を120℃、減圧雰囲気下で(ゲージ圧として−95kPa以下)12時間以上かけて乾燥処理した後、測定容器(100mlメスシリンダー)に100mlとなるよう充填し、炭素質材料の重量を測定した。容器に蓋をして、40mmのスペーサーを装着した(株)セイシン企業製のTAPDENSER KYT−4000に設置し、1000回タッピングを行った。炭素質材料の重量と、タッピング後に得られた体積より、下記式に基づいてタップ密度を求めた。
Figure 0006342601
[金属含有量]
カリウム元素含有量および鉄元素含有量の測定方法は、例えば以下の方法により測定することができる。まず、既知濃度の標準液からカリウム元素含有量および鉄元素含有量についての検量線を作成する。ついで、粉砕した被測定試料を115℃で3時間乾燥した後、分解容器に0.1g入れ、硝酸10mlを加え混ぜた後、マイクロウェーブ試料前処理装置(CEM社製「DiscoverSP−D80」)を用いて試料を溶解した。その溶解液を取り出し、25mlにメスアップして測定溶液を調製した後、ICP発光分光分析装置(サーモフィッシャーサイエンティフィック(株)製「iCAP6200」)にて分析した。得られた値と先に作成した検量線より各濃度を求め、下記の式よりカリウム元素含有量および鉄元素含有量を求めた。
Figure 0006342601
[試験用電極の作製]
電極構成部材である電気二重層キャパシタ用炭素質材料、導電助材およびバインダーを、事前に120℃、減圧(0.1KPa以下)の雰囲気にて16時間以上減圧乾燥を行い使用した。
電気二重層キャパシタ用炭素質材料、導電助材およびバインダーを、(炭素質材料の質量):(導電助材の質量):(バインダーの質量)の比が81:9:10となるように秤量し、混錬した。上記導電助材としては、デンカ(株)製の導電性カーボンブラック「デンカブラック粒状」を使用し、上記バインダーとしては、三井・デュポン フロロケミカル(株)製のポリテトラフルオロエチレン「6J」を使用した。混錬した後、さらに均一化を図る為、1mm角以下のフレーク状にカットし、コイン成形機にて400Kg/cmの圧力を与え、コイン状の二次成形物を得た。得られた二次成形物をロールプレス機により160μm±5%の厚みのシート状に成形した後、所定の大きさ(30mm×30mm)に切り出し、図1に示すような電極組成物1を作製した。そして、得られた電極組成物1を120℃、減圧雰囲気下で16時間以上乾燥した後、質量、シート厚みおよび寸法を計測し、以下の測定に用いた。
[測定電極セルの作製]
図2に示すように、宝泉(株)製のエッチングアルミニウム箔3に日立化成工業(株)製の導電性接着剤2「HITASOL GA−703」を塗布厚みが100μmになるように塗布した。そして、図3に示すように、導電性接着剤2が塗布されたエッチングアルミニウム箔3と、先にカットしておいたシート状の電極組成物1とを接着した。そして、宝泉(株)製のアルミニウム製のシーラント5付きタブ4をエッチングアルミニウム箔3に超音波溶接機を用いて溶接した。溶接後、120℃で真空乾燥し、アルミニウム製の集電体を備える分極性電極6を得た。
図4に示すように、宝泉(株)製のアルミニウム積層樹脂シートを長方形(縦200mm×横60mm)に切り出し2つ折にして、1辺(図4中の(1))を熱圧着して残る2辺が開放された袋状外装シート7を準備した。ニッポン高度紙工業(株)製のセルロース製セパレーター「TF−40」(図示せず)を介して上記の分極性電極6を2枚重ね合わせた積層体を作製した。この積層体を外装シート7に挿入して、タブ4が接する1辺(図5中の(2))を熱圧着して分極性電極6を固定した。そして、120℃、減圧雰囲気下で16時間以上真空乾燥させた後、アルゴン雰囲気(露点−90℃以下)のドライボックス内で電解液を注入した。電解液としては、東洋合成工業(株)製の1.5mol/Lのトリエチルメチルアンモニウム・テトラフルオロボレートのプロピレンカーボネート溶液を使用した。外装シート7内で積層体に電解液を含侵させた後、外装シート7の残る1辺(図5中の(3))を熱圧着して図5に示す電気二重層キャパシタ8を作製した。
[静電容量測定]
得られた電気二重層キャパシタ8を菊水電子工業(株)製の「CAPACITOR TESTER PFX2411」を用いて、25℃および−30℃において、到達電圧3.0Vまで、電極表面積あたり200mAで定電流充電し、さらに、3.0Vで30分、定電圧下補充電し、補充電完了後、25mAで放電した。得られた放電曲線データをエネルギー換算法で算出し静電容量(F)とした。具体的には、充電の後電圧がゼロになるまで放電し、このとき放電した放電エネルギーから静電容量(F)を計算した。そして、電極の炭素質材料質量で割った静電容量(F/g)、および電極体積あたりで割った静電容量(F/cc)を求めた。
[耐久性試験]
耐久性試験は先に記述した静電容量測定後、60℃の恒温槽中にて3.0Vの電圧を印加しながら1000時間保持した後で、上記と同様にして25℃および−30℃において静電容量測定を行った。耐久性試験前後の静電容量から、下記の式に従いそれぞれの温度についての容量維持率を求めた。60℃の恒温槽中にて3.0Vの電圧の印加を開始後25時間慣らし運転を行った後を耐久性試験前とし、1000時間保持した後を耐久性試験後とした。
Figure 0006342601
[抵抗測定]
抵抗測定は電気化学測定装置(BioLogic社製 VSP)を用い、25℃および−30℃において、定電圧交流インピ−ダンス測定法にて0Vを中心に5mVの振幅幅を与え、4mHzから1MHzの周波数にて測定を実施し、周波数とインピーダンスの関係を示すBode−Plotを得た。本Plotにおける1Hzにおける抵抗と1000Hzにおける抵抗の差(以下において「1−1000Hz抵抗差」とも称する)を電荷移動(電極反応およびイオン吸脱着)にかかわる抵抗として求め、抵抗の変化を比較した。
実施例1
フィリピン産ココナツのヤシ殻を原料とするチャー(比表面積:370m/g)に対し、プロパン燃焼ガス+水蒸気(水蒸気分圧:35%)を用いて、850℃で下記比表面積となるまで一次賦活を行い、比表面積が1660m/g、カリウム元素含有量が10546ppm、鉄元素含有量が320ppmの一次賦活粒状活性炭を得た。その後、塩酸(濃度:0.5規定、希釈液:イオン交換水)を用いて、温度70℃で30分酸洗した後、残留した酸を除去するため、イオン交換水で十分に水洗、乾燥して、カリウム元素含有量が81ppm、鉄元素含有量が19ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、950℃で下記比表面積となるまで二次賦活を行い、比表面積2053m/g、平均細孔径2.60nm、カリウム元素含有量105ppm、鉄元素含有量26ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、一次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が27ppm、鉄元素含有量が11ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2068m/g、平均細孔径2.60nmの炭素質材料(1)を得た。得られた炭素質材料(1)の各種物性を測定した。その結果を表1に示す。なお、平均粒子径は、日機装株式会社製「マイクロトラックMT3000」を用いて測定した。
炭素質材料(1)を用いて、前述した電極の作製方法に従い、電極組成物(1)を得て、これを用いて分極性電極(1)を作製した。さらに、分極性電極(1)を用いて電気二重層キャパシタ(1)を作製した。得られた電気二重層キャパシタ(1)を用いて、上記方法に従って、静電容量測定、耐久性試験および抵抗測定を行った。得られた電気二重層キャパシタ(1)の各測定結果を表2および3に示す。
実施例2
実施例1と同様にして、一次賦活粒状活性炭を得た。その後、塩酸(濃度:0.7規定、希釈液:イオン交換水)を用いて、温度70℃で30分酸洗した後、イオン交換水で十分に水洗、乾燥して、カリウム元素含有量が31ppm、鉄元素含有量が11ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃で下記比表面積となるまで二次賦活を行い、比表面積2289m/g、平均細孔径2.31nm、カリウム元素含有量49ppm、鉄元素含有量18ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が13ppm、鉄元素含有量が10ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2290m/g、平均細孔径2.32nmの炭素質材料(2)を得た。炭素質材料(2)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(2)、分極性電極(2)および電気二重層キャパシタ(2)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2および3に示す。
実施例3
実施例1と同様にして、一次賦活粒状活性炭を得た。その後、塩酸(濃度:0.3規定、希釈液:イオン交換水)を用いて、温度70℃で30分酸洗した後、イオン交換水で十分に水洗、乾燥して、カリウム元素含有量が105ppm、鉄元素含有量が90ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧25%)を用い、930℃で下記比表面積となるまで二次賦活を行い、比表面積2202m/g、平均細孔径2.46nm、カリウム元素含有量151ppm、鉄元素含有量136ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が31ppm、鉄元素含有量が24ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2215m/g、平均細孔径2.46nmの炭素質材料(3)を得た。炭素質材料(3)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(3)、分極性電極(3)および電気二重層キャパシタ(3)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2および3に示す。
実施例4
フィリピン産ココナツのヤシ殻を原料とするチャー(比表面積:370m/g)に対し、プロパン燃焼ガス+水蒸気(水蒸気分圧:35%)を用いて、850℃で下記比表面積となるまで一次賦活を行い、比表面積が1120m/g、カリウム元素含有量が9290ppm、鉄元素含有量が303ppmの一次賦活粒状活性炭を得た。その後、実施例1の一次洗浄と同様に酸水洗、乾燥して、カリウム元素含有量が370ppm、鉄元素含有量が91ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃で下記比表面積となるまで二次賦活を行い、比表面積2184m/g、平均細孔径2.22nm、カリウム元素含有量974ppm、鉄元素含有量239ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥して、カリウム元素含有量が43ppm、鉄元素含有量が31ppmの二次洗浄粒状活性炭を得た。この粒状活性炭をさらにプロパン燃焼ガス(水蒸気分圧15%)を用い、950℃で下記比表面積となるまで三次賦活を行い、比表面積2333m/g、平均細孔径2.47nm、カリウム元素含有量47ppm、鉄元素含有量34ppmの三次賦活粒状活性炭を得た。得られた三次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が28ppm、鉄元素含有量が19ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2345m/g、平均細孔径2.47nmの炭素質材料(4)を得た。得られた炭素質材料(4)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(4)、分極性電極(4)および電気二重層キャパシタ(4)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2または3に示す。
実施例5
実施例4と同様にして、一次賦活粒状活性炭を得た。実施例4に比べ、残留不純物をより低下させる目的でその後、塩酸(濃度:1.0規定、希釈液:イオン交換水)を用いて、温度70℃で60分酸洗した後、イオン交換水で十分に水洗、乾燥して、カリウム元素含有量が102ppm、鉄元素含有量が43ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、930℃で下記比表面積となるまで二次賦活を行い、比表面積2239m/g、平均細孔径2.34nm、カリウム元素含有量264ppm、鉄元素含有量117ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が19ppm、鉄元素含有量が13ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2253m/g、平均細孔径2.36nmの炭素質材料(5)を得た。得られた炭素質材料(5)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(5)、分極性電極(5)および電気二重層キャパシタ(5)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2または3に示す。
比較例1
実施例1と同様にして、一次賦活粒状活性炭を得た。不純物の影響を確認することを目的として、一次洗浄は行わず、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃にて下記比表面積となるまで二次賦活を行い、比表面積2220m/g、平均細孔径2.14nm、カリウム元素含有量15267ppm、鉄元素含有量487ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が27ppm、鉄元素含有量が18ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2230m/g、平均細孔径2.15nmの炭素質材料(6)を得た。炭素質材料(6)の各種物性を測定した。その結果を表1に示す。表1に示すように、一次洗浄を行わず二次賦活を実施すると、所望の細孔を形成することは困難であることが分かる。
実施例1と同様にして、電極組成物(6)、分極性電極(6)および電気二重層キャパシタ(6)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2または3に示す。
比較例2
実施例2と同様にして、一次賦活後、酸水洗、乾燥して、一次洗浄粒状活性炭を得た。賦活を進行した場合の影響を確認することを目的として、この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃で下記比表面積となるまで二次賦活を行い、比表面積2354m/g、平均細孔径2.58nm、カリウム元素含有量49ppm、鉄元素含有量18ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が8ppm、鉄元素含有量が16ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2377m/g、平均細孔径2.61nmの炭素質材料(7)を得た。炭素質材料(7)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(7)、分極性電極(7)および電気二重層キャパシタ(7)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2および3に示す。表1および2に示すように、賦活を進めすぎると急激に密度が低下するため、体積あたりの容量が低下してしまうことが分かる。
比較例3
実施例1と同様にして、一次賦活後、酸水洗、乾燥して、一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、950℃で下記比表面積となるまで二次賦活を行い、比表面積2215m/g、平均細孔径2.81nm、カリウム元素含有量117ppm、鉄元素含有量29ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が27ppm、鉄元素含有量が15ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2229m/g、平均細孔径2.82nmの炭素質材料(8)を得た。炭素質材料(8)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(8)、分極性電極(8)および電気二重層キャパシタ(8)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表1〜3に示す。比較例2と同様に、賦活を進めすぎると密度が低下し、体積あたりの容量が低下してしまうことが分かる。
比較例4
メソ細孔を増大させる方法としてW02014/129410に記載の方法が知られている。同文献記載の方法に準拠し、実施例4に記載する方法と同様にして得た一次賦活粒状活性炭に硝酸カルシウムを1.23%(カルシウム成分としては0.3%)添着含浸したものに対し、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃にて下記比表面積となるまで二次賦活を行い、比表面積1918m/g、平均細孔径3.00nm、カリウム元素含有量18230ppm、カルシウム元素含有量7067ppm、鉄元素含有量661ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が33ppm、鉄元素含有量が25ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積1937m/g、平均細孔径3.00nmの炭素質材料(9)を得た。炭素質材料(9)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(9)、分極性電極(9)および電気二重層キャパシタ(9)を作製した。そして実施例1と同様に、各種測定を実施した。各測定結果を表2または3に示す。表1および2に示すように、カルシウム等の不純物を多量に含有していると、必要以上にメソ孔以上の細孔が発達し、体積あたりの容量が低下してしまうことが分かる。
比較例5
実施例4と同様にして、一次賦活粒状活性炭を得た。一次洗浄での洗浄程度による不純物残留量の影響を確認する目的で、一次賦活粒状活性炭に対し、塩酸(濃度:0.001規定、希釈液:イオン交換水)を用いて、温度70℃で30分酸洗した後、イオン交換水で十分に水洗、乾燥して、カリウム元素含有量が3793ppm、鉄元素含有量が152ppmの一次洗浄粒状活性炭を得た。この粒状活性炭をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、910℃で下記比表面積となるまで二次賦活を行い、比表面積2237m/g、平均細孔径2.13nm、カリウム元素含有量10336ppm、鉄元素含有量826ppmの二次賦活粒状活性炭を得た。得られた二次賦活粒状活性炭に対し、実施例1の二次洗浄と同様に酸水洗、乾燥した後、700℃熱処理を実施し、カリウム元素含有量が41ppm、鉄元素含有量が33ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積2247m/g、平均細孔径2.14nmの炭素質材料(10)を得た。得られた炭素質材料(10)の各種物性を測定した。その結果を表1に示す。
実施例1と同様にして、電極組成物(10)、分極性電極(10)および電気二重層キャパシタ(10)を作製した。実施例1と同様に、各種測定を実施した。各測定結果を表2または3に示す。表1および2に示すように、一次洗浄が不十分であると、比較例1と同様の細孔が形成され、抵抗が十分に低下されないことが分かる。
参考例1
実施例1と同様にして、一次賦活後、酸水洗、乾燥して、一次洗浄粒状活性炭を得た。得られた一次賦活粒状活性炭に対し、700℃熱処理を実施し、カリウム元素含有量が31ppm、鉄元素含有量が17ppmの粒状活性炭を得た。この粒状活性炭を平均粒子径が6μmになるように微粉砕し、比表面積1694m/g、平均細孔径1.88nmの炭素質材料(11)を得た。実施例1と同様にして、電極組成物(11)、分極性電極(11)および電気二重層キャパシタ(11)を作製した。そして実施例1と同様に、各種測定を実施した。各測定結果を表1〜3に示す。
Figure 0006342601
Figure 0006342601
Figure 0006342601
<電気二重層キャパシタの初期性能、および耐久性試験後の性能評価>
電気二重層キャパシタの性能評価として耐久性試験を行う場合、一般的には、常温(25℃)での容量や抵抗の評価を加速試験の前後で行い、その変化を測定する。しかしながら、常温での評価では劣化現象を確認する為に長期にわたる試験が必要となる。そこで、低温下で容量や抵抗の評価を行うことにより、常温で評価を行う場合と比較して、劣化現象を早期に比較・確認することが可能である。ここで、キャパシタの劣化は、キャパシタの構成部材(電極、電解液、バインダー等)が電気化学的反応により劣化することで引き起こされる。
具体的には以下のような反応が考えられる。
(1)電解液の分解
(2)炭素質材料および/または電解液中に残留する水分の分解に伴うフッ化水素酸の生成と副反応
(3)電極界面におけるSEI(Solid electrolyte interface)被膜の生成による、細孔径の変化または細孔の閉塞
(4)残留水分の分解や、炭素質材料に含まれる表面官能基の酸化および電解液の劣化に伴うガスの発生
これらの現象により、抵抗の増加、静電容量の低下やガス発生に伴うセルの膨張といったキャパシタの劣化が引き起こされると考えられる。
特に、低温下で測定比較を行う場合には、低温であるために電解液の粘性が増加し、電極材、電極界面の劣化および/または電解液の劣化などが、容量や抵抗等の評価により顕著に反映されると考えられる。このような観点から本発明においては、劣化現象を明確に比較、検討するため、耐久性試験(60℃、3Vの負荷を所定時間)を実施し、その後の劣化状態を−30℃での評価を中心に比較した。
表2に示すように、実施例1〜5において、本発明の電気二重層キャパシタ用炭素質材料を用いた分極性電極(1)〜(5)を用いてそれぞれ作製された電気二重層キャパシタ(1)〜(5)は、一次賦活後に洗浄を行わないか、メソ孔を選択的に増大させるか、洗浄をより弱い酸を用いて行って得た炭素質材料を用いて作製した比較例1、4および5の電気二重層キャパシタ(6)、(9)および(10)と比較して、25℃および−30℃において同等以上の初期静電容量(耐久性試験前の質量あたりおよび体積あたりの静電容量)を有していることが分かる。
また、比較例1、4および5の電気二重層キャパシタ(6)、(9)および(10)では、25℃および−30℃のいずれもにおいて、容量維持率が低下していることが分かる。これに対し、本発明の電気二重層キャパシタ(1)〜(5)では、25℃さらに−30℃においても高い容量維持率を示した。
賦活をより進行させて得た炭素質材料を用いて作製した比較例2および3の電気二重層キャパシタ(7)および(8)では、容量維持率は良好であるものの、25℃および−30℃における体積あたりの静電容量が低く、これは、本発明の目的において実用的でないレベルであった。
表3に示すように、本発明の電気二重層キャパシタ(1)〜(5)は、耐久試験前後において1−1000Hz抵抗差が低く、耐久試験前後での1−1000Hz抵抗差の変化量も小さいことが確認された。これに対し、比較例1、4および5の電気二重層キャパシタ(6)、(9)および(10)は、耐久試験前には実施例1〜5の電気二重層キャパシタと同等の1−1000Hz抵抗差を示していたが、耐久試験後には1−1000Hz抵抗差が著しく上昇し、耐久試験前後での抵抗差変化量も大きいことが確認された。また、賦活をより進行させて得た炭素質材料を用いて作製した比較例2および3の電気二重層キャパシタ(7)および(8)では、耐久試験前後での抵抗差変化量は小さいものの、表2について上記に述べたように、25℃および−30℃における体積あたりの静電容量が低く実用的でないレベルであった。なお、図6について後述するように、耐久性には電荷移動(電極反応およびイオン吸脱着)が関与していると考えられ、表2および図6に示す1Hz付近と1000Hz付近との抵抗差が電荷移動に関わる抵抗であると考えられる。ここで、良好な入出力特性を達成するためには、特定の周波数における抵抗が低いことよりも、電荷移動に関わる抵抗が低いことが重要であると考えられる。そのため、1−1000Hz抵抗差が小さいことは、電荷移動に関わる抵抗が小さく、入出力特性が良好であることを表す。また、耐久試験前後での抵抗差変化量が小さいことは、耐久性が高いことを表す。
以下において、図を用いて実施例および比較例で得られた結果について説明する。なお、比較例2および3は上記に述べたように体積あたりの静電容量が低いため、図中に示していない。また、比較例5は比較例1とほぼ同等の結果であったため、図中に示していない。
図6は、周波数と、−30℃での定電圧交流インピ−ダンス測定における炭素質材料の抵抗との関係を表す(Bode−Plot図)。周波数を変えて定電圧交流インピ−ダンス測定を行った際に得られるBode−Plot図において、1Hz付近までの範囲の抵抗は、物質移動に関する抵抗であると考えられ、1000Hz付近より高い範囲の抵抗は、電子伝導に関する抵抗であると考えられる。そして、1Hz〜1000Hz付近の範囲の抵抗差が、電気二重層キャパシタの入出力特性および耐久性に関する電荷移動(電極反応およびイオン吸着脱離)に関すると考えられる。本明細書においては、1Hzにおける抵抗と1000Hzにおける抵抗の差(1−1000Hz抵抗差)を電荷移動(電極反応およびイオン吸脱着)にかかわる抵抗として求め、抵抗の変化の比較を行った。表3および図6に示すように、本発明の電気二重層キャパシタ(1)〜(5)では、1−1000Hz抵抗差が小さいことと、1Hzから1000Hzの範囲で抵抗が低下していることがわかり、つまり、本発明の電気二重層キャパシタが電荷移動抵抗の低減に効果があることが分かる。
図7は、−30℃での定電圧交流インピ−ダンス測定における、1−1000Hz抵抗差の経時変化を表す。比較例1および4と実施例1および2とを比較すると、実施例1および2は、比較例1および4並びに参考例1と比べて、経時的に抵抗差の増加が小さくなっていることがわかる。このことから、本発明の炭素質材料を用いることにより、継時的な抵抗増加が抑制され電気二重層キャパシタの耐久性が向上することが分かる。
図8は、炭素質材料の平均細孔径と、耐久性試験後に−30℃で測定した、炭素質材料の質量あたりの静電容量と、1−1000Hz抵抗差との関係を示す。さらに図9は、炭素質材料の平均細孔径と、耐久性試験後に−30℃で測定した、炭素質材料の体積あたりの静電容量と、1−1000Hz抵抗差との関係を示す。
図8および図9に示すように、平均細孔径が2.2〜2.6nmである実施例1および2においては、比較例1、3および4、並びに参考例1と比べて、1−1000Hz抵抗差と、1000時間後の1−1000Hz抵抗差との変化量(図8および9中に矢印で示される変化における抵抗差の変化量)が小さいことが分かる。一方、例えば比較例3および4のように平均細孔径が2.6nmを超えると、0時間における1−1000Hz抵抗差と、1000時間後の1−1000Hz抵抗差の変化量は小さいが、密度が低下する分、図9に示すように体積あたりの容量が低下する。
図10は、炭素質材料の、MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔容積の割合と、耐久性試験後に−30℃で測定した、炭素質材料の質量あたりの静電容量と、1−1000Hz抵抗差との関係を示す。さらに図11は、炭素質材料の、MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔容積の割合と、耐久性試験後に−30℃で測定した、炭素質材料の体積あたりの静電容量と、1−1000Hz抵抗差との関係を示す。
図10および図11に示すように、割合Aが25〜50%の範囲に含まれる実施例3および4においては、0時間における1−1000Hz抵抗差と、1000時間後の1−1000Hz抵抗差との変化量(図10および11中に矢印で示される変化における抵抗差の変化量)が小さいことが分かる。一方、比較例1および4のように、1〜2nmの細孔容積の割合が25%未満であると、0時間における1−1000Hz抵抗差と、1000時間後の1−1000Hz抵抗差との変化量が大きくなり、1000時間後の容量も低下する。また、比較例2および3のように、1〜2nmの細孔容積の割合が50%を超えると、0時間における1−1000Hz抵抗差と、1000時間後の1−1000Hz抵抗差との変化量は小さいが、密度が低下する分、体積あたりの容量が低下し、0時間における容量と1000時間後の容量の差も大きくなる。本発明の電気二重層キャパシタは、耐久試験後においても十分な容量を保持でき、低温領域においても、抵抗差が小さく抑えられているため、寒冷地のような劣化が促進される状況においても常温の状態と変わらずに性能を発揮することができることが示された。
以上より、本発明の電気二重層キャパシタ用炭素質材料を電極に使用すると、優れた耐久性を有する電気二重層キャパシタを得ることができることが明らかである。
1 電極組成物
2 導電性接着剤
3 エッチングアルミニウム箔
4 タブ
5 シーラント
6 分極性電極
7 外装シート
8 電気二重層キャパシタ

Claims (7)

  1. 植物由来の炭素前駆体に基づく炭素質材料であって、
    BET比表面積が1900〜2500m/gであり、
    窒素吸着法によって算出される平均細孔径は2.2〜2.6nmであり、
    MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積は0.84〜1.30cm/gであり、
    MP法により測定される、2nm以下の細孔径を有するマイクロ孔の細孔容積に対する1〜2nmの細孔径を有するマイクロ孔の細孔容積の割合が25〜50%であり、
    BJH法により測定される、2〜50nmの細孔径を有するメソ孔の細孔容積は0.16〜0.4cm/gである、電気二重層キャパシタ用炭素質材料。
  2. 窒素吸脱着等温線の相対圧P/P=0.99における窒素吸着量により算出した全細孔容積が1.0〜1.5cm/gである、請求項1に記載の電気二重層キャパシタ用炭素質材料。
  3. タップ密度が0.21〜0.25g/cmである、請求項1または2に記載の電気二重層キャパシタ用炭素質材料。
  4. 前記炭素前駆体は椰子殻由来である、請求項1〜3のいずれかに記載の電気二重層キャパシタ用炭素質材料。
  5. 請求項1〜4のいずれかに記載の電気二重層キャパシタ用炭素質材料を製造する方法であって、
    該方法は、植物由来の炭素前駆体を、炭化し、水蒸気を用いて一次賦活し、洗浄し、水蒸気を用いて二次賦活して、炭素質材料を得ることを含み、
    前記洗浄後の炭素質材料中のカリウム元素含有量は500ppm以下であり、
    前記洗浄後の炭素質材料中の鉄元素含有量は200ppm以下である、方法。
  6. 請求項1〜5のいずれかに記載の炭素質材料を含む電気二重層キャパシタ用電極。
  7. 請求項6に記載の電気二重層キャパシタ用電極を備える電気二重層キャパシタ。
JP2018511780A 2016-11-15 2017-11-13 電気二重層キャパシタ用炭素質材料およびその製造方法 Active JP6342601B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016222502 2016-11-15
JP2016222502 2016-11-15
PCT/JP2017/040771 WO2018092721A1 (ja) 2016-11-15 2017-11-13 電気二重層キャパシタ用炭素質材料およびその製造方法

Publications (2)

Publication Number Publication Date
JP6342601B1 true JP6342601B1 (ja) 2018-06-13
JPWO2018092721A1 JPWO2018092721A1 (ja) 2018-11-15

Family

ID=62145490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018511780A Active JP6342601B1 (ja) 2016-11-15 2017-11-13 電気二重層キャパシタ用炭素質材料およびその製造方法

Country Status (6)

Country Link
US (2) US10879014B2 (ja)
EP (1) EP3544038B1 (ja)
JP (1) JP6342601B1 (ja)
KR (2) KR102342374B1 (ja)
CN (2) CN109923633B (ja)
WO (1) WO2018092721A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923633B (zh) * 2016-11-15 2021-03-12 株式会社可乐丽 用于双电层电容器的碳质材料和其制造方法
CN108766775B (zh) * 2018-05-25 2019-05-28 常州大学 一种超低温高容量超级电容器的制备方法及其应用
JP7349988B2 (ja) * 2018-07-20 2023-09-25 株式会社クラレ 炭素質材料、その製造方法、電気化学デバイス用電極活物質、電気化学デバイス用電極および電気化学デバイス
JPWO2021015054A1 (ja) * 2019-07-19 2021-01-28
KR20220121774A (ko) * 2019-12-25 2022-09-01 주식회사 쿠라레 탄소질 재료, 그 제조 방법, 전기 이중층 커패시터용 전극 활물질, 전기 이중층 커패시터용 전극 및 전기 이중층 커패시터
US20230197360A1 (en) * 2020-05-26 2023-06-22 Panasonic Intellectual Property Management Co., Ltd. Electrode for electrochemical devices, and electrochemical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
JP2004189587A (ja) * 2002-11-29 2004-07-08 Honda Motor Co Ltd 活性炭、電気二重層コンデンサ用分極性電極およびこれを用いた電気二重層コンデンサ
JP2006179558A (ja) * 2004-12-21 2006-07-06 Osaka Gas Co Ltd 炭化水素材料及びその製造方法
JP2010168238A (ja) * 2009-01-21 2010-08-05 Kansai Coke & Chem Co Ltd 高純度化活性炭の製造方法、及び該製造方法によって得られた電気二重層キャパシタ
JP2012204496A (ja) * 2011-03-24 2012-10-22 Oki Kogei:Kk 電気二重層キャパシタ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4618929Y1 (ja) 1965-12-29 1971-07-01
US3779347A (en) 1972-04-03 1973-12-18 Marathon Oil Co Cable catcher
JPS5317659B2 (ja) 1972-06-09 1978-06-09
JPS5463144A (en) 1977-10-31 1979-05-21 Japan Synthetic Rubber Co Ltd Rubber composition
JP3565994B2 (ja) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
US6865068B1 (en) * 1999-04-30 2005-03-08 Asahi Glass Company, Limited Carbonaceous material, its production process and electric double layer capacitor employing it
JP4618929B2 (ja) 2000-05-09 2011-01-26 三菱化学株式会社 電気二重層キャパシタ用活性炭
DE60121705T2 (de) * 2000-05-09 2007-08-02 Mitsubishi Chemical Corp. Aktivierter kohlenstoff für elektrischen doppelschichtkondensator
US7061750B2 (en) 2002-11-29 2006-06-13 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
US20070010666A1 (en) * 2003-08-26 2007-01-11 Hiroyuki Tajiri Hydrocarbon material and method for preparation thereof
WO2007037508A1 (en) 2005-09-29 2007-04-05 Showa Denko K.K. Activated carbon and process of making the same
JP4576374B2 (ja) 2005-12-16 2010-11-04 昭和電工株式会社 活性炭、その製造方法及びその用途
WO2008053919A1 (fr) * 2006-11-02 2008-05-08 Kuraray Chemical Co., Ltd Charbon activé et son procédé de production, électrodes polarisables de type non aqueux et condensateurs électriques à double couches
JP5523102B2 (ja) * 2006-11-08 2014-06-18 キュレーターズ オブ ザ ユニバーシティ オブ ミズーリ 高表面積炭素及びその製造方法
JP5255569B2 (ja) 2007-11-16 2013-08-07 旭化成株式会社 非水系リチウム型蓄電素子
WO2009072381A1 (ja) 2007-11-16 2009-06-11 Osaka Gas Co., Ltd. 非水系リチウム型蓄電素子用正極材料
US20110111284A1 (en) 2008-06-24 2011-05-12 Panasonic Corporation Activated carbon for electrochemical element and electrochemical element using the same
JP5317659B2 (ja) 2008-12-05 2013-10-16 富士重工業株式会社 リチウムイオン蓄電デバイス用正極活物質及びそれを用いたリチウムイオン蓄電デバイス
JP5202460B2 (ja) 2009-07-17 2013-06-05 関西熱化学株式会社 活性炭および該活性炭を用いた電気二重層キャパシタ
JP5931326B2 (ja) * 2010-02-23 2016-06-08 カルゴンカーボンジャパン株式会社 電気二重層キャパシタ用活性炭
US20130202962A1 (en) * 2010-10-15 2013-08-08 The Yokohama Rubber Co., Ltd. Conductive polymer/porous carbon material composite and electrode material using same
JP6324726B2 (ja) 2010-12-28 2018-05-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 電気化学特性が向上した炭素材料
US10236133B2 (en) 2012-09-20 2019-03-19 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
TWI472483B (zh) * 2012-10-30 2015-02-11 Ind Tech Res Inst 多孔性碳材材料及其製作方法、以及超級電容器
US9737871B2 (en) 2013-02-20 2017-08-22 Osaka Gas Chemicals Co., Ltd. Granular activated carbon having many mesopores, and manufacturing method for same
CN103470756B (zh) 2013-07-05 2016-01-13 沛毅工业股份有限公司 可防止内衬桶组装干涉的储水压力桶及管接头固定方法
US9607775B2 (en) 2013-08-30 2017-03-28 Corning Incorporated High-voltage and high-capacitance activated carbon and carbon-based electrodes
CN103803527B (zh) * 2014-01-27 2015-09-16 浙江大学 一种多孔碳的制备方法及其产品
WO2015146459A1 (ja) 2014-03-27 2015-10-01 Jx日鉱日石エネルギー株式会社 活性炭、活性炭の製造方法および活性炭の処理方法
JP2016222502A (ja) 2015-06-01 2016-12-28 旭硝子株式会社 光学ガラス
CN109923633B (zh) * 2016-11-15 2021-03-12 株式会社可乐丽 用于双电层电容器的碳质材料和其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128514A (ja) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc 炭素質材料、電気二重層キャパシタ用分極性電極及び電気二重層キャパシタ
JP2004189587A (ja) * 2002-11-29 2004-07-08 Honda Motor Co Ltd 活性炭、電気二重層コンデンサ用分極性電極およびこれを用いた電気二重層コンデンサ
JP2006179558A (ja) * 2004-12-21 2006-07-06 Osaka Gas Co Ltd 炭化水素材料及びその製造方法
JP2010168238A (ja) * 2009-01-21 2010-08-05 Kansai Coke & Chem Co Ltd 高純度化活性炭の製造方法、及び該製造方法によって得られた電気二重層キャパシタ
JP2012204496A (ja) * 2011-03-24 2012-10-22 Oki Kogei:Kk 電気二重層キャパシタ

Also Published As

Publication number Publication date
CN112927946B (zh) 2023-10-13
EP3544038A1 (en) 2019-09-25
CN112927946A (zh) 2021-06-08
KR20190082789A (ko) 2019-07-10
KR20200083655A (ko) 2020-07-08
CN109923633B (zh) 2021-03-12
JPWO2018092721A1 (ja) 2018-11-15
US20210020385A1 (en) 2021-01-21
US20190341202A1 (en) 2019-11-07
US11823837B2 (en) 2023-11-21
WO2018092721A1 (ja) 2018-05-24
KR102130931B1 (ko) 2020-07-08
CN109923633A (zh) 2019-06-21
EP3544038B1 (en) 2022-07-20
US10879014B2 (en) 2020-12-29
KR102342374B1 (ko) 2021-12-22
EP3544038A4 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6342601B1 (ja) 電気二重層キャパシタ用炭素質材料およびその製造方法
KR102572395B1 (ko) 개질 활성탄 및 그 제조 방법
Coromina et al. Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes
JP2005136397A (ja) 活性炭及びそれを用いた電極材料並びに電気二重層キャパシタ
Merin et al. Biomass‐derived activated carbon for high‐performance supercapacitor electrode applications
Tashima et al. Microporous activated carbons from used coffee grounds for application to electric double‐layer capacitors
JP7349988B2 (ja) 炭素質材料、その製造方法、電気化学デバイス用電極活物質、電気化学デバイス用電極および電気化学デバイス
WO2021131907A1 (ja) 炭素質材料、その製造方法、電気二重層キャパシタ用電極活物質、電気二重層キャパシタ用電極および電気二重層キャパシタ
WO2021015054A1 (ja) 炭素質材料、その製造方法、電気化学デバイス用電極活物質、電気化学デバイス用電極および電気化学デバイス
WO2021131910A1 (ja) 炭素質材料およびその製造方法、電気二重層キャパシタ用電極材料
KR102371496B1 (ko) 유체역학을 이용하여 2차원의 몰리브덴 디설파이드 나노시트를 제조하는 방법
KR20210089643A (ko) 탄소질 재료, 그 제조 방법, 전기 화학 디바이스용 전극 활물질, 전기 화학 디바이스용 전극 및 전기 화학 디바이스
TWI805224B (zh) 儲能用碳材、其製造方法、超電容器用電極片及超電容器

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150