JP6310601B1 - スパッタリング装置 - Google Patents

スパッタリング装置 Download PDF

Info

Publication number
JP6310601B1
JP6310601B1 JP2017112591A JP2017112591A JP6310601B1 JP 6310601 B1 JP6310601 B1 JP 6310601B1 JP 2017112591 A JP2017112591 A JP 2017112591A JP 2017112591 A JP2017112591 A JP 2017112591A JP 6310601 B1 JP6310601 B1 JP 6310601B1
Authority
JP
Japan
Prior art keywords
electrode
target
antenna
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017112591A
Other languages
English (en)
Other versions
JP2018204080A (ja
Inventor
茂明 岸田
茂明 岸田
松尾 大輔
大輔 松尾
佳孝 瀬戸口
佳孝 瀬戸口
靖典 安東
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2017112591A priority Critical patent/JP6310601B1/ja
Priority to US16/619,942 priority patent/US11251020B2/en
Priority to KR1020197035268A priority patent/KR102325544B1/ko
Priority to CN201880036037.6A priority patent/CN110709533B/zh
Priority to PCT/JP2018/010005 priority patent/WO2018225324A1/ja
Application granted granted Critical
Publication of JP6310601B1 publication Critical patent/JP6310601B1/ja
Publication of JP2018204080A publication Critical patent/JP2018204080A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【課題】プラズマをアンテナにより効率良く発生させ、プラズマ均一性を向上させて成膜均一性を向上させるスパッタリング装置の提供。【解決手段】真空容器内に基板Wを保持する基板保持部と、ターゲットTを保持するターゲット保持部と、内部に冷却液CLが流通する複数のアンテナとを備え、アンテナを、2つ以上の管状の導体要素51と、互いに隣り合う導体要素51の間に設け、導体要素51を絶縁する管状の絶縁要素52と、互いに隣り合う導体要素51と電気的に直列接続した容量素子53とを有し、容量素子53を、互いに隣り合う導体要素51の一方と電気的に接続した第1の電極53Aと、互いに隣り合う導体要素51の他方と電気的に接続すると共に、第1の電極53Aに対向して配置した第2の電極53Bと、第1の電極53A及び第2の電極53Bの間の空間を満たす誘電体とからなり、誘電体が冷却液CLであるスパッタリング装置。【選択図】図3

Description

本発明は、プラズマを用いてターゲットをスパッタリングして基板に成膜するスパッタリング装置に関するものである。
この種のスパッタリング装置としては、マグネトロンスパッタリング装置が知られている。このマグネトロンスパッタリング装置は、ターゲットの裏面に設けた磁石によってターゲットの表面に磁界を形成してプラズマを生成し、当該プラズマ中のイオンをターゲットに衝突させることで、ターゲットからスパッタ粒子が飛び出すように構成されている。
従来のマグネトロンスパッタリング装置では、ターゲットの表面近傍に生成されるプラズマに粗密が生じてしまい、これに応じて、ターゲットが不均一に消費され、ターゲットの利用率が低くなってしまう。また、ターゲットが不均一に消費されることから、生成される膜厚も不均一となってしまう。
一方で、特許文献1に示すように、ターゲットの近傍にアンテナを配置して、当該アンテナに高周波電流を流すことによってスパッタリング用のプラズマを生成するスパッタリング装置が考えられている。アンテナを用いてプラズマを生成するものは、磁石を用いてプラズマを生成する構成に比べて、プラズマの粗密が小さくなる。プラズマの粗密が小さくなることによって、ターゲットの使用効率が上がるとともに、成膜の均一性も向上することが期待される。
ところが、近年の基板の大型化に対応する等のためにアンテナを長くすると、当該アンテナのインピーダンスが大きくなり、それによってアンテナの両端間に大きな電位差が発生する。その結果、この大きな電位差の影響を受けてプラズマの密度分布、電位分布、電子温度分布等のプラズマの均一性が悪くなり、ひいてはターゲットから出るスパッタ粒子の分布に濃淡が生じて、生成される膜厚が不均一となってしまう。
このような問題を解決する等のために、特許文献2に示すように、複数の金属パイプを、隣り合う金属パイプ間に中空絶縁体を介在させて接続するとともに、中空絶縁体の外周部に容量素子であるコンデンサを配置したものが考えられている。このコンデンサは、中空絶縁体の両側の金属パイプに電気的に直列接続されており、中空絶縁体の一方側の金属パイプに電気的に接続された第1の電極と、中空絶縁体の他方側の金属パイプに電気的に接続されるとともに第1の電極と重なる第2の電極と、第1の電極及び第2の電極間に配置された誘電体シートとを有している。
特開2016−65299号公報 特開2016−72168号公報
しかしながら、上記のコンデンサは、第1の電極、誘電体シート及び第2の電極の積層構造であるため、電極及び誘電体の間に隙間が生じる可能性がある。そうすると、この隙間によってプラズマの均一性が悪くなり、ひいてはターゲットから出るスパッタ粒子の分布に濃淡が生じて、生成される膜厚が不均一となってしまう恐れがある。
そこで本発明は、上記問題点を解決すべくなされたものであり、スパッタリング用のプラズマをアンテナを用いて効率良く発生させるとともに、プラズマの均一性を向上させて成膜の均一性を向上させることをその主たる課題とするものである。
すなわち本発明に係るスパッタリング装置は、プラズマを用いてターゲットをスパッタリングして基板に成膜するスパッタリング装置であって、真空排気され且つガスが導入される真空容器と、前記真空容器内において前記基板を保持する基板保持部と、前記真空容器内において前記基板と対向して前記ターゲットを保持するターゲット保持部と、前記プラズマを発生させるものであり、内部に冷却液が流通する流路を有する複数のアンテナとを備え、前記アンテナは、少なくとも2つの管状をなす導体要素と、互いに隣り合う前記導体要素の間に設けられて、それら導体要素を絶縁する管状をなす絶縁要素と、前記流路に設けられて、互いに隣り合う前記導体要素と電気的に直列接続された容量素子とを有し、前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記誘電体が前記冷却液であることを特徴とする。
このようなスパッタリング装置であれば、絶縁要素を介して互いに隣り合う導体要素に容量素子を電気的に直列接続しているので、アンテナの合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になり、アンテナのインピーダンスを低減させることができる。その結果、アンテナを長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナに高周波電流が流れやすくなり、プラズマを効率良く発生させることができる。これにより、プラズマの密度を上げることができ、成膜速度を上げることもできる。
特に本発明によれば、第1の電極及び第2の電極の間の空間を冷却液で満たして誘電体としているので、容量素子を構成する電極及び誘電体の間に生じる隙間を無くすことができる。その結果、プラズマの均一性を向上させることができ、成膜の均一性を向上させることができる。また、冷却液を誘電体として用いることで、冷却液とは別の液体の誘電体を準備する必要が無く、また、第1の電極及び第2の電極を冷却することができる。通常、冷却液は温調機構により一定温度に調整されており、この冷却液を誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができ、これによってもプラズマの均一性を向上させることができる。さらに、冷却液として水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうる容量素子を構成することができる。
そのうえ本発明によれば、アンテナに供給する高周波電圧とターゲットのバイアス電圧との設定を独立して行うことができるので、バイアス電圧をプラズマの生成とは独立してプラズマ中のイオンをターゲットに引き込んでスパッタさせる程度の低電圧に設定することができる。その結果、低電圧においてターゲットのスパッタを行うことができるので、ターゲットの材料組成と基板に形成された膜の組成との変化を小さくすることができる。また、アンテナを用いてスパッタリング用のプラズマを生成しているので、マグネトロンスパッタリング装置に比べて、ターゲットを一様に消費することができ、ターゲットの使用効率を向上させることができる。加えて、本発明ではターゲット表面近傍に直流磁場を有さない構成であり、磁性材料への適用が容易となる。
その他、電極及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因する容量素子の破損を無くすことができる。また、隙間を考慮することなく、第1の電極及び第2の電極の距離、対向面積及び冷却液の比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマの均一性の悪化を防ぐことができる。
前記ターゲットは例えばInGaZnO等の酸化物半導体材料である場合において、本発明の構成による効果が顕著となる。酸化物半導体材料をターゲットとした場合には、バイアス電圧が大きくなると酸素が脱離したスパッタ粒子が生成されやすくなり、その結果、ターゲットの材料組成と基板に形成された膜の組成とが異なってしまい、膜質が悪化してしまう。一方で、本発明のスパッタリング装置では、ターゲットに印加するバイアス電圧を従来(例えば−1〜−2kV)よりも小さくすることができ、酸素が脱離したスパッタ粒子の生成を抑えることができる。その結果、基板には、ターゲット材料と同じ酸化物状態を維持した膜が形成され、高品質の膜を形成することができる。
スパッタリング装置は、真空容器にターゲットをスパッタするためのスパッタガスを供給するスパッタ用ガス供給機構を備えている。本発明では、ターゲットに印加するバイアス電圧を小さくすることができるので、酸素が脱離していないスパッタ粒子が基板に到達することになる。その結果、前記スパッタ用ガス供給機構は、前記真空容器にアルゴンガスのみを供給すればよい。このようにアルゴンガスのみを供給すればよいので、アルゴンガスに加えて酸素ガスを供給する場合に比べて成膜速度を速くすることができる。
各電極の具体的な実施の態様としては、前記各電極は、前記導体要素における前記絶縁要素側の端部に電気的に接触するフランジ部と、当該フランジ部から前記絶縁要素側に延出した延出部とを有することが望ましい。
この構成であれば、フランジ部により導体要素との接触面積を大きくしつつ、延出部により電極間の対向面積を設定することができる。
前記各電極の延出部は、管状をなすものであり、互いに同軸上に配置されていることが望ましい。
この構成であれば、電極間の対向面積を大きくしつつ、導体要素に流れる高周波電流の分布を周方向において均一にして、均一性の良いプラズマを発生させることができる。
このように構成した本発明によれば、スパッタリング用のプラズマをアンテナを用いて効率良く発生させるとともに、プラズマの均一性を向上させて成膜の均一性を向上させることができる。
本実施形態のスパッタリング装置の構成を模式的に示すアンテナの長手方向に直交する縦断面図である。 同実施形態のスパッタリング装置の構成を模式的に示すアンテナの長手方向に沿った縦断面図である。 同実施形態のアンテナにおけるコンデンサ部分を示す部分拡大断面図である。 ターゲットバイアス電圧と成膜速度との関係を示すグラフである。 酸素ガスの濃度と成膜速度との関係を示すグラフである。 本発明によるIGZO膜及び従来例によるIGZO膜におけるGa2p3/2のXPSスペクトルを示すグラフである。 本発明によるIGZO膜及び従来例によるIGZO膜における各成分の割合を示すグラフである。 変形実施形態のアンテナにおけるコンデンサ部分を示す部分拡大断面図である。 変形実施形態のアンテナにおけるコンデンサ部分を示す部分拡大断面図である。
以下に、本発明に係るスパッタリング装置の一実施形態について、図面を参照して説明する。
<装置構成>
本実施形態のスパッタリング装置100は、誘導結合型のプラズマPを用いてターゲットTをスパッタリングして基板Wに成膜するものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。
具体的にスパッタリング装置100は、図1及び図2に示すように、真空排気され且つガスが導入される真空容器2と、真空容器2内において基板Wを保持する基板保持部3と、真空容器2内においてターゲットTを保持するターゲット保持部4と、真空容器2内に配置された直線状をなす複数のアンテナ5と、真空容器2内に誘導結合型のプラズマPを生成するための高周波を複数のアンテナ5に印加する高周波電源6とを備えている。なお、複数のアンテナ5に高周波電源6から高周波を印加することにより複数のアンテナ5には高周波電流IRが流れて、真空容器2内に誘導電界が発生して誘導結合型のプラズマPが生成される。
真空容器2は、例えば金属製の容器であり、その内部は真空排気装置7によって真空排気される。真空容器2はこの例では電気的に接地されている。
真空容器2内に、例えば流量調整器(図示省略)等を有するスパッタ用ガス供給機構8及びガス導入口21を経由して、スパッタ用ガス9が導入される。スパッタ用ガス9は、例えばアルゴン(Ar)等の不活性ガスである。本実施形態のスパッタ用ガス供給機構8は、真空容器2内にアルゴンガスのみを供給するものである。
基板保持部3は、真空容器2内において平板状をなす基板Wを例えば水平状態となるように保持するホルダである。このホルダはこの例では電気的に接地されている。
ターゲット保持部4は、基板保持部3に保持された基板Wと対向してターゲットTを保持するものである。本実施形態のターゲットTは、平面視において矩形状をなす平板状のものであり、例えばInGaZnO等の酸化物半導体材料である。このターゲット保持部4は、真空容器2を形成する側壁2a(例えば上側壁)に設けられている。また、ターゲット保持部4と真空容器2の上側壁2aとの間には、真空シール機能を有する絶縁部10が設けられている。ターゲットTには、それにターゲットバイアス電圧を印加するターゲットバイアス電源11が、この例ではターゲット保持部4を介して接続されている。ターゲットバイアス電圧は、プラズマP中のイオン(Ar)をターゲットTに引き込んでスパッタさせる電圧である。本実施形態のターゲットバイアス電圧は、−1kV以上の負電圧であり、好ましくは、−200〜−600Vである。
本実施形態では、ターゲット保持部4は複数設けられている。複数のターゲット保持部4は、真空容器2内における基板Wの表面側に、基板Wの表面に沿うように(例えば、基板Wの裏面と実質的に平行に)同一平面上に並列に配置されている。複数のターゲット保持部4は、その長手方向が互いに平行となるように等間隔に配置されている。これにより、真空容器2内に配置された複数のターゲットTは、図1に示すように、基板Wの表面と実質的に平行であり、且つ、長手方向が互いに平行となるように等間隔に配置されることになる。なお、各ターゲット保持部4は同一構成である。
複数のアンテナ5は、真空容器2内における基板Wの表面側に、基板Wの表面に沿うように(例えば、基板Wの表面と実質的に平行に)同一平面上に並列に配置されている。複数のアンテナ5は、その長手方向が互いに平行となるように等間隔に配置されている。なお、各アンテナ5は平面視において直線状で同一構成であり、その長さは数十cm以上である。
本実施形態のアンテナ5は、図1に示すように、各ターゲット保持部4に保持されたターゲットTの両側にそれぞれ配置されている。つまり、アンテナ5とターゲットTとが交互に配置されており、1つのターゲットTは、2本のアンテナ5により挟まれた構成となる。ここで、各アンテナ5の長手方向と各ターゲット保持部4に保持されたターゲットTの長手方向とは同一方向である。
また、各アンテナ5の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等であるが、これに限られるものではない。なお、アンテナ5を中空にして、その中に冷却水等の冷媒を流し、アンテナ5を冷却するようにしても良い。
なお、アンテナ5の両端部付近は、図2に示すように、真空容器2の相対向する側壁2b、2cをそれぞれ貫通している。アンテナ5の両端部を真空容器2外へ貫通させる部分には、絶縁部材12がそれぞれ設けられている。この各絶縁部材12を、アンテナ5の両端部が貫通しており、その貫通部は例えばパッキンによって真空シールされている。各絶縁部材12と真空容器2との間も、例えばパッキンによって真空シールされている。なお、絶縁部材12の材質は、例えば、アルミナ等のセラミックス、石英、又はポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等のエンジニアリングプラスチック等である。
さらに、各アンテナ5において、真空容器2内に位置する部分は、絶縁物製で直管状の絶縁カバー13により覆われている。この絶縁カバー13の両端部と真空容器2との間はシールしなくても良い。絶縁カバー13内の空間にガス9が入っても、当該空間は小さくて電子の移動距離は短いので、通常は当該空間にプラズマPは発生しないからである。なお、絶縁カバー13の材質は、例えば、石英、アルミナ、フッ素樹脂、窒化シリコン、炭化シリコン、シリコン等であるが、これらに限られるものではない。
アンテナ5の一端部である給電端部5aには、整合回路61を介して高周波電源6が接続されており、他端部である終端部5bは直接接地されている。なお、給電端部5a又は終端部5bに、可変コンデンサ又は可変リアクトル等のインピーダンス調整回路を設けて、各アンテナ5のインピーダンスを調整するように構成しても良い。このように各アンテナ5のインピーダンスを調整することによって、アンテナ5の長手方向におけるプラズマPの密度分布を均一化することができ、アンテナ5の長手方向の膜厚を均一化することができる。
上記構成によって、高周波電源6から、整合回路61を介して、アンテナ5に高周波電流IRを流すことができる。高周波の周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。
然して、本実施形態のアンテナ5は、内部に冷却液CLが流通する流路を有する中空構造のものである。具体的にアンテナ5は、図3に示すように、少なくとも2つの管状をなす金属製の導体要素51(以下、「金属パイプ51」という。)と、互いに隣り合う金属パイプ51の間に設けられて、それら金属パイプ51を絶縁する管状の絶縁要素52(以下、「絶縁パイプ52」という。)と、互いに隣り合う金属パイプ51と電気的に直列接続された容量素子であるコンデンサ53とを備えている。
本実施形態では金属パイプ51の数は2つであり、絶縁パイプ52及びコンデンサ53の数は各1つである。以下の説明において、一方の金属パイプ51を「第1の金属パイプ51A」、他方の金属パイプを「第2の金属パイプ51B」ともいう。なお、アンテナ5は、3つ以上の金属パイプ51を有する構成であってもしても良く、この場合、絶縁パイプ52及びコンデンサ53の数はいずれも金属パイプ51の数よりも1つ少ないものになる。
なお、冷却液CLは、真空容器2の外部に設けられた循環流路14によりアンテナ5を流通するものであり、前記循環流路14には、冷却液CLを一定温度に調整するための熱交換器などの温調機構141と、循環流路14において冷却液CLを循環させるためのポンプなどの循環機構142とが設けられている。冷却液CLとしては、電気絶縁の観点から、高抵抗の水が好ましく、例えば純水またはそれに近い水が好ましい。その他、例えばフッ素系不活性液体などの水以外の液冷媒を用いても良い。
金属パイプ51は、内部に冷却液CLが流れる直線状の流路51xが形成された直管状をなすものである。そして、金属パイプ51の少なくとも長手方向一端部の外周部には、雄ねじ部51aが形成されている。本実施形態の金属パイプ51は、雄ねじ部51aが形成された端部とそれ以外の部材とを別部品により形成してそれらを接合しているが、単一の部材から形成しても良い。なお、複数の金属パイプ51を接続する構成との部品の共通化を図るべく、金属パイプ51の長手方向両端部に雄ねじ部51aを形成して互換性を持たせておくことが望ましい。金属パイプ51の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等である。
絶縁パイプ52は、内部に冷却液CLが流れる直線状の流路52xが形成された直管状をなすものである。そして、絶縁パイプ52の軸方向両端部の側周壁には、金属パイプ51の雄ねじ部51aと螺合して接続される雌ねじ部52aが形成されている。また、絶縁パイプ52の軸方向両端部の側周壁には、雌ねじ部52aよりも軸方向中央側に、コンデンサ53の各電極53A、53Bを嵌合させるための凹部52bが周方向全体に亘って形成されている。本実施形態の絶縁パイプ52は、単一の部材から形成しているが、これに限られない。なお、絶縁パイプ52の材質は、例えば、アルミナ、フッ素樹脂、ポリエチレン(PE)、エンジニアリングプラスチック(例えばポリフェニンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)など)等である。
コンデンサ53は、絶縁パイプ52の内部に設けられており、具体的には、絶縁パイプ52の冷却液CLが流れる流路52xに設けられている。
具体的にコンデンサ53は、互いに隣り合う金属パイプ51の一方(第1の金属パイプ51A)と電気的に接続された第1の電極53Aと、互いに隣り合う金属パイプ51の他方(第2の金属パイプ51B)と電気的に接続されるとともに、第1の電極53Aに対向して配置された第2の電極53Bとを備えており、第1の電極53A及び第2の電極53Bの間の空間を冷却液CLが満たすように構成されている。つまり、この第1の電極53A及び第2の電極53Bの間の空間を流れる冷却液CLが、コンデンサ53を構成する誘電体となる。
各電極53A、53Bは、概略回転体形状をなすとともに、その中心軸に沿って中央部に主流路53xが形成されている。具体的に各電極53A、53Bは、金属パイプ51における絶縁パイプ52側の端部に電気的に接触するフランジ部531と、当該フランジ部531から絶縁パイプ52側に延出した延出部532とを有している。本実施形態の各電極53A、53Bは、フランジ部531及び延出部532を単一の部材から形成しても良いし、別部品により形成してそれらを接合しても良い。電極53A、53Bの材質は、例えば、アルミニウム、銅、これらの合金等である。
フランジ部531は、金属パイプ51における絶縁パイプ52側の端部に周方向全体に亘って接触している。具体的には、フランジ部531の軸方向端面は、金属パイプ51の端部に形成された円筒状の接触部511の先端面に周方向全体に亘って接触するとともに、金属パイプ51の接触部511の外周に設けられたリング状多面接触子15を介して金属パイプ51の端面に電気的に接触する。なお、フランジ部531は、それらの何れか一方により、金属パイプ51に電気的に接触するものであっても良い。
また、フランジ部531には、厚み方向に複数の貫通孔531hが形成されている。このフランジ部531に貫通孔531hを設けることによって、フランジ部531による冷却液CLの流路抵抗を小さくするとともに、絶縁パイプ52内での冷却液CLの滞留、及び、絶縁パイプ52内に気泡が溜まることを防ぐことができる。
延出部532は、円筒形状をなすものであり、その内部に主流路53xが形成されている。第1の電極53Aの延出部532及び第2の電極53Bの延出部532は、互いに同軸上に配置されている。つまり、第1の電極53Aの延出部532の内部に第2の電極53Bの延出部532が挿し込まれた状態で設けられている。これにより、第1の電極53Aの延出部532と第2の電極53Bの延出部532との間に、流路方向に沿った円筒状の空間が形成される。
このように構成された各電極53A、53Bは、絶縁パイプ52の側周壁に形成された凹部52bに嵌合されている。具体的には、絶縁パイプ52の軸方向一端側に形成された凹部52bに第1の電極53Aが嵌合され、絶縁パイプ52の軸方向他端側に形成された凹部52bに第2の電極53Bが嵌合されている。このように各凹部52bに各電極53A、53Bを嵌合させることによって、第1の電極53Aの延出部532及び第2の電極53Bの延出部532は、互いに同軸上に配置される。また、各凹部52bの軸方向外側を向く面に各電極53A、53Bのフランジ部531の端面が接触することによって、第1の電極53Aの延出部532に対する第2の電極53Bの延出部532の挿入寸法が規定される。
また、絶縁パイプ52の各凹部52bに各電極53A、53Bを嵌合させるとともに、当該絶縁パイプ52の雌ねじ部52aに金属パイプ51の雄ねじ部51aを螺合させることによって、金属パイプ51の接触部511の先端面が電極53A、53Bのフランジ部531に接触して各電極53A、53Bが、絶縁パイプ52と金属パイプ51との間に挟まれて固定される。このように本実施形態のアンテナ5は、金属パイプ51、絶縁パイプ52、第1の電極53A及び第2の電極53Bが同軸上に配置された構造となる。なお、金属パイプ51及び絶縁パイプ52の接続部は、真空及び冷却液CLに対するシール構造を有している。本実施形態のシール構造は、雄ねじ部51aの基端部に設けられたパッキン等のシール部材16により実現されている。なお、管用テーパねじ構造を用いても良い。
このように、金属パイプ51及び絶縁パイプ52の間のシール、及び、金属パイプ51と各電極53A、53Bとの電気的接触が、雄ねじ部51a及び雌ねじ部52aの締結と共に行われるので、組み立て作業が非常に簡便となる。
この構成において、第1の金属パイプ51Aから冷却液CLが流れてくると、冷却液CLは、第1の電極53Aの主流路53x及び貫通孔531hを通じて、第2の電極53B側に流れる。第2の電極53B側に流れた冷却液CLは、第2の電極53Bの主流路53x及び貫通孔531hを通じて第2の金属パイプ51Bに流れる。このとき、第1の電極53Aの延出部532と第2の電極53Bの延出部532との間の円筒状の空間が冷却液CLに満たされて、当該冷却液CLが誘電体となりコンデンサ53が構成される。
<ターゲットバイアス電圧と成膜速度との関係性評価>
本実施形態のスパッタリング装置100において、ターゲットバイアス電圧(V)と成膜速度(nm/min)との関係を評価した。なお、使用したターゲットTは、IGZO1114であり、サイズは、150×1000mmである。アンテナ間距離(ピッチ幅)は、200mmである。ターゲット−基板間距離は、125mmである。基板Wのサイズは、320×400mmである。
真空容器2を3×10−6Torr以下に真空排気した後に、100sccmのスパッタ用ガス(Arガス)を導入しつつ真空容器2内の圧力を1.3Paとなるように調整した。複数のアンテナ5に5kW、7kW又は8kWの高周波電力を供給して、誘導結合型のプラズマPを生成・維持した。ターゲットTに直流電圧パルス(50kHz、Duty97%)を印加して、ターゲットTのスパッタリングを行い、成膜速度を測定した。
各高周波電力における各ターゲットバイアス電圧の成膜速度を図4に示す。例えば成膜速度を25nm/minとしたい場合には、高周波電力が5kWの場合にはターゲットバイアス電圧を−665Vとし、高周波電力が7kWの場合にはターゲットバイアス電圧を−440Vとし、高周波電力が8kWの場合にはターゲットバイアス電圧を−344Vとすればよい。
<酸素ガスの濃度による成膜速度評価>
本実施形態のスパッタリング装置100を用いて、真空容器内にアルゴンガスとともに酸素ガスを供給した場合の成膜速度を評価した。なお、使用したターゲットTは、IGZO1114であり、サイズは、150×1000mmである。アンテナ間距離(ピッチ幅)は、200mmである。ターゲット−基板間距離は、125mmである。基板Wのサイズは、320×400mmである。
真空容器2を3×10−6Torr以下に真空排気した後に、100sccmの混合ガス(アルゴンガス+酸素ガス)を導入しつつ真空容器2内の圧力を0.9Paとなるように調整した。複数のアンテナ5に7kW又は8kWの高周波電力を供給して、誘導結合型のプラズマPを生成・維持した。ターゲットTに−400Vの直流電圧パルス(50kHz、Duty97%)を印加して、ターゲットTのスパッタリングを行い、成膜速度を測定した。
各高周波電力において酸素ガスの濃度を変化させた場合の成膜速度を図5に示す。この図5から分かるように、酸素ガスの濃度が大きくなるにつれて成膜速度が遅くなり、アルゴンガスのみを供給して成膜した場合が最も成膜速度が速いことがわかる。
<IGZO膜の酸素結合状態の評価>
本実施形態のスパッタリング装置100を用いて形成したIGZO膜(本発明によるIGZO膜)の酸素結合状態をX線光電子分光分析装置(XPS分析装置(株式会社島津製作所社製 AXIS ULTRA))を用いて分析した。また、比較例として、従来方式のRFマグネトロンスパッタ装置(株式会社エイコー社製 ESS−300)を用いて形成したIGZO膜(従来例によるIGZO膜)の酸素結合状態を前記XPS分析装置を用いて分析した。
本発明によるIGZO膜:
真空容器2を3×10−6Torr以下に真空排気した後に、100sccmのスパッタ用ガス(Arガスのみ)を導入しつつ真空容器2内の圧力を1.3Paとなるように調整した。複数のアンテナ5に7kWの高周波電力を供給して、誘導結合型のプラズマPを生成・維持した。ターゲットTに−400Vの直流電圧パルス(50kHz、Duty97%)を印加して、ターゲットT(IGZO1114)をスパッタリングして成膜した。
従来例によるIGZO膜:
真空容器を3×10−6Torr以下に真空排気した後に、19.1sccmのスパッタ用ガス(Arガス)及び0.9sccmの酸素ガス(酸素濃度4.5%の混合ガス)を導入しつつ真空容器内の圧力を0.6Paとなるように調整した。カソードに100Wの高周波電力を供給してターゲットT(IGZO1114)をスパッタリングして成膜した。
図6には、XPS分析装置により得られたGa2p3/2のXPSスペクトルを示している。また、図7には、Ga2p3/2のXPSスペクトル、In3d5/2のXPSスペクトル、Zn2p3/2のXPSスペクトルをピーク分離して得られた各成分の割合を示す図である。
これらの図6及び図7から分かるように、本実施形態のスパッタリング装置を用いることによって、反応性ガス(酸素ガス)を添加しなくても、金属元素の60%以上が酸素と結合した膜を形成することができる。
<本実施形態の効果>
このように構成した本実施形態のスパッタリング装置100によれば、絶縁パイプ52を介して互いに隣り合う金属パイプ51にコンデンサ53を電気的に直列接続しているので、アンテナ5の合成リアクタンスは、簡単に言えば、誘導性リアクタンスから容量性リアクタンスを引いた形になり、アンテナ5のインピーダンスを低減させることができる。その結果、アンテナ5を長くする場合でもそのインピーダンスの増大を抑えることができ、アンテナ5に高周波電流が流れやすくなり、プラズマPを効率良く発生させることができる。これにより、プラズマPの密度を上げることができ、成膜速度を上げることもできる。
特に本実施形態によれば、第1の電極53A及び第2の電極53Bの間の空間を冷却液CLで満たして誘電体としているので、コンデンサ53を構成する電極53A、53B及び誘電体の間に生じる隙間を無くすことができる。その結果、プラズマPの均一性を向上させることができ、成膜の均一性を向上させることができる。また、冷却液CLを誘電体として用いることで、冷却液CLとは別の液体の誘電体を準備する必要が無く、また、第1の電極53A及び第2の電極53Bを冷却することができる。冷却液CLは温調機構により一定温度に調整されており、この冷却液CLを誘電体として用いることによって、温度変化による比誘電率の変化を抑えて、キャパシタンス値の変化を抑えることができ、これによってもプラズマPの均一性を向上させることができる。さらに、冷却液CLとして水を用いた場合には、水の比誘電率は約80(20℃)であり樹脂製の誘電体シートよりも大きいため、高電圧に耐えうるコンデンサ53を構成することができる。
その上、本実施形態によれば、アンテナ5に供給する高周波電圧とターゲットTのバイアス電圧との設定を独立して行うことができるので、バイアス電圧をプラズマPの生成とは独立してプラズマP中のイオンをターゲットTに引き込んでスパッタさせる程度の低電圧に設定することができる。その結果、低電圧においてターゲットTのスパッタを行うことができるので、ターゲットTの材料組成と基板Wに形成された膜の組成との変化を小さくすることができる。また、アンテナ5を用いてスパッタリング用のプラズマPを生成しているので、マグネトロンスパッタリング装置に比べて、ターゲットTを一様に消費することができ、ターゲットTの使用効率を向上させることができる。加えて、本実施形態ではターゲット表面近傍に直流磁場を有さない構成であり、磁性材料への適用が容易となる。
その他、電極53A、53B及び誘電体の間の隙間に発生しうるアーク放電を無くし、アーク放電に起因するコンデンサ53の破損を無くすことができる。また、隙間を考慮することなく、第1の電極53A及び第2の電極53Bの距離、対向面積及び冷却液CLの比誘電率からキャパシタンス値を精度良く設定することができる。さらに、隙間を埋めるための電極53A、53B及び誘電体を押圧する構造も不要にすることができ、当該押圧構造によるアンテナ周辺の構造の複雑化及びそれにより生じるプラズマPの均一性の悪化を防ぐことができる。
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では、アンテナは直線状をなすものであったが、湾曲又は屈曲した形状であっても良い。この場合、金属パイプが湾曲又は屈曲した形状であっても良いし、絶縁パイプが湾曲又は屈曲した形状であっても良い。
前記実施形態の電極において延出部は、円筒状であったが、その他の角筒状であっても良いし、平板状又は湾曲又は屈曲した板状であっても良い。
前記実施形態では、コンデンサ53が2つの円筒状の延出部からなる2筒構造であったが、図8に示すように、3つ以上の円筒状の延出部532を同軸上に配置しても良い。この場合、第1の電極53Aの延出部532と第2の電極53Bの延出部532が交互に配置されるように構成する。図8では、3つの延出部532のうち、内側及び外側の2つが第1の電極53Aの延出部532であり、中間の1つが第2の電極53Bの延出部532となる。この構成であれば、コンデンサ53の軸方向寸法を大きくすることなく対向面積を増やすことができる。
さらに、電極53A、53Bと金属パイプ51との接触はそれら端面同士の接触の他に、図9に示すように、電極53A、53Bに接触端子533を設けて、当該接触端子533が金属パイプ51に接触するように構成しても良い。図9の構成は、電極53A、53Bのフランジ部531から軸方向外側に突出した接触端子533を設けて、当該接触端子533が金属パイプ51の接触部511の外側周面に押圧接触するものである。この構成において、各電極53A、53Bの相対位置は、絶縁パイプ52の凹部52bの軸方向外側を向く面により規定される。
さらに、絶縁要素52の一方側の金属要素51の一部を第1の電極53Aとしても良い。この場合には、絶縁要素52の他方側の金属要素51に電気的に接続された第2の電極53Bは、絶縁要素52の内部を通って絶縁要素52の一方側の金属要素51の内部に延出する構成とすることが考えられる。
加えて、導体要素及び絶縁要素は、1つの内部流路を有する管状をなすものであったが、2以上の内部流路を有するもの、或いは、分岐した内部流路を有するものであっても良い。
前記実施形態では、複数のターゲット保持部を有する構成であったが、1つのターゲット保持部を有する構成であってもよい。この場合であっても、複数のアンテナを有する構成が望ましいが、1つのアンテナを有する構成であってもよい。
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
100・・・スパッタリング装置
W ・・・基板
P ・・・プラズマ
T ・・・ターゲット
2 ・・・真空容器
3 ・・・基板保持部
4 ・・・ターゲット保持部
5 ・・・アンテナ
51 ・・・導体要素
52 ・・・絶縁要素
53 ・・・容量素子

Claims (5)

  1. プラズマを用いてターゲットをスパッタリングして基板に成膜するスパッタリング装置であって、
    真空排気され且つガスが導入される真空容器と、
    前記真空容器内において前記基板を保持する基板保持部と、
    前記真空容器内において前記基板と対向して前記ターゲットを保持するターゲット保持部と、
    前記プラズマを発生させるものであり、内部に冷却液が流通する流路を有する複数のアンテナとを備え、
    前記アンテナは、少なくとも2つの管状をなす導体要素と、互いに隣り合う前記導体要素の間に設けられて、それら導体要素を絶縁する管状をなす絶縁要素と、互いに隣り合う前記導体要素と電気的に直列接続された容量素子とを有し、
    前記容量素子は、互いに隣り合う前記導体要素の一方と電気的に接続された第1の電極と、互いに隣り合う前記導体要素の他方と電気的に接続されるとともに、前記第1の電極に対向して配置された第2の電極と、前記第1の電極及び前記第2の電極の間の空間を満たす誘電体とからなり、前記第1の電極及び前記第2の電極が前記流路の内部に設けられており、前記誘電体が前記流路を流れる冷却液であるスパッタリング装置。
  2. 前記ターゲットは酸化物半導体材料である、請求項1記載のスパッタリング装置。
  3. 前記真空容器にスパッタガスを供給するスパッタ用ガス供給機構を備え、
    前記スパッタ用ガス供給機構は、前記真空容器にアルゴンガスのみを供給するものである、請求項1又は2記載のスパッタリング装置。
  4. 前記各電極は、前記導体要素における前記絶縁要素側の端部に電気的に接触するフランジ部と、当該フランジ部から前記絶縁要素側に延出した延出部とを有する、請求項1乃至3の何れか一項に記載のスパッタリング装置。
  5. 前記各電極の延出部は、管状をなすものであり、互いに同軸上に配置されている、請求項4記載のスパッタリング装置。
JP2017112591A 2017-06-07 2017-06-07 スパッタリング装置 Active JP6310601B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017112591A JP6310601B1 (ja) 2017-06-07 2017-06-07 スパッタリング装置
US16/619,942 US11251020B2 (en) 2017-06-07 2018-03-14 Sputtering apparatus
KR1020197035268A KR102325544B1 (ko) 2017-06-07 2018-03-14 스퍼터링 장치
CN201880036037.6A CN110709533B (zh) 2017-06-07 2018-03-14 溅射装置
PCT/JP2018/010005 WO2018225324A1 (ja) 2017-06-07 2018-03-14 スパッタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112591A JP6310601B1 (ja) 2017-06-07 2017-06-07 スパッタリング装置

Publications (2)

Publication Number Publication Date
JP6310601B1 true JP6310601B1 (ja) 2018-04-11
JP2018204080A JP2018204080A (ja) 2018-12-27

Family

ID=61902026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112591A Active JP6310601B1 (ja) 2017-06-07 2017-06-07 スパッタリング装置

Country Status (5)

Country Link
US (1) US11251020B2 (ja)
JP (1) JP6310601B1 (ja)
KR (1) KR102325544B1 (ja)
CN (1) CN110709533B (ja)
WO (1) WO2018225324A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066473A (ja) * 2018-08-10 2022-04-28 イーグル ハーバー テクノロジーズ,インク. Rfプラズマリアクタ用プラズマシース制御

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172839B2 (ja) * 2019-04-26 2022-11-16 日新電機株式会社 スパッタリング装置
JP7335495B2 (ja) * 2019-06-21 2023-08-30 日新電機株式会社 スパッタリング装置
JP7390922B2 (ja) * 2020-02-18 2023-12-04 東京エレクトロン株式会社 カソードユニットおよび成膜装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596062U (ja) * 1992-05-27 1993-12-27 株式会社島津製作所 プラズマ処理装置
JP2002069629A (ja) * 2000-09-04 2002-03-08 Anelva Corp 高周波スパッタリング装置
JP2005149887A (ja) * 2003-11-14 2005-06-09 Mitsui Eng & Shipbuild Co Ltd プラズマ発生装置用アンテナの整合方法及びプラズマ発生装置
JP2017004602A (ja) * 2015-06-04 2017-01-05 日新電機株式会社 プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3133115B2 (ja) 1991-10-04 2001-02-05 大日本印刷株式会社 見物施設の仮想体験装置
US6679977B2 (en) * 1997-12-17 2004-01-20 Unakis Trading Ag Method of producing flat panels
JP4246547B2 (ja) * 2003-05-23 2009-04-02 株式会社アルバック スパッタリング装置、及びスパッタリング方法
US20050103620A1 (en) * 2003-11-19 2005-05-19 Zond, Inc. Plasma source with segmented magnetron cathode
KR101275924B1 (ko) * 2006-05-22 2013-06-14 엘지디스플레이 주식회사 스퍼터링 장치, 그 구동 방법 및 이를 이용한 패널 제조방법
EP2345750B1 (en) * 2008-08-28 2019-01-02 EMD Corporation Thin film-forming sputtering systems
KR20110028416A (ko) * 2009-09-12 2011-03-18 위순임 유도 결합 플라즈마 방식을 이용한 스퍼터 장치
KR20180027635A (ko) * 2011-08-30 2018-03-14 가부시키가이샤 이엠디 스퍼터링 박막 형성 장치
JP5969856B2 (ja) * 2012-08-10 2016-08-17 株式会社Screenホールディングス スパッタリング装置
JP6264248B2 (ja) 2014-09-26 2018-01-24 日新電機株式会社 成膜方法およびスパッタリング装置
CN105491780B (zh) 2014-10-01 2018-03-30 日新电机株式会社 等离子体产生用的天线及具备该天线的等离子体处理装置
JP5733460B1 (ja) 2014-10-01 2015-06-10 日新電機株式会社 プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置
WO2018151114A1 (ja) * 2017-02-16 2018-08-23 日新電機株式会社 プラズマ発生用のアンテナ、それを備えるプラズマ処理装置及びアンテナ構造
CN110291847A (zh) 2017-02-16 2019-09-27 日新电机株式会社 等离子体产生用的天线、具有所述天线的等离子体处理装置以及天线构造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596062U (ja) * 1992-05-27 1993-12-27 株式会社島津製作所 プラズマ処理装置
JP2002069629A (ja) * 2000-09-04 2002-03-08 Anelva Corp 高周波スパッタリング装置
JP2005149887A (ja) * 2003-11-14 2005-06-09 Mitsui Eng & Shipbuild Co Ltd プラズマ発生装置用アンテナの整合方法及びプラズマ発生装置
JP2017004602A (ja) * 2015-06-04 2017-01-05 日新電機株式会社 プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066473A (ja) * 2018-08-10 2022-04-28 イーグル ハーバー テクノロジーズ,インク. Rfプラズマリアクタ用プラズマシース制御
JP7387782B2 (ja) 2018-08-10 2023-11-28 イーグル ハーバー テクノロジーズ,インク. Rfプラズマリアクタ用プラズマシース制御

Also Published As

Publication number Publication date
JP2018204080A (ja) 2018-12-27
CN110709533A (zh) 2020-01-17
WO2018225324A1 (ja) 2018-12-13
US20210151292A1 (en) 2021-05-20
CN110709533B (zh) 2021-07-16
KR102325544B1 (ko) 2021-11-12
US11251020B2 (en) 2022-02-15
KR20190140059A (ko) 2019-12-18

Similar Documents

Publication Publication Date Title
JP6310601B1 (ja) スパッタリング装置
JP5747231B2 (ja) プラズマ生成装置およびプラズマ処理装置
JP6928884B2 (ja) 薄膜トランジスタの製造方法
JP5064707B2 (ja) プラズマ処理装置
JP6341329B1 (ja) プラズマ発生用のアンテナ及びそれを備えるプラズマ処理装置
JP2013206652A (ja) アンテナ装置、それを備えるプラズマ処理装置およびスパッタリング装置
US11328913B2 (en) Sputtering device
JP2016072168A (ja) プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置
WO2019181095A1 (ja) 成膜方法、薄膜トランジスタの製造方法および薄膜トランジスタ
JP5874853B1 (ja) プラズマ処理装置
US11217429B2 (en) Plasma processing device
JP2017033788A (ja) プラズマ処理装置
JP2018156929A (ja) プラズマ発生用のアンテナ、それを備えるプラズマ処理装置及びアンテナ構造
JP2012133899A (ja) プラズマ処理装置
KR102235221B1 (ko) 플라즈마 발생용의 안테나, 그것을 구비하는 플라즈마 처리 장치 및 안테나 구조
JP2017004602A (ja) プラズマ発生用のアンテナおよびそれを備えるプラズマ処理装置
JP2018156864A (ja) プラズマ処理装置
JP2019164896A (ja) アンテナ及びプラズマ処理装置
WO2019177037A1 (ja) アンテナ及びプラズマ処理装置
WO2018151114A1 (ja) プラズマ発生用のアンテナ、それを備えるプラズマ処理装置及びアンテナ構造
JP2017228422A (ja) プラズマ生成装置
JP2018156763A (ja) プラズマ発生用のアンテナ及びそれを備えるプラズマ処理装置
JP2019165177A (ja) 成膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250