JP6297242B1 - 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法 - Google Patents

光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法 Download PDF

Info

Publication number
JP6297242B1
JP6297242B1 JP2017562382A JP2017562382A JP6297242B1 JP 6297242 B1 JP6297242 B1 JP 6297242B1 JP 2017562382 A JP2017562382 A JP 2017562382A JP 2017562382 A JP2017562382 A JP 2017562382A JP 6297242 B1 JP6297242 B1 JP 6297242B1
Authority
JP
Japan
Prior art keywords
band gap
perovskite compound
gap energy
light absorption
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017562382A
Other languages
English (en)
Other versions
JPWO2018025445A1 (ja
Inventor
浩司 細川
浩司 細川
澤田 拓也
拓也 澤田
洋平 白石
洋平 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Application granted granted Critical
Publication of JP6297242B1 publication Critical patent/JP6297242B1/ja
Publication of JPWO2018025445A1 publication Critical patent/JPWO2018025445A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/811Of specified metal oxide composition, e.g. conducting or semiconducting compositions such as ITO, ZnOx
    • Y10S977/812Perovskites and superconducting composition, e.g. BaxSr1-xTiO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、耐久性及び近赤外光領域の光電変換効率に優れる光電変換素子及び太陽電池を形成するための光吸収層、当該光吸収層を有する光電変換素子及び太陽電池に関する。本発明の光吸収層は、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを含有する。

Description

本発明は、光吸収層、該光吸収層を有する光電変換素子、及び該光電変換素子を有する太陽電池に関する。
光エネルギーを電気エネルギーに変える光電変換素子は、太陽電池、光センサー、複写機などに利用されている。特に、環境・エネルギー問題の観点から、無尽蔵のクリーンエネルギーである太陽光を利用する光電変換素子(太陽電池)が注目されている。
一般的なシリコン太陽電池は、超高純度のシリコンを利用すること、高真空下でのエピタキシャル結晶成長などの「ドライプロセス」により製造していること、などから、大きなコストダウンが期待できない。そこで、塗布プロセスなどの「ウェットプロセス」により製造される太陽電池が、低コストな次世代太陽電池として期待されている。
「ウェットプロセス」により製造可能な次世代太陽電池として、量子ドット太陽電池がある。量子ドットとは、粒径が約20nm以下の無機ナノ粒子であり、量子サイズ効果の発現により、バルク体とは異なる物性を示すものである。例えば、量子ドットの粒径の減少に伴い、バンドギャップエネルギーが増大(吸収波長が短波長化)することが知られており、粒径約3nmでバンドギャップエネルギー約1.2eVの硫化鉛(PbS)量子ドットを量子ドット太陽電池に用いることが報告されている(ACS Nano 2014,8,614−622)。
また、次世代太陽電池の最有力候補として、近年の光電変換効率の急増が報告されている、ペロブスカイト太陽電池がある。このペロブスカイト太陽電池は、例えば、メチルアンモニウムなどのカチオンとヨウ化鉛などのハロゲン化金属塩から構成されるペロブスカイト化合物(CHNHPbI)を光吸収層に用いた光電変換素子を具備する(J.Am.Chem.Soc.2009,131,6050−6051)。カチオン種、ハロゲン元素、金属元素などの組成によりペロブスカイト化合物の化学的、物理的特性が変化することが知られている。例えば、ハロゲン元素のヨウ素を臭素に置換することによって、光電変換素子の耐久性は向上するものの、ペロブスカイト化合物の吸収短波長化(バンドギャップエネルギーの増大)に伴う変換効率低下が報告されている(Nano Lett.2013,13,1764−1769)。
また、ヨウ素系ペロブスカイト(CHNHPbI)で表面処理したPbS量子ドットを光吸収層に用いた量子ドット太陽電池が報告されている(Nano Lett.2015,15,7539−7543)。
しかしながら、従来の光電変換素子は、優れた耐久性と高い変換効率が両立されていない。例えば、量子ドットは、大気中で表面酸化されやすいため、経時に伴い光電変換効率が低下してしまい、耐久性に乏しい。また、ペロブスカイト化合物は、大気中の水分などにより分解するため、耐久性に問題がある。ペロブスカイト化合物のハロゲン組成をヨウ素から臭素に置換すると耐久性は向上するが、ペロブスカイト化合物の吸収短波長化(バンドギャップエネルギーの増大)に従い、近赤外光領域の光電変換効率(量子効率)が著しく低下する。
本発明は、耐久性及び近赤外光領域の光電変換効率に優れる光電変換素子及び太陽電池を形成するための光吸収層、当該光吸収層を有する光電変換素子及び太陽電池に関する。
本発明者らは、特定のバンドギャップエネルギーを有するペロブスカイト化合物、及び特定のバンドギャップエネルギーを有する量子ドットを含有する光吸収層を用いることにより、光電変換素子の耐久性と近赤外光領域の光電変換効率(量子効率)が共に向上することを見出した。
すなわち、本発明は、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを含有する光吸収層、に関する。
1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物(例えば、CHNHPbBr)、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドット(例えば、PbS量子ドット)を光吸収層の形成材料として用いることにより、ペロブスカイト化合物の吸収できる短波長領域の光に加えて、量子ドットの吸収できる近赤外などの長波長領域も含む幅広い波長領域の光を吸収できるため、幅広い波長領域において光電変換機能を有する光電変換素子を得ることができる。
1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物(例えば、CHNHPbBr)は、1.7eV未満のバンドギャップエネルギーを有するペロブスカイト化合物(例えば、CHNHPbI)と比べて耐久性(耐湿性)に優れるが、実用化には耐久性が不十分である。また、0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドット(例えば、PbS量子ドット)も、耐久性(耐酸化性)が不十分である。
しかしながら、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを組合せることにより、驚くべきことに光電変換素子の耐久性が向上した。その理由は定かではないが、以下のように推察される。ペロブスカイト化合物の耐久性悪化のメカニズムとして、大気中の水分によりペロブスカイト化合物が分解(例えば、CHNHPbBr→CHNHBr+PbBr)することが推定される。ペロブスカイト化合物と量子ドットを組合せることによってペロブスカイト化合物に量子ドットが相互作用し、それによりペロブスカイト化合物の結晶構造が安定化し、ペロブスカイト化合物の加水分解反応が抑制されたため、光電変換素子の耐久性が向上したと推察される。更に、量子ドット表面にペロブスカイト化合物が存在するため、量子ドット表面の酸化が抑制され、光電変換素子の耐久性が向上したと推察される。
更に、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを組合せることにより、驚くべきことに経時(保存)に伴って光電変換素子の光電変換効率が向上した。その理由は定かではないが、ペロブスカイト化合物と量子ドットとの相互作用により、ペロブスカイト化合物と量子ドットとの界面に存在するキャリア失活サイトが減少し、抵抗が減少したため光電変換効率が向上したと推察される。
本発明によれば、耐久性及び近赤外光領域の光電変換効率に優れる光電変換素子及び太陽電池を得ることができる。
本発明の光電変換素子の構造の一例を示す概略断面図である。
発明の詳細な説明
<光吸収層>
本発明の光吸収層は、光吸収剤として、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギーの最大値以下のバンドギャップエネルギーを有する量子ドットとを含有する。なお、本発明の光吸収層は、本発明の効果を損なわない範囲で前記以外の光吸収剤を含有していてもよい。
前記光吸収層は、光電変換素子の電荷分離に寄与し、光吸収によって生じた電子及び正孔をそれぞれ反対方向の電極に向かって輸送する機能を有しており、電荷分離層又は光電変換層とも呼ばれる。
前記ペロブスカイト化合物は、ペロブスカイト型結晶構造を有する化合物であり、耐久性(耐湿性)及び光電変換効率を向上させる観点から、1.7eV以上4.0eV以下のバンドギャップエネルギーを有するものを用いる。ペロブスカイト化合物は、1種単独で用いてもよく、バンドギャップエネルギーが異なる2種以上を併用してもよい。
前記ペロブスカイト化合物のバンドギャップエネルギーは、光電変換効率(電圧)を向上させる観点から、好ましくは2.0eV以上、より好ましくは2.1eV以上、更に好ましくは2.2eV以上であり、光電変換効率(電流)を向上させる観点から、好ましくは3.6eV以下、より好ましくは3.0eV以下、更に好ましくは2.4eV以下である。なお、ペロブスカイト化合物及び量子ドットのバンドギャップエネルギーは、後述する実施例に記載の方法で、25℃で測定した吸収スペクトルから求めることができる。吸収スペクトルから求めたバンドギャップエネルギーに対応する波長を吸収端波長という。
前記ペロブスカイト化合物は、前記バンドギャップエネルギーを有するものであればよく、公知のものを特に制限なく使用できるが、好ましくは下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上であり、耐久性と光電変換効率とを両立する観点から、より好ましくは下記一般式(1)で表される化合物である。
RMX (1)
(式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
n−13n+1 (2)
(式中、R、R、及びRはそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
前記Rは1価のカチオンであり、例えば、周期表第一族元素のカチオン、及び有機カチオンが挙げられる。周期表第一族元素のカチオンとしては、例えば、Li、Na、K、及びCsが挙げられる。有機カチオンとしては、例えば、置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンが挙げられる。置換基に特段の制限はない。置換基を有していてもよいアンモニウムイオンとしては、例えば、アルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンが挙げられ、耐久性と光電変換効率とを両立する観点から、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より更に好ましくはメチルアンモニウムイオンである。
前記R、R、及びRはそれぞれ独立に1価のカチオンであり、R、R、及びRのいずれかまたは全てが同一でも良い。例えば、周期表第一族元素のカチオン、及び有機カチオンが挙げられる。周期表第一族元素のカチオンとしては、例えば、Li、Na、K、及びCsが挙げられる。有機カチオンとしては、例えば、置換基を有していてもよいアンモニウムイオン、及び置換基を有していてもよいホスホニウムイオンが挙げられる。置換基に特段の制限はない。置換基を有していてもよいアンモニウムイオンとしては、例えば、アルキルアンモニウムイオン、ホルムアミジニウムイオン及びアリールアンモニウムイオンが挙げられ、耐久性と光電変換効率とを両立する観点から、好ましくはアルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上であり、より好ましくはモノアルキルアンモニウムイオンであり、更に好ましくはメチルアンモニウムイオン、エチルアンモニウムイオン、ブチルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、デシルアンモニウムイオン、ドデシルアンモニウムイオン、テトラデシルアンモニウムイオン、ヘキサデシルアンモニウムイオン、及びオクタデシルアンモニウムイオンから選ばれる1種以上である。
前記nは1以上10以下の整数であり、耐久性と光電変換効率とを両立する観点から、好ましくは1以上4以下である。
前記Mは2価の金属カチオンであり、例えば、Pb2+、Sn2+、Hg2+、Cd 、Zn2+、Mn2+、Cu2+、Ni2+、Fe2+、Co2+、Pd2+、Ge 、Y2+、及びEu2+などが挙げられる。前記Mは、耐久性(耐湿性)及び光電変換効率に優れる観点から、好ましくはPb2+、Sn2+、又はGe2+であり、より好ましくはPb2+、又はSn2+であり、更に好ましくはPb2+である。
前記Xはハロゲンアニオンであり、例えば、フッ素アニオン、塩素アニオン、臭素アニオン、及びヨウ素アニオンが挙げられる。前記Xは、目的とするバンドギャップエネルギーを有するペロブスカイト化合物を得るために、好ましくはフッ素アニオン、塩素アニオン、又は臭素アニオンであり、より好ましくは塩素アニオン、又は臭素アニオンであり、更に好ましくは臭素アニオンである。
1.7eV以上4.0eV以下のバンドギャップエネルギーを有する上記一般式(1)で表される化合物としては、例えば、CHNHPbCl、CHNHPbBr、CHNHPbBrI、CHNHPbBrI、CHNHSnCl、CHNHSnBr、CHNHSnI、CH(=NH)NHPbCl、及びCH(=NH)NHPbBrなどが挙げられる。これらのうち、耐久性と光電変換効率とを両立する観点から、好ましくはCHNHPbBr、CH(=NH)NHPbBrであり、より好ましくはCHNHPbBrである。
1.7eV以上4.0eV以下のバンドギャップエネルギーを有する上記一般式(2)で表される化合物としては、例えば、(CNHPbI、(C13NHPbI、(C17NHPbI、(C1021NHPbI、(C1225NHPbI、(CNH(CHNH)Pb、(C13NH(CHNH)Pb、(C17NH(CHNH)Pb、(C1021NH(CHNH)Pb、(C1225NH(CHNH)Pb、(CNH(CHNHPb10、(C13NH(CHNHPb10、(C17NH(CHNHPb10、(C1021NH(CHNHPb10、(C1225NH(CHNHPb10、(CNHPbBr、(C13NHPbBr、(C17NHPbBr、(C1021NHPbBr、(CNH(CHNH)PbBr、(C13NH(CHNH)PbBr、(C17NH(CHNH)PbBr、(C1021NH(CHNH)PbBr、(C1225NH(CHNH)PbBr、(CNH(CHNHPbBr10、(C13NH(CHNHPbBr10、(C17NH(CHNHPbBr 、(C1021NH(CHNHPbBr10、(C1225NH(CHNHPbBr10、(CNH(CHNHPbCl10、(C13NH(CHNHPbCl10、(C NH(CHNHPbCl10、(C1021NH(CHNHPbCl10、及び(C1225NH(CHNHPbCl10などが挙げられる。
光吸収層のペロブスカイト化合物の結晶子径は、光電変換効率を向上させる観点から、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは40nm以上であり、同様の観点から、好ましくは1000nm以下である。なお、光吸収層の100nm以下の範囲の結晶子径は、後述する実施例に記載の方法で測定することができる。また、100nmを超える範囲の結晶子径は、後述する実施例に記載の方法等で測定することはできないが、光吸収層の厚さを超えることはない。
ペロブスカイト化合物は、例えば、後述のようにペロブスカイト化合物の前駆体から製造することができる。ペロブスカイト化合物の前駆体としては、例えば、ペロブスカイト化合物が前記一般式(1)で表される化合物の場合、MXで表される化合物と、RNHXで表される化合物との組合せが挙げられる。また、ペロブスカイト化合物が前記一般式(2)で表される化合物の場合、MXで表される化合物と、RNHXで表される化合物、RNHXで表される化合物及びRNHXで表される化合物から選ばれる1種以上との組合せが挙げられる。
光吸収層のペロブスカイト化合物は、例えば、元素分析、赤外(IR)スペクトル、ラマンスペクトル、核磁気共鳴(NMR)スペクトル、X線回折パターン、吸収スペクトル、発光スペクトル、電子顕微鏡観察、及び電子線回折などの常法により同定することができる。
前記量子ドットは、前記ペロブスカイト化合物が有しないバンドギャップエネルギーを補完して、近赤外光領域の光電変換効率を向上させる観点から、0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有するものを用いる。量子ドットは、1種単独で用いてもよく、バンドギャップエネルギーが異なる2種以上を併用してもよい。
なお、バンドギャップエネルギーの異なる2種以上のペロブスカイト化合物を用いる場合、量子ドットのバンドギャップエネルギーの前記上限である「ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギー」とは、2種以上のペロブスカイト化合物の有するバンドギャップエネルギーの最大値以下のバンドギャップエネルギーのことである。
以下、特に断らない限り、量子ドットの好ましい態様は、有機配位子の好ましい態様を除き、光吸収層とその原料とに共通の好ましい態様である。
前記量子ドットのバンドギャップエネルギーは、光電変換効率(電圧)を向上させる観点から、好ましくは0.8eV以上、より好ましくは0.9eV以上、更に好ましくは1.0eV以上、より更に好ましくは1.1eV以上であり、光電変換効率(電流)を向上させる観点から、好ましくは1.6eV以下、より好ましくは1.5eV以下、更に好ましくは1.4eV以下、より更に好ましくは1.3eV以下である。
前記量子ドットについては、例えば、電子顕微鏡観察、電子線回折、及びX線回折パターンなどにより量子ドットの粒径及び種類が決まれば、粒径とバンドギャップエネルギーとの相関(例えば、ACS Nano2014,8,6363−6371)から、バンドギャップエネルギーを算出することもできる。
前記ペロブスカイト化合物のバンドギャップエネルギーと前記量子ドットのバンドギャップエネルギーとの差は、光電変換効率向上の観点から、好ましくは0.4eV以上、より好ましくは0.6eV以上、更に好ましくは0.8eV以上であり、好ましくは2.0eV以下、より好ましくは1.5eV以下、更に好ましくは1.3eV以下である。
前記量子ドットの粒径は、安定性及び光電変換効率を向上させる観点から、好ましくは1nm以上、より好ましくは2nm以上、更に好ましくは3nm以上であり、成膜性及び光電変換効率を向上させる観点から、好ましくは20nm以下、より好ましくは10nm以下、更に好ましくは5nm以下である。前記量子ドットの粒径は、XRD(X線回折)の結晶子径解析や透過型電子顕微鏡観察などの常法によって測定することができる。
前記量子ドットは、前記バンドギャップエネルギーを有するものであればよく、公知のものを特に制限なく使用できる。前記バンドギャップエネルギーを有する量子ドットとしては、例えば、金属酸化物、金属カルコゲナイド(例えば、硫化物、セレン化物、及びテルル化物など)が挙げられ、具体的には、PbS、PbSe、PbTe、CdS、CdSe、CdTe、Sb23、Bi23、Ag2S、Ag2Se、Ag2Te、Au2S、Au2Se、Au2Te、Cu2S、Cu2Se、Cu2Te、Fe2S、Fe2Se、Fe2Te、In23、SnS、SnSe、SnTe、CuInS2、CuInSe2、CuInTe2、EuS、EuSe、及びEuTeなどが挙げられる。前記量子ドットは、耐久性(耐酸化性)及び光電変換効率に優れる観点から、好ましくはPb元素を含み、より好ましくはPbS又はPbSeを含み、更に好ましくはPbSを含む。また、ペロブスカイト化合物と量子ドットの相互作用を大きくするために、ペロブスカイト化合物を構成する金属と量子ドットを構成する金属は同じ金属であることが好ましい。
前記量子ドットは、量子ドットの光吸収層及び分散液中における分散性、製造容易性、コスト、優れた性能発現などの観点から、好ましくは有機配位子及びハロゲン元素から選択される1種以上を含んでも良い。
有機配位子としては、例えば、カルボキシ基含有化合物、アミノ基含有化合物、チオール基含有化合物、及びホスフィノ基含有化合物などが挙げられる。
カルボキシ基含有化合物としては、例えば、オレイン酸、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、及びカプリン酸などが挙げられる。
アミノ基含有化合物としては、例えば、オレイルアミン、ステアリルアミン、パルミチルアミン、ミリスチルアミン、ラウリルアミン、カプリルアミン、オクチルアミン、ヘキシルアミン、及びブチルアミンなどが挙げられる。
チオール基含有化合物としては、例えば、エタンチオール、エタンジチオール、ベンゼンチオール、ベンゼンジチオール、デカンチオール、デカンジチオール、及びメルカプトプロピオン酸などが挙げられる。
ホスフィノ基含有化合物としては、例えば、トリオクチルホスフィン、及びトリブチルホスフィンなどが挙げられる。
前記有機配位子は、量子ドットの製造容易性、分散安定性、汎用性、コスト、優れた性能発現などの観点から、好ましくはカルボキシ基含有化合物又はアミノ基含有化合物、より好ましくはカルボキシ基含有化合物、更に好ましくは長鎖脂肪酸、より更に好ましくはオレイン酸である。
量子ドットに好ましくは有機配位子が含まれる場合、光吸収層を製造する際に原料として用いる量子ドットにおいて、量子ドットを構成する金属元素に対する有機配位子のモル比は、光吸収層を製造する際に有機配位子とペロブスカイト化合物の前駆体との配位子交換を促進させる観点から、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上、より更に好ましくは0.12以上であり、光吸収層中や分散液中の量子ドットの分散性を向上させる観点から、好ましくは1以下、より好ましくは0.8以下、更に好ましくは0.7以下、より更に好ましくは0.6以下である。
量子ドットに好ましくは有機配位子が含まれる場合、光吸収層において、量子ドットを構成する金属元素に対する有機配位子のモル比は特に制限されないが、光吸収層における量子ドットの分散性を向上させ優れた性能を発現させる観点から、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.09以上、より更に好ましくは0.1以上であり、好ましくは1以下、より好ましくは0.8以下、更に好ましくは0.6以下、より更に好ましくは0.5以下である。
量子ドットに好ましくは有機配位子が含まれる場合、光吸収層において、前記ペロブスカイト化合物を構成する金属元素に対する量子ドットに含まれる有機配位子のモル比は特に制限されないが、光吸収層における量子ドットの分散性を向上させ優れた性能を発現させる観点から、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上であり、好ましくは0.1以下、より好ましくは0.06以下、更に好ましくは0.05以下である。
前記ハロゲン元素は特に制限されず、例えば、フッ素、塩素、臭素、及びヨウ素が挙げられる。前記ハロゲン元素は、量子ドットの製造容易性、分散安定性、汎用性、コスト、優れた性能発現などの観点から、好ましくは塩素である。
前記量子ドットを構成する金属元素に対するハロゲン元素の原子比は特に制限されないが、光吸収層中や分散液中の量子ドットの分散性を向上させる観点、及びペロブスカイト化合物から量子ドットへのキャリア移動を抑制する観点から、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.3以上であり、好ましくは1以下、より好ましくは0.8以下、更に好ましくは0.7以下である。なお、光吸収層において、前記量子ドットを構成する金属元素に対するハロゲン元素の原子比は、光吸収層の原料に用いる前記量子ドットにおける、量子ドットを構成する金属元素に対するハロゲン元素の原子比と同程度であると考えられる。
光吸収層の量子ドットは、例えば、元素分析、赤外(IR)スペクトル、ラマンスペクトル、核磁気共鳴(NMR)スペクトル、X線回折パターン、吸収スペクトル、発光スペクトル、小角X線散乱、電子顕微鏡観察、及び電子線回折などの常法により同定することができる。
前記ペロブスカイト化合物と前記量子ドットの好ましい組み合わせとしては、耐久性と光電変換効率とを両立する観点から、好ましくは同じ金属元素を含む化合物の組み合わせであり、例えば、CHNHPbBrとPbS、CHNHPbBrとPbSe、CH(=NH)NHPbBrとPbS、CH(=NH)NHPbBrとPbSeなどが挙げられ、より好ましくはCHNHPbBrとPbSとの組み合わせである。
前記光吸収層は、前記ペロブスカイト化合物及び前記量子ドットを含有するものであればよいが、前記ペロブスカイト化合物及び前記量子ドットにより形成された複合体を含むことが好ましい。複合化することにより、ペロブスカイト化合物の結晶構造中に量子ドットを均一に存在させることができるだけでなく、ペロブスカイト化合物と量子ドット間の界面構造を原子、分子レベルで均一化できるため、本発明の効果をより向上させることが期待できる。ペロブスカイト化合物と量子ドット間の界面構造を原子、分子レベルで均一化して複合体を形成するためには、ペロブスカイト化合物と量子ドット間との結晶格子マッチングが有効であり、例えば、Pb−Pb原子間距離が、CHNHPbBr(5.92Å)とPbS(5.97Å)とは近似していることから、CHNHPbBrとPbSとの組み合わせが複合体形成に好ましい。なお、高分解能透過型電子顕微鏡(HRTEM)観察などにより、ペロブスカイト化合物と量子ドットとの界面構造が原子、分子レベルで均一化されているかを確認することができる。
前記ペロブスカイト化合物及び前記量子ドットにより形成された複合体の形成方法は特に限定されないが、前記ペロブスカイト化合物の前駆体と前記量子ドットとを分散液中で混合する方法などが挙げられる。混合方法に制限はないが、製造容易性、コスト、分散液の保存安定性、光電変換効率向上などの観点から、混合温度は、好ましくは0℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは30℃以下である。また、同様の観点から、混合時間は、好ましくは0時間超、より好ましくは0.1時間以上であり、好ましくは72時間以下、より好ましくは24時間以下、更に好ましくは1時間以下である。また、上記観点から、混合温度は、好ましくは0℃以上50℃以下、より好ましくは10℃以上40℃以下、更に好ましくは20℃以上30℃以下であり、混合時間は、好ましくは0時間超72時間以下、より好ましくは0時間超24時間以下、更に好ましくは0.1時間以上1時間以下である。
前記光吸収層中における前記ペロブスカイト化合物と前記量子ドットの含有割合は特に制限されないが、ペロブスカイト化合物と量子ドットの合計含有量に対する量子ドットの含有割合は、耐久性と光電変換効率を向上させる観点から、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上、より更に好ましくは4質量%以上であり、成膜性と光電変換効率を向上させる観点から、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは6質量%以下である。
光吸収層の厚さは、特に制限されないが、光吸収を大きくして光電変換効率を向上させる観点から、好ましくは30nm以上、より好ましくは50nm以上、更に好ましくは80nm以上、より更に好ましくは100nm以上であり、同様の観点から、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは600nm以下、より更に好ましくは500nm以下である。なお、光吸収層の厚さは、膜断面の電子顕微鏡観察などの測定方法で測定できる。
光吸収層の表面平滑性は、正孔輸送剤(HTM)層の強度を向上させる観点から、好ましくは100nm以上、より好ましくは200nm以上、更に好ましくは300nm以上、より更に好ましくは400nm以上であり、光電変換効率向上の観点から、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは700nm以下である。なお、光吸収層の表面平滑性は、下記実施例に記載の方法で測定することができる。
光吸収層の多孔質層に対する被覆率は、光電変換効率(電流)を向上させる観点から、好ましくは10%以上、より好ましくは20%以上、更に好ましくは30%以上、より更に好ましくは40%以上、より更に好ましくは50%以上であり、100%以下である。なお、光吸収層の多孔質層に対する被覆率は、下記実施例に記載の方法で測定することができる。
光吸収層における量子ドット(QD)のペロブスカイト化合物(P)に対する吸光度比(QD/P)は、光電変換効率(電圧)を向上させる観点から、好ましくは0.3以下、より好ましくは0.2以下、更に好ましくは0.1以下、より更に好ましくは0である。なお、光吸収層における吸光度比(QD/P)は、下記実施例の記載の方法で測定した光吸収層の吸収スペクトルから、少なくとも1種の量子ドットの吸光度の最大値の少なくとも1種のペロブスカイト化合物の吸光度に対する比率である。ここで、少なくとも1種の量子ドットの吸光度と少なくとも1種のペロブスカイト化合物の吸光度は、それぞれ、それらを単独で測定した場合の吸収ピーク位置における吸光度として得られる。
光吸収層における発光ピークエネルギーは、光電変換効率(電圧)を向上させる観点から、波長800nm(エネルギー1.55eV)の光で光吸収層を励起した時、好ましくは0.2eV以上、より好ましくは0.4eV以上、更に好ましくは0.6eV以上、より更に好ましくは0.8eV以上であり、光電変換効率(電流)を向上させる観点から、好ましくは1.4eV以下、より好ましくは1.3eV以下、更に好ましくは1.2eV以下、より更に好ましくは1.1eV以下である。
光吸収層における発光ピークエネルギーとペロブスカイト化合物のバンドギャップエネルギーとの差は、光電変換効率向上の観点から、好ましくは0.4eV以上、より好ましくは0.8eV、更に好ましくは1.0eV以上、より更に好ましくは1.2eV以上であり、好ましくは3.4eV以下、より好ましくは2.5eV以下、更に好ましくは2.0eV以下、より更に好ましくは1.5eV以下である。
光吸収層における発光ピークエネルギーと量子ドットのバンドギャップエネルギーとの差は、光電変換効率向上の観点から、好ましくは0.05eV以上、より好ましくは0.1eV、更に好ましくは0.2eV以上であり、好ましくは1.0eV以下、より好ましくは0.5eV以下、更に好ましくは0.3eV以下である。
量子ドットの分散液中の発光ピークエネルギーと光吸収層中の発光ピークエネルギーとの差(発光ピークシフト)は、光吸収層中の量子ドットの粒子間距離、すなわち分散性に相関があると推定され、光電変換効率向上の観点から、好ましくは0.5eV以下、より好ましくは0.4eV以下、更に好ましくは0.3eV以下である。光吸収層中の量子ドットの分散性を向上させるためには、前記の通り、量子ドットの有機配位子の含有量、粒径などや分散液、光吸収層の製造方法を好ましい範囲に制御することが好ましい。
なお、分散液中および光吸収層における発光ピークエネルギーは、下記実施例の記載の通り、例えば、波長800nm(エネルギー1.55eV)の光で光吸収層を励起した時の発光スペクトルのピーク波長(ピークエネルギー)として求めることができる。
<光電変換素子>
本発明の光電変換素子は、前記光吸収層を有するものである。本発明の光電変換素子において、前記光吸収層以外の構成は特に制限されず、公知の光電変換素子の構成を適用することができる。また、本発明の光電変換素子は、前記光吸収層以外は公知の方法で製造することができる。
以下、本発明の光電変換素子の構成と製造方法を図1に基づいて説明するが、図1は一例にすぎず、図1に示す態様に限定されるものではない。
図1は、本発明の光電変換素子の構造の一例を示す概略断面図である。光電変換素子1は、透明基板2、透明導電層3、ブロッキング層4、多孔質層5、光吸収層6、及び正孔輸送層7が順次積層された構造を有する。光10入射側の透明電極基板は、透明基板2と透明導電層3から構成されており、透明導電層3は外部回路と電気的につなげるための端子となる電極(負極)9に接合している。また、正孔輸送層7は外部回路と電気的につなげるための端子となる電極(正極)8に接合している。
透明基板2の材料としては、強度、耐久性、光透過性があればよく、合成樹脂及びガラスなどを使用できる。合成樹脂としては、例えば、ポリエチレンナフタレート(PEN)フィルムなどの熱可塑性樹脂、ポリエチレンテレフタレート(PET)、ポリエステル、ポリカーボネート、ポリオレフィン、ポリイミド、及びフッ素樹脂などが挙げられる。強度、耐久性、コストなどの観点から、ガラス基板を用いることが好ましい。
透明導電層3の材料としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO2)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)、及び高い導電性を有する高分子材料などが挙げられる。高分子材料としては、例えば、ポリアセチレン系、ポリピロール系、ポリチオフェン系、ポリフェニレンビニレン系の高分子材料が挙げられる。また、透明導電層3の材料として、高い導電性を有する炭素系薄膜を用いることもできる。透明導電層3の形成方法としては、スパッタ法、蒸着法、及び分散物を塗布する方法などが挙げられる。
ブロッキング層4の材料としては、例えば、酸化チタン、酸化アルミ、酸化ケイ素、酸化ニオブ、酸化タングステン、酸化錫、及び酸化亜鉛などが挙げられる。ブロッキング層4の形成方法としては、上記材料を透明導電層3に直接スパッタする方法、及びスプレーパイロリシス法などが挙げられる。また、上記材料を溶媒に溶解した溶液、又は金属酸化物の前駆体である金属水酸化物を溶解した溶液を透明導電層3上に塗布し、乾燥し、必要に応じて焼成する方法が挙げられる。塗布方法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
多孔質層5は、その表面に光吸収層6を担持する機能を有する層である。太陽電池において光吸収効率を高めるためには、光を受ける部分の表面積を大きくすることが好ましい。多孔質層5を設けることにより、光を受ける部分の表面積を大きくすることができる。
多孔質層5の材料としては、例えば、金属酸化物、金属カルコゲナイド(例えば、硫化物、及びセレン化物など)、ペロブスカイト型結晶構造を有する化合物(ただし、前記光吸収剤を除く)、ケイ素酸化物(例えば、二酸化ケイ素及びゼオライト)、及びカーボンナノチューブ(カーボンナノワイヤ及びカーボンナノロッドなどを含む)などが挙げられる。
金属酸化物としては、例えば、チタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、アルミニウム、及びタンタルの酸化物などが挙げられ、金属カルコゲナイドとしては、例えば、硫化亜鉛、セレン化亜鉛、硫化カドミウム、及びセレン化カドミウムなどが挙げられる。
ペロブスカイト型結晶構造を有する化合物としては、例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、チタン酸鉛、ジルコン酸バリウム、スズ酸バリウム、ジルコン酸鉛、ジルコン酸ストロンチウム、タンタル酸ストロンチウム、ニオブ酸カリウム、鉄酸ビスマス、チタン酸ストロンチウムバリウム、チタン酸バリウムランタン、チタン酸カルシウム、チタン酸ナトリウム、及びチタン酸ビスマスなどが挙げられる。
多孔質層5の形成材料は、好ましくは微粒子として用いられ、より好ましくは微粒子を含有する分散物として用いられる。多孔質層5の形成方法としては、例えば、湿式法、乾式法、その他の方法(例えば、Chemical Review,第110巻,6595頁(2010年刊)に記載の方法)が挙げられる。これらの方法において、ブロッキング層4の表面に分散物(ペースト)を塗布した後に、焼成することが好ましい。焼成により、微粒子同士を密着させることができる。塗布方法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
光吸収層6は前述の本発明の光吸収層である。光吸収層6の形成方法は特に制限されず、例えば、前記ペロブスカイト化合物又はその前駆体と、前記量子ドットとを含む分散液を調製し、多孔質層5の表面に調製した分散液を塗布し、乾燥する、いわゆるウェットプロセスによる方法が好適に挙げられる。
前記ウェットプロセスにおいて、ペロブスカイト化合物又はその前駆体と、前記量子ドットとを含む分散液は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは溶剤を含有する。溶剤としては、例えば、エステル類(メチルホルメート、エチルホルメートなど)、ケトン類(γ−ブチロラクトン、N−メチル−2−ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトンなど)、エーテル類(ジエチルエーテル、メチル−tert−ブチルエーテル、ジメトキシメタン、1,4−ジオキサン、テトラヒドロフランなど)、アルコール類(メタノール、エタノール、2−プロパノール、tert−ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなど)、グリコールエーテル(セロソルブ)類、アミド系溶剤(N,N−ジメチルホルムアミド、アセトアミド、N,N−ジメチルアセトアミドなど)、ニトリル系溶剤(アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリルなど)、カーボネート系(エチレンカーボネート、プロピレンカーボネートなど)、ハロゲン化炭化水素(塩化メチレン、ジクロロメタン、クロロホルムなど)、炭化水素、及びジメチルスルホキシドなどが挙げられる。
前記分散液の溶剤は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは極性溶剤、より好ましくはケトン類、アミド系溶剤、及びジメチルスルホキシドから選ばれる少なくとも1種の溶剤、更に好ましくはアミド系溶剤、より更に好ましくはN,N−ジメチルホルムアミドである。
前記分散液中の前記ペロブスカイト化合物又はその前駆体の金属濃度は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは0.1mol/L以上、より好ましくは0.2mol/L以上、更に好ましくは0.3mol/L以上であり、好ましくは1.5mol/L以下、より好ましくは1.0mol/L以下、更に好ましくは0.5mol/L以下である。
前記分散液中の前記量子ドットの固形分濃度は、成膜性、コスト、保存安定性、優れた性能(例えば、光電変換特性)発現の観点から、好ましくは1mg/mL以上、より好ましくは5mg/mL以上、更に好ましくは10mg/mL以上であり、好ましくは100mg/mL以下、より好ましくは50mg/mL以下、更に好ましくは30mg/mL以下である。
前記分散液の調製方法は特に限定されない。なお、具体的な調製方法は実施例の記載による。
前記ウェットプロセスにおける塗布方法は特に限定されず、例えば、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
前記ウェットプロセスにおける乾燥方法としては、製造容易性、コスト、優れた性能(例えば、光電変換特性)発現の観点から、例えば、熱乾燥、気流乾燥、真空乾燥などが挙げられ、好ましくは熱乾燥である。
また、前記ペロブスカイト化合物及び前記量子ドットを含有する光吸収層6を形成するより詳細な方法として、例えば、以下の形成方法が好適に挙げられる。なお、具体的な形成方法は実施例の記載による。
まず、配位子が配位した量子ドットを含む分散液を調製する。量子ドットに配位させる配位子としては、前述の通りである。
量子ドットに配位子を配位させる方法に制限はないが、例えば、配位子の存在下で量子ドットの核発生と結晶成長をさせることにより、量子ドット表面に配位子が配位した量子ドットを調製できる。
次に、ペロブスカイト化合物の前駆体を含む溶液を調製する。溶媒としては、例えば、N,N−ジメチルホルムアミド、ジメチルスルホキシド、及びγ−ブチロラクトンなどが挙げられる。
その後、調製した配位子を配位させた量子ドットを含む分散液と、調製したペロブスカイト化合物の前駆体を含む溶液を混合して、前記量子ドットの配位子をペロブスカイト化合物の前駆体に交換して、ペロブスカイト化合物の前駆体が配位した量子ドットを含む分散液を調製する。なお、配位子を配位させた量子ドットを含む分散液の分散媒体と、ペロブスカイト化合物の前駆体を含む溶液の溶媒は、混和しないものであることが好ましい。それにより、離脱した配位子を含む溶液と、ペロブスカイト化合物の前駆体が配位した量子ドットを含む分散液とを相分離させることができ、ペロブスカイト化合物の前駆体が配位した量子ドットを含む分散液を抽出することができる。前記分散液の分散媒体と、前記溶液の溶媒は、前記溶剤の中から混和しないものをそれぞれ用いればよい。
そして、調製したペロブスカイト化合物の前駆体が配位した量子ドットを含む分散液を多孔質層5の表面に塗布し、乾燥して光吸収層6を形成する。塗布方法としては、例えば、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
正孔輸送層7の材料としては、例えば、カルバゾール誘導体、ポリアリールアルカン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、フタロシアニン系化合物、ポリチオフェン誘導体、ポリピロール誘導体、及びポリパラフェニレンビニレン誘導体などが挙げられる。正孔輸送層7の形成方法としては、例えば、塗布法、及び真空蒸着法などが挙げられる。塗布方法としては、例えば、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、及びダイコート法などが挙げられる。
電極(正極)8及び電極(負極)9の材料としては、例えば、アルミニウム、金、銀、白金などの金属;スズ添加酸化インジウム(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物;導電性高分子などの有機系導電材料;ナノチューブなどの炭素系材料が挙げられる。電極(正極)8及び電極(負極)9の形成方法としては、例えば、真空蒸着法、スパッタリング法、及び塗布法などが挙げられる。
<太陽電池>
本発明の太陽電池は、前記光電変換素子を有するものである。本発明の太陽電池において、前記光吸収層以外の構成は特に制限されず、公知の太陽電池の構成を適用することができる。
以下、本発明について、実施例に基づき具体的に説明する。表中に特に示さない限り、各成分の含有量は質量%を示す。また、評価・測定方法は以下のとおりである。なお、特に断らない限り、測定は25℃で行った。
<I-V曲線>
キセノンランプ白色光を光源(ペクセル・テクノロジーズ株式会社製、PEC-L01)とし、太陽光(AM1.5)相当の光強度(100 mW/cm2)にて、光照射面積0.0363 cm2(2mm角)のマスク下、I−V特性計測装置(ペクセル・テクノロジーズ株式会社製、PECK2400−N)を用いて走査速度0.1 V/sec(0.01 V step)、電圧設定後待ち時間50 msec、測定積算時間50 msec、開始電圧-0.1 V、終了電圧1.1 Vの条件でセルのI-V曲線を測定した。なお、シリコンリファレンス(BS-520、0.5714 mA)で光強度補正を行った。I-V曲線から短絡電流密度(mA/cm2)、開放電圧(V)、フィルファクター(FF)、及び変換効率(%)を求めた。
<耐久性>
光電変換素子を遮光室温条件下(約25℃、湿度約60%)で4日間保存した後のI-V曲線を測定し、変換効率を求めた。保存前の変換効率に対する保存後の変換効率の比を算出した。
<IPCE(incident photon-to-current (conversion) efficiency)>
IPCE(入射光に対する外部変換効率の波長依存性)は、分光感度測定装置(分光計器株式会社製、CEP-2000MLR)を用い、光照射面積0.0363cmのマスク下、300〜1200nmの波長範囲で測定を行った。波長400nmと900nmの外部量子効率を求めた。
<吸収スペクトル>
光吸収層の吸収スペクトルは、正孔輸送剤を塗布する前の試料において、UV-Vis分光光度計(株式会社島津製作所製、SolidSpec-3700)を用い、スキャンスピード中速、サンプルピッチ1 nm、スリット幅20、検出器ユニット積分球の条件で300〜1200 nmの範囲を測定した。FTO(Fluorine-doped tin oxide)基板(旭硝子ファブリテック株式会社製、25×25×1.8 mm)でバックグラウンド測定を行った。
PbS量子ドット分散液の吸収スペクトルは、PbS量子ドット粉末0.1mg/mLの濃度のヘキサン分散液において、1cm角石英セルを用いて、同様に測定した。
なお、横軸;波長λ、縦軸;吸光度Aの吸収スペクトルを、横軸;エネルギーhν、縦軸;(αhν)1/2(α;吸光係数)のスペクトルに変換し、吸収の立ち上がる部分に直線をフィッティングし、その直線とベースラインとの交点をバンドギャップエネルギーとした。
<発光スペクトル>
光吸収層の発光スペクトルは、正孔輸送剤を塗布する前の試料において、近赤外蛍光分光計(株式会社堀場製作所製、Fluorolog)を用い、励起波長800nm(実施例1〜3、比較例1)または励起波長815nm(比較例2、3)、励起光スリット幅10nm、発光スリット幅15nm、取り込み時間0.1sec、積算2回平均、ダークオフセットオンの条件で820〜1600nmの範囲を測定した。
PbS量子ドット分散液の発光スペクトルは、PbS量子ドット粉末0.1mg/mLの濃度のヘキサン分散液において、1cm角四面透明セルを用いて、同様に測定した。
<光吸収層の表面平滑性>
光吸収層の表面平滑性は、正孔輸送剤を塗布する前の試料において、ナノスケールハイブリッド顕微鏡(AFM、株式会社キーエンス製、VN-8010)を用い、DFM-Hモード、測定範囲100μm×75 μmにおいて、5か所にて傾き自動補正後のRy(Rmax)を測定し、その平均値を求めた。
<光吸収層の被覆率>
光吸収層の被覆率は、正孔輸送剤を塗布する前の試料において、電界放射型高分解能走査電子顕微鏡(FE-SEM、株式会社日立製作所製、S-4800)を用いて光吸収層表面のSEM写真(拡大倍率20000倍)を測定し、そのSEM写真を画像解析ソフト(Winroof)を用い、ペンツールで光吸収層を指定し、全面積に対する光吸収層の面積比(面積率)から算出した。
<実施例1、2及び比較例1〜3のX線回折解析(光吸収層の結晶性)>
光吸収層の結晶性は、粉末X線回折装置(株式会社リガク製、RINT2500VPC、光源Cu Kα、管電圧40 kV、管電流120 mA)を用い、サンプリング幅0.02°、走査速度2°/min、発散スリット1/2°、縦発散1.2 mm、散乱スリット1/2°、受光スリット0.15°の条件で5〜60°の範囲を測定した。光吸収層のペロブスカイト化合物の結晶子径は、解析ソフト(JADE)を用いて最強ピークにおいて算出した。
<実施例3のX線回折解析>
光吸収層のペロブスカイト化合物の結晶子径は、正孔輸送剤を塗布する前の試料において、粉末X線回折装置(株式会社リガク製、MiniFlex600、光源CuKα、管電圧40kV、管電流15mA)を用い、サンプリング幅0.02°、走査速度20°/min、ソーラースリット(入射)5.0°、発散スリット1.250°、縦発散13.0mm、散乱スリット13.0mm、ソーラースリット(反射)5.0°、受光スリット13.0mmの条件で5〜60°の範囲を測定した。ペロブスカイト化合物の結晶子径は、解析ソフト(PDXL、ver.2.6.1.2)を用いてペロブスカイト化合物の最強ピークにおいて算出した。
PbS量子ドットの結晶子径(粒径)は、ガラスホルダー上のPbS量子ドット粉末において、同様に測定し、解析ソフト(PDXL、ver.2.6.1.2)を用いてPbSのcubic(220)ピーク(2θ=42°)において算出した。
<PbS量子ドット粉末の組成>
PbS量子ドット粉末中のPb濃度は、PbS量子ドット粉末を硝酸/過酸化水素混合溶液に完全溶解後、高周波誘導結合プラズマ発光分光(ICP)分析により定量した。
PbS量子ドット粉末中のオレイン酸アニオン濃度は、重トルエン(シグマ アルドリッチ ジャパン合同会社製、99atom%D、TMS0.03vol%含有)溶媒中、ジブロモメタン(和光純薬株式会社製)を内部標準物質として用い、プロトン(H)核磁気共鳴(NMR)法により定量した。NMR装置(アジレント社製、VNMRS400)を用い、共鳴周波数400HHz、遅延時間60秒、積算32回の条件で測定し、ジブロモメタン(3.9ppm vs.TMS)の積分値に対するオレイン酸アニオンのビニルプロトン(5.5ppm vs.TMS)の積分値の比からPbS量子ドット粉末中のオレイン酸アニオン濃度を求めた。
PbS量子ドット粉末中のCl濃度は、ガラス基板上のPbS量子ドット粉末において、光電子分光法(ESCA)により定量した。ESCA装置(アルバックファイ社製、PHI Quantera SXM)を用い、X線源単色化AlKα(25W,15kV)、ビーム径100μm、測定範囲1mm、パスエネルギー112eV、ステップ0.2eV、帯電補正ニュウトラライザーおよびAr照射、光電子取出し角度45°、結合エネルギー補正C1s(284.8eV)の条件でESCA測定し、Pb4f、S2p、Cl2pピークから組成を求めた。
<オレイン酸アニオン除去率>
PbS量子ドットのオレイン酸アニオンからペロブスカイト原料への配位子交換時のオレイン酸アニオン除去率は、配位子交換時の上相ヘキサン溶液中のオレイン酸濃度をNMR法により定量し、配位子交換前のPbS量子ドットのオレイン酸アニオン量に対するヘキサン溶液中のオレイン酸量のモル比を計算した。
オレイン酸アニオン除去率(%)=100×上相ヘキサン溶液中のオレイン酸量/配位子交換前のPbS量子ドットのオレイン酸アニオン量
<光吸収層中のPbS量子ドットを構成するPb元素に対するオレイン酸アニオンのモル比>
光吸収層中のPbS量子ドットを構成するPb元素に対するオレイン酸アニオンのモル比は、配位子交換前のPbS量子ドットのオレイン酸アニオン量と該オレイン酸アニオン除去率から算出した。
光吸収層中のPbS量子ドットを構成するPb元素に対するオレイン酸アニオンのモル比=(1−オレイン酸アニオン除去率/100)×(配位子交換前のPbS量子ドットのオレイン酸アニオン/Pbモル比)
<光吸収層中のペロブスカイトを構成するPb元素に対するオレイン酸アニオンのモル比>
光吸収層中のペロブスカイトを構成するPb元素に対するオレイン酸アニオンのモル比は、配位子交換前のPbS量子ドットのオレイン酸アニオン量と該オレイン酸アニオン除去率と、配合組成(ペロブスカイトを構成するPb元素に対するPbS量子ドットを構成するPb元素のモル比)から算出した。
光吸収層中のペロブスカイトを構成するPb元素に対するオレイン酸アニオンのモル比=(1−オレイン酸アニオン除去率/100)×(配位子交換前のPbS量子ドットのオレイン酸アニオン/Pbモル比)×(PbS量子ドットのPbモル/ペロブスカイトのPbモル比)
<オレイン酸が配位したPbS量子ドットの合成>
酸化鉛(和光純薬工業株式会社製)0.45g、オクタデセン(シグマ アルドリッチ ジャパン合同会社製)10g、オレイン酸(シグマ アルドリッチ ジャパン合同会社製)1.34gを50mL三口フラスコに入れ、80℃で2時間撹拌することにより、Pb源溶液を調製した。反応系内を真空ポンプにより脱気、窒素ガス置換後、更に110℃で30分撹拌した。一方、1,1,1,3,3,3−ヘキサメチルジシラチアン(東京化成工業株式会社製)210μLをオクタデセン4mLに溶解し、S源溶液を調製した。110℃、撹拌、窒素ガス下、シリンジを用いてS源溶液をPb源溶液に一気に注入し、オレイン酸が配位したPbS量子ドットを生成させた。大過剰のアセトンを添加して反応を停止後、遠心分離(日立工機株式会社製、CR21GIII、R15Aローター、2500rpm、2分)により上澄みを除去した。沈殿物を乾燥した後、ヘキサンを添加、再分散させることにより、オレイン酸が配位したPbS量子ドットを含むヘキサン分散液を調製した(PbS=0.4質量%、粒径3.5nm、吸収ピーク波長940nm、吸収端波長1050nm、発光ピーク波長1040nm(励起波長800nm))。
<Cl元素を含むPbS量子ドットの合成>
塩化鉛(Alfa Aesar社製、99.999%)8.34g、オレイルアミン(Acros Organics社製、C18 80%以上)64.8gを300mL三口フラスコに入れ、80℃で反応系内をダイヤフラム型真空ポンプにより脱気、窒素ガス置換後、140℃で30分間撹拌、30℃まで冷却して、Pb源白濁液を調製した。一方、硫黄結晶(和光純薬株式会社製、99.999%)0.321gをオレイルアミン8.10gに120℃で溶解後、80℃まで冷却して、S源溶液を調製した。窒素ガス雰囲気、強撹拌下、Pb源白濁液(30℃)にS源溶液をシリンジを用いて10秒で注入し、Cl元素とオレイルアミンとを含むPbS量子ドット(黒濁液)を生成させた。更に、40秒撹拌後、冷ヘキサン200mLを添加し、PbS量子ドットの結晶成長を停止させた。遠心分離(日立工機株式会社製、CR21GIII、R12Aローター、4000rpm、3分)により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液に同量のエタノールを添加して黒色沈殿物を得た。減圧乾燥した黒色沈殿物4gをヘキサン100gに再分散後、遠心分離により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液にオレイン酸(シグマ アルドリッチ ジャパン合同会社製、90%)10gを添加混合後、18時間静置した。更に、遠心分離により灰色沈殿物(塩化鉛)を除去後、黒色上澄み液に同量のエタノールを添加して黒色沈殿物を得た。減圧ろ過(孔径0.2μm、材質PTFE)、エタノール洗浄後、黒色ろ過物を減圧乾燥してCl元素とオレイン酸アニオンとが配位したPbS量子ドット粉末を合成した。
ESCA分析結果よりPb/S/Cl原子比=1/1.2/0.65、NMRおよびICP分析結果よりオレイン酸アニオン/Pbモル比=0.13、X線回折結果より結晶子径3.6nm、吸収スペクトルより吸収端波長1240nm、発光スペクトルより発光ピーク波長1260nmであった。
<実施例1>
次の(1)〜(7)の工程を順に行い、セルを作製した。
(1)FTO基板のエッチング、洗浄
25mm角のフッ素ドープ酸化スズ(FTO)付ガラス基板(旭硝子ファブリテック株式会社製、25×25×1.8 mm、以下、FTO基板という)の一部をZn粉末と2mol/L塩酸水溶液でエッチングした。1質量%中性洗剤、アセトン、2−プロパノール(IPA)、イオン交換水で、この順に各10分間超音波洗浄を行った。
(2)オゾン洗浄
緻密TiO層形成工程の直前にFTO基板のオゾン洗浄を行った。FTO面を上にして、基板をオゾン発生装置(メイワフォーシス株式会社製オゾンクリーナー、PC-450UV)に入れ、30分間UV照射した。
(3)緻密TiO層(ブロッキング層)の形成
エタノール(脱水、和光純薬工業株式会社製)123.24 gにビス(2,4−ペンタンジオナト)ビス(2−プロパノラト)チタニウム(IV)(75 %IPA溶液、東京化成工業株式会社製)4.04 gを溶解させ、スプレー溶液を調製した。ホットプレート(450℃)上のFTO基板に約30 cmの高さから0.3 MPaでスプレーした。20 cm×8列を2回繰り返して約7 gスプレー後、450℃で3分間乾燥した。この操作を更に2回行うことにより合計約21 gの溶液をスプレーした。その後、このFTO基板を、塩化チタン(和光純薬工業株式会社製)水溶液(50mM)に浸漬し、70℃で30分加熱した。水洗、乾燥後、500℃で20分焼成(昇温15分)することにより、緻密TiO(cTiO)層を形成した。
(4)メソポーラスTiO層(多孔質層)の形成
アナターゼ型TiOペースト(PST-18NR、日揮触媒化成株式会社製)0.404 gにエタノール(脱水、和光純薬工業株式会社製)1.41 gを加え、1時間超音波分散を行い、TiOコート液を調製した。ドライルーム内において、上記のcTiO層上にスピンコーター(ミカサ株式会社製、MS-100)を用いてTiOコート液をスピンコートした(5000rpm×30sec)。125℃のホットプレート上で30分間乾燥後、500℃で30分焼成(昇温時間60分)することにより、メソポーラスTiO(mTiO)層を形成した。
(5)光吸収層の形成
光吸収層および正孔輸送層の形成は、グローブボックス内にて行った。臭化鉛(PbBr、ペロブスカイト前駆体用、東京化成工業株式会社製)0.114 g、メチルアミン臭化水素酸塩(CHNHBr、東京化成工業株式会社製)0.035 g、脱水N,N−ジメチルホルムアミド(脱水DMF、和光純薬工業株式会社製)1 mLを混合、室温撹拌し、0.3 M臭素系ペロブスカイト(CHNHPbBr)原料のDMF溶液(無色透明)を調製した。室温、撹拌下、上記のオレイン酸が配位したPbS量子ドットを含むヘキサン分散液(PbS量子ドット粉末10mg/mLヘキサン)1mLに臭素系ペロブスカイト原料のDMF溶液0.5 mLを添加し、10分間撹拌後、1時間静置した。上相の無色透明ヘキサン溶液を除去後、下相の臭素系ペロブスカイト原料が配位したPbS量子ドットを含む分散液(PbSとペロブスカイトの合計含有量に対するPbSの質量比は5.1%)を孔径0.45 μmのPTFEフィルターでろ過した。上記のmTiO層上にスピンコーター(ミカサ株式会社製MS-100)を用いて前記分散液をスピンコートした(5000 rpm×30sec)。なお、スピン開始20秒後に貧溶媒であるトルエン(脱水、和光純薬工業株式会社製)1mLをスピン中心部に一気に滴下した。スピンコート後すぐに100℃ホットプレート上で10分間乾燥した。DMFを浸み込ませた綿棒でFTOとのコンタクト部分を拭き取った後、70℃で60分間乾燥させ、光吸収層を形成した。この光吸収層には臭素系ペロブスカイト化合物CHNHPbBr及び量子ドットPbSが含まれる。ペロブスカイト化合物が生成していることはX線回折パターン、吸収スペクトル及び電子顕微鏡観察により、また、量子ドットが形成していることは蛍光スペクトルから確認した。
(6)正孔輸送層の形成
ビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI、和光純薬工業株式会社製)9.1 mg、[トリス(2−(1H−ピラゾール−1−イル)−4−テrt−ブチルピリジン)コバルト(III) トリス(ビス(トリフルオロメチルスルホニル(イミド))(Co(4−tButylpyridyl−2−1H−pyrazole)3.3TFSI、和光純薬工業株式会社製)8.7 mg、2,2’,7,7’−テトラキス[N,N−ジ−p−メトキシフェニルアミノ]−9,9’−スピロビフルオレン(Spiro-OMeTAD、和光純薬工業株式会社製)72.3 mg、クロロベンゼン(ナカライテスク株式会社製)1 mL、トリブチルホスフィン(TBP、シグマアルドリッチ製)28.8 μLを混合し、室温撹拌して正孔輸送剤(HTM)溶液(黒紫色透明)を調製した。使用直前に、HTM溶液を孔径0.45 μmのPTFEフィルターでろ過した。上記の光吸収層上にスピンコーター(ミカサ株式会社、MS-100)を用いてHTM溶液をスピンコートした(4000 rpm×30sec)。スピンコート後すぐに70℃ホットプレート上で30分間乾燥した。乾燥後、クロロベンゼンを浸み込ませた綿棒でFTOとのコンタクト部分を拭き取った後、DMFを浸み込ませた綿棒で基板裏面全体を拭き取り、更に70℃のホットプレート上で数分間乾燥させ、正孔輸送層を形成した。
(7)金電極の蒸着
真空蒸着装置(アルバック機工株式会社製VTR-060M/ERH)を用い、真空下(4〜5×10−3 Pa)、上記の正孔輸送層上に金を100nm蒸着(蒸着速度8〜9 Å/sec)して、金電極を形成した。
<実施例2>
実施例1の(5)光吸収層の形成において、上記のオレイン酸が配位したPbS量子ドットを含むヘキサン分散液1mLに臭素系ペロブスカイト原料のDMF溶液1mLを添加した(PbSとペロブスカイトの合計含有量に対するPbSの質量比は2.6%)以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
<実施例3>
実施例1の(5)光吸収層の形成において、上記のCl元素を含むPbS量子ドットを含むヘキサン分散液2mLに臭素系ペロブスカイト原料のDMF溶液1mLを添加した(PbSとペロブスカイトの合計含有量に対するPbSの質量比は6.3%)以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
<比較例1>
実施例1の(5)光吸収層の形成において、上記のオレイン酸が配位したPbS量子ドットを含むヘキサン分散液を添加しなかった(PbSとペロブスカイトの合計含有量に対するPbSの質量比は0%)以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
<比較例2>
実施例1の(5)光吸収層の形成において、ヨウ化鉛(PbI、ペロブスカイト前駆体用、東京化成工業株式会社製)0.143 g、メチルアミンヨウ化水素酸塩(CHNHI、東京化成工業株式会社製)0.050 g、脱水N,N−ジメチルホルムアミド(脱水DMF、和光純薬工業株式会社製)1 mLを混合し、室温撹拌し、0.3 Mヨウ素系ペロブスカイト(CHNHPbI)原料のDMF溶液(黄色透明)を調製した。実施例1の(5)光吸収層の形成において、臭素系ペロブスカイト原料のDMF溶液の代わりに上記調製したヨウ素系ペロブスカイト原料のDMF溶液を用いた(PbSとペロブスカイトの合計含有量に対するPbSの質量比は5.6%)以外は、実施例1と同様にして光吸収層を形成し、セルを作製した。
<比較例3>
比較例2において、上記のオレイン酸が配位したPbS量子ドットを含むヘキサン分散液を添加しなかった(PbSとペロブスカイトの合計含有量に対するPbSの質量比は0%)以外は、比較例2と同様にして光吸収層を形成し、セルを作製した。
Figure 0006297242
本発明の光吸収層及び光電変換素子は、次世代太陽電池の構成部材として好適に使用することができる。
1:光電変換素子
2:透明基板
3:透明導電層
4:ブロッキング層
5:多孔質層
6:光吸収層
7:正孔輸送層
8:電極(正極)
9:電極(負極)
10:光

Claims (19)

  1. 1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを含有し、
    前記ペロブスカイト化合物と前記量子ドットの合計含有量に対する前記量子ドットの含有割合が、0.1質量%以上10質量%以下である光吸収層。
  2. 1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物、及び0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットを含有し、
    前記ペロブスカイト化合物が、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物から選ばれる1種以上である、光吸収層。
    RMX (1)
    (式中、Rは1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンである。)
    n−13n+1 (2)
    (式中、R、R、及びRはそれぞれ独立に1価のカチオンであり、Mは2価の金属カチオンであり、Xはハロゲンアニオンであり、nは1以上10以下の整数である。)
  3. 前記Xが、フッ素アニオン、塩素アニオン、臭素アニオン、又はヨウ素アニオンである請求項2に記載の光吸収層。
  4. 前記Rが、アルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上である請求項2又は3に記載の光吸収層。
  5. 前記R、R、及びR が、アルキルアンモニウムイオン及びホルムアミジニウムイオンから選ばれる1種以上である請求項2〜4のいずれかに記載の光吸収層。
  6. 前記Mが、P2+、Sn2+、又はGe2+ある請求項2〜5のいずれかに記載の光吸収層。
  7. 前記ペロブスカイト化合物のバンドギャップエネルギーが、2.0eV以上3.6eV以下である請求項1〜6のいずれかに記載の光吸収層。
  8. 前記量子ドットのバンドギャップエネルギーが、0.8eV以上1.6eV以下である請求項1〜7のいずれかに記載の光吸収層。
  9. 前記ペロブスカイト化合物のバンドギャップエネルギーと前記量子ドットのバンドギャップエネルギーとの差が、0.4eV以上2.0eV以下である請求項1〜8のいずれかに記載の光吸収層。
  10. 前記量子ドットが、金属酸化物又は金属カルコゲナイドを含む請求項1〜9のいずれかに記載の光吸収層。
  11. 前記量子ドットが、Pb元素を含む請求項1〜10のいずれかに記載の光吸収層。
  12. 1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物を含有する光吸収層であって、波長800nm(エネルギー1.55eV)の光で光吸収層を励起した時、0.2eV以上1.4eV以下の範囲に発光スペクトルのピークを示し、光吸収層における前記発光ピークエネルギーとペロブスカイト化合物の前記バンドギャップエネルギーとの差が0.8eV以上3.4eV以下である、光吸収層。
  13. 1.7eV以上4.0eV以下のバンドギャップエネルギーを有するペロブスカイト化合物又はその前駆体と、0.2eV以上かつ前記ペロブスカイト化合物のバンドギャップエネルギー以下のバンドギャップエネルギーを有する量子ドットと、溶剤とを含有する分散液であって、
    前記分散液中の前記ペロブスカイト化合物又はその前駆体の金属濃度が、0.1mol/L以上1.5mol/L以下であり、
    前記溶剤が、N,N−ジメチルホルムアミドを含有する、分散液。
  14. 前記分散液中の前記量子ドットの固形分濃度が、1mg/mL以上100mg/mL以下である請求項13に記載の分散液。
  15. 請求項13又は14に記載の分散液から得られる光吸収層。
  16. 請求項1〜12のいずれかに記載の光吸収層の製造方法であって、前記ペロブスカイト化合物又はその前駆体と、前記量子ドットとを混合する工程を含む光吸収層の製造方法。
  17. 前記混合する工程は、ウェットプロセスの工程である請求項16に記載の光吸収層の製造方法。
  18. 請求項1〜12及び15のいずれかに記載の光吸収層を有する光電変換素子。
  19. 請求項18に記載の光電変換素子を有する太陽電池。
JP2017562382A 2016-08-04 2017-03-30 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法 Active JP6297242B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016072968 2016-08-04
JPPCT/JP2016/072968 2016-08-04
PCT/JP2017/013455 WO2018025445A1 (ja) 2016-08-04 2017-03-30 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018027591A Division JP6317535B1 (ja) 2016-08-04 2018-02-20 光吸収層、光電変換素子、及び太陽電池

Publications (2)

Publication Number Publication Date
JP6297242B1 true JP6297242B1 (ja) 2018-03-20
JPWO2018025445A1 JPWO2018025445A1 (ja) 2018-08-02

Family

ID=61073305

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017562382A Active JP6297242B1 (ja) 2016-08-04 2017-03-30 光吸収層、光電変換素子、分散液、光電変換素子、及び、太陽電池、並びに、光吸収層の製造方法
JP2018027591A Active JP6317535B1 (ja) 2016-08-04 2018-02-20 光吸収層、光電変換素子、及び太陽電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018027591A Active JP6317535B1 (ja) 2016-08-04 2018-02-20 光吸収層、光電変換素子、及び太陽電池

Country Status (7)

Country Link
US (1) US11133428B2 (ja)
EP (1) EP3496171B1 (ja)
JP (2) JP6297242B1 (ja)
KR (1) KR102046740B1 (ja)
CN (1) CN109075257A (ja)
TW (1) TWI653300B (ja)
WO (1) WO2018025445A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009379B2 (en) * 2017-05-01 2024-06-11 Visera Technologies Company Limited Image sensor
WO2019058448A1 (ja) * 2017-09-20 2019-03-28 花王株式会社 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池
JPWO2019193910A1 (ja) * 2018-04-06 2021-08-19 Gsアライアンス株式会社 量子ドットを含有するマスターバッチ
CN112088442A (zh) * 2018-04-10 2020-12-15 花王株式会社 光吸收层、光电转换元件和太阳能电池
JP7000258B2 (ja) 2018-06-06 2022-02-04 トヨタ自動車株式会社 ホルムアミジニウムハロゲン化鉛ペロブスカイト量子ドットの調製方法
US20210257167A1 (en) * 2018-06-19 2021-08-19 Kao Corporation Layered perovskite, light absorption layer, light-absorption-layer-equipped substrate, photoelectric conversion element, and solar cell
US20210234056A1 (en) * 2018-09-12 2021-07-29 Ns Materials Inc. Infrared sensor and manufacturing method for the same
KR20210093239A (ko) * 2018-11-19 2021-07-27 카오카부시키가이샤 광 흡수층, 광전 변환 소자, 및 태양 전지
CN110176508A (zh) * 2019-06-05 2019-08-27 中南大学 基于量子点修饰无机反式钙钛矿太阳能电池的制备方法
JP7489635B2 (ja) * 2020-01-22 2024-05-24 国立研究開発法人物質・材料研究機構 太陽電池
CN112371104B (zh) * 2020-12-08 2022-09-16 陕西科技大学 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049631A (ja) * 2012-08-31 2014-03-17 Peccell Technologies Inc ペロブスカイト化合物を用いた光電変換素子およびその製造方法
WO2015092397A1 (en) * 2013-12-17 2015-06-25 Isis Innovation Limited Photovoltaic device comprising a metal halide perovskite and a passivating agent
JP2015535390A (ja) * 2012-09-18 2015-12-10 イシス イノベイション リミテッド 光電子素子
JP2016009737A (ja) * 2014-06-24 2016-01-18 株式会社リコー ペロブスカイト型太陽電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737254B (zh) * 2012-09-12 2018-02-27 韩国化学研究院 具备光吸收结构体的太阳能电池
JP6106130B2 (ja) 2013-07-31 2017-03-29 富士フイルム株式会社 光電変換素子および太陽電池
CN104183704B (zh) 2014-09-05 2016-08-17 中南大学 一种量子点共敏化型钙钛矿太阳能电池的制备方法
WO2016109902A2 (en) * 2015-01-05 2016-07-14 The Governing Council Of The University Of Toronto Quantum-dot-in-perovskite solids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049631A (ja) * 2012-08-31 2014-03-17 Peccell Technologies Inc ペロブスカイト化合物を用いた光電変換素子およびその製造方法
JP2015535390A (ja) * 2012-09-18 2015-12-10 イシス イノベイション リミテッド 光電子素子
WO2015092397A1 (en) * 2013-12-17 2015-06-25 Isis Innovation Limited Photovoltaic device comprising a metal halide perovskite and a passivating agent
JP2017501576A (ja) * 2013-12-17 2017-01-12 アイシス イノヴェイション リミテッド 金属ハロゲン化物ペロブスカイト及び不動態化剤を含む光起電力デバイス
JP2016009737A (ja) * 2014-06-24 2016-01-18 株式会社リコー ペロブスカイト型太陽電池の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONG NOH 他: ""Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured So", NANO LETTERS, vol. 13, JPN6018002434, 21 March 2013 (2013-03-21), pages 1764 - 1769, ISSN: 0003726008 *
HU 他: ""Quantitative Analysis of Trap-State-Mediated Exciton Transport inPerovskite-Shelled PbS Quantum Do", THE JOURNAL OF PHYSICAL CHEMISTRY, vol. 120, JPN6018002436, 22 June 2016 (2016-06-22), pages 14416 - 14427, ISSN: 0003726010 *
N. DIRIN 他: ""Lead Halide Perovskites and Other Metal Halide Complexes AsInorganic Capping Ligands for Colloidal", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, JPN6018002435, 18 April 2014 (2014-04-18), pages 6550 - 6553, ISSN: 0003726009 *
YANG 他: ""Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling"", NANO LETTERS, vol. 15, JPN6018002433, 6 October 2015 (2015-10-06), pages 7539 - 7543, ISSN: 0003726007 *

Also Published As

Publication number Publication date
EP3496171B1 (en) 2021-06-23
KR102046740B1 (ko) 2019-11-19
KR20180129959A (ko) 2018-12-05
CN109075257A (zh) 2018-12-21
EP3496171A1 (en) 2019-06-12
US20190165192A1 (en) 2019-05-30
JP6317535B1 (ja) 2018-04-25
US11133428B2 (en) 2021-09-28
JPWO2018025445A1 (ja) 2018-08-02
JP2018107465A (ja) 2018-07-05
EP3496171A4 (en) 2020-07-15
WO2018025445A1 (ja) 2018-02-08
TWI653300B (zh) 2019-03-11
TW201825610A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
JP6317535B1 (ja) 光吸収層、光電変換素子、及び太陽電池
JP6654250B2 (ja) 光吸収層、光電変換素子、及び太陽電池
JP6343406B1 (ja) 光吸収層とその製造方法、分散液、光電変換素子、及び中間バンド型太陽電池
JP6620246B2 (ja) 光吸収層、光電変換素子、及び太陽電池
JP6960460B2 (ja) 光吸収層、光電変換素子、及び太陽電池
JP7345498B2 (ja) 光吸収層、光電変換素子、及び太陽電池

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R151 Written notification of patent or utility model registration

Ref document number: 6297242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250