JP6249325B2 - 信号処理装置 - Google Patents

信号処理装置 Download PDF

Info

Publication number
JP6249325B2
JP6249325B2 JP2012288366A JP2012288366A JP6249325B2 JP 6249325 B2 JP6249325 B2 JP 6249325B2 JP 2012288366 A JP2012288366 A JP 2012288366A JP 2012288366 A JP2012288366 A JP 2012288366A JP 6249325 B2 JP6249325 B2 JP 6249325B2
Authority
JP
Japan
Prior art keywords
signal
signal processing
sensor
frequency
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012288366A
Other languages
English (en)
Other versions
JP2014130085A (ja
Inventor
聡 杉野
聡 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012288366A priority Critical patent/JP6249325B2/ja
Priority to US14/653,458 priority patent/US10078129B2/en
Priority to EP13867767.9A priority patent/EP2940486B1/en
Priority to CN201380068394.8A priority patent/CN104903742B/zh
Priority to PCT/JP2013/007102 priority patent/WO2014103187A1/ja
Publication of JP2014130085A publication Critical patent/JP2014130085A/ja
Application granted granted Critical
Publication of JP6249325B2 publication Critical patent/JP6249325B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、物体で反射された無線信号を受信するセンサからのセンサ信号を信号処理する信号処理装置に関するものである。
従来から、図10に示す構成の照明システムが提案されている(例えば、特許文献1参照)。この照明システムは、検出エリア内の検出対象物の存否を検出してセンサ信号を出力するセンサ110を具備した物体検知装置101と、物体検知装置101により点灯状態が制御される照明器具102とを備えている。
センサ110は、ミリ波を検出エリアに向けて送信して、検出エリア内を移動する検出対象物で反射されたミリ波を受信し、送信したミリ波と受信したミリ波との周波数の差分に相当するドップラ周波数のセンサ信号を出力するミリ波センサである。
物体検知装置101は、センサ110の出力するセンサ信号を複数の周波数帯域に分けて周波数帯域ごとに増幅する増幅回路111と、増幅回路111の出力を所定の閾値と比較することにより検出対象物の存否を判定する判定部112とを備えている。また、物体検知装置101は、判定部112での判定結果に応じて照明器具102の点灯状態を制御する照明制御部113を備えている。
また、物体検知装置101は、センサ110の出力するセンサ信号の各周波数ごとの強度を検出する周波数解析部114を備えている。また、物体検知装置101は、周波数解析部114の解析結果を用いて定常的に発生する特定周波数のノイズの影響を低減するノイズ除去部(ノイズ判定部115および切替回路116)を備えている。ここで、周波数解析部114としては、FFT(高速フーリエ変換)アナライザを用いている。判定部112と照明制御部113とノイズ除去部とは、マイクロコンピュータを主構成とする制御ブロック117に含まれている。増幅回路111は、センサ信号を予め定められている周波数帯域ごとに出力する信号処理部を構成している。なお、特許文献1には、信号処理部が、FFTアナライザ、ディジタルフィルタなどを用いた構成であってもよい旨が記載されている。
増幅回路111は、オペアンプを用いた増幅器118を複数有しており、各増幅器118を構成する回路の各種パラメータを調節することで、各増幅器118にて信号を増幅する周波数帯域の設定が可能となっている。つまり、各増幅器118は、特定の周波数帯域の信号を通過させるバンドパスフィルタとしても機能する。しかして、増幅回路111では、並列に接続された複数の増幅器118にてセンサ信号を複数の周波数帯域に分け、各周波数帯域の信号を各増幅器118にてそれぞれ増幅して個別に出力する。
判定部112は、増幅器118の出力をディジタル値にA/D変換し、予め定められた閾値と比較する比較器119を増幅器118ごとに有し、検出対象物の存否を判定する。比較器119では、閾値が各パス帯域ごと(つまり各増幅器118ごと)に個別に設定されており、増幅器118の出力が閾値で定められた範囲外のときにHレベルの信号を出力する。ここで、初期状態(出荷状態)で設定される各パス帯域の閾値Vthは、電波暗室など電磁波の反射がない状態で、一定時間内に測定される各増幅器118の出力値Vのピーク・トゥー・ピークVppの最大値Vppiniと、前記出力値Vの平均値Vavgを用いてVth=Vavg±Vppiniで表される値とする。そして、判定部112は各比較結果の論理和をとる論理和回路120を有し、1つでもHレベルの信号があれば検出対象物が存在する「検出状態」を示す検出信号を論理和回路120から出力し、一方、全てLレベルであれば検出対象物が存在しない「非検出状態」を示す検出信号を論理和回路120から出力する。検出信号は、検出状態では「1」、非検出状態では「0」となるものとする。
ノイズ除去部は、周波数解析部114の出力から、定常的に発生する特定周波数のノイズの有無を判定するノイズ判定部115と、ノイズ判定部115の判定結果に応じて判定部112に対する各増幅器118の出力状態を切り替える切替回路116とを有している。
切替回路116は、増幅回路111の各増幅器118と判定部112の各比較器119との間にそれぞれ挿入されたスイッチ121を有し、初期状態ではこれら全てのスイッチ121をオンとする。そして、ノイズ判定部115からの出力で各スイッチ121が個別にオンオフ制御されることにより、各増幅器118の判定部112に対する出力を個別に入切する。つまり、切替回路116では、ノイズ判定部115からの出力により、任意のパス帯域の増幅器118に対応するスイッチ121をオフすることで、当該増幅器118の出力を無効にすることができる。
ノイズ判定部115では、周波数解析部114から出力される周波数(周波数成分)ごとのセンサ信号の信号強度(電圧強度)を読み込んでメモリ(図示せず)に記憶し、記憶したデータを用いて定常的に発生する特定周波数のノイズの有無を判定する。
ノイズ判定部115は、ある特定周波数のノイズが定常的に発生していると判断した場合に、当該ノイズが含まれるパス帯域を持つ増幅器118と判定部112との間のスイッチ121がオフするように切替回路116を制御する。これにより、特定周波数のノイズが定常的に発生している場合には、当該ノイズを含む周波数帯域について判定部112に対する増幅回路111の出力が無効となる。ここで、スイッチ121のオンオフ状態は、ノイズ判定部115にて「定常時」と判定される度に更新される。
特開2011−47779号公報
一般的に、物体の動きを検出するためにセンサ信号を信号処理する信号処理装置において、既知でない雑音、所望外信号等の背景信号を周波数領域における適応信号処理により除去する場合、高速フーリエ変換(Fast Fourier Transformation:FFT)が利用される。
ディジタル信号に対して、FFTを利用した周波数領域の適応フィルタを構成した場合、サンプリング時間:t、サンプリング数:2Nとする。この場合、FFT処理後の折り返し特性を考慮して信号処理上の有用性を鑑みると、最大周波数:1/(2・t)Hzまでの周波数範囲で、周波数分解能:1/(2N・t)Hz、処理上有用な点数:Nとなる。また、FFTの前段には窓関数処理が施されている。このFFTを利用した適応フィルタの構成は、適応処理以外におけるFFT処理に限っても、最低2Nワードのメモリが必要となり、さらには複素演算の実行が要求されるので、比較的大きなハードウェアが必要となっていた。さらに、後段の適応処理、フィルタリング処理においても複素演算の実行が必要であり、ハードウェアに対する負荷がさらに大きくなる。
したがって、FFTを利用した周波数領域の適応フィルタを、センサ信号を信号処理する信号処理装置に用いた場合、ハードウェアに対する負荷増大、高コスト化という問題が生じる。このハードウェアに対する負荷増大、高コスト化という問題は、特に、民生用に低コストが要求されるセンサ装置への応用を困難なものとする障壁の一つとなっていた。
本発明は上記事由に鑑みて為されたものであり、その目的は、背景信号を除去するために、比較的簡素なハードウェア構成で低コスト化を図りながら、所望の信号のみを効率的に取り出すことができる信号処理装置を提供することにある。
本発明の信号処理装置は、物体で反射された無線信号を受信するセンサから出力される前記物体の動きに応じたセンサ信号を増幅する増幅部と、前記増幅部によって増幅されたセンサ信号をディジタルのセンサ信号に変換して出力するA/D変換部と、前記A/D変換部から出力されたセンサ信号を、離散コサイン変換処理によって周波数領域のセンサ信号に変換し、背景信号に応じてフィルタ係数を設定することによって、前記周波数領域において前記周波数領域のセンサ信号から前記背景信号を除去する適応フィルタとして動作する信号処理部とを備え、前記信号処理部は、前記物体がない場合に、前記周波数領域のセンサ信号を前記背景信号として、前記適応フィルタの出力信号と白色雑音で形成された参照信号との差分を誤差信号とし、前記誤差信号が所定範囲内に収束するように前記フィルタ係数を更新する第1のモードと、前記フィルタ係数の更新処理を停止し、前記周波数領域において前記周波数領域のセンサ信号から前記背景信号を除去する第2のモードとを切替可能に有することを特徴とする。
この発明において、前記信号処理部は、前記第1のモードにおいて、前記誤差信号が収束したと判定した場合、前記第1のモードから前記第2のモードに切り替わることが好ましい。
この発明において、前記信号処理部は、前記第1のモードにおいて、前記誤差信号が所定範囲内に収束した場合、前記所定範囲内に収束した複数の時点における前記誤差信号のそれぞれに基づいて求めた前記フィルタ係数の平均値を、前記フィルタ係数として設定することが好ましい。
この発明において、前記信号処理部は、前記第2のモードにおいて、前記A/D変換部から出力されるセンサ信号を、離散コサイン変換処理によって前記周波数領域のセンサ信号に変換した後、前記周波数領域において、前記フィルタ係数を設定された前記適応フィルタに前記周波数領域のセンサ信号を入力することによって、前記周波数領域のセンサ信号から前記背景信号を除去して、周波数帯域の異なる周波数ビンの群における前記周波数ビン毎の信号として抽出し、前記周波数ビン毎の信号に基づいて前記物体を識別する認識処理を行うことが好ましい。
この発明において、前記信号処理部は、前記第2のモードにおいて、前記A/D変換部から出力されるセンサ信号を、離散コサイン変換処理によって前記周波数領域のセンサ信号に変換した後、前記周波数領域において、前記フィルタ係数を設定された前記適応フィルタに前記周波数領域のセンサ信号を入力することによって、前記周波数領域のセンサ信号から前記背景信号を除去して、周波数帯域の異なる複数の周波数ビンで構成されるサブバンドの群における前記サブバンド毎の信号として抽出し、前記サブバンド毎の信号に基づいて前記物体を識別する認識処理を行うことが好ましい。


この発明において、前記フィルタ係数は、前記周波数ビン毎に設定され、前記信号処理部は、全ての前記フィルタ係数、または所定の複数の前記フィルタ係数に逆離散コサイン変換処理を施して得た逆変換値と、前記A/D変換部から出力されるセンサ信号とに基づいて、時間軸データを生成し、この時間軸データに基づいて前記物体を識別する認識処理を行うことが好ましい。
この発明において、前記信号処理部は、前記サブバンド毎の信号に逆離散コサイン変換処理を施して得た逆変換値と、前記A/D変換部から出力されるセンサ信号とに基づいて、時間軸データを生成し、この時間軸データに基づいて前記物体を識別する認識処理を行うことが好ましい。
この発明において、前記信号処理部は、前記センサから前記物体までの距離情報を併用して、前記物体を識別する認識処理を行うことが好ましい。
この発明において、前記信号処理部は、前記認識処理の結果として前記物体を識別した場合、前記第2のモードから前記第1のモードへの切り替えを禁止し、前記認識処理の結果として前記物体を識別していない場合、前記第2のモードから前記第1のモードへの切り替えを許可することが好ましい。
この発明において、前記適応フィルタの適応アルゴリズムが、離散コサイン変換のLMSアルゴリズムであることが好ましい。
以上説明したように、本発明では、離散コサイン変換処理によってセンサ信号から背景信号を除去する周波数領域の適応フィルタとして動作する信号処理部を備えるので、背景信号を除去するために、比較的簡素なハードウェア構成で低コスト化を図りながら、所望の信号のみを効率的に取り出すことができるという効果がある。
実施形態における電波センサと信号処理装置とを備えたセンサ装置のブロック図である。 実施形態における適応フィルタの機能を示す説明図である。 実施形態における信号処理部の動作モードを示す説明図である。 実施形態における信号処理部の動作を示すフローチャート図である。 (a)〜(c)実施形態における周波数領域を示す説明図である。 DCT,FFTのLMSアルゴリズムによる伝達特性を示すグラフ図である。 (a)〜(c)実施形態における周波数領域の信号処理の流れを示す波形図である。 実施形態における時間領域の信号処理の流れを示す波形図である。 (a)(b)実施形態における周波数領域の信号処理の流れを示す波形図である。 従来の照明システムの構成を示すブロック図である。
以下では、本実施形態の信号処理装置について図1〜図9に基づいて説明する。
信号処理装置2は、電波センサ1から出力されるセンサ信号を信号処理するものである。電波センサ1は、検出エリア内に電波を送信し、検出エリア内の物体で反射された電波を受信して、この物体の動きに応じたセンサ信号を出力する。なお、図1は、電波センサ1と信号処理装置2とを備えたセンサ装置Seのブロック図である。
電波センサ1としては、所定周波数の電波を検出エリアに向けて送信して、検出エリア内で動いている物体で反射された電波を受信し、送信した電波と受信した電波との周波数の差分に相当するドップラ周波数のセンサ信号を出力するドップラセンサを用いている。したがって、電波センサ1から出力されるセンサ信号は、物体の動きに対応するアナログの時間軸信号である。
電波センサ1は、電波を検出エリアに向けて送信する送信機と、検出エリア内の物体で反射された電波を受信する受信機と、送信した電波と受信した電波との周波数の差分に相当する周波数のセンサ信号を出力するミキサとを備えている。送信機は、送信用のアンテナを備えている。また、受信機は、受信用のアンテナを備えている。なお、送信機から送波する電波は、例えば、所定周波数が24.15GHzのミリ波とすることができる。送信機から送波する電波は、ミリ波に限らず、マイクロ波でもよい。また、送波する電波の所定周波数の値は、特に限定するものではない。電波を反射した物体が検出エリア内を移動している場合には、ドップラ効果によって反射波の周波数がシフトする。
信号処理装置2は、増幅部3、A/D変換部4、信号処理部5、出力部6を備える。増幅部3は、例えば、オペアンプを用いた増幅器により構成され、センサ信号を増幅する。A/D変換部4は、増幅部3によって増幅されたセンサ信号をディジタルのセンサ信号に変換して出力する。
信号処理部5は、A/D変換部4から出力されるディジタルのセンサ信号を、離散コサイン変換(Discrete Cosine Transform:DCT)することで周波数領域の信号に変換する機能を有する。
この信号処理部5は、DCTによってセンサ信号を周波数領域(周波数軸上)の信号に変換し、この周波数領域の信号の周波数分布により物体を識別する認識処理を行う。さらに、信号処理部5は、図2に示す適応フィルタ(Adaptive filter)の機能を有しており、認識処理を実行する前段において、周波数領域において、既知でない雑音、所望外信号等の背景信号をセンサ信号から除去するフィルタ処理を行う。
適応フィルタは、適応アルゴリズム(最適化アルゴリズム)に従って伝達関数(フィルタ係数)を自己適応させるフィルタであり、ディジタルフィルタにより実現することができる。本実施形態では、DCTを利用した適応フィルタ(Adaptive filter using DiscreteCosine Transform)を用いる。この場合、適応フィルタの適応アルゴリズムとしては、DCTのLMS(Least Mean Square)アルゴリズムを用いればよい。
DCTを利用した周波数領域での適応フィルタは、FFTを利用した周波数領域での適応フィルタに比べて、同じ処理点数であれば周波数の分解能が倍となる。したがって、DCTを利用した適応フィルタは、メモリ等のハードウェアリソース等を小型化した処理系で、狭帯域の雑音除去を実現できる。
例えば、ディジタル信号に対して、FFTを利用した適応フィルタを構成した場合、サンプリング時間:t、サンプリング数:2Nとする。この場合、FFT処理後の折り返し特性を考慮して信号処理上の有用性を鑑みると、最大周波数:1/(2・t)Hzまでの周波数範囲で、周波数分解能:1/(2N・t)Hz、処理上有用な点数:Nとなる。このFFTを利用した適応フィルタの構成は、適応処理以外におけるFFT処理に限っても、最低2Nワードのメモリが必要となり、さらには複素演算の実行が要求されるので、比較的大きなハードウェアが必要となっていた。
一方、ディジタル信号に対して、DCTを利用した適応フィルタを構成した場合、サンプリング時間:t、サンプリング数:Nの条件下で、周波数分解能:1/(2N・t)Hzを実現可能であり、処理上有用な点数:Nを得ることができる。これは、DCTを利用した適応フィルタは、最大周波数:1/(2・t)Hzであり、FFTを利用した周波数領域の適応フィルタと同じ最大周波数であることを意味する。言い換えれば、最低2Nワードのメモリが必要となるFFT処理に対して、DCT処理はNワードのメモリがあればよい。
また、DCTを利用した適応フィルタは、実数演算を用いた処理方式である。一方、FFTを利用した適応フィルタは、複素演算を用いた処理方式である。したがって、DCTを利用した適応フィルタは、FFTを利用した適応フィルタに比べて演算規模を低減させることが可能となる。
さらに、FFTを利用した適応フィルタは、適応処理の前段に所定の窓関数による処理を実施し、所望の通過帯域外のフィルタサイドローブを抑圧する必要がある。一方、DCTを利用した適応フィルタは、窓関数が不要となる、または簡素なフィルタで実現可能となる。
而して、DCTを利用した適応フィルタは、FFTを利用した適応フィルタに比べて、ハードウェアの簡素化を図ることができる。
したがって、信号処理装置2は、DCTを利用した周波数領域の適応フィルタを用いることによって、比較的簡素なハードウェア構成で低コスト化を図りながら、予見が困難な背景信号(例えば、設置場所に依存する周囲環境雑音や所望外の信号等)を除去できる。さらには、DCTを利用した周波数領域の適応フィルタを用いることによって、所望の信号のみを効率的に取り出すことができる。
また一般的に、周波数領域の適応フィルタは、時間領域の適応フィルタに比べて、所望のフィルタ性能を得るための収束性がよいことが知られている。この中で、LMSアルゴリズムは、RLS(Recursive Least Square)アルゴリズムに比べて演算規模が小さいことが知られている。
信号処理部5が有する適応フィルタは、図2に示すように、フィルタ6aと、減算器6bと、適応処理部6cとで構成される。
信号処理部5は、A/D変換部4から出力されるセンサ信号(所望信号に未知の背景信号が干渉した信号)を、DCTによって周波数領域のセンサ信号xに変換する。そして、センサ信号xを入力されたフィルタ6aは、可変自在に設定されたフィルタ係数woに基づいて、センサ信号xから不要な背景信号を濾波して除去した出力信号yを出力する。減算器6bは、フィルタ6aの出力信号yと参照信号dとの差分である誤差信号eを出力する。ここで、参照信号dは、白色雑音であり、例えば、信号処理装置2の内部で発生する雑音(受信回路の内部雑音等)を用いてもよい。そして、適応処理部6cは、DCTのLMSアルゴリズムに従い、誤差信号eに基づいて背景信号の周波数成分を推定し、この推定した背景信号の周波数成分に応じてフィルタ係数の補正係数を生成して、フィルタ係数woを更新する。なお、参照信号dに用いる白色雑音は、周波数に依存しない理想的な白色雑音だけでなく、広い周波数に亘って信号強度がほぼ変化しない雑音信号も含む。
そして、この適応フィルタを備える信号処理部5は、動作モードとして、図3に示す雑音推定モード(第1のモード)と検出モード(第2のモード)とを切り替え可能に構成されている。この雑音推定モードおよび検出モードの各動作について、図4を用いて説明する。
まず、信号処理部5は、A/D変換部4から出力されるセンサ信号をDCTによって周波数領域のセンサ信号xに変換する(S1)。この周波数領域は、互いに周波数帯域の異なる周波数ビンfbの群で形成されており(図5(a)参照)、信号処理部5は、センサ信号xを、周波数ビンfb毎の信号として抽出する。すなわち、周波数ビンfb毎の信号の振幅強度が、DCT係数となる。
次に、信号処理部5は、現在の動作モードを判定する(S2)。信号処理部5は、現在の動作モードが雑音推定モードであれば、以下の処理を行う。なお、雑音推定モード時において、センサ信号xは背景信号のみを含むものとする(すなわち、検出対象の物体がない)。
雑音推定モードにおいて、適応処理部6cは、フィルタ6aの出力信号yと参照信号dとの差分である誤差信号eを導出する(S3)。そして、適応処理部6cは、誤差信号eが最小になるように、DCTによる周波数領域での適応処理がなされてフィルタ係数woを更新し(S4)、ステップS1に戻る。
雑音推定モードの信号処理部5は、上述のステップS1〜S4の動作を繰り返し行い、適応処理部6cは、誤差信号eが所定範囲内に収束した時点で、フィルタ係数woの更新処理を停止する。フィルタ係数woは、周波数ビンfb毎に設定されており、フィルタ6aは、周波数ビンfb毎の信号から背景信号を除去する。
なお、フィルタ係数woの更新処理は、サンプリング点の一点毎に更新されるもの、所用点数毎のブロックで更新されるもの、ブロック毎に更新され且つ処理すべきデータの重複(オーバーラップ)を行うもののいずれであってもよく、収束性または精度により選択されればよい。
そして、信号処理部5は、誤差信号eが所定範囲内に収束して、フィルタ係数woの更新処理を停止した後、動作モードを雑音推定モードから検出モードに切り替える。
なお雑音推定モードにおいて、適応処理部6cは、誤差信号eが所定範囲内に収束した場合、所定範囲内に収束している複数の時点における誤差信号eのそれぞれに基づいてフィルタ係数woを求めてもよい。この場合、適応処理部6cは、誤差信号eが所定範囲内に収束しているときに求めた複数のフィルタ係数に対して、加算平均、メジアン平均等の平均化処理、例外値を除外する例外値除外処理、分散状況の検出処理等を施した結果を、フィルタ6aに設定するフィルタ係数woとする。
次に、信号処理部5は、ステップS2で現在の動作モードを判定し、現在の動作モードが検出モードであれば、以下の処理を行う。
まず、検出モードの信号処理部5は、A/D変換部4から出力されるセンサ信号をDCT処理することによって得られたDCT係数Cx(センサ信号xに相当)と、フィルタ6aのフィルタ係数woとに基づいて、各周波数ビンfbにおける背景信号を除去したセンサ信号の振幅強度Cy(出力信号yに相当)を導出する(S5)。具体的に、振幅強度Cy=Cx*woとなる。
そして、信号処理部5は、周波数領域において、互いに隣接する複数の周波数ビンfbで構成される1または複数のサブバンドfsを生成する(図5(a)参照)。信号処理部5は、サブバンドfs毎に、複数の周波数ビンfbのそれぞれの振幅強度Cyを用いて、加算平均、重み付き平均、メジアン平均等の平均化処理、例外値を除外する例外値除外処理、分散状況の検出処理等を行い、サブバンドfs毎に振幅強度Cyの代表値Cya(以降、強度代表値Cyaと称す)を導出する(S6)。
例えば、信号処理部5が、加算平均によって強度代表値Cyaを導出する場合、ある時刻において、図5(a)に示すように、周波数の低い方から順に数えて1番目のサブバンドfsの5個の周波数ビンfbそれぞれにおける振幅強度Cyがそれぞれ、Cy(1)、Cy(2)、Cy(3)、Cy(4)およびCy(5)であるとする。ここで、1番目のサブバンドfsについてみれば、加算平均によって導出された強度代表値Cya(1)とすると(図5(b)参照)、
Cya(1)=(Cy(1)+Cy(2)+Cy(3)+Cy(4)+Cy(5))/5)
となる。
同様に、2番目のサブバンドfs、3番目のサブバンドfs、4番目のサブバンドfs及び5番目のサブバンドfsの信号は、図5(b)に示すように、それぞれ、Cya(2)、Cya(3)、Cya(4)およびCya(5)となる。
そして、信号処理部5は、サブバンドfs毎の強度代表値Cyaから決まる周波数分布の情報(周波数分布情報)を得ることができる(S7)。
さらに、信号処理部5は、サブバンドfs毎の強度代表値Cyaに逆離散コサイン変換(IDCT)を施した逆変換値と、A/D変換部4から出力されるセンサ信号との乗算によって、時間領域のセンサ信号(時間軸情報)を復元する(S8)。
この場合、信号処理部5は、サブバンドfs毎の強度代表値Cyaから決まる周波数分布情報、時間軸情報を用いて、検出対象の物体を識別する認識処理を行う。なお、本発明において、識別は、分類、認識を含む概念である。
また、信号処理部5は、ステップS5で導出した各周波数ビンfbの振幅強度Cyから決まる周波数分布の情報(周波数分布情報)を取得してもよい(S9)。
さらに、信号処理部5は、周波数ビンfb毎に設定されたフィルタ係数woに逆離散コサイン変換(IDCT)を施した逆変換値と、A/D変換部4から出力されるセンサ信号との乗算によって、時間領域のセンサ信号(時間軸情報)を復元してもよい(S10)。なお、逆離散コサイン変換を施すフィルタ係数は、全ての周波数ビンfbに設定されたフィルタ係数、または一部の周波数ビンfbに設定されたフィルタ係数のいずれであってもよい。
この場合、信号処理部5は、周波数ビンfb毎の振幅強度Cyから決まる周波数分布情報、周波数ビンfb毎に設定されたフィルタ係数woから決まる時間軸情報を用いて、検出対象の物体を識別する認識処理を行う。
なお、信号処理部5による認識処理は、例えば、主成分分析によるパターン認識処理、KL変換によるパターン認識処理、重回帰分析を用いて導出した振幅強度の成分比による認識処理、ニューラルネットワークによる認識処理等のアルゴリズムが用いられる。
ここで、DCTは、実数演算による演算を行うため、センサ信号の位相情報が失われる。一般に、センサ装置Seにおいて、位相情報は、距離を測定する際に利用される場合がある。電波センサ1にドップラセンサを用いた場合、背景信号を除去した時間領域のセンサ信号から、およその距離を計測することが可能である。したがって、厳密な意味での動きと距離との同時測定が必ずしも必要でない場合、ハードウェアの規模を著しく増大させることなく、補完情報としての距離情報を、ステップS8,S10で復元した時間領域のセンサ信号から取得することが可能である。而して、信号処理部5は、ステップS8、S10で導出した時間領域のセンサ信号から検出対象の物体までの距離情報を取得し、この距離情報を、周波数分布情報、時間軸情報と併用して、検出対象の物体を識別する認識処理を行うことができる。
そして、信号処理装置2は、信号処理部5による識別結果を出力する出力部6を備えており、信号処理部5により検出対象の物体が識別された場合、出力部6は、物体が検出されたことを示す出力信号「1」を出力する。一方、信号処理部5により検出対象の物体が識別されなかった場合、出力部6は、物体が非検出であることを示す出力信号「0」を出力する。
図6に、上述のDCTのLMSアルゴリズムを用いて設定したフィルタ6aのフィルタ係数woの伝達特性Z1を示す。複数の周波数帯域に雑音成分を有する背景信号が推定され、雑音成分が存在する周波数帯域を減衰させて、他の周波数帯域を通過させるフィルタ特性が形成されている。また図6には、比較例として、FFTのLMSアルゴリズムを用いて求めたフィルタ係数の伝達特性Z2も併せて示している。この例では、FFTに比べて演算量の少ないDCTのLMSアルゴリズムを用いた場合、FFTのLMSアルゴリズムと比べても、フィルタ性能の著しい劣化は見られない。
そして、図7(a)〜(c)は、上述の信号処理の流れを示す。まず、図7(a)は、背景信号のみを含むセンサ信号の周波数分布を示し、背景信号の周波数成分Aが表されている。図7(b)は、背景信号および所望信号を含むセンサ信号の周波数分布を示し、背景信号の周波数成分Aおよび所望信号の周波数成分Bが表されている。
そして、図7(c)は、信号処理部5が雑音推定モードで動作しているときに、図7(a)のセンサ信号を入力されたフィルタ6aの出力信号y1を示す。さらに、図7(c)は、信号処理部5が検出モードで動作しているときに、図7(b)のセンサ信号を入力されたフィルタ6aの出力信号y2の各周波数分布も示している。出力信号y1は、DCTのLMSアルゴリズムを用いてフィルタ6aのフィルタ係数woが更新されることによって、背景信号の周波数成分Aが除去されている。出力信号y2は、フィルタ6aのフィルタ係数woが適切に設定されたことによって、背景信号の周波数成分Aが除去され、所望信号の周波数成分Bのみが残っている。
また、図8は、雑音推定モードから検出モードに移行する場合、(a)参照信号d、(b)センサ信号x、(c)出力信号y、(d)誤差信号eの各波形を時間軸領域で示したものである。参照信号dは、雑音推定モード時に出力され、検出モード時に停止する。センサ信号xは、雑音推定モード時において背景信号のみを含み、検出モード時においては、検出対象の物体を検出したことによる所望信号が背景信号とともに含まれる。出力信号yは、雑音推定モードおよび検出モードにおいて背景信号が除去されており、検出モードにおいては、所望信号のみが残っている。誤差信号eは、雑音推定モード時に出力され、検出モード時に停止する。
図9(a)は、検出モードで動作している信号処理部5に入力されるセンサ信号x1の周波数分布を示す。さらに、図9(a)は、信号処理部5がセンサ信号x1を用いて導出したサブバンドfs毎の強度代表値Cyaを周波数領域において表している。この強度代表値Cyaは、サブバンドfs毎に、複数の周波数ビンfbのそれぞれの振幅強度Cyを用いて、重み付き平均化の処理を施した結果である。そして、図9(a)に示す強度代表値Cyaに逆離散コサイン変換(IDCT)を施した逆変換値と、A/D変換部4から出力されるセンサ信号との乗算によって、図9(b)に示す時間領域のセンサ信号(時間軸情報)が復元される。
信号処理部5は、雑音推定モード時に、適応フィルタの推定精度の誤差が低い領域で、適応処理の多数回の試行によりフィルタ係数woを設定することによって、推定精度を向上させることができる。さらに、信号処理部5は、検出モードにおいて、周波数領域のサブバンド化、またはサブバンド内の平均化等の信号処理によって、着眼する所望帯域を通過する信号の信号対雑音比を、簡便なハードウェアを用いて向上させることが可能になる。
さらに、信号処理部5は、認識処理の結果によって、動作モードの切替の可否を判定する。信号処理部5は、認識処理の結果として検出対象の物体を識別している場合、検出モードから雑音推定モードへの切り替えを禁止する。そして、信号処理部5は、認識処理の結果として検出対象の物体を識別していない場合、検出モードから雑音推定モードへの切り替えを許可する。すなわち、信号処理部5は、所望信号がセンサ信号xに含まれておらず、背景信号のみがセンサ信号xに含まれている場合に、検出モードから雑音推定モードへの切り替えを許可する。したがって、雑音推定モード時に設定されるフィルタ係数woは、背景信号を除去して、所望信号のみを精度よく抽出できる値に設定される。
さらに、信号処理部5は、各サブバンドfsにおける背景信号を除去したセンサ信号の強度代表値Cyaから、規格化強度代表値を導出し、以降、各サブバンドfsの規格化強度代表値を用いて周波数分布情報、時間軸情報等を取得してもよい。この規格化強度代表値とは、信号処理部5において認識処理に利用する複数の所定のサブバンドfsの強度代表値Cyaの総和で、各サブバンドfsの強度代表値Cyaを規格化したものである。
例えば、信号処理部5におけるサブバンドfsの総数が16個であり、認識処理に利用する所定の複数のサブバンドfsが、周波数の低い方から順に数えて1〜5番目の5個のみであるとする。ある時刻において1番目のサブバンドfsの強度代表値Cya(1)の規格化強度代表値をn(1)(図5(c)参照)とすると、規格化強度代表値n(1)は、信号処理部5において、
n(1)=Cya(1)/(Cya(1)+Cya(2)+Cya(3)+Cya(4)+Cya(5))
の演算により求められる。規格化強度代表値n(2)〜n(5)も同様に求めることができる。
なお、本実施形態では電波センサ1を用いているが、物体で反射した電波、音波等の無線信号を受信するセンサであれば、センサの種類は限定されない。
1 電波センサ
2 信号処理装置
3 増幅部
4 A/D変換部
5 信号処理部
6 出力部

Claims (10)

  1. 物体で反射された無線信号を受信するセンサから出力される前記物体の動きに応じたセンサ信号を増幅する増幅部と、
    前記増幅部によって増幅されたセンサ信号をディジタルのセンサ信号に変換して出力するA/D変換部と、
    前記A/D変換部から出力されたセンサ信号を、離散コサイン変換処理によって周波数領域のセンサ信号に変換し、背景信号に応じてフィルタ係数を設定することによって、前記周波数領域において前記周波数領域のセンサ信号から前記背景信号を除去する適応フィルタとして動作する信号処理部とを備え、
    前記信号処理部は、前記物体がない場合に、前記周波数領域のセンサ信号を前記背景信号として、前記適応フィルタの出力信号と白色雑音で形成された参照信号との差分を誤差信号とし、前記誤差信号が所定範囲内に収束するように前記フィルタ係数を更新する第1のモードと、前記フィルタ係数の更新処理を停止し、前記周波数領域において前記周波数領域のセンサ信号から前記背景信号を除去する第2のモードとを切替可能に有する
    ことを特徴とする信号処理装置。
  2. 前記信号処理部は、前記第1のモードにおいて、前記誤差信号が収束したと判定した場合、前記第1のモードから前記第2のモードに切り替わることを特徴とする請求項1記載の信号処理装置。
  3. 前記信号処理部は、前記第1のモードにおいて、前記誤差信号が所定範囲内に収束した場合、前記所定範囲内に収束した複数の時点における前記誤差信号のそれぞれに基づいて求めた前記フィルタ係数の平均値を、前記フィルタ係数として設定することを特徴とする請求項1または2記載の信号処理装置。
  4. 前記信号処理部は、前記第2のモードにおいて、前記A/D変換部から出力されるセンサ信号を、離散コサイン変換処理によって前記周波数領域のセンサ信号に変換した後、前記周波数領域において、前記フィルタ係数を設定された前記適応フィルタに前記周波数領域のセンサ信号を入力することによって、前記周波数領域のセンサ信号から前記背景信号を除去して、周波数帯域の異なる周波数ビンの群における前記周波数ビン毎の信号として抽出し、前記周波数ビン毎の信号に基づいて前記物体を識別する認識処理を行うことを特徴とする請求項1乃至いずれか記載の信号処理装置。
  5. 前記信号処理部は、前記第2のモードにおいて、前記A/D変換部から出力されるセンサ信号を、離散コサイン変換処理によって前記周波数領域のセンサ信号に変換した後、前記周波数領域において、前記フィルタ係数を設定された前記適応フィルタに前記周波数領域のセンサ信号を入力することによって、前記周波数領域のセンサ信号から前記背景信号を除去して、周波数帯域の異なる複数の周波数ビンで構成されるサブバンドの群における前記サブバンド毎の信号として抽出し、前記サブバンド毎の信号に基づいて前記物体を識別する認識処理を行う
    ことを特徴とする請求項1乃至3いずれか記載の信号処理装置。
  6. 前記フィルタ係数は、前記周波数ビン毎に設定され、
    前記信号処理部は、全ての前記フィルタ係数、または所定の複数の前記フィルタ係数に逆離散コサイン変換処理を施して得た逆変換値と、前記A/D変換部から出力されるセンサ信号とに基づいて、時間軸データを生成し、この時間軸データに基づいて前記物体を識別する認識処理を行う
    ことを特徴とする請求項4記載の信号処理装置。
  7. 前記信号処理部は、前記サブバンド毎の信号に逆離散コサイン変換処理を施して得た逆変換値と、前記A/D変換部から出力されるセンサ信号とに基づいて、時間軸データを生成し、この時間軸データに基づいて前記物体を識別する認識処理を行うことを特徴とする請求項5記載の信号処理装置。
  8. 前記信号処理部は、前記センサから前記物体までの距離情報を併用して、前記物体を識別する認識処理を行うことを特徴とする請求項4乃至7いずれか記載の信号処理装置。
  9. 前記信号処理部は、前記認識処理の結果として前記物体を識別した場合、前記第2のモードから前記第1のモードへの切り替えを禁止し、前記認識処理の結果として前記物体を識別していない場合、前記第2のモードから前記第1のモードへの切り替えを許可することを特徴とする請求項乃至8いずれか記載の信号処理装置。
  10. 前記適応フィルタの適応アルゴリズムが、離散コサイン変換のLMSアルゴリズムであることを特徴とする請求項乃至9いずれか記載の信号処理装置。
JP2012288366A 2012-12-28 2012-12-28 信号処理装置 Active JP6249325B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012288366A JP6249325B2 (ja) 2012-12-28 2012-12-28 信号処理装置
US14/653,458 US10078129B2 (en) 2012-12-28 2013-12-03 Signal processing device
EP13867767.9A EP2940486B1 (en) 2012-12-28 2013-12-03 Signal processing device
CN201380068394.8A CN104903742B (zh) 2012-12-28 2013-12-03 信号处理装置
PCT/JP2013/007102 WO2014103187A1 (ja) 2012-12-28 2013-12-03 信号処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288366A JP6249325B2 (ja) 2012-12-28 2012-12-28 信号処理装置

Publications (2)

Publication Number Publication Date
JP2014130085A JP2014130085A (ja) 2014-07-10
JP6249325B2 true JP6249325B2 (ja) 2017-12-20

Family

ID=51020311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288366A Active JP6249325B2 (ja) 2012-12-28 2012-12-28 信号処理装置

Country Status (5)

Country Link
US (1) US10078129B2 (ja)
EP (1) EP2940486B1 (ja)
JP (1) JP6249325B2 (ja)
CN (1) CN104903742B (ja)
WO (1) WO2014103187A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831898B2 (en) * 2013-03-13 2017-11-28 Analog Devices Global Radio frequency transmitter noise cancellation
JP2016075631A (ja) * 2014-10-08 2016-05-12 パナソニックIpマネジメント株式会社 信号処理装置
JP6755002B2 (ja) * 2016-05-26 2020-09-16 パナソニックIpマネジメント株式会社 センサ装置及び照明装置
IL250253B (en) * 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
CN107167771B (zh) * 2017-04-28 2018-10-26 深圳市无牙太赫兹科技有限公司 一种微波成像系统的直达波抑制方法及系统
KR101889005B1 (ko) * 2017-08-22 2018-08-16 엘아이지넥스원 주식회사 밀리미터파 탐색기용 신호 처리 장치 및 방법
WO2019187841A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 騒音低減装置
US11131787B2 (en) * 2018-05-28 2021-09-28 Samsung Electronics Co., Ltd. Electromagnetic sensor and mobile device including the same
US10948581B2 (en) * 2018-05-30 2021-03-16 Richwave Technology Corp. Methods and apparatus for detecting presence of an object in an environment
US10928502B2 (en) * 2018-05-30 2021-02-23 Richwave Technology Corp. Methods and apparatus for detecting presence of an object in an environment
TWI669522B (zh) * 2018-06-28 2019-08-21 立積電子股份有限公司 都普勒訊號處理裝置及訊號處理方法
US20210231789A1 (en) * 2018-06-28 2021-07-29 Richwave Technology Corp. Doppler signal processing device and method thereof for interference suppression
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
IL260694A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
CN113170560B (zh) 2018-12-12 2024-04-26 昕诺飞控股有限公司 运动检测器,照明器,对应方法
TWI734252B (zh) * 2019-11-08 2021-07-21 立積電子股份有限公司 雷達及雷達回波訊號的背景成分更新方法
CN113810324B (zh) * 2021-07-30 2023-09-15 中国人民解放军63892部队 一种动态背景信号生成系统
KR102655067B1 (ko) * 2021-12-16 2024-04-05 현대오토에버 주식회사 신호 처리장치
US11953543B2 (en) * 2022-07-06 2024-04-09 Rohde & Schwarz Gmbh & Co. Kg Measurement device, method of operating the measurement device and non-transitory computer-readable recording medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243580A (ja) 1985-08-21 1987-02-25 Oki Electric Ind Co Ltd 適応雑音除去装置
JPH01280273A (ja) * 1988-05-02 1989-11-10 Nec Corp アクテイブソーナ装置
JP3034330B2 (ja) * 1991-05-13 2000-04-17 株式会社東芝 音検出装置
JPH1138127A (ja) * 1997-07-16 1999-02-12 Nec Corp 残響内目標検出装置及び方法並びに残響内目標検出プログラムを記録した記憶媒体
JP2001004736A (ja) 1999-06-24 2001-01-12 Matsushita Electric Works Ltd Gps受信装置
JP4207624B2 (ja) * 2003-03-27 2009-01-14 Toto株式会社 便器洗浄装置
JP3815735B2 (ja) 2003-04-15 2006-08-30 防衛庁技術研究本部長 雑音低減回路および該雑音低減回路を有する水中探知装置
US7260242B2 (en) * 2003-08-15 2007-08-21 United States Of America As Represented By The Secretary Of The Air Force Spatial surface prior information reflectance estimation (SPIRE) algorithms
CN200966147Y (zh) * 2006-08-01 2007-10-24 朱铭锆 语音功率放大器
JP5252639B2 (ja) * 2009-02-20 2013-07-31 国立大学法人茨城大学 センサ装置
JP5584442B2 (ja) 2009-08-26 2014-09-03 パナソニック株式会社 物体検知装置およびそれを備えた照明システム
US9229102B1 (en) * 2009-12-18 2016-01-05 L-3 Communications Security And Detection Systems, Inc. Detection of movable objects
US8779965B2 (en) * 2009-12-18 2014-07-15 L-3 Communications Cyterra Corporation Moving-entity detection
JP5352773B2 (ja) * 2010-01-19 2013-11-27 株式会社ユピテル 速度測定装置およびプログラム
JP2011242343A (ja) 2010-05-20 2011-12-01 Panasonic Corp 車両方向特定装置、車両方向特定方法、及びそのプログラム
JP6037279B2 (ja) * 2012-12-28 2016-12-07 パナソニックIpマネジメント株式会社 信号処理装置
JP2014013229A (ja) * 2012-06-05 2014-01-23 Panasonic Corp 信号処理装置
EP2857860A4 (en) * 2012-06-05 2015-06-17 Panasonic Ip Man Co Ltd SIGNAL PROCESSING DEVICE
CN102841341B (zh) * 2012-09-03 2014-08-27 深圳先进技术研究院 一种脉冲雷达动目标检测方法

Also Published As

Publication number Publication date
US10078129B2 (en) 2018-09-18
EP2940486A4 (en) 2016-01-13
WO2014103187A1 (ja) 2014-07-03
US20160195606A1 (en) 2016-07-07
EP2940486A1 (en) 2015-11-04
EP2940486B1 (en) 2018-08-22
CN104903742B (zh) 2017-10-10
CN104903742A (zh) 2015-09-09
JP2014130085A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6249325B2 (ja) 信号処理装置
JP6167368B2 (ja) 信号処理装置
EP3489710A1 (en) Radar interference suppression
TWI489125B (zh) 信號處理裝置
JP6176337B2 (ja) 水栓装置
JP2007535265A (ja) 狭帯域干渉キャンセレーションのための受信機
JP4682127B2 (ja) パルス諸元検出装置
JP2014013229A (ja) 信号処理装置
JP2003344470A (ja) アンテナ試験での干渉相殺方法
WO2014023940A1 (en) Apparatus and method for estimating a characteristic of a microwave resonant device
JP4889662B2 (ja) パルス諸元検出装置
CN106170715B (zh) 用于基于声的环境探测的设备和方法
KR20080098874A (ko) 무선 통신 시스템의 스펙트럼 점유를 검출하는 스펙트럼검출 장치 및 스펙트럼 검출 방법
CN114217266B (zh) 基于天线数据时域拟合的降低信道误差的处理方法
US11101832B1 (en) Receiver able to detect radio frequency interference
Mo et al. Compressive parameter estimation with earth mover's distance via k-median clustering
JP4821201B2 (ja) 適応整相出力周波数分析装置、適応整相出力周波数分析システム及び適応整相出力周波数分析プログラム並びにパッシブソーナーもしくは、アクティブソーナー
JP5631674B2 (ja) 電波受信装置及び信号分析方法
JP2016075631A (ja) 信号処理装置
WO2012120126A1 (en) Radio frequency digital receiver system and method
KR20220120045A (ko) 레이더 시스템에서 적응적으로 시간 지연을 변경하는 샘플링 장치
US20140044266A1 (en) Real-time noise reduction apparatus for radio monitoring system
KR101912446B1 (ko) 침입 감지 방법 및 장치
CN118707261A (zh) 一种双天线外置式uhf局放传感器及其校准、采集方法
Minett et al. A fuzzy discrete Fourier transform for reduction of spectral leakage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R151 Written notification of patent or utility model registration

Ref document number: 6249325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151