WO2019187841A1 - 騒音低減装置 - Google Patents

騒音低減装置 Download PDF

Info

Publication number
WO2019187841A1
WO2019187841A1 PCT/JP2019/006660 JP2019006660W WO2019187841A1 WO 2019187841 A1 WO2019187841 A1 WO 2019187841A1 JP 2019006660 W JP2019006660 W JP 2019006660W WO 2019187841 A1 WO2019187841 A1 WO 2019187841A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
signal
microphone
noise reduction
collected
Prior art date
Application number
PCT/JP2019/006660
Other languages
English (en)
French (fr)
Inventor
潤二 荒木
伸一 高山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020510439A priority Critical patent/JP6948609B2/ja
Publication of WO2019187841A1 publication Critical patent/WO2019187841A1/ja
Priority to US17/038,262 priority patent/US11350197B2/en
Priority to US17/729,231 priority patent/US11665459B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • G10K11/17833Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels
    • G10K11/17835Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions by using a self-diagnostic function or a malfunction prevention function, e.g. detecting abnormal output levels using detection of abnormal input signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17819Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the reference signals, e.g. to prevent howling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1281Aircraft, e.g. spacecraft, airplane or helicopter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3023Estimation of noise, e.g. on error signals
    • G10K2210/30231Sources, e.g. identifying noisy processes or components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3025Determination of spectrum characteristics, e.g. FFT
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3221Headrests, seats or the like, for personal ANC systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • This disclosure relates to a noise reduction device that reduces the level of noise that is constantly generated in the surrounding environment.
  • the noise control unit is a control sound signal for reducing noise detected by the plurality of noise microphones in a control target space.
  • This disclosure adaptively detects non-stationary noise generated in a control space such as an aircraft in addition to stationary noise, and effectively suppresses deterioration in accuracy of steady noise reduction processing.
  • An object is to provide a reduction device.
  • the present disclosure includes a processing unit that converts a noise signal collected by a microphone arranged in a control space into a noise signal in a frequency domain, a holding unit that holds the converted noise signal in the frequency domain as a reference signal, A signal generation unit that generates a noise reduction signal for reducing a noise signal collected by the microphone at a control position in the control space, and the processing unit receives the noise signal collected by the microphone.
  • the noise signal collected by the microphone is unsteady noise generated unsteadyly in the control space using the frequency characteristic of the noise signal converted into the frequency domain and the frequency characteristic of the reference signal
  • the noise corresponding to the noise signal collected by the determined microphone is determined when the noise signal collected by the microphone is determined to be the unsteady noise. To omit the generation of reduced signal to the signal generator, to provide a noise reduction device.
  • FIG. 3 is a block diagram showing an example of the internal configuration of the noise reduction device according to the first embodiment.
  • the figure which shows the graph which shows an example of the frequency characteristic of stationary noise and unsteady noise The flowchart which shows the noise reduction processing operation which concerns on Embodiment 1.
  • the noise picked up by the noise microphone is engine noise, wind noise, air conditioner, or the like that is constantly generated in the aircraft, such as engine sound, wind noise, or air conditioner. Is the target.
  • FIG. 1 is a diagram illustrating a system configuration example of a noise reduction system 5 including a noise reduction device 10 according to the first embodiment.
  • the noise reduction system 5 includes a noise reduction device 10, a plurality of noise microphones 30, a plurality of error microphones 40, and a plurality of speakers 50.
  • the noise reduction system 5 is installed, for example, in the vicinity of a passenger seat in an aircraft.
  • the number of each of the noise microphones 30 and the error microphones 40 may be any number as long as it is one or more.
  • the noise reduction system 5 may have 16 noise microphones and 4 error microphones.
  • the number of speakers 50 may be any number as long as the number is one or more.
  • FIG. 2 is a block diagram illustrating an internal configuration example of the noise reduction device 10 according to the first embodiment.
  • the noise microphone 30 and the error microphone 40 collect noise (specifically, stationary noise and non-stationary noise) generated in the aircraft.
  • the steady noise is noise that is constantly generated in the aircraft in flight, such as engine sound and wind noise.
  • Unsteady noise refers to noise that occurs unsteadyly in the aircraft of the aircraft in flight (that is, sound other than the above-mentioned steady noise, such as passenger and passenger voices generated in the aircraft, in-flight broadcasting, noise, etc. ).
  • FIG. 3 is a graph showing an example of frequency characteristics of stationary noise and non-stationary noise.
  • the vertical axis of the graph in FIG. 3 represents the amplitude (unit: dB) in the frequency domain of the noise signal.
  • the horizontal axis of the graph of FIG. 3 is the frequency (unit: Hz).
  • the steady noise has a large amplitude from 25 Hz to 400 Hz, and then has a characteristic of gradually decreasing.
  • the unsteady noise has a large amplitude in a range including 100 Hz to 300 Hz, and has a characteristic of almost 0 in a region exceeding 2 kHz.
  • a detection target band (that is, a target range for detecting whether unsteady noise is detected in the noise signal collected by the noise microphone 30) is set.
  • the detection target band the lower limit FL is set to 70 Hz, and the upper limit FH is set to 2 kHz.
  • the detection target band may be set to an arbitrary band. In the example shown in FIG. 3, a reverse phenomenon occurs in which the amplitude of the unsteady noise becomes larger than the amplitude of the steady noise near 480 Hz.
  • the noise reduction apparatus 1 generates unsteady noise by comparing the amplitude in the frequency domain of the noise signal picked up by the noise microphone 30 with the amplitude in the frequency domain of the reference signal (see below) in the detection target band. Whether it is present or not can be detected.
  • the noise reduction device 1 is configured such that the sound pressure level in the time domain of the noise signal collected by the noise microphone 30 and a predetermined threshold (for example, the average sound pressure level of a loud sound suddenly generated as unsteady noise). ) To detect whether or not unsteady noise is generated.
  • the noise reduction device 10 is configured using, for example, a DSP (Digital Signal Processor) and performs adaptive noise suppression control (ANC: Active Noise Control) processing.
  • DSP Digital Signal Processor
  • ANC Active Noise Control
  • the noise microphone 30 is a microphone that collects noise generated from a noise source in the aircraft.
  • the noise microphone 30 converts the vibration of the air transmitted to the sound receiving surface of the noise microphone 30 into an electrical signal and outputs it.
  • the error microphone 40 collects a residual sound signal (an example of an error sound signal) in which a noise signal generated from an in-flight noise source of an aircraft and a noise reduction sound signal (an example of a control sound signal) generated from a speaker 50 are superimposed.
  • This is a sounding microphone, which converts the vibration of air transmitted to the sound receiving surface of the error microphone 40 into an electric signal and outputs it.
  • the noise reduction device 10 generates a sound signal having a phase opposite to that of the noise signal so that the sound signal collected by the error microphone 40 is minimized with respect to the noise signal collected by the noise microphone 30. ANC processing is performed to cancel the noise signal.
  • the noise reduction apparatus 10 includes an adaptive filter convolution unit 11, an adaptive filter update unit 12, an adaptive filter divergence detection unit 13, signal processing units 21 and 23, holding units 22 and 24, an echo cancellation processing unit 17, and an adder 18. .
  • the adaptive filter convolution unit 11 performs a convolution process on the noise signal picked up by the noise microphone 30 using an adaptive filter in which the filter coefficient generated by the adaptive filter update unit 12 is set, and a noise reduction signal Is generated.
  • the adaptive filter convolution unit 11 includes a multi-stage tap, and is configured using an FIR (Finite impulse response) filter that can freely set the filter coefficient of each tap.
  • FIR Finite impulse response
  • the adaptive filter update unit 12 Based on the noise signal collected by the noise microphone 30 and the error microphone 40, the adaptive filter update unit 12 performs each of the adaptive filter convolution units 11 so that the residual sound signal (an example of the error sound signal) is minimized. Update the filter coefficients periodically.
  • the adaptive filter update unit 12 updates the filter coefficient when the noise picked up by the noise microphone 30 and the error microphone 40 is stationary noise, and updates the filter coefficient when the noise is unsteady noise. Is interrupted (that is, omitted).
  • the adaptive filter updating unit 12 has a memory 12z, and holds in the memory 12z filter coefficients updated when stationary noise is detected before the previous time.
  • the adaptive filter divergence detection unit 13 functions as a fail-safe filter coefficient that may diverge.
  • the adaptive filter divergence detection unit 13 detects the divergence of the filter coefficient (that is, a phenomenon exceeding the predetermined upper limit value of the filter coefficient) when the filter coefficient updated by the adaptive filter update unit 12 suddenly increases.
  • the adaptive filter divergence detection unit 13 stops the operation of the adaptive filter convolution unit 11. Therefore, the output from the speaker 50 is silent.
  • the adaptive filter divergence detection unit 13 may output the filter coefficient held in the holding unit 22 during the previous update to the adaptive filter convolution unit 11. In this case, a control sound signal subjected to convolution processing based on the filter coefficient at the time of the previous update is output from the speaker 50.
  • the signal processing unit 21 determines whether the sound signal collected by the noise microphone 30 is stationary noise or non-stationary noise in the time domain and the frequency domain. When determining in the frequency domain, the signal processing unit 21 converts the noise signal collected by the noise microphone 30 into a noise signal in the frequency domain using a known technique at regular intervals. The signal processing unit 21 stores frequency domain data representing the frequency characteristics of the converted noise signal in the holding unit 22. In addition, the signal processing unit 21 stores time domain data representing the time characteristics of the time domain noise signal collected by the noise microphone 30 in the holding unit 22.
  • the signal processing unit 21 performs frequency domain data and time domain data of a noise signal picked up by the noise microphone 30 when the noise reduction device 10 is in an on state in any state where the ANC processing is in operation or stopped. Is continued in the holding unit 22.
  • the holding unit 22 is configured using, for example, a RAM (Random Access Memory), and updates the frequency domain data and time domain data of the noise signal already stored. At this time, the holding unit 22 may store the noise signal data (that is, the frequency domain data and the time domain data) for a certain period or a certain amount in time series and update the data so as to overwrite the oldest data. .
  • the holding unit 22 holds a reference signal for frequency domain data and time domain data.
  • the reference signal is, for example, noise data (that is, frequency domain data and time domain data) when stationary noise is generated and stationary noise is picked up by the noise microphone 30 with the ANC processing turned off. is there.
  • the reference signal of the frequency domain data includes noise in a band of 70 Hz to 2 KHz, for example.
  • a plurality of noise signals collected by the noise microphone 30 may be collected during a certain period, and an average noise signal may be used, or a noise signal obtained by one time of sound collection. May be used. Further, the reference signal is periodically updated. As the reference signal, the collected sound signal may be registered as it is, or the sound included in the band of 70 Hz to 2 KHz may be extracted and registered. Noise included in the band of 70 Hz to 2 KHz is a sound range in which unsteady noise (passenger's voice, in-flight broadcasting, etc.) is likely to occur, and is an audible sound that the user is concerned about. Further, the reference signal used in the signal processing unit 21 and the reference signal used in the signal processing unit 23 may be the same or different. If they are the same, the noise signal picked up by either the noise microphone 30 or the error microphone 40 is used as the reference signal.
  • the signal processing unit 21 reads the frequency domain reference signal stored in the holding unit 22 and compares it with the frequency domain data of the noise signal input from the noise microphone 30.
  • the signal processing unit 21 compares these sounds with sound intensity (for example, amplitude), and controls whether or not the adaptive filter update unit 12 performs the update operation of the filter coefficient based on the comparison result.
  • the signal processing unit 21 reads the time domain reference signal stored in the holding unit 22 and compares it with the time domain data of the noise signal input from the noise microphone 30.
  • the signal processing unit 21 compares these sounds with the intensity (for example, amplitude) of the sound to determine whether or not the sound is an unsteady sound (for example, a sudden sound or a silence due to disconnection). Determine whether.
  • a sudden sound for example, a sound of a shell near a microphone being hit or a rough opening / closing sound of a door can be cited. In the case of disconnection, only a very small noise level is input from the noise microphone 30.
  • the signal processing unit 23 determines whether the sound signal collected by the error microphone 40 is stationary noise or non-stationary noise in the time domain and the frequency domain. When determining in the frequency domain, the signal processing unit 23 converts the sound collected by the error microphone 40 into a noise signal in the frequency domain using a known technique at regular intervals. The signal processing unit 23 stores frequency domain data representing the frequency characteristics of the converted noise signal in the holding unit 24. In addition, the signal processing unit 23 stores time domain data representing the time characteristics of the noise signal in the holding unit 24.
  • the signal processing unit 23 performs frequency domain data and time domain data of a noise signal collected by the error microphone 40 when the noise reduction device 10 is in an on state in any state where the ANC processing is in operation or stopped. Is continued in the holding unit 24.
  • the holding unit 24 is configured using, for example, a RAM, and updates the frequency domain data and time domain data of the sound signal already stored. At this time, the holding unit 24 may store the noise signal data (that is, the frequency domain data and the time domain data) in a certain period or a certain amount in time series, and update the oldest data to be overwritten. .
  • the holding unit 24 holds a reference signal of frequency domain data and time domain data.
  • the reference signal is, for example, noise data (that is, frequency domain data and time domain data) when steady noise is generated and the steady noise is picked up by the error microphone 40 with the ANC processing turned off. is there.
  • the frequency domain data includes noise in a band of 70 Hz to 2 KHz, for example.
  • a plurality of noise signals collected by the error microphone 40 may be collected during a certain period, and an average noise signal may be used, or a noise signal obtained by one time of sound collection. May be used. Further, the reference signal is periodically updated.
  • the collected sound signal may be registered as it is, or the sound included in the band of 70 Hz to 2 KHz may be extracted and registered.
  • the sound included in the band of 70 Hz to 2 KHz is a sound range in which unsteady noise (passenger's voice, in-flight broadcasting, etc.) is likely to be generated, and is an audible sound that the user is concerned about.
  • the reference signal used in the signal processing unit 23 and the reference signal used in the signal processing unit 21 may be the same or different. If they are the same, the sound signal picked up by either the noise microphone 30 or the error microphone 40 is used as the reference signal.
  • the signal processing unit 23 reads the frequency domain reference signal stored in the holding unit 24 and compares it with the frequency domain data of the noise signal input from the error microphone 40.
  • the signal processing unit 23 compares these sounds with sound intensity (for example, amplitude), and controls whether or not the adaptive filter updating unit 12 performs the filter coefficient updating operation based on the comparison result.
  • the signal processing unit 23 reads the time domain reference signal stored in the holding unit 24 and compares it with the time domain data of the noise signal input from the error microphone 40.
  • the signal processing unit 23 compares these sounds with sound intensity (for example, amplitude) to determine whether or not the sound is an unsteady sound (for example, sudden sound or silence due to disconnection). Determine whether.
  • a sudden sound for example, a sound of a shell near a microphone being hit or a rough opening / closing sound of a door can be cited. In the case of disconnection, only a very small noise level is input from the noise microphone 30.
  • the echo cancellation processing unit 17 outputs the sound input from the noise microphone 30 from the speaker 50 in order to suppress the howling phenomenon that occurs when the sound output from the speaker 50 is input to the noise microphone 30. Generate a signal to cancel the sound.
  • the adder 18 cancels the sound output from the speaker 50 by adding the echo cancellation signal output from the echo cancellation processing unit 17 to the signal input to the noise microphone 30.
  • the speaker 50 inputs a noise reduction sound (control sound) signal output from the noise reduction device 10, converts it into a sound wave, and outputs it.
  • the speaker 50 outputs a control sound having a phase opposite to that of the noise so as to cancel the noise reaching the vicinity of the user's ear.
  • the ANC processing by the noise reduction device 10 is performed assuming that the user is lying down in a full flat state, for example.
  • the speaker 50 is disposed near the floor or the seat with the user lying down in a full flat state or with the seat (seat) slightly tilted.
  • the error microphone 40 is disposed near the user's ear or the speaker 50.
  • the noise microphone 30 is arranged at a position away from the error microphone 40 (for example, an upper position of the seat on which the user is sitting).
  • FIG. 4 is a flowchart showing the noise reduction processing operation according to the first embodiment.
  • the signal processing units 21 and 23 of the noise reduction apparatus 10 input the noise signals collected by the noise microphone 30 and the error microphone 40, respectively (S1).
  • the signal processing units 21 and 23 convert the input time-domain noise signal into a frequency-domain noise signal using a known technique (for example, Fourier transform) (S2).
  • the signal processing units 21 and 23 hold (update) the noise signals in the frequency domain in the holding units 22 and 24, respectively (S3).
  • the signal processing units 21 and 23 read the frequency domain reference signals held in the holding units 22 and 24, respectively, and compare the amplitude of the frequency domain reference signal with the amplitude of the converted frequency domain noise signal, respectively. . As a result of the comparison, the signal processing units 21 and 23 determine whether or not the amplitude of the noise signal in the frequency domain is larger than the amplitude of the reference signal in the frequency domain (S4).
  • the adaptive filter update unit 12 When the amplitude of the noise signal in the frequency domain is less than or equal to the amplitude of the reference signal in the frequency domain (S4, NO), the adaptive filter update unit 12 is based on the noise signals collected by the noise microphone 30 and the error microphone 40, respectively. Then, each filter coefficient of the adaptive filter convolution unit 11 is updated (S5). The adaptive filter update unit 12 stores the updated filter coefficient in the memory 12z (S6). The adaptive filter updating unit 12 may store the updated filter coefficient in the holding unit 22 or the holding unit 24. The adaptive filter updating unit 12 passes the updated filter coefficient to the adaptive filter convolution unit 11.
  • the adaptive filter update unit 12 determines that unsteady noise has occurred and stores the previous time stored in the memory 12z.
  • the previously updated filter coefficient at the time of steady noise is passed to the adaptive filter convolution unit 11 (S7).
  • the adaptive filter convolution unit 11 sets the filter coefficient received from the adaptive filter update unit 12, performs convolution processing on the noise signal collected by the noise microphone 30, and performs control sound having an opposite phase to the noise signal. A signal is generated (S8).
  • the adaptive filter convolution unit 11 outputs the generated control sound signal to the speaker 50 (S9).
  • the speaker 50 outputs a control sound that cancels the noise signal in the vicinity of the error microphone 40. Such an operation is always continued while the noise reduction device 10 is operating.
  • the noise reduction device 10 has the signal processing unit 21 (an example of a processing unit) that converts the noise signal collected by the noise microphone 30 disposed in the control space into a noise signal in the frequency domain.
  • a holding unit 22 that holds the converted noise signal in the frequency domain as a reference signal, and an adaptive filter tatami for generating a noise reduction signal for reducing the noise signal collected by the noise microphone 30 at a control position in the control space.
  • an embedding unit 11 an example of a signal generation unit.
  • the signal processing unit 21 uses the frequency characteristic of the noise signal obtained by converting the noise signal collected by the noise microphone 30 to the frequency domain and the frequency characteristic of the reference signal to obtain the noise signal collected by the noise microphone 30.
  • the signal processing unit 21 sets the adaptive filter convolution unit 11 corresponding to the noise signal collected by the noise microphone 30 when it is determined that the noise signal collected by the noise microphone 30 is non-stationary noise. Then, the updating of the filter coefficient (an example of the control value related to the generation of the noise reduction signal) updated by the adaptive filter updating unit 12 is interrupted (that is, omitted).
  • the noise reduction device 10 can adaptively detect non-stationary noise that is generated in a non-steady manner other than the steady noise that is generated in a target control space such as an aircraft. Can be effectively suppressed.
  • the signal processing unit 21 picks up sound by the noise microphone 30 when the amplitude of the frequency domain of the noise signal collected by the noise microphone 30 is larger than the amplitude of the frequency domain of the reference signal in a predetermined frequency band.
  • the noise signal is determined to be unsteady noise.
  • the noise reduction device 10 compares the frequency characteristics (for example, the amplitude of the noise signal) in a predetermined frequency band between the noise signal collected by the noise microphone and the reference signal, so that the noise level is noticeable to the user. It is possible to easily and quickly determine that unsteady noise has occurred.
  • the noise reduction device 10 converts a noise signal collected by an error microphone 40 (an example of a second microphone) disposed in the vicinity of the user's ear (an example of the vicinity of the control position) into a noise signal in the frequency domain. It further includes a signal processing unit 23 (an example of a second processing unit) and a holding unit 24 (an example of a second holding unit) that holds the converted noise signal in the frequency domain as a reference signal.
  • the adaptive filter convolution unit 11 uses the frequency characteristics of the noise signal obtained by converting the noise signals collected by the noise microphone 30 and the error microphone 40 into the frequency domain by the signal processing units 21 and 23, respectively. A noise reduction signal is generated.
  • the noise reduction device 10 makes the noise reduction signal (that is, the frequency characteristic of the noise signal picked up by the error microphone 40 arranged in the vicinity of the control position such as the user's ear) become the reference frequency characteristic. Noise canceling signal) can be generated effectively.
  • the adaptive filter update unit 12 updates the filter coefficient of the adaptive filter in response to the noise signal collected by the noise microphone 30.
  • the adaptive filter convolution unit 11 (adaptive filter) generates a noise reduction signal by performing a convolution process using the updated filter coefficient.
  • the adaptive filter update unit 12 stores the updated filter coefficient in the memory 12z (or the holding unit 22).
  • the noise reduction apparatus 10 can generate a highly accurate noise reduction signal by adaptively updating the filter coefficient in response to the noise signal collected by the noise microphone.
  • the noise reduction apparatus 10 can be used as a filter coefficient serving as a reference when generating a noise reduction signal from the next time by storing the updated filter coefficient.
  • the signal processing unit 21 determines that the noise signal collected by the noise microphone is non-stationary noise
  • the signal processing unit 21 updates the filter coefficient corresponding to the noise signal collected by the determined microphone.
  • the adaptive filter update unit 12 is omitted, and the adaptive filter convolution unit 11 generates a noise reduction signal using the filter coefficient previously stored in the holding unit 22.
  • the noise reduction device 10 can suppress the divergence of the filter coefficient because the update of the filter coefficient following the unsteady noise is stopped, and the unsteady noise is not generated.
  • a highly accurate noise reduction signal can be generated for stationary noise.
  • the noise reduction apparatus 10 further includes an adaptive filter divergence detection unit 13 (an example of the divergence detection unit) that detects whether or not the filter coefficient updated by the adaptive filter update unit 12 is divergenced.
  • an adaptive filter divergence detection unit 13 detects the divergence of the filter coefficient updated by the adaptive filter update unit 12
  • the adaptive filter divergence unit 11 uses the filter coefficient previously stored in the memory 12z (or the holding unit 22). Output to.
  • the noise reduction device 10 is not limited to the case where unsteady noise occurs, but for example, by using the previously stored filter coefficient when the noise level of the noise signal collected by the noise microphone is large, It is possible to generate a noise reduction signal that is adaptive to the environment of the control target space.
  • the adaptive filter updating unit 12 interrupts the update of the filter coefficient, reads the filter coefficient at the time of stationary noise updated before the previous time, and the adaptive filter convolution unit 11 was set.
  • the adaptive filter updating unit 12 initializes the filter coefficient.
  • the noise reduction system in the second embodiment has almost the same configuration as that in the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 5 is a flowchart showing the noise reduction processing operation according to the second embodiment.
  • the description is abbreviate
  • the adaptive filter update unit 12 initializes the filter coefficient to 0 (S7A).
  • the adaptive filter update unit 12 passes the filter coefficient set to the value 0 to the adaptive filter convolution unit 11.
  • the adaptive filter convolution unit 11 sets each filter coefficient to 0 and performs a convolution process on the noise signal collected by the noise microphone 30 in step S8. In this case, even if a noise signal is input from the noise microphone 30, the adaptive filter convolution unit 11 outputs a control sound signal that is silent. Therefore, no sound is output from the speaker 50.
  • Other processes are the same as those in the first embodiment.
  • the filter coefficient when the filter coefficient is initialized, the value 0 is set.
  • a predetermined filter coefficient for example, a general-purpose filter coefficient suitable for the machine may be set as the initialization.
  • the filter coefficient is initialized by the adaptive filter convolution unit 11.
  • the noise reduction device 10 can temporarily stop the output of the noise reduction sound from the speaker by initializing the filter coefficient when unsteady noise occurs. Further, since the update of the filter coefficient following the unsteady noise is stopped, the divergence of the filter coefficient can be suppressed.
  • the noise reduction system of the third embodiment has almost the same configuration as that of the first embodiment.
  • the description is abbreviate
  • FIG. 6 is a flowchart showing the noise reduction processing operation according to the third embodiment.
  • the description is abbreviate
  • the signal processing units 21 and 23 of the noise reduction device 10 input the noise signals collected by the noise microphone 30 and the error microphone 40 in step S1.
  • the signal processing units 21 and 23 read the amplitude (an example of a threshold value) of the time domain reference signal held in the holding units 22 and 24, and compare the threshold value with the collected noise signal. As a result of the comparison, the signal processing units 21 and 23 determine whether or not the amplitude of the collected noise signal is larger than a threshold value (S1A).
  • S1A a threshold value
  • the adaptive filter update unit 12 sets the filter coefficient of the adaptive filter to the filter coefficient at the time of stationary noise updated before or is initialized to a value of 0. (S1B).
  • the adaptive filter update unit 12 passes the filter coefficient set in step S ⁇ b> 1 ⁇ / b> B to the adaptive filter convolution unit 11. Setting the filter coefficient to the filter coefficient at the time of stationary noise updated before the previous time is the same as in the first embodiment. Also, the initialization of the filter coefficient to 0 is the same as in the second embodiment.
  • the noise reduction apparatus 10 performs the process after step 8 as in the first embodiment.
  • the noise reduction apparatus 10 performs the processing from step S2 onward in the same manner as in the first embodiment in order to make a determination in the frequency domain. If the amplitude of the noise signal in the frequency domain is larger than the amplitude of the reference signal in the frequency domain in step S4, the adaptive filter update unit 12 determines that unsteady noise has been emitted. In this case, the adaptive filter updating unit 12 sets the filter coefficient to the filter coefficient at the time of stationary noise updated before the previous time or initializes the value to 0 as in step S1B (S7B). After the process of step S7B, the noise reduction apparatus 10 performs the process after step 8 similarly to Embodiment 1.
  • the signal processing unit 21 collects noise by the noise microphone 30 when the amplitude of the time domain of the noise signal collected by the noise microphone 30 is larger than the predetermined threshold. It is determined that the sounded noise signal is unsteady noise.
  • the noise reduction device 10 can easily determine whether or not a sudden loud sound (for example, abnormal sound) has suddenly occurred in the target control space such as an aircraft. It is possible to easily and quickly determine that noise has occurred.
  • a sudden loud sound for example, abnormal sound
  • the signal processing unit 21 compares the time domain amplitude of the noise signal collected by the noise microphone 30 with a threshold value, and obtains a comparison result that the time domain amplitude of the noise signal is equal to or less than the threshold value.
  • the amplitude in the frequency domain of the noise signal is compared with the amplitude in the frequency domain of the reference signal.
  • the signal processing unit 21 determines that the noise signal is unsteady noise when the amplitude in the frequency domain of the noise signal is larger than the amplitude in the frequency domain of the reference signal.
  • the noise reduction apparatus 10 can omit the processing in the frequency domain with a large load when the time domain processing is performed first and is determined to be unsteady noise, and the load on the signal processing unit 21 can be reduced.
  • the noise reduction device is installed in the vicinity of a seat in an aircraft cabin. It may be installed in the vicinity of the seat.
  • This disclosure adaptively detects non-stationary noise generated in a control space such as an aircraft in addition to stationary noise, and effectively suppresses deterioration in accuracy of steady noise reduction processing. It is useful as a reduction device.
  • Noise Reduction System 10 Noise Reduction Device 11 Adaptive Filter Convolution Unit 12 Adaptive Filter Update Unit 13 Adaptive Filter Divergence Detection Unit 17 Echo Cancel Processing Units 21 and 23 Signal Processing Units 22 and 24 Holding Unit 30 Noise Microphone 40 Error Microphone 50 Speaker

Abstract

騒音低減装置(10)は、制御空間に配置される騒音マイク(30)により収音された騒音信号を周波数領域の騒音信号に変換する信号処理部(21)と、この周波数領域の騒音信号を基準信号として保持する保持部(22)と、騒音マイク(30)により収音された騒音信号を低減するための騒音低減信号を生成する適応フィルタ畳込み部(11)とを備える。信号処理部(21)は、騒音信号の周波数特性と基準信号の周波数特性とを用いて騒音信号が非定常騒音か否かを判定する。信号処理部(21)は、非定常騒音であると判定した場合に、判定された騒音マイクにより収音された騒音信号に対応するフィルタ係数の更新を適応フィルタ更新部(12)に中断させる。

Description

騒音低減装置
 本開示は、周辺環境において定常的に発生している騒音のレベルを低減する騒音低減装置に関する。
 複数の騒音マイクと騒音制御部と制御スピーカとを有する騒音低減装置が設置された航空機内において、騒音制御部は複数の騒音マイクで検知された騒音を制御対象空間で低減するための制御音信号を生成する技術が特許文献1に開示されている。
国際公開第2017/170321号
 本開示は、航空機等の制御空間において定常的に発生する定常騒音以外の非定常的に発生する非定常騒音を適応的に検知し、定常騒音の低減処理の精度劣化を効果的に抑制する騒音低減装置を提供することを目的とする。
 本開示は、制御空間に配置されるマイクにより収音された騒音信号を周波数領域の騒音信号に変換する処理部と、変換された前記周波数領域の騒音信号を基準信号として保持する保持部と、前記マイクにより収音された騒音信号を前記制御空間の制御位置において低減するための騒音低減信号を生成する信号生成部と、を備え、前記処理部は、前記マイクにより収音された騒音信号が前記周波数領域に変換された騒音信号の周波数特性と前記基準信号の周波数特性とを用いて、前記マイクにより収音された騒音信号が前記制御空間において非定常的に発生する非定常騒音か否かを判定し、前記マイクにより収音された騒音信号が前記非定常騒音であると判定した場合に、判定された前記マイクにより収音された騒音信号に対応する前記騒音低減信号の生成を前記信号生成部に省略させる、騒音低減装置を提供する。
 本開示によれば、航空機等の制御空間において定常的に発生する定常騒音以外の非定常的に発生する非定常騒音を適応的に検知でき、定常騒音の低減処理の精度劣化を効果的に抑制できる。
実施の形態1に係る騒音低減装置を含む騒音低減システムのシステム構成例を示す図 実施の形態1に係る騒音低減装置の内部構成例を示すブロック図 定常騒音および非定常騒音の周波数特性の一例を示すグラフを示す図 実施の形態1に係る騒音低減処理動作を示すフローチャート 実施の形態2に係る騒音低減処理動作を示すフローチャート 実施の形態3に係る騒音低減処理動作を示すフローチャート
(実施の形態1の内容に至る経緯)
 特許文献1に開示された技術では、騒音マイクで収音される騒音は、エンジンの作動により発生するエンジン音、風切り音、エアコン等、航空機内において定常的に発生する定常騒音(例えばエンジン音)が対象となっている。
 このため、航空機内において定常騒音以外に非定常的に発生する騒音(具体的には、機内における乗員や乗客の話し声、機内放送等の非定常的に発生する非定常騒音)が発生した場合には、定常騒音と非定常騒音との周波数特性が異なることから、制御対象空間において騒音を効果的に低減することは困難であると考えられる。
 そこで、以下の実施の形態1では、航空機等の制御空間において非定常騒音が多く発生しても、その影響を抑制し、ロバスト性を向上する騒音低減処理の例を説明する。
 以下、適宜図面を参照しながら、本開示に係る騒音低減装置を具体的に開示した各実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 以下の各実施の形態では、本開示に係る騒音低減装置が搭載される騒音低減システムが、制御空間内(例えば航空機の機内)の乗客の座席付近に設置される場合を例示して説明する。
(実施の形態1)
 図1は、実施の形態1に係る騒音低減装置10を含む騒音低減システム5のシステム構成例を示す図である。騒音低減システム5は、騒音低減装置10と、複数の騒音マイク30と、複数の誤差マイク40と、複数のスピーカ50とを含む構成である。騒音低減システム5は、例えば航空機の機内の乗客の座席付近に設置される。騒音マイク30および誤差マイク40のそれぞれの配置数は、1個以上であれば任意の数でよい。例えば、騒音低減システム5は、16個の騒音マイクと4個の誤差マイクを有してよい。また、スピーカ50の配置数も1個以上であれば任意の数でよい。
 図2は、実施の形態1に係る騒音低減装置10の内部構成例を示すブロック図である。図2に示す例では、説明を分かり易くするために、騒音マイク30および誤差マイク40がそれぞれ1個設けられている場合を示す。騒音マイク30および誤差マイク40は、航空機の機内で発生する騒音(具体的には、定常騒音および非定常騒音)を収音する。ここで、定常騒音とは、エンジン音や風切り音等、飛行中の航空機の機内において定常的に発生する騒音である。また、非定常騒音とは、飛行中の航空機の機内において非定常的に発生する騒音(つまり、上述した定常騒音以外の音で、例えば機内で発生する乗員や乗客の音声、機内放送、雑音等)である。
 ここで、定常騒音および非定常騒音の周波数特性について、図3を参照して説明する。図3は、定常騒音および非定常騒音の周波数特性の一例を示すグラフである。図3のグラフの縦軸は、騒音信号の周波数領域における振幅(単位:dB)である。図3のグラフの横軸は、周波数(単位:Hz)である。
 定常騒音は、グラフg1に示すように、25Hzから400Hzにかけて大きな振幅を有し、その後、漸次減少する特性を有する。一方、非定常騒音は、グラフg2に示すように、100Hz~300Hzを含む範囲において大きな振幅を有し、2kHzを超える領域でほぼ値0となる特性を有する。
 このような特性に鑑みて、本実施の形態では、検知対象帯域(つまり、騒音マイク30により収音された騒音信号に非定常騒音が検知されたかを検知するための対象範囲)が設定される。例えば検知対象帯域は、下限FLが70Hzに設定され、上限FHが2kHzに設定される。なお、検知対象帯域は、任意の帯域に設定されてもよい。図3に示す例では、480Hz付近で非定常騒音の振幅が定常騒音の振幅より大きくなる逆転現象が生じている。
 騒音低減装置1は、検知対象帯域において、騒音マイク30により収音される騒音信号の周波数領域における振幅と基準信号(後述参照)の周波数領域における振幅との比較により、非定常騒音が発生しているか否かを検知可能である。また、騒音低減装置1は、騒音マイク30により収音される騒音信号の時間領域における音圧レベルと所定の閾値(例えば、非定常騒音として突発的に発生した大きな音の平均的な音圧レベル)とを比較することで、非定常騒音が発しているか否かを検知可能である。
 騒音低減装置10は、例えばDSP(Digital Signal Processor)を用いて構成され、適応的騒音抑圧制御(ANC:Active Noise Control)処理を行う。
 騒音マイク30は、航空機の機内の騒音源から発生した騒音を収音するマイクロフォンであり、騒音マイク30の受音面に伝わる空気の振動を電気信号に変換して出力する。
 誤差マイク40は、航空機の機内の騒音源から発生した騒音信号とスピーカ50から発した騒音低減音信号(制御音信号の一例)とが重ね合わされた残留音信号(誤差音信号の一例)を収音するマイクロフォンであり、誤差マイク40の受音面に伝わる空気の振動を電気信号に変換して出力する。
 騒音低減装置10は、騒音マイク30で収音される騒音信号に対し、誤差マイク40で収音される音信号が最小となるように、騒音信号とは逆位相の音信号を生成してスピーカ50に出力し、騒音信号を打ち消すというANC処理を行う。騒音低減装置10は、適応フィルタ畳込み部11、適応フィルタ更新部12、適応フィルタ発散検知部13、信号処理部21,23、保持部22,24、エコーキャンセル処理部17および加算器18を有する。
 適応フィルタ畳込み部11は、騒音マイク30で収音された騒音信号に対し、適応フィルタ更新部12により生成されたフィルタ係数が設定された適応フィルタを用いて畳込み処理を行い、騒音低減信号を生成する。適応フィルタ畳込み部11は、多段タップを有し、各タップのフィルタ係数を自由に設定可能なFIR(Finite impulse response)フィルタを用いて構成される。
 適応フィルタ更新部12は、騒音マイク30および誤差マイク40で収音された騒音信号を基に、残留音信号(誤差音信号の一例)が最小となるように、適応フィルタ畳込み部11の各フィルタ係数を周期的に更新する。適応フィルタ更新部12は、騒音マイク30および誤差マイク40で収音された騒音が定常騒音である場合に上記フィルタ係数を更新し、一方で、非定常騒音である場合には上記フィルタ係数の更新を中断(つまり、省略)する。また、適応フィルタ更新部12は、メモリ12zを有し、前回以前に定常騒音が検知された時に更新されたフィルタ係数をメモリ12zに保持している。
 適応フィルタ発散検知部13は、発散する可能性のあるフィルタ係数のフェイルセーフとして機能する。適応フィルタ発散検知部13は、適応フィルタ更新部12によって更新されるフィルタ係数が急激に大きくなると、フィルタ係数の発散(つまり、フィルタ係数の既定の上限値を超えた現象)を検知する。フィルタ係数の発散が検知された場合、適応フィルタ発散検知部13は、適応フィルタ畳込み部11の動作を停止させる。したがって、スピーカ50からの出力は無音となる。また、フィルタ係数の発散が検知された場合、適応フィルタ発散検知部13は、前回の更新時に保持部22に保持されたフィルタ係数を適応フィルタ畳込み部11に出力してもよい。この場合には、前回更新時のフィルタ係数に基づいて畳込み処理された制御音信号がスピーカ50から出力される。
 信号処理部21は、騒音マイク30で収音された音信号に対し、時間領域および周波数領域において定常騒音であるか非定常騒音であるかを判定する。周波数領域で判定する場合、信号処理部21は、一定の周期毎に、公知技術を用いて、騒音マイク30で収音された騒音信号を周波数領域の騒音信号に変換する。信号処理部21は、変換された騒音信号の周波数特性を表す周波数領域データを保持部22に保存する。また、信号処理部21は、騒音マイク30で収音された時間領域の騒音信号の時間特性を表す時間領域データを保持部22に保存する。
 信号処理部21は、ANC処理の動作中あるいは停止中のいずれの状態においても、騒音低減装置10がオン状態にある場合、騒音マイク30で収音された騒音信号の周波数領域データおよび時間領域データを保持部22に保存する動作を継続する。
 保持部22は、例えばRAM(Random Access Memory)を用いて構成され、既に記憶されている騒音信号の周波数領域データおよび時間領域データを更新する。このとき、保持部22は、一定期間あるいは一定量の騒音信号のデータ(つまり、周波数領域データおよび時間領域データ)を時系列に記憶し、最古のデータを上書きするように更新してもよい。また、保持部22は、周波数領域データおよび時間領域データの基準信号を保持する。
 基準信号は、例えば定常騒音が発しており、かつANC処理をオフにした状態で、騒音マイク30により定常騒音が収音された時の騒音のデータ(つまり、周波数領域データおよび時間領域データ)である。周波数領域データの基準信号は、例えば70Hz~2KHzの帯域の騒音を含む。
 基準信号には、騒音マイク30により収音された騒音信号を一定の期間に複数回収音し、その平均的な騒音信号が用いられてもよいし、1回の収音で得られた騒音信号が用いられてもよい。また、基準信号は、定期的に更新される。基準信号は、収音された音信号がそのまま登録されてもよいし、70Hz~2KHzの帯域に含まれる音を抽出して登録されてもよい。70Hz~2KHzの帯域に含まれる騒音は、非定常騒音(搭乗者の声、機内放送等)が発生し易い音域であり、また、ユーザが気になる可聴域の音である。また、信号処理部21で用いられる基準信号と、信号処理部23で用いられる基準信号とは、同じであってもよいし、異なってもよい。同じである場合、騒音マイク30または誤差マイク40の一方で収音された騒音信号が基準信号に用いられる。
 信号処理部21は、保持部22に保存された周波数領域の基準信号を読み出し、騒音マイク30から入力した騒音信号の周波数領域データと比較する。信号処理部21は、これらの音を音の強さ(例えば、振幅)で比較し、この比較結果を基に、適応フィルタ更新部12によるフィルタ係数の更新動作の有無を制御する。
 また、信号処理部21は、保持部22に記憶された時間領域の基準信号を読み出し、騒音マイク30から入力した騒音信号の時間領域データと比較する。信号処理部21は、これらの音を音の強さ(例えば、振幅)で比較することで、非定常音(例えば、突発的な音や、断線が生じたがために無音)であるか否かを判定する。突発的な音として、例えばマイク近辺のシェルが叩かれた音やドアの乱暴な開閉音等が挙げられる。また、断線の場合、騒音マイク30から殆どノイズレベルの微小音しか入力されなくなる。
 信号処理部23は、誤差マイク40で収音された音信号に対し、時間領域および周波数領域において定常騒音であるか非定常騒音であるかを判定する。周波数領域で判定する場合、信号処理部23は、一定の周期毎に、公知技術を用いて、誤差マイク40で収音された音を周波数領域の騒音信号に変換する。信号処理部23は、変換された騒音信号の周波数特性を表す周波数領域データを保持部24に保存する。また、信号処理部23は、騒音信号の時間特性を表す時間領域データを保持部24に保存する。
 信号処理部23は、ANC処理の動作中あるいは停止中のいずれの状態においても、騒音低減装置10がオン状態にある場合、誤差マイク40で収音された騒音信号の周波数領域データおよび時間領域データを保持部24に保存する動作を継続する。
 保持部24は、例えばRAMを用いて構成され、既に記憶されている音信号の周波数領域データおよび時間領域データを更新する。このとき、保持部24は、一定期間あるいは一定量における騒音信号のデータ(つまり、周波数領域データおよび時間領域データ)を時系列に記憶し、最古のデータを上書きするように更新してもよい。また、保持部24は、周波数領域データおよび時間領域データの基準信号を保持する。
 基準信号は、例えば定常騒音が発しており、かつANC処理をオフにした状態で、誤差マイク40により定常騒音が収音された時の騒音のデータ(つまり、周波数領域データおよび時間領域データ)である。周波数領域データは、例えば70Hz~2KHzの帯域の騒音を含む。
 基準信号には、誤差マイク40により収音された騒音信号を一定の期間に複数回収音し、その平均的な騒音信号が用いられてもよいし、1回の収音で得られた騒音信号が用いられてもよい。また、基準信号は、定期的に更新される。基準信号は、収音された音信号がそのまま登録されてもよいし、70Hz~2KHzの帯域に含まれる音を抽出して登録されてもよい。70Hz~2KHzの帯域に含まれる音は、非定常騒音(搭乗者の声、機内放送等)が発生し易い音域であり、また、ユーザが気になる可聴域の音である。また、信号処理部23で用いられる基準信号と、信号処理部21で用いられる基準信号とは、同じであってもよいし、異なってもよい。同じである場合、騒音マイク30または誤差マイク40の一方で収音された音信号が基準信号に用いられる。
 信号処理部23は、保持部24に保存された周波数領域の基準信号を読み出し、誤差マイク40から入力した騒音信号の周波数領域データと比較する。信号処理部23は、これらの音を音の強さ(例えば、振幅)で比較し、この比較結果を基に、適応フィルタ更新部12によるフィルタ係数の更新動作の有無を制御する。
 また、信号処理部23は、保持部24に記憶された時間領域の基準信号を読み出し、誤差マイク40から入力した騒音信号の時間領域データと比較する。信号処理部23は、これらの音を音の強さ(例えば、振幅)で比較することで、非定常音(例えば、突発的な音や、断線が生じたがために無音)であるか否かを判定する。突発的な音として、例えばマイク近辺のシェルが叩かれた音やドアの乱暴な開閉音等が挙げられる。また、断線の場合、騒音マイク30から殆どノイズレベルの微小音しか入力されなくなる。
 エコーキャンセル処理部17は、スピーカ50から出力される音が騒音マイク30に入力されることで生じるハウリング現象を抑止するために、騒音マイク30から入力される音に対してスピーカ50から出力される音をキャンセルする信号を生成する。
 加算器18は、騒音マイク30に入力される信号に対して、エコーキャンセル処理部17から出力される、エコーキャンセル信号を加算することにより、スピーカ50から出力される音をキャンセルする。
 スピーカ50は、騒音低減装置10から出力される騒音低減音(制御音)の信号を入力し、音波に変換して出力する。スピーカ50は、ユーザの耳元付近まで届く騒音を打ち消すように、騒音とは逆位相の制御音を出力する。
 次に、実施の形態1に係る騒音低減システム5の動作について、図4を参照して説明する。
 騒音低減装置10によるANC処理は、例えばユーザがフルフラット状態で寝転んでいる状態を想定して行われる。この場合、スピーカ50は、ユーザがフルフラット状態で寝転んでいる状態または座席(シート)を少し倒している状態で床やシートの近くに配置される。誤差マイク40は、ユーザの耳またはスピーカ50に近い所に配置される。騒音マイク30は、誤差マイク40から離れた位置に配置(例えば、ユーザが座っているシートの上部位置)に配置される。
 図4は、実施の形態1に係る騒音低減処理動作を示すフローチャートである。図4において、騒音低減装置10の信号処理部21,23は、騒音マイク30および誤差マイク40でそれぞれ収音された騒音信号を入力する(S1)。信号処理部21,23は、公知技術(例えばフーリエ変換)を用いて、入力された時間領域の騒音信号を周波数領域の騒音信号に変換する(S2)。信号処理部21,23は、周波数領域の騒音信号を保持部22、24にそれぞれ保持(更新)する(S3)。
 信号処理部21,23は、保持部22,24にそれぞれ保持された周波数領域の基準信号を読み出し、この周波数領域の基準信号の振幅と、変換した周波数領域の騒音信号の振幅とをそれぞれ比較する。比較の結果、信号処理部21,23は、周波数領域の騒音信号の振幅が周波数領域の基準信号の振幅より大きいか否かを判別する(S4)。
 周波数領域の騒音信号の振幅が周波数領域の基準信号の振幅以下である場合(S4、NO)、適応フィルタ更新部12は、騒音マイク30および誤差マイク40でそれぞれ収音された騒音信号を基に、適応フィルタ畳込み部11の各フィルタ係数を更新する(S5)。適応フィルタ更新部12は、更新したフィルタ係数をメモリ12zに保存する(S6)。なお、適応フィルタ更新部12は、更新したフィルタ係数を保持部22または保持部24に保存してもよい。また、適応フィルタ更新部12は、更新したフィルタ係数を適応フィルタ畳込み部11に渡す。
 一方、騒音信号の周波数領域の振幅が基準信号の周波数領域の振幅より大きい場合(S4、YES)、適応フィルタ更新部12は、非定常騒音が発生したと判断し、メモリ12zに保存された前回以前に更新した定常騒音時のフィルタ係数を適応フィルタ畳込み部11に渡す(S7)。
 適応フィルタ畳込み部11は、適応フィルタ更新部12から受け取ったフィルタ係数を設定し、騒音マイク30で収音された騒音信号に対し、畳込み処理を行い、騒音信号と逆位相となる制御音信号を生成する(S8)。適応フィルタ畳込み部11は、生成された制御音信号をスピーカ50に出力する(S9)。スピーカ50は、誤差マイク40の近傍で騒音信号を打ち消すような制御音を出力する。このような動作は、騒音低減装置10が動作している間、常に継続する。
 このように、周波数領域で適応処理を行い、フィルタ係数を更新する騒音低減処理をリアルタイムで行う際、定常騒音よりも大きな非定常騒音が騒音マイクに含まれる場合、騒音マイクで収音された騒音信号を騒音低減処理に用いない。これにより、騒音低減処理による騒音低減効果を向上させることができ、また、フィルタ係数の発散を防止できる。したがって、騒音低減動作が安定する。
 以上により、実施の形態1における騒音低減装置10は、制御空間に配置される騒音マイク30により収音された騒音信号を周波数領域の騒音信号に変換する信号処理部21(処理部の一例)と、変換された周波数領域の騒音信号を基準信号として保持する保持部22と、騒音マイク30により収音された騒音信号を制御空間の制御位置において低減するための騒音低減信号を生成する適応フィルタ畳込み部11(信号生成部の一例)と、を備える。信号処理部21は、騒音マイク30により収音された騒音信号が周波数領域に変換された騒音信号の周波数特性と基準信号の周波数特性とを用いて、騒音マイク30により収音された騒音信号が制御空間において非定常的に発生する非定常騒音か否かを判定する。信号処理部21は、騒音マイク30により収音された騒音信号が非定常騒音であると判定した場合に、騒音マイク30により収音された騒音信号に対応する、適応フィルタ畳込み部11に設定され、適応フィルタ更新部12によって更新されるフィルタ係数(騒音低減信号の生成に係る制御値の一例)の更新を中断させる(つまり、省略させる)。
 これにより、騒音低減装置10は、航空機等の対象制御空間において定常的に発生する定常騒音以外の非定常的に発生する非定常騒音を適応的に検知できるので、定常騒音の低減処理の精度劣化を効果的に抑制できる。
 また、信号処理部21は、所定の周波数帯域における、騒音マイク30により収音された騒音信号の周波数領域の振幅が基準信号の周波数領域の振幅より大きい場合に、騒音マイク30により収音された騒音信号を非定常騒音であると判定する。これにより、騒音低減装置10は、騒音マイクにより収音された騒音信号と基準信号との所定の周波数帯域における周波数特性(例えば騒音信号の振幅)の比較により、ユーザにとって気になる程の騒音レベルの非定常騒音が発生したことを簡易かつ迅速に判定できる。
 また、騒音低減装置10は、ユーザの耳元付近(制御位置の近傍の一例)に配置される誤差マイク40(第2マイクの一例)により収音された騒音信号を周波数領域の騒音信号に変換する信号処理部23(第2処理部の一例)と、変換された周波数領域の騒音信号を基準信号として保持する保持部24(第2保持部の一例)と、をさらに備える。適応フィルタ畳込み部11は、騒音マイク30、誤差マイク40のそれぞれにより収音された騒音信号が、信号処理部21、23のそれぞれにより周波数領域に変換された騒音信号の周波数特性を用いて、騒音低減信号を生成する。これにより、騒音低減装置10は、ユーザの耳元等の制御位置の近傍に配置される誤差マイク40により収音された騒音信号の周波数特性を参照用の周波数特性となるように騒音低減信号(つまり、騒音のキャンセル用信号)を効果的に生成できる。
 また、適応フィルタ更新部12は、騒音マイク30により収音された騒音信号に対応して、適応フィルタのフィルタ係数を更新する。適応フィルタ畳込み部11(適応フィルタ)は、更新されたフィルタ係数を用いて、畳込み処理することで騒音低減信号を生成する。適応フィルタ更新部12は、更新されたフィルタ係数をメモリ12z(または保持部22)に保存する。これにより、騒音低減装置10は、騒音マイクにより収音された騒音信号に対応して、フィルタ係数を適応的に更新することで高精度な騒音低減信号を生成できる。また、騒音低減装置10は、更新後のフィルタ係数を保存することで次回以降の騒音低減信号の生成時の基準となるフィルタ係数として利用できる。
 また、信号処理部21は、騒音マイクにより収音された騒音信号が非定常騒音であると判定した場合に、判定されたマイクにより収音された騒音信号に対応して、フィルタ係数の更新を適応フィルタ更新部12に省略させ、以前に保持部22に保存されたフィルタ係数を用いて、適応フィルタ畳込み部11に騒音低減信号を生成させる。これにより、騒音低減装置10は、非定常騒音が発生した場合には、非定常騒音に追従したフィルタ係数の更新を止めるのでフィルタ係数の発散を抑制でき、さらに、非定常騒音が発生していない以前に生成されたフィルタ係数を用いることで定常騒音に対して高精度な騒音低減信号を生成できる。
 また、騒音低減装置10は、適応フィルタ更新部12により更新されたフィルタ係数の発散の有無を検知する適応フィルタ発散検知部13(発散検知部の一例)をさらに備える。適応フィルタ発散検知部13は、適応フィルタ更新部12により更新されたフィルタ係数の発散を検知した場合に、以前にメモリ12z(または保持部22)に保存されたフィルタ係数を適応フィルタ畳込み部11に出力する。これにより、騒音低減装置10は、非定常騒音が発生した場合に限らず、例えば騒音マイクにより収音された騒音信号の騒音レベルが大きい場合等に以前に保存されたフィルタ係数を用いることで、制御対象空間の環境に適応的な騒音低減信号を生成できる。
(実施の形態2)
 実施の形態1では、非定常騒音が検知された場合、適応フィルタ更新部12は、フィルタ係数の更新を中断し、前回以前に更新された定常騒音時のフィルタ係数を読み出し、適応フィルタ畳込み部11に設定した。実施の形態2では、非定常騒音が検知された場合、適応フィルタ更新部12は、フィルタ係数を初期化する場合を示す。
 実施の形態2における騒音低減システムは、実施の形態1とほぼ同一の構成を有する。前記実施の形態1と同一の構成要素については同一の符号を用いることで、その説明を省略する。
 図5は、実施の形態2に係る騒音低減処理動作を示すフローチャートである。実施の形態1と同一のステップ処理については同一の符号を用いることで、その説明を省略する。ステップS4で周波数領域の騒音信号の振幅が周波数領域の基準信号の振幅より大きい場合、適応フィルタ更新部12は、フィルタ係数を値0に初期化する(S7A)。適応フィルタ更新部12は、値0に設定されたフィルタ係数を適応フィルタ畳込み部11に渡す。
 適応フィルタ畳込み部11は、各フィルタ係数を値0に設定し、ステップS8で騒音マイク30で収音された騒音信号に対し、畳込み処理を行う。この場合、適応フィルタ畳込み部11は、騒音マイク30から騒音信号が入力されても、無音である制御音信号を出力する。したがって、スピーカ50から音が出力されなくなる。その他の処理は、実施の形態1と同様である。
 なお、ここでは、フィルタ係数を初期化する際、値0が設定されたが、あらかじめ決められたフィルタ係数、例えば機内に適した汎用的なフィルタ係数が初期化として設定されてもよい。
 以上により、実施の形態2に係る騒音低減装置10では、信号処理部21は、騒音マイク30により収音された騒音信号が非定常騒音であると判定した場合に、判定された騒音マイク30により収音された騒音信号に対応して、フィルタ係数を適応フィルタ畳込み部11に初期化させる。
 これにより、騒音低減装置10は、非定常騒音が発生した場合には、フィルタ係数を初期化させることで、スピーカからの騒音低減音の出力を一時的に停止できる。また、非定常騒音に追従したフィルタ係数の更新が止まるので、フィルタ係数の発散を抑制できる。
(実施の形態3)
 実施の形態1,2では、騒音マイクで収音された騒音に対し、周波数変換を行い、周波数領域で非定常騒音か否かを判定した。実施の形態3では、処理の負荷が大きい周波数領域で判定する前に、比較的処理の負荷が小さい時間領域で非定常騒音か否かを判定する場合を示す。
 実施の形態3の騒音低減システムは、実施の形態1とほぼ同一の構成を有する。実施の形態1と同一の構成要素については同一の符号を用いることで、その説明を省略する。
 図6は、実施の形態3に係る騒音低減処理動作を示すフローチャートである。実施の形態1と同一のステップ処理については同一の符号を用いることで、その説明を省略する。騒音低減装置10の信号処理部21,23は、ステップS1で騒音マイク30および誤差マイク40でそれぞれ収音された騒音信号を入力する。信号処理部21,23は、保持部22,24に保持された時間領域の基準信号の振幅(閾値の一例)を読み出し、この閾値と、収音された騒音信号とをそれぞれ比較する。比較の結果、信号処理部21,23は、収音された騒音信号の振幅が閾値より大きいか否かを判別する(S1A)。
 収音された騒音信号の振幅が閾値より大きい場合、適応フィルタ更新部12は、適応フィルタのフィルタ係数を、前回以前に更新された定常騒音時のフィルタ係数に設定する、または値0に初期化する(S1B)。適応フィルタ更新部12は、ステップS1Bで設定されたフィルタ係数を適応フィルタ畳込み部11に渡す。フィルタ係数を前回以前に更新された定常騒音時のフィルタ係数に設定することは、実施の形態1と同様である。また、フィルタ係数を値0に初期化することは、実施の形態2と同様である。ステップS1Bの処理後、実施の形態1と同様、騒音低減装置10は、ステップ8以降の処理を行う。
 一方、ステップS1Aで収音された騒音信号の振幅が閾値以下である場合、騒音低減装置10は、周波数領域で判定を行うために、実施の形態1と同様、ステップS2以降の処理を行う。ステップS4で周波数領域の騒音信号の振幅が周波数領域の基準信号の振幅より大きい場合、適応フィルタ更新部12は、非定常騒音が発せられたと判断する。この場合、適応フィルタ更新部12は、ステップS1Bと同様、フィルタ係数を、前回以前に更新された定常騒音時のフィルタ係数に設定する、または値0に初期化する(S7B)。ステップS7Bの処理後、実施の形態1と同様、騒音低減装置10は、ステップ8以降の処理を行う。
 以上により、実施の形態3に係る騒音低減装置10では、信号処理部21は、騒音マイク30により収音された騒音信号の時間領域の振幅が所定の閾値より大きい場合に、騒音マイク30により収音された騒音信号は非定常騒音であると判定する。
 これにより、騒音低減装置10は、航空機等の対象制御空間において突発的に大きな音(例えば異常音)が発生したかどうかを簡易に判定できるので、ユーザにとって気になる程の騒音レベルの非定常騒音が発生したことを簡易かつ迅速に判定できる。
 また、信号処理部21は、騒音マイク30により収音された騒音信号の時間領域の振幅と閾値とを比較し、騒音信号の時間領域の振幅が閾値以下であるとの比較結果を得た後、騒音信号の周波数領域の振幅と基準信号の周波数領域の振幅とを比較する。信号処理部21は、騒音信号の周波数領域の振幅が基準信号の周波数領域の振幅より大きい場合に、騒音信号は非定常騒音であると判定する。これにより、騒音低減装置10は、先に時間領域の処理を行って非定常騒音と判定された場合、負荷の大きい周波数領域の処理を省くことができ、信号処理部21の負荷を軽減できる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、上記した各種の実施の形態では、騒音低減装置が航空機の機内の座席付近に設置される場合を示したが、これに限らず、電車、船舶、バスやタクシー等の車両を含む移動体の座席付近に設置されてもよい。
 なお、本出願は、2018年3月30日出願の日本特許出願(特願2018-069460)に基づくものであり、その内容は本出願の中に参照として援用される。
 本開示は、航空機等の制御空間において定常的に発生する定常騒音以外の非定常的に発生する非定常騒音を適応的に検知し、定常騒音の低減処理の精度劣化を効果的に抑制する騒音低減装置として有用である。
5 騒音低減システム
10 騒音低減装置
11 適応フィルタ畳込み部
12 適応フィルタ更新部
13 適応フィルタ発散検知部
17 エコーキャンセル処理部
21、23 信号処理部
22、24 保持部
30 騒音マイク
40 誤差マイク
50 スピーカ

Claims (9)

  1.  制御空間に配置されるマイクにより収音された騒音信号を周波数領域の騒音信号に変換する処理部と、
     変換された前記周波数領域の騒音信号を基準信号として保持する保持部と、
     前記マイクにより収音された騒音信号を前記制御空間の制御位置において低減するための騒音低減信号を生成する信号生成部と、を備え、
     前記処理部は、
     前記マイクにより収音された騒音信号が前記周波数領域に変換された騒音信号の周波数特性と前記基準信号の周波数特性とを用いて、前記マイクにより収音された騒音信号が前記制御空間において非定常的に発生する非定常騒音か否かを判定し、
     前記マイクにより収音された騒音信号が前記非定常騒音であると判定した場合に、判定された前記マイクにより収音された騒音信号に対応する前記騒音低減信号の生成を前記信号生成部に省略させる、
     騒音低減装置。
  2.  前記処理部は、
     所定の周波数帯域における、前記マイクにより収音された騒音信号の周波数領域の振幅が前記基準信号の周波数領域の振幅より大きい場合に、前記マイクにより収音された騒音信号を前記非定常騒音であると判定する、
     請求項1に記載の騒音低減装置。
  3.  前記処理部は、
     前記マイクにより収音された騒音信号の時間領域の振幅が所定の閾値より大きい場合に、前記マイクにより収音された騒音信号を前記非定常騒音であると判定する、
     請求項1に記載の騒音低減装置。
  4.  前記制御位置の近傍に配置される第2マイクにより収音された騒音信号を周波数領域の騒音信号に変換する第2処理部と、
     変換された前記周波数領域の騒音信号を基準信号として保持する第2保持部と、をさらに備え、
     前記信号生成部は、
     前記マイク、前記第2マイクのそれぞれにより収音された騒音信号が前記処理部、前記第2処理部のそれぞれにより前記周波数領域に変換された騒音信号の周波数特性を用いて、前記騒音低減信号を生成する、
     請求項1に記載の騒音低減装置。
  5.  前記信号生成部により生成された前記騒音低減信号を、前記マイクにより収音された騒音信号に畳込み処理する適応フィルタ、をさらに備え、
     前記信号生成部は、
     前記マイクにより収音された騒音信号に対応して、前記騒音低減信号の生成に用いる前記適応フィルタのフィルタ係数を更新して前記騒音低減信号を生成し、更新された前記フィルタ係数を前記保持部に保存する、
     請求項1に記載の騒音低減装置。
  6.  前記処理部は、
     前記マイクにより収音された騒音信号が前記非定常騒音であると判定した場合に、判定された前記マイクにより収音された騒音信号に対応して、前記フィルタ係数の更新を前記信号生成部に省略させ、以前に前記保持部に保存された前記フィルタ係数を用いて前記騒音低減信号を生成させる、
     請求項5に記載の騒音低減装置。
  7.  前記処理部は、
     前記マイクにより収音された騒音信号が前記非定常騒音であると判定した場合に、判定された前記マイクにより収音された騒音信号に対応して、前記フィルタ係数を前記信号生成部に初期化させる、
     請求項5に記載の騒音低減装置。
  8.  前記信号生成部により更新された前記フィルタ係数の発散の有無を検知する発散検知部、をさらに備え、
     前記発散検知部は、
     前記信号生成部により更新された前記フィルタ係数の発散を検知した場合に、以前に前記保持部に保存された前記フィルタ係数を前記適応フィルタに出力する、
     請求項5に記載の騒音低減装置。
  9.  前記処理部は、
     前記マイクにより収音された騒音信号の時間領域の振幅が前記所定の閾値以下であって、かつ、前記マイクにより収音された騒音信号が前記周波数領域に変換された騒音信号の振幅が前記基準信号の振幅より大きいと判断した場合に、前記騒音信号を前記非定常騒音であると判定する、
     請求項3に記載の騒音低減装置。
     
PCT/JP2019/006660 2018-03-30 2019-02-21 騒音低減装置 WO2019187841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510439A JP6948609B2 (ja) 2018-03-30 2019-02-21 騒音低減装置
US17/038,262 US11350197B2 (en) 2018-03-30 2020-09-30 Noise reduction device
US17/729,231 US11665459B2 (en) 2018-03-30 2022-04-26 Noise reduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069460 2018-03-30
JP2018069460 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/038,262 Continuation US11350197B2 (en) 2018-03-30 2020-09-30 Noise reduction device

Publications (1)

Publication Number Publication Date
WO2019187841A1 true WO2019187841A1 (ja) 2019-10-03

Family

ID=68060434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006660 WO2019187841A1 (ja) 2018-03-30 2019-02-21 騒音低減装置

Country Status (3)

Country Link
US (2) US11350197B2 (ja)
JP (3) JP6948609B2 (ja)
WO (1) WO2019187841A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286182A (zh) * 2021-04-02 2021-08-20 福州智象信息技术有限公司 消除tv与拾音外设之间回音的方法和系统
US20220223134A1 (en) * 2021-01-12 2022-07-14 Panasonic Intellectual Property Management Co., Ltd. Noise reduction device, vehicle, and noise reduction method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971741A (zh) * 2018-05-02 2020-11-20 哈曼贝克自动系统股份有限公司 前馈有源噪声控制
US11743640B2 (en) 2019-12-31 2023-08-29 Meta Platforms Technologies, Llc Privacy setting for sound leakage control
US11212606B1 (en) * 2019-12-31 2021-12-28 Facebook Technologies, Llc Headset sound leakage mitigation
US11722819B2 (en) * 2021-09-21 2023-08-08 Meta Platforms Technologies, Llc Adaptive feedback cancelation and entrainment mitigation
CN116312545B (zh) * 2023-05-26 2023-07-21 北京道大丰长科技有限公司 多噪声环境下的语音识别系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764573A (ja) * 1993-08-27 1995-03-10 Matsushita Electric Ind Co Ltd 能動騒音低減装置
JPH09101789A (ja) * 1995-10-05 1997-04-15 Brother Ind Ltd 騒音制御装置
JP2007093962A (ja) * 2005-09-28 2007-04-12 Toshiba Corp 能動消音制御装置及び方法
JP2011002481A (ja) * 2009-06-16 2011-01-06 Victor Co Of Japan Ltd 雑音除去装置および雑音除去方法
JP2015045766A (ja) * 2013-08-28 2015-03-12 パナソニック株式会社 能動騒音制御装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251263A (en) * 1992-05-22 1993-10-05 Andrea Electronics Corporation Adaptive noise cancellation and speech enhancement system and apparatus therefor
JPH0695693A (ja) * 1992-09-09 1994-04-08 Fujitsu Ten Ltd 音声認識装置用騒音低減回路
US5353348A (en) * 1993-05-14 1994-10-04 Jrc International, Inc. Double echo cancelling system
JP2899205B2 (ja) * 1994-03-16 1999-06-02 本田技研工業株式会社 車両用能動振動騒音制御装置
BR9610290A (pt) * 1995-09-14 1999-03-16 Ericsson Ge Mobile Inc Processo para aumentar a inteligibilidade de voz em sinais de áudio aparelho para reduzir ruído em quadros recebidos de sinais de áudio digitalizados e sistema de telecomunicações
JPH10257583A (ja) * 1997-03-06 1998-09-25 Asahi Chem Ind Co Ltd 音声処理装置およびその音声処理方法
JP3774580B2 (ja) * 1998-11-12 2006-05-17 アルパイン株式会社 音声入力装置
US7062049B1 (en) * 1999-03-09 2006-06-13 Honda Giken Kogyo Kabushiki Kaisha Active noise control system
JP4183338B2 (ja) * 1999-06-29 2008-11-19 アルパイン株式会社 ノイズリダクションシステム
JP4283212B2 (ja) * 2004-12-10 2009-06-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 雑音除去装置、雑音除去プログラム、及び雑音除去方法
JP4297055B2 (ja) * 2005-01-12 2009-07-15 ヤマハ株式会社 カラオケ装置
US20080181392A1 (en) * 2007-01-31 2008-07-31 Mohammad Reza Zad-Issa Echo cancellation and noise suppression calibration in telephony devices
JP2009029405A (ja) * 2007-06-22 2009-02-12 Panasonic Corp 騒音制御装置
US20090003586A1 (en) * 2007-06-28 2009-01-01 Fortemedia, Inc. Signal processor and method for canceling echo in a communication device
JP5423966B2 (ja) * 2007-08-27 2014-02-19 日本電気株式会社 特定信号消去方法、特定信号消去装置、適応フィルタ係数更新方法、適応フィルタ係数更新装置及びコンピュータプログラム
US8411873B2 (en) * 2007-12-27 2013-04-02 Panasonic Corporation Noise control device
JP5087446B2 (ja) * 2008-03-26 2012-12-05 アサヒグループホールディングス株式会社 フィードバック型アクティブ消音装置及び自動販売機
WO2011030422A1 (ja) * 2009-09-10 2011-03-17 パイオニア株式会社 雑音低減装置
JP2011191383A (ja) * 2010-03-12 2011-09-29 Panasonic Corp 騒音低減装置
KR101739942B1 (ko) * 2010-11-24 2017-05-25 삼성전자주식회사 오디오 노이즈 제거 방법 및 이를 적용한 영상 촬영 장치
WO2012091643A1 (en) * 2010-12-29 2012-07-05 Telefonaktiebolaget L M Ericsson (Publ) A noise suppressing method and a noise suppressor for applying the noise suppressing method
US9633654B2 (en) * 2011-12-06 2017-04-25 Intel Corporation Low power voice detection
JP6249325B2 (ja) * 2012-12-28 2017-12-20 パナソニックIpマネジメント株式会社 信号処理装置
JP6265136B2 (ja) * 2013-01-17 2018-01-24 日本電気株式会社 雑音除去システム、音声検出システム、音声認識システム、雑音除去方法および雑音除去プログラム
EP3438970A4 (en) 2016-03-29 2019-04-03 Panasonic Intellectual Property Management Co., Ltd. NOISE REDUCTION DEVICE
DE102017206788B3 (de) * 2017-04-21 2018-08-02 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörgerätes
US10580399B1 (en) * 2018-11-30 2020-03-03 Harman International Industries, Incorporated Adaptation enhancement for a road noise cancellation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764573A (ja) * 1993-08-27 1995-03-10 Matsushita Electric Ind Co Ltd 能動騒音低減装置
JPH09101789A (ja) * 1995-10-05 1997-04-15 Brother Ind Ltd 騒音制御装置
JP2007093962A (ja) * 2005-09-28 2007-04-12 Toshiba Corp 能動消音制御装置及び方法
JP2011002481A (ja) * 2009-06-16 2011-01-06 Victor Co Of Japan Ltd 雑音除去装置および雑音除去方法
JP2015045766A (ja) * 2013-08-28 2015-03-12 パナソニック株式会社 能動騒音制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220223134A1 (en) * 2021-01-12 2022-07-14 Panasonic Intellectual Property Management Co., Ltd. Noise reduction device, vehicle, and noise reduction method
US11749250B2 (en) * 2021-01-12 2023-09-05 Panasonic Intellectual Property Management Co., Ltd. Noise reduction device, vehicle, and noise reduction method
CN113286182A (zh) * 2021-04-02 2021-08-20 福州智象信息技术有限公司 消除tv与拾音外设之间回音的方法和系统

Also Published As

Publication number Publication date
JPWO2019187841A1 (ja) 2021-02-12
US11665459B2 (en) 2023-05-30
JP6948609B2 (ja) 2021-10-13
JP2021192112A (ja) 2021-12-16
US20210014593A1 (en) 2021-01-14
JP2023018103A (ja) 2023-02-07
JP7194917B2 (ja) 2022-12-23
US20220256267A1 (en) 2022-08-11
US11350197B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2019187841A1 (ja) 騒音低減装置
EP3472830B1 (en) Mitigation of unstable conditions in an active noise control system
US8565443B2 (en) Adaptive noise control system
US11614916B2 (en) User voice activity detection
JP5787478B2 (ja) 適合ノイズ制御システム
US9165549B2 (en) Audio noise cancelling
US9559736B2 (en) Auto-selection method for modeling secondary-path estimation filter for active noise control system
JP2019511878A (ja) アクティブノイズコントロールシステムにおける2次経路の適応モデル化
KR102578147B1 (ko) 통신 어셈블리에서의 사용자 음성 액티비티 검출을 위한 방법, 그것의 통신 어셈블리
WO2014128856A1 (ja) 能動振動騒音制御装置
KR20200088841A (ko) 액티브 노이즈 컨트롤 방법 및 시스템
CN109246548A (zh) 爆破噪声控制
JP5297657B2 (ja) 能動的消音システム
WO2009107750A1 (ja) 音響エコーキャンセラ
JP6116300B2 (ja) 能動型消音システム
TWI832519B (zh) 適應性主動噪音控制系統以及適應性主動噪音控制方法
JPH0732947A (ja) 能動型騒音制御装置
JP4438632B2 (ja) ハウリングキャンセラ
KR101283105B1 (ko) 능동잡음 제어장치 및 그 방법
JP2008040410A (ja) 能動型騒音低減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510439

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19774727

Country of ref document: EP

Kind code of ref document: A1