JP6245229B2 - 半導体装置と半導体装置の製造方法 - Google Patents

半導体装置と半導体装置の製造方法 Download PDF

Info

Publication number
JP6245229B2
JP6245229B2 JP2015147108A JP2015147108A JP6245229B2 JP 6245229 B2 JP6245229 B2 JP 6245229B2 JP 2015147108 A JP2015147108 A JP 2015147108A JP 2015147108 A JP2015147108 A JP 2015147108A JP 6245229 B2 JP6245229 B2 JP 6245229B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
bonding material
normal direction
heat
creeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147108A
Other languages
English (en)
Other versions
JP2017028169A (ja
Inventor
明徳 榊原
明徳 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015147108A priority Critical patent/JP6245229B2/ja
Priority to US15/216,767 priority patent/US9806000B2/en
Publication of JP2017028169A publication Critical patent/JP2017028169A/ja
Application granted granted Critical
Publication of JP6245229B2 publication Critical patent/JP6245229B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacturing & Machinery (AREA)

Description

本明細書で開示する技術は、半導体装置と半導体装置の製造方法に関する。
特許文献1に、半導体素子と、放熱板と、モールド樹脂と、冷却器を備える半導体装置が開示されている。半導体素子は放熱板の上面に固定される。モールド樹脂は、放熱板の下面が露出するように、半導体素子の近傍と放熱板の上面側を封止する。放熱板の下面には電気絶縁体であるセラミック板が貼付され、そのセラミック板は、放熱グリスを介して冷却器上に固定される。
特開2012−222291号公報
特許文献1の技術では、放熱板の下面と冷却器の間に、セラミック板と放熱グリスが介在している。放熱グリスには、熱伝導性を高める工夫が施されているものの、熱伝導性が十分に高いとはいえず、放熱板と冷却器間の熱抵抗をさらに低下させたい要求が存在する。セラミック板と放熱グリスに代えて、絶縁性の樹脂をシート状に形成した接合材を利用することができれば、熱抵抗を減少させられる可能性がある。しかしながら、通常のシートでは、問題が生じる。
通常は、放熱板よりも広く広がっている冷却器に放熱板を接合する。放熱板と冷却器の間に存在する接合材には2機能が必要とされる。
(1)発熱する半導体素子に重なり合う範囲では、接合材の法線方向に伝熱して半導体素子を冷却する。
(2)発熱する半導体素子の周囲に位置する範囲では、接合材の沿面方向に伝熱し、半導体素子の熱を冷却器の広い範囲に伝熱する。
上記のように、接合材には、熱伝導性能の異なる部分を合わせて持っていることが期待されているが、通常のシートではそれに応えることができない。
本明細書では、絶縁性の樹脂をシート状に形成した接合材を利用して、高い放熱性を実現することができる技術を開示する。
本明細書が開示する半導体装置は、半導体モジュールと、接合材と、冷却器を備えている。半導体モジュールは、放熱板と、放熱板の内面側に配置されている半導体素子と、放熱板の内面側と半導体素子の周囲を封止しているモールド樹脂を有しており、接合材を介して冷却器に接合する面に放熱板の外面が露出しているとともに放熱板の周囲をモールド樹脂が囲繞している。接合材は、絶縁性の樹脂でシート状に形成されており、放熱板の法線方向から見たときに、半導体素子と重なる第1部分と、モールド樹脂と重なる第2部分を有しており、第1部分における法線方向の熱伝導率が第2部分における法線方向の熱伝導率より大きく、法線方向に直交する方向を沿面方向としたときに、第2部分における沿面方向の熱伝導率が第1部分における沿面方向の熱伝導率より大きく、第1部分における法線方向の熱伝導率が第1部分における沿面方向の熱伝導率より大きい。放熱板の外面とその周囲を囲繞するモールド樹脂とが接合材を介して冷却器に接合されている。
上記の構成によると、法線方向から見たときに半導体素子と重なる第1部分では、法線方向の熱伝導率が沿面方向の熱伝導率よりも大きい。そのため、第1部分では接合材の法線方向に伝熱して半導体素子を冷却する。一方、法線方向から見たときにモールド樹脂と重なる第2部分では、法線方向の熱伝導率は第1部分よりも小さいが、沿面方向の熱伝導率は第1部分よりも大きい。そのため、第2部分では、第1部分と比べて、接合材の沿面方向により多くの熱を伝熱させることができ、半導体素子の熱を冷却器の広い範囲に伝熱させることができる。即ち、上記の半導体装置では、絶縁性の樹脂をシート状に形成した接合材を利用して、高い放熱性を実現することができる。
さらに本明細書は半導体装置の製造方法も開示する。この製造方法は、放熱板の内面側に半導体素子を配置する工程と、半導体素子の周囲と放熱板の内面側を封止して放熱板の周囲を囲繞するとともに、その囲繞部が放熱板の外面よりも接合材側に突出するモールド樹脂を形成する工程と、放熱板の外面とその周囲を囲繞するモールド樹脂の端面と、冷却器の間に、法線方向の熱伝導率を沿面方向の熱伝導率よりも大きくする姿勢の分散材が分散している接合材を配置する工程と、接合材を介して、放熱板の外面及びモールド樹脂の端面を冷却器に圧接し、モールド樹脂の端面と冷却器の間に位置する範囲の接合材に含まれる分散材の姿勢を変化させる工程、を有する。
この方法によると、モールド樹脂が放熱板の外面よりも接合材側に突出する。そのため、接合材を介して、放熱板の外面及びモールド樹脂の端面を冷却器に圧接すると、接合材のうち、モールド樹脂に対向する部分には、放熱板に対向する部分に比べて大きい圧力が加わる。この結果、モールド樹脂に対向する部分では、放熱板に対向する部分に比べて、より多くの分散材の姿勢を変化させることができる。その結果、法線方向の熱伝導率を大きくする姿勢の分散材の存在割合が、モールド樹脂に対向する部分よりも放熱板の外面に対向する部分で高く、沿面方向の熱伝導率を大きくする姿勢の分散材の存在割合が、放熱板の外面に対向する部分よりもモールド樹脂に対向する部分で高い接合材が形成される。そのため、この方法によって形成される半導体装置では、接合材のうち、放熱板に対向する部分では、接合材の法線方向に伝熱して半導体を冷却する。一方、接合材のうち、モールド樹脂に対向する部分では、接合材の沿面方向により多くの熱を伝熱させることができ、半導体素子の熱を冷却器の広い範囲に伝熱させることができる。上記の製造方法によると、高い放熱性を備える半導体装置を製造することができる。
第1実施例の半導体装置2を模式的に示す断面説明図。 第1実施例の半導体装置2の一部を拡大した部分断面説明図。 第1実施例の半導体装置2の製造工程を説明する部分断面説明図。 第2実施例の半導体装置102を模式的に示す断面説明図。 第3実施例の半導体装置202を模式的に示す断面説明図。 第4実施例の半導体装置302を模式的に示す断面説明図。 第5実施例の半導体装置402を模式的に示す断面説明図。
(第1実施例)
図1に示すように、本実施例の半導体装置2は、半導体モジュール10と接合材30と冷却器50を有する。半導体装置2では、半導体モジュール10が、接合材30を介して冷却器50に接合されている。
半導体モジュール10は、放熱板12と、半導体素子14と、モールド樹脂16を有する。
放熱板12は、板状の金属部材である。放熱板12は、例えば、Cu又はAlによって形成することができる。
半導体素子14は、電力用のスイッチング素子である。本実施例では、半導体素子14に縦型のIGBT(Insulated Gate Bipolar Transistor)を用いている。半導体素子14の上面(図1の上側の面)にはエミッタ電極及びゲート電極パッド(図示しない)が形成されており、下面(図1の下側の面)にはコレクタ電極(図示しない)が形成されている。半導体素子14の下面のコレクタ電極は、図示しないはんだを介して、放熱板12の内面12a(図1の上側の面)に接続されている。放熱板12、半導体素子14のエミッタ電極及び半導体素子14のゲート電極パッドは、それぞれ、図示しない位置で他の導電部材と接続されている。
モールド樹脂16は、放熱板12の内面12a側と半導体素子14の周囲を封止する電気絶縁性を有する樹脂である。また、モールド樹脂16は、放熱板12の周囲を囲繞する。
半導体モジュール10のうち、接合材30を介して冷却器50に接合する側の面である下面(図1の下側の面)には、放熱板12の外面12bと、モールド樹脂16のうちの放熱板12の周囲を囲繞する部分の端面16aとが露出する。図2に示すように、本実施例では、半導体モジュール10の下面に露出するモールド樹脂16の端面16aは、放熱板12の外面12bよりも接合材30側に突出している。
接合材30は、電気絶縁性の樹脂で形成されたシート状の部材である。放熱板12と冷却器50は、接合材30によって電気的に絶縁されている。図1に示すように、本実施例では、接合材30は、中心部分32と、周辺部分34とを有する。中心部分32は、放熱板12の法線方向(図1中の矢印A方向)から見たときに、放熱板12と重なる部分であり、周辺部分34は、モールド樹脂16の端面16aと重なる部分である。中心部分32と周辺部分34とでは熱伝導性能が異なる。
図1のグラフ60Aは、接合材30の各部における法線方向の熱伝導率を示す。また、グラフ60Bは、法線方向に直交する方向を沿面方向(図1中の矢印B方向)としたときにおいて、接合材30の各部における沿面方向の熱伝導率を示す。グラフ60A、60Bでは、グラフの位置が上方にあるほど熱伝導率が大きいことを示す。グラフ60A、60Bに示すように、中心部分32における法線方向の熱伝導率A32は、周辺部分34における法線方向の熱伝導率A34よりも大きい。また、法線方向に直交する方向を沿面方向(図1中の矢印B方向)としたときに、周辺部分34における沿面方向の熱伝導率B34は、中心部分32における沿面方向の熱伝導率B32よりも大きい。また、中心部分32では、法線方向の熱伝導率A32が沿面方向の熱伝導率B32よりも大きい。さらに、周辺部分34では、沿面方向の熱伝導率B34が法線方向の熱伝導率A34よりも大きい。
接合材30について、図2を参照してさらに詳しく説明する。接合材30は、基材31と、基材31中に分散された分散材40とによって構成されている。基材31は、電気絶縁性を有する樹脂で形成されている。分散材40は、基材31よりも熱伝導率が高い樹脂で形成されている。分散材40は、細長形状を有している。分散材40の長手方向(図2中の矢印X方向)の熱伝導率は、分散材40の短手方向(図2中の矢印Y方向)の熱伝導率よりも大きい。本実施例では、基材31の熱伝導率は1W/m・kである。分散材40の長手方向の熱伝導率及び短手方向の熱伝導率は、それぞれ100W/m・k、2W/m・kである。即ち、本実施例の接合材30は、分散材40の姿勢によって法線方向の熱伝導率と沿面方向の熱伝導率が変化する特性を備えている。
図2では、接合材30の各部位における分散材40の姿勢を模式的に示している。中心部分32では、長手方向が法線方向に沿って延びている分散材40の割合が高く、周辺部分34では、長手方向が沿面方向に沿って延びている分散材40の割合が高い。もっとも、実際には、中心部分32にも上記以外の姿勢の分散材40はある程度存在し、周辺部分34にも上記以外の姿勢の分散材40はある程度存在する。
即ち、本実施例では、長手方向(矢印X方向)が法線方向(矢印A方向)に沿って延びる分散材40の存在割合は、周辺部分34よりも中心部分32で高く、長手方向(矢印X方向)が沿面方向(矢印B方向)に沿って延びる分散材40の存在割合は、中心部分32よりも周辺部分34で高い。言い換えると、法線方向の熱伝導率を大きくする姿勢の分散材40の存在割合は、周辺部分34よりも中心部分32で高く、沿面方向の熱伝導率を大きくする姿勢の分散材40の存在割合は、中心部分32よりも周辺部分34で高い。これにより、本実施例の接合材30の中心部分32と周辺部分34は、上述の熱伝導性の異方性を発揮する。
冷却器50は、Al製の板材である。図1に示すように、法線方向から見たときに、冷却器50の面積は、半導体モジュール10の面積よりも大きい。
上記の半導体装置2を動作させると、半導体素子14が熱を発生する。半導体素子14から発生した熱は、放熱板12と接合材30を介して冷却器50に放熱される。この際、接合材30の中心部分32では、法線方向の熱伝導率A32が沿面方向の熱伝導率B32よりも大きい。そのため、中心部分32では、接合材30の法線方向に伝熱して半導体素子14を冷却することができる。一方、接合材30の周辺部分34では、法線方向の熱伝導率A34は中心部分32よりも小さいが、沿面方向の熱伝導率B34は中心部分32よりも大きい。そのため、周辺部分34では、中心部分32と比べて、接合材30の沿面方向により多くの熱を伝熱させることができ、半導体素子14の熱を冷却器50の広い範囲に伝熱させることができる。即ち、本実施例の半導体装置2では、絶縁性の樹脂をシート状に形成した接合材30を利用して、高い放熱性を実現することができる。
(第1実施例の半導体装置2の製造方法)
続いて、本実施例の半導体装置2の製造方法を説明する。まず、放熱板12を準備し、その内面12aにはんだを介して半導体素子14の下面のコレクタ電極を接続する。さらに、放熱板12、半導体素子14のエミッタ電極及び半導体素子14のゲート電極パッドに、所定の導電部材を接続する。
次いで、半導体素子14の周囲と放熱板12の内面12a側を含む周囲をモールド樹脂16によって封止して、半導体モジュール10を製造する。これにより、放熱板12の周囲がモールド樹脂16によって囲繞される。また、この際、放熱板12の外面12bと、モールド樹脂16の端面16aとを、半導体モジュール10の下面(即ち、接合材30を介して冷却器50に接合させる面)に露出させる。この際、半導体モジュール10の下面に露出するモールド樹脂16の端面16aを、放熱板12の外面12bよりも接合材30側に突出させる(図3参照)。
次いで、冷却器50を準備する。そして、図3に示すように、冷却器50の上面(即ち、接合材30を介して半導体モジュール10に接合させる面)に、接合材30を配置する。図3に示すように、この時点の接合材30には、中心部分32と周辺部分34の2部分が形成されていない。この時点の接合材30は、基材31中に、長手方向(矢印X方向)が法線方向(矢印A方向)に沿って延びる分散材40(即ち、法線方向の熱伝導率を沿面方向の熱伝導率よりも大きくする姿勢の分散材40)が分散している。
次いで、接合材30を介して、半導体モジュール10と冷却器50を圧接する。この際、接合材30に熱を加える。上記の通り、半導体モジュール10は、モールド樹脂16の端面16aが放熱板12の外面12bよりも接合材30側に突出している。そのため、接合材30を介して半導体モジュール10と冷却器50を圧接すると、接合材30のうち、モールド樹脂16の端面16aに対向する部分には、放熱板12の外面12bに対向する部分に比べて大きい圧力が加わる。この結果、接合材30のうち、端面16aに対向する部分では、外面12bに対向する部分に比べて多くの分散材40の姿勢が変化する(図2参照)。即ち、図2に示すように、端面16aに対向する部分では、長手方向(矢印X方向)が沿面方向(矢印B方向)に沿って延びる分散材40の割合が高くなる。一方、外面12bに対向する部分では、端面16aに対向する部分に比べ、分散材40の姿勢は大きく変化しない。そのため、外面12bに対向する部分では、長手方向(矢印X方向)が法線方向(矢印A方向)に沿って延びる分散材40の割合が依然高い。上記の圧接により、図2に示すように、接合材30のうち外面12bに対向する部分が中心部分32を形成し、端面16aに対向する部分が周辺部分34を形成する。これにより、半導体モジュール10が、接合材30を介して冷却器50と接合される。
上記の各工程を行うことにより、本実施例の半導体装置2が製造される。本実施例の製造方法によると、予め部位ごとに分散材40の姿勢が異なる接合材を準備しておかなくても、本実施例の半導体装置2を製造することができる。
以下、本実施例と請求項との対応関係を説明する。中心部分32のうち、放熱板12を法線方向から見たときに半導体素子14と重なる部分が「第1部分」の一例である。周辺部分34が「第2部分」の一例である。
(第2実施例)
図4を参照して、本実施例の半導体装置102について、第1実施例と異なる点を中心に説明する。図4では、第1実施例の半導体装置2(図1参照)と同様の構成を備える要素は図1と同様の符号で示している。
本実施例の接合材130も、電気絶縁性の樹脂で形成されたシート状の部材である。本実施例でも、放熱板12と冷却器50は、接合材130によって電気的に絶縁されている。本実施例でも、図5に示すように、接合材130は、中心部分132と、周辺部分134とを有する。
本実施例では、中心部分132は、法線方向(図4の矢印A方向)から見たときに、半導体素子14と重なる部分である。周辺部分134は、中心部分132の外側の部分である。
図4には示していないが、本実施例では、半導体モジュール10の放熱板12の外面12bのうちの周辺部分134と対向する部分は、中心部分132に対向する部分よりも接合材130側に突出している。放熱板12の外面12bのうちの周辺部分134と対向する部分は、モールド樹脂16の端面16aと略面一に形成されている。
本実施例でも、図4のグラフ160A、160Bに示すように、中心部分132と周辺部分134とでは熱伝導性能が異なる。中心部分132における法線方向の熱伝導率A132は、周辺部分134における法線方向の熱伝導率A134よりも大きい。また、周辺部分134における沿面方向(図5中の矢印B方向)の熱伝導率B134は、中心部分132における沿面方向の熱伝導率B132よりも大きい。また、中心部分132では、法線方向の熱伝導率A132が沿面方向の熱伝導率B132よりも大きい。さらに、周辺部分134では、沿面方向の熱伝導率B134が法線方向の熱伝導率A134よりも大きい。
中心部分132、周辺部分134の詳しい内部構造(即ち、各部における分散材40の姿勢等)は、第1実施例の中心部分32、周辺部分34の内部構造(図2参照)と同様であるため、詳しい説明を省略する。
上記の半導体装置102を動作させると、半導体素子14が熱を発生する。半導体素子14から発生した熱は、放熱板12と接合材130を介して冷却器50に放熱される。この際、中心部分132では、法線方向の熱伝導率A132が沿面方向の熱伝導率B132よりも大きい。そのため、中心部分132では、接合材130の法線方向に伝熱して半導体素子14を冷却することができる。一方、接合材130の周辺部分134では、法線方向の熱伝導率A134は中心部分132よりも小さいが、沿面方向の熱伝導率B134は中心部分132よりも大きい。そのため、周辺部分134では、中心部分132と比べて、接合材130の沿面方向により多くの熱を伝熱させることができ、半導体素子14の熱を冷却器50の広い範囲に伝熱させることができる。即ち、本実施例の半導体装置102でも、絶縁性の樹脂をシート状に形成した接合材130を利用して、高い放熱性を実現することができる。
以下、本実施例と請求項との対応関係を説明する。中心部分132が「第1部分」の一例である。周辺部分134のうち、モールド樹脂16の端面16aと重なる部分が「第2部分」の一例である。
(第3実施例)
図5を参照して、本実施例の半導体装置202について、第1実施例と異なる点を中心に説明する。図5でも、第1実施例の半導体装置2(図1参照)と同様の構成を備える要素は図1と同様の符号で示している。
本実施例の接合材230も、電気絶縁性の樹脂で形成されたシート状の部材である。本実施例でも、放熱板12と冷却器50は、接合材230によって電気的に絶縁されている。図5に示すように、接合材230も、中心部分232と、周辺部分234とを有する。
本実施例では、中心部分232と周辺部分234の境界は、法線方向から見たときに、半導体素子14から放熱板12の厚さT1分の距離離れた位置に存在する。後で詳しく説明するように、本実施例では、中心部分232は、半導体素子14の熱が放熱板12を介して伝熱される部分であると言い換えることができる。
図5には示していないが、本実施例では、半導体モジュール10の放熱板12の外面12bのうち、周辺部分234と対向する部分は、中心部分232に対向する部分よりも接合材230側に突出している。放熱板12の外面12bのうちの周辺部分234と対向する部分は、モールド樹脂16の端面16aと略面一に形成されている。
本実施例でも、中心部分232と周辺部分234とでは熱伝導性能が異なる。グラフ260A、260Bに示すように、中心部分232における法線方向(図5中の矢印A方向)の熱伝導率A232は、周辺部分234における法線方向の熱伝導率A234よりも大きい。また、周辺部分234における沿面方向(図5中の矢印B方向)の熱伝導率B234は、中心部分232における沿面方向の熱伝導率B232よりも大きい。また、中心部分232では、法線方向の熱伝導率A232が沿面方向の熱伝導率B232よりも大きい。さらに、周辺部分234では、沿面方向の熱伝導率B234が法線方向の熱伝導率A234よりも大きい。
中心部分232、周辺部分234の詳しい内部構造(即ち、各部における分散材40の姿勢等)は、第1実施例の中心部分32、周辺部分34の内部構造(図2参照)と同様であるため、詳しい説明を省略する。
上記の半導体装置202を動作させると、半導体素子14が熱を発生する。半導体素子14から発生した熱は、放熱板12と接合材230を介して冷却器50に放熱される。この際、半導体素子14から発生する熱は、図5の矢印Hに示すように、放熱板12の厚み方向に伝熱するとともに、放熱板12の面と平行な方向にも広がりながら伝熱する。即ち、半導体素子14の熱は放熱板12内を放射状に伝熱する。その際の放射角度θが45°程度であることも知られている。上記の通り、中心部分232と周辺部分234との境界は、法線方向から見たときに、半導体素子14から放熱板12の厚さT1分の距離離れた位置に存在する。即ち、半導体素子14の熱は、放熱板12を介して中心部分232に伝熱される。中心部分232では、法線方向の熱伝導率A232が沿面方向の熱伝導率B232よりも大きいため、中心部分232では、接合材230の法線方向に伝熱して半導体素子14を冷却することができる。一方、周辺部分234では、法線方向の熱伝導率A234は中心部分232よりも小さいが、沿面方向の熱伝導率B234は中心部分232よりも大きい。そのため、周辺部分234では、中心部分232と比べて、接合材230の沿面方向により多くの熱を伝熱させることができ、半導体素子14の熱を冷却器50の広い範囲に伝熱させることができる。即ち、本実施例の半導体装置202でも、絶縁性の樹脂をシート状に形成した接合材230を利用する場合において、高い放熱性を実現することができる。
以下、本実施例と請求項との対応関係を説明する。中心部分232のうち、法線方向から見たときに半導体素子14と重なる部分が「第1部分」の一例である。中心部分232のうち、法線方向から見たときに半導体素子14と重ならない部分(即ち、半導体素子14から放熱板12の厚さT1分の距離離れた位置との間に存在する部分)が「第3部分」の一例である。周辺部分134のうち、モールド樹脂16の端面16aと重なる部分が「第2部分」の一例である。
(第4実施例)
図6を参照して、本実施例の半導体装置302について、第1実施例と異なる点を中心に説明する。図6でも、第1実施例の半導体装置2(図1参照)と同様の構成を備える要素は図1と同様の符号で示している。
本実施例の接合材330も、電気絶縁性の樹脂で形成されたシート状の部材である。本実施例でも、放熱板12と冷却器50は、接合材330によって電気的に絶縁されている。図6に示すように、接合材330は、中心部分332と、外側部分334と、周辺部分336を有する。
中心部分332は、放熱板12の法線方向から見たときに、半導体素子14と重なる部分である。外側部分334は、中心部分332の外側の部分であり、法線方向から見たときに半導体素子14とは重ならないが放熱板12と重なる部分である。周辺部分336は、外側部分334の外側の部分であり、法線方向から見たときにモールド樹脂16の端面16aと重なる部分である。
図6には示していないが、本実施例では、半導体モジュール10の放熱板12の外面12bのうち、外側部分334と対向する部分が、中心部分332に対向する部分よりも接合材330側に突出している。また、モールド樹脂16の端面16aは、放熱板12の外面12bのうちの外側部分334と対向する部分よりも接合材330側に突出している。
本実施例では、中心部分332と、外側部分334と、周辺部分336とでは熱伝熱性能が異なる。グラフ360Aに示すように、各部分332〜336における法線方向(図6の矢印A方向)の熱伝導率A332、A334、A336は、大きい方から順にA332、A334、A336である。一方、グラフ360Bに示すように、各部分332〜336における沿面方向(図6の矢印B方向)の熱伝導率B332、B334、B336は、大きい方から順にB336、B334、B332である。また、中心部分332では、法線方向の熱伝導率A332が沿面方向の熱伝導率B332よりも大きい。さらに、周辺部分336では、沿面方向の熱伝導率B336が法線方向の熱伝導率A336よりも大きい。外側部分334では、法線方向の熱伝導率A334は、沿面方向の熱伝導率B334よりも大きい。ただし変形例では、熱伝導率A334は、熱伝導率B334よりも小さくてもよいし、等しくてもよい。
中心部分332、周辺部分336の詳しい内部構造(即ち、各部における分散材40の姿勢等)は、第1実施例の中心部分32、周辺部分34の内部構造(図2参照)とそれぞれ同様である。外側部分334では、長手方向が法線方向に沿って延びている分散材40の割合は、中心部分332より低く、周辺部分336より高い。
上記の半導体装置302を動作させると、半導体素子14が熱を発生する。半導体素子14から発生した熱は、放熱板12と接合材330を介して冷却器50に放熱される。この際、中心部分332では、法線方向の熱伝導率A332が沿面方向の熱伝導率B332よりも大きい。そのため、中心部分332では、接合材330の法線方向に伝熱して半導体素子14を冷却することができる。外側部分334では、法線方向の熱伝導率A334は中心部分332よりも小さいが、沿面方向の熱伝導率B334は中心部分332よりも大きい。そのため、外側部分334では、接合材330の法線方向に伝熱するとともに、沿面方向に伝熱することができる。さらに、周辺部分336では、法線方向の熱伝導率A336は外側部分334よりも小さいが、沿面方向の熱伝導率B336は外側部分334よりも大きい。そのため、周辺部分336では、外側部分334と比べて、接合材330の沿面方向により多くの熱を伝熱させることができ、半導体素子14の熱を冷却器50の広い範囲に伝熱させることができる。即ち、本実施例の半導体装置302でも、絶縁性の樹脂をシート状に形成した接合材330を利用する場合において、高い放熱性を実現することができる。
以下、本実施例と請求項との対応関係を説明する。中心部分332が「第1部分」の一例である。周辺部分336が「第2部分」の一例である。
(第5実施例)
本実施例は第3実施例(図5参照)の変形例である。図7を参照して、本実施例の半導体装置402について、第3実施例と異なる点を中心に説明する。図7でも、第3実施例の半導体装置202(図5参照)と同様の構成を備える要素は図5と同様の符号で示している。
本実施例の接合材430も、電気絶縁性の樹脂で形成されたシート状の部材である。本実施例でも、放熱板12と冷却器50は、接合材430によって電気的に絶縁されている。図7に示すように、接合材430は、中心部分432と、第1外側部分434と、第2外側部分436と、周辺部分438と、を有する。
中心部分432は、法線方向から見たときに半導体素子14と重なる部分である。第1外側部分434は、中心部分432の外側の部分であり、法線方向(図7の矢印A方向)から見たときに、半導体素子14と、半導体素子14から放熱板12の厚さT1分の距離離れた位置との間の部分である。言い換えると、第1外側部分434は、半導体素子14の熱が放熱板12を介して伝熱される部分である。第2外側部分436は、第1外側部分434の外側の部分であり、法線方向から見たときに、放熱板12と重なっているが、半導体素子14の熱が放熱板12を介して法線方向に伝熱されない部分である。周辺部分438は、第2外側部分436の外側の部分であり、法線方向から見たときに、モールド樹脂16の端面16aと重なる部分である。
図7には示していないが、本実施例では、半導体モジュール10の放熱板12の外面12bのうち、第1外側部分434と対向する部分は、中心部分432に対向する部分よりも接合材430側に突出している。また、放熱板12の外面12bのうち、第2外側部分436と対向する部分は、第1外側部分434に対向する部分よりも接合材430側に突出している。また、モールド樹脂16の端面16aは、放熱板12の外面12bのうちの第2外側部分436と対向する部分よりも接合材430側に突出している。
本実施例では、中心部分432と、第1外側部分434と、第2外側部分436と、周辺部分438との間で熱伝熱性能が異なる。グラフ460Aに示すように、各部分432〜438における法線方向の熱伝導率A432、A434、A436、A438は、大きい方から順にA432、A434、A436、A438である。一方、グラフ460Bに示すように、各部分432〜438における沿面方向(図7の矢印B方向)の熱伝導率B432、B434、B436、B438は、大きい方から順にB438、B436、B434、B432である。また、中心部分432では、法線方向の熱伝導率A432が沿面方向の熱伝導率B432よりも大きい。さらに、周辺部分438では、沿面方向の熱伝導率B438が法線方向の熱伝導率A438よりも大きい。第1外側部分434では、法線方向の熱伝導率A434は、沿面方向の熱伝導率B434よりも大きい。第2外側部分436では、沿面方向の熱伝導率B436が法線方向の熱伝導率A436よりも大きい。
中心部分432、周辺部分438の詳しい内部構造(即ち、各部における分散材40の姿勢等)は、第1実施例の中心部分32、周辺部分34の内部構造(図2参照)とそれぞれ同様である。本実施例の第1外側部分434では、長手方向が法線方向に沿って延びている分散材40の割合は、中心部分432より低く、第2外側部分436より高い。第2外側部分436では、長手方向が法線方向に沿って延びている分散材40の割合は、第1外側部分434より低く、周辺部分438より高い。
上記の半導体装置402を動作させると、半導体素子14が熱を発生する。半導体素子14から発生した熱は、放熱板12と接合材430を介して冷却器50に放熱される。この際、中心部分432では、法線方向の熱伝導率A432が沿面方向の熱伝導率B432よりも大きい。そのため、中心部分432では、接合材430の法線方向に伝熱して半導体素子14を冷却することができる。第1外側部分434では、法線方向の熱伝導率A434は中心部分432よりも小さいが、沿面方向の熱伝導率B434は中心部分432よりも大きい。第1外側部分434では、接合材430の法線方向に伝熱するとともに、沿面方向に伝熱することもできる。第2外側部分436では、第1外側部分434よりも、さらに多くの熱を沿面方向に伝熱することができる。さらに、周辺部分438では、第2外側部分436よりも、接合材430の沿面方向により多くの熱を伝熱させることができ、半導体素子14の熱を冷却器50の広い範囲に伝熱させることができる。即ち、本実施例の半導体装置402でも、絶縁性の樹脂をシート状に形成した接合材430を利用する場合において、高い放熱性を実現することができる。
以下、本実施例と請求項との対応関係を説明する。中心部分432が「第1部分」の一例である。周辺部分438が「第2部分」の一例である。第1外側部分434が「第3部分」の一例である。
以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、以下の変形例を採用してもよい。
(変形例1)上記の第1〜第3実施例では、接合材30(130、230)は、中心部分32(132、232)と周辺部分34(134、234)とを備える一つのシート材である。同様に、第4実施例では、接合材330は、中心部分332と外側部分334と周辺部分336とを備える一つのシート材である。また、第5実施例では、接合材430は、中心部分432と第1外側部分434と第2外側部分436と周辺部分438とを備える一つのシート材である。これに限られず、上記の各実施例において、各部分(中心部分、周辺部分、外側部分等)が、それぞれ別個のシート材で構成されていてもよい。従って、例えば、接合材が、中心部分を構成するシート材と周辺部分を構成するシート材とを組み合わせたものであってもよい。
(変形例2)上記の変形例1を採用する場合において、モールド樹脂16の端面16aと放熱板12の外面12bとがほぼ面一に形成されていてもよい。
(変形例3)上記の各実施例では、接合材30(130、230、330、430)は、分散材40の姿勢によって法線方向の熱伝導率と沿面方向の熱伝導率が変化する特性を備えている。接合材は、上記の各部分がそれぞれ備える熱伝導性能を実現できる樹脂製のシート材であれば、分散材を含むものに限られず、任意の構造を備えるものであってもよい。
(変形例4)上記の各実施例では、周辺部分34(134、234、336、438)では、沿面方向の熱伝導率が法線方向の熱伝導率よりも大きい。これに限られず、周辺部分34(134、234、336、438)では、沿面方向の熱伝導率が法線方向の熱伝導率よりも大きくなくてもよい。即ち、周辺部分でも、法線方向の熱伝導率が沿面方向の熱伝導率以上であってもよい。その場合、中心部分32(132、232、332、432)における法線方向の熱伝導率が、周辺部分34(134、234、336、438)における法線方向の熱伝導率よりも大きく、周辺部分34(134、234、336、438)における沿面方向の熱伝導率が、中心部分32(132、232、332、432)における沿面方向の熱伝導率よりも大きく、かつ、中心部分32(132、232、332、432)における法線方向の熱伝導率が中心部分32(132、232、332、432)の沿面方向の熱伝導率よりも大きければよい。
(変形例5)上記の各実施例では、スイッチング素子としてIGBTを用いる例を説明した。これに限られず、スイッチング素子としてMOSFET等、他のスイッチング素子を用いてもよい。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
本明細書が開示する半導体装置において、接合材が、電気絶縁材料より熱伝導率が高い分散材が分散している電気絶縁材料で形成されており、その分散材の姿勢によって法線方向の熱伝導率と沿面方向の熱伝導率が変化する特性を備えており、法線方向の熱伝導率を大きくする姿勢の分散材の存在割合が、第2部分よりも第1部分で高く、沿面方向の熱伝導率を大きくする姿勢の分散材の存在割合が、第1部分よりも第2部分で高くてもよい。
この構成によると、接合材が、分散材の姿勢によって法線方向の熱伝導率と沿面方向の熱伝導率が変化する特性を備える場合においても、高い放熱性を実現することができる。
本明細書が開示する半導体装置において、接合材が、第1部分に隣接し、法線方向から見たときに、半導体素子と、半導体素子から放熱板の厚さ分の距離離れた位置との間に存在する第3部分をさらに有していてもよい。第3部分における法線方向の熱伝導率が第2部分における法線方向の熱伝導率より大きく、第3部分における沿面方向の熱伝導率が第2部分における沿面方向の熱伝導率より小さく、第3部分における法線方向の熱伝導率が第3部分における沿面方向の熱伝導率より大きくてもよい。
半導体素子から発生した熱は、放熱板内を放射状に伝熱する。また、その際の放射角度が45°程度であることも知られている。上記の構成によると、第3部分は、法線方向から見たときに、半導体素子と、半導体素子から放熱板の厚さ分の距離離れた位置との間に存在する。即ち、半導体素子の熱は、放熱板を介して、第1部分及び第3部分に伝熱される。第1部分及び第3部分では、接合材の法線方向に効率良く伝熱して半導体素子を効果的に冷却する。一方、法線方向から見たときにモールド樹脂と重なり、半導体素子の熱が法線方向に伝熱されない第2部分では、第1部分と比べて、接合材の沿面方向により多くの熱を伝熱させ、半導体素子の熱を冷却器の広い範囲に伝熱させることができる。
本明細書が開示する半導体装置において、放熱板の周囲を囲繞するモールド樹脂の接合材側の端面が、放熱板の外面よりも接合材側に突出していてもよい。法線方向に沿って延びる分散材の存在割合が、第2部分よりも第1部分で高く、沿面方向に沿って延びる分散材の存在割合が、第1部分よりも第2部分で高くてもよい。
この構成によると、半導体装置の製造過程において、放熱板の外面とその周囲を囲繞するモールド樹脂の端面と、冷却器との間に、法線方向の熱伝導率を沿面方向の熱伝導率よりも大きくする姿勢の分散材が分散している接合材を配置し、接合材を介して半導体モジュールと冷却器を圧接すると、接合材のうち、モールド樹脂に対向する部分には、放熱板に対向する部分に比べて大きい圧力が加わる。この結果、モールド樹脂に対向する部分では、放熱板に対向する部分に比べて、より多くの分散材の姿勢を変化させることができる。その結果、法線方向の熱伝導率を大きくする姿勢の分散材の存在割合が、モールド樹脂に対向する部分よりも放熱板の外面に対向する部分で高く、沿面方向の熱伝導率を大きくする姿勢の分散材の存在割合が、放熱板の外面に対向する部分よりもモールド樹脂に対向する部分で高い接合材が形成される。この構成によると、予め、部位ごとに分散材の姿勢が異なる接合材を準備しておかなくても、上記の半導体装置を製造することができる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:半導体装置
10:半導体モジュール
12:放熱板
12a:内面
12b:外面
14:半導体素子
16:モールド樹脂
16a:端面
30:接合材
31:基材
32:中心部分
34:周辺部分
40:分散材
50:冷却器
60A:法線方向の熱伝導率のグラフ
60B:沿面方向の熱伝導率のグラフ
102:半導体装置
130:接合材
132:中心部分
132a:第1中心部分
132b:第2中心部分
134:周辺部分
134a:第1周辺部分
134b:第2周辺部分
160A:法線方向の熱伝導率のグラフ
160B:沿面方向の熱伝導率のグラフ
202:半導体装置
230:接合材
232:中心部分
234:周辺部分
260A:法線方向の熱伝導率のグラフ
260B:沿面方向の熱伝導率のグラフ
302:半導体装置
330:接合材
332:中心部分
334:外側部分
336:周辺部分
360A:法線方向の熱伝導率のグラフ
360B:沿面方向の熱伝導率のグラフ
402:半導体装置
430:接合材
432:中心部分
434:第1外側部分
436:第2外側部分
438:周辺部分
460A:法線方向の熱伝導率のグラフ
460B:沿面方向の熱伝導率のグラフ

Claims (5)

  1. 半導体モジュールと、接合材と、冷却器を備えており、
    前記半導体モジュールは、放熱板と、前記放熱板の内面側に配置されている半導体素子と、前記放熱板の内面側と前記半導体素子の周囲を封止しているモールド樹脂を有しており、前記接合材を介して前記冷却器に接合する面に前記放熱板の外面が露出しているとともに前記放熱板の周囲を前記モールド樹脂が囲繞しており、
    前記接合材は、絶縁性の樹脂でシート状に形成されており、前記放熱板の法線方向から見たときに、前記半導体素子と重なる第1部分と、前記モールド樹脂と重なる第2部分を有しており、前記第1部分における前記法線方向の熱伝導率が前記第2部分における前記法線方向の熱伝導率より大きく、前記法線方向に直交する方向を沿面方向としたときに、前記第2部分における前記沿面方向の熱伝導率が前記第1部分における前記沿面方向の熱伝導率より大きく、前記第1部分における前記法線方向の熱伝導率が前記第1部分における前記沿面方向の熱伝導率より大きく、
    前記放熱板の外面とその周囲を囲繞する前記モールド樹脂とが前記接合材を介して前記冷却器に接合されている半導体装置。
  2. 前記接合材が、電気絶縁材料より熱伝導率が高い分散材が分散している電気絶縁材料で形成されており、その分散材の姿勢によって前記法線方向の熱伝導率と前記沿面方向の熱伝導率が変化する特性を備えており、
    前記法線方向の熱伝導率を大きくする姿勢の前記分散材の存在割合が、前記第2部分よりも前記第1部分で高く、
    前記沿面方向の熱伝導率を大きくする姿勢の前記分散材の存在割合が、前記第1部分よりも前記第2部分で高い、
    請求項1の半導体装置。
  3. 前記接合材が、前記第1部分に隣接し、前記法線方向から見たときに、前記半導体素子と、前記半導体素子から前記放熱板の厚さ分の距離離れた位置との間に存在する第3部分をさらに有しており、前記第3部分における前記法線方向の熱伝導率が前記第2部分における前記法線方向の熱伝導率より大きく、前記第3部分における前記沿面方向の熱伝導率が前記第2部分における前記沿面方向の熱伝導率より小さく、前記第3部分における前記法線方向の熱伝導率が前記第3部分における前記沿面方向の熱伝導率より大きい、
    請求項1または2の半導体装置。
  4. 前記放熱板の周囲を囲繞する前記モールド樹脂の前記接合材側の端面が、前記放熱板の前記外面よりも前記接合材側に突出しており、
    前記法線方向に沿って延びる前記分散材の存在割合が、前記第2部分よりも前記第1部分で高く、
    前記沿面方向に沿って延びる前記分散材の存在割合が、前記第1部分よりも前記第2部分で高い、
    請求項2の半導体装置。
  5. 半導体装置の製造方法であって、
    放熱板の内面側に半導体素子を配置する工程と、
    前記半導体素子の周囲と前記放熱板の内面側を封止して前記放熱板の周囲を囲繞するとともに、その囲繞部が前記放熱板の外面よりも接合材側に突出するモールド樹脂を形成する工程と、
    前記放熱板の外面とその周囲を囲繞する前記モールド樹脂の端面と、冷却器の間に、法線方向の熱伝導率を沿面方向の熱伝導率よりも大きくする姿勢の分散材が分散している前記接合材を配置する工程と、
    前記接合材を介して、前記放熱板の外面及び前記モールド樹脂の端面を前記冷却器に圧接し、前記モールド樹脂の端面と前記冷却器の間に位置する範囲の前記接合材に含まれる前記分散材の姿勢を変化させる工程、
    を有する半導体装置の製造方法。
JP2015147108A 2015-07-24 2015-07-24 半導体装置と半導体装置の製造方法 Active JP6245229B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015147108A JP6245229B2 (ja) 2015-07-24 2015-07-24 半導体装置と半導体装置の製造方法
US15/216,767 US9806000B2 (en) 2015-07-24 2016-07-22 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147108A JP6245229B2 (ja) 2015-07-24 2015-07-24 半導体装置と半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2017028169A JP2017028169A (ja) 2017-02-02
JP6245229B2 true JP6245229B2 (ja) 2017-12-13

Family

ID=57836223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147108A Active JP6245229B2 (ja) 2015-07-24 2015-07-24 半導体装置と半導体装置の製造方法

Country Status (2)

Country Link
US (1) US9806000B2 (ja)
JP (1) JP6245229B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857725B2 (ja) * 1991-08-05 1999-02-17 株式会社日立製作所 樹脂封止型半導体装置
JP2866632B2 (ja) * 1997-03-17 1999-03-08 三菱電機株式会社 放熱材
JP2003026827A (ja) * 2001-07-13 2003-01-29 Jsr Corp 高熱伝導性シート、高熱伝導性シートの製造方法および高熱伝導性シートを用いた放熱構造
JP4466644B2 (ja) * 2006-12-26 2010-05-26 住友電気工業株式会社 ヒートシンク
JP2009054926A (ja) * 2007-08-29 2009-03-12 Kaneka Corp 熱伝導異方性を有する成形体
JP2010034254A (ja) * 2008-07-29 2010-02-12 Mitsubishi Chemicals Corp 三次元lsi
JP2012222291A (ja) 2011-04-13 2012-11-12 Mitsubishi Electric Corp 半導体パッケージ
US9337405B2 (en) 2012-08-31 2016-05-10 Nichia Corporation Light emitting device and method for manufacturing the same
JP6089507B2 (ja) 2012-08-31 2017-03-08 日亜化学工業株式会社 発光装置およびその製造方法

Also Published As

Publication number Publication date
US9806000B2 (en) 2017-10-31
US20170025323A1 (en) 2017-01-26
JP2017028169A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
US10763240B2 (en) Semiconductor device comprising signal terminals extending from encapsulant
JP5182274B2 (ja) パワー半導体装置
JP6707634B2 (ja) 半導体装置
JP6590952B2 (ja) 半導体装置
JP2019134018A (ja) 半導体装置
JP2017028105A (ja) 半導体装置
JP6245229B2 (ja) 半導体装置と半導体装置の製造方法
US10483183B2 (en) Semiconductor device
JP5975866B2 (ja) 電力用半導体装置
JP6763246B2 (ja) 半導体装置
JP6555177B2 (ja) 半導体モジュール
JP2010062490A (ja) 半導体装置
JP2014041876A (ja) 電力用半導体装置
JP7156155B2 (ja) 半導体モジュール
JP2017112280A (ja) 半導体モジュール
JP6835244B2 (ja) 半導体装置
JP2011114137A (ja) 電力用半導体装置
JP6091225B2 (ja) 電力用半導体装置の製造方法および電力用半導体装置
JP6314726B2 (ja) 半導体モジュール
JP2011096828A (ja) 半導体モジュール
JP5807801B2 (ja) 半導体モジュール
JP2018046125A (ja) 半導体モジュール
JP2017199830A (ja) パワーモジュール
JP5932701B2 (ja) 半導体装置
JP2021068786A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R151 Written notification of patent or utility model registration

Ref document number: 6245229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250