JP6835244B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6835244B2
JP6835244B2 JP2019549798A JP2019549798A JP6835244B2 JP 6835244 B2 JP6835244 B2 JP 6835244B2 JP 2019549798 A JP2019549798 A JP 2019549798A JP 2019549798 A JP2019549798 A JP 2019549798A JP 6835244 B2 JP6835244 B2 JP 6835244B2
Authority
JP
Japan
Prior art keywords
conductive member
heat conductive
semiconductor element
heat
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019549798A
Other languages
English (en)
Other versions
JPWO2019082371A1 (ja
Inventor
要介 冨田
要介 冨田
林 哲也
林  哲也
山上 滋春
滋春 山上
啓一郎 沼倉
啓一郎 沼倉
早見 泰明
泰明 早見
裕一 岩▲崎▼
裕一 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2019082371A1 publication Critical patent/JPWO2019082371A1/ja
Application granted granted Critical
Publication of JP6835244B2 publication Critical patent/JP6835244B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor

Description

本発明は、半導体装置に係り、特に放熱効率を向上させる技術に関する。
半導体素子に生じる熱を効率良く放出して過熱を防止する半導体装置として、例えば、特許文献1に開示されたものが知られている。特許文献1では、異方性熱伝導特性を有する高配向性熱分解黒鉛からなるインサート部品を、平面視で十字形状に基板に設置し、この表面に熱発生部品を接合して、熱発生部品より発生する熱を基板全体に拡散し、放熱効率を向上させることが開示されている。
特許第4939214号
しかしながら、上述した特許文献1に開示された従来例は、異方性熱伝導特性を有するインサート部品を用いて熱を拡散するものの、該インサート部品を十字状に設けているので、より一層放熱効率を向上させることができないという問題があった。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、放熱効率を向上させることが可能な半導体装置を提供することにある。
上記目的を達成するため、本願発明は、表面に溝が形成された金属部材と、溝の内部に設けられ、表面における第1の軸方向の熱伝導率が、第1の軸方向と直交する第2の軸方向の熱伝導率よりも高い熱伝導部材と、少なくとも一部が熱伝導部材と接する半導体素子を備える。
本発明に係る半導体装置では、放熱効率を向上させることが可能となる。
図1は、本発明の一実施形態に係る半導体装置の上面図である。 図2は、図1に示した半導体装置の、A−A’断面図である。 図3は、図1に示した半導体装置の、B−B’断面図である。 図4は、半導体素子の幅(Y軸方向の長さ)に対する熱伝導部材の幅の比率と、熱抵抗比との関係を示すグラフであり、熱伝導部材の厚みが2mmの場合を示す。 図5は、半導体素子の幅(Y軸方向の長さ)に対する熱伝導部材の幅の比率と、熱抵抗比との関係を示すグラフであり、伝導部材の厚みが5mmの場合を示す。 図6Aは、比率L6/L5が70%未満のときのY軸−Z軸平面、及び熱の拡散を示す説明図である。 図6Bは、比率L6/L5が70%〜95%のときのY軸−Z軸平面、及び熱の拡散を示す説明図である。 図6Cは、比率L6/L5が95%を上回るときのY軸−Z軸平面、及び熱の拡散を示す説明図である。 図7Aは、熱伝導部材に対して半導体素子が重複しているときのY軸−Z軸平面、及び熱の拡散を示す説明図である。 図7Bは、熱伝導部材の一部が露出しているときのY軸−Z軸平面、及び熱の拡散を示す説明図である。 図8Aは、金属部材の厚みが熱伝導部材の厚みよりも大きい場合のY軸−Z軸平面、及び熱の拡散を示す説明図である。 図8Bは、金属部材の厚みと熱伝導部材の厚が一致している場合のY軸−Z軸平面、及び熱の拡散を示す説明図である。 図9は、横軸を金属部材の厚みL12に対する長さL3の比率とし、縦軸を熱抵抗比としたグラフである。
以下、本発明の実施形態を図面に基づいて説明する。
[本実施形態の構成の説明]
図1は、本発明の一実施形態に係る半導体装置の上面図、図2は図1におけるA−A’断面図、図3は図1におけるB−B’断面図である。なお以下では便宜上、図1に示す上面図の左右方向をX軸方向(金属部材3の表面上の第1の軸方向)とし、上下方向(X軸に対して直交する方向)をY軸方向(金属部材3の表面上の第2の軸方向)とし、図2に示す側面図の上下方向をZ軸方向として説明する。即ち、図2の左右方向はX軸方向、図3の上下方向はZ軸方向、左右方向はY軸方向である。
図1〜図3に示すように、本実施形態に係る半導体装置は、平面視(Z軸方向から見た面)でX軸方向に長い矩形状をなす金属部材3を有し、該金属部材3の上面には、X軸方向に長い溝Mが形成されている。該溝Mの内部には、グラファイト等の熱伝導部材2が設けられている。金属部材3の表面と熱伝導部材2の表面は一致している。
更に、熱伝導部材2の上面には、平面視で長方形状をなし、X軸方向が長さL1、Y軸方向が長さL5の半導体素子1が接合されており、それぞれの中心は一致している。なお、半導体素子1は、正方形であっても良い。熱伝導部材2は、X軸方向に長い長方形状を成しており、このため、X軸方向では半導体素子1に対して熱伝導部材2がはみ出している。即ち、熱伝導部材2のX軸方向の長さL2は、半導体素子1のX軸方向の長さL1よりも長く、X軸方向に長さL3、L4だけはみ出している。半導体素子1が熱伝導部材2の中心に配置されている場合には、L3=L4である。
また、Y軸方向では熱伝導部材2に対して半導体素子1がはみ出している。即ち、半導体素子1のY軸方向の長さL5(半導体素子1が正方形の場合はL5=L1)は、熱伝導部材2のY軸方向の長さL6よりも長く、Y軸方向に長さL7、L8だけはみ出している。半導体素子1が熱伝導部材2の中心に配置されている場合には、L7=L8である。
金属部材3と熱伝導部材2との接合、及び、熱伝導部材2と半導体素子1との接合方法として、例えば、はんだを用いた接合を用いることができる。或いは、はんだで接合する代わりに、導電性と熱伝導性を有する樹脂材料による接合や、圧接等で接合することも可能である。
熱伝導部材2は、平面方向に高い熱伝導率を有する材料を、層状に積層して構成した板状の部材であり、X軸方向の熱伝導率が、Y軸方向の熱伝導率よりも相対的に高い。具体的には、図1〜図3に示すX軸方向及びZ軸方向には熱伝導率が高く、Y軸方向には熱伝導率が低い。本実施形態では一例として薄板、短冊形状のグラファイトを積層して熱伝導部材2を構成している。熱伝導部材2は、接合のために表面が金属(図示省略)で覆われていても良い。
金属部材3は、一例として銅を用いることができる。銅以外にも、銅合金、アルミニウム、アルミニウム合金等を用いても良い。
また、金属部材3の裏面(表面と対向する裏面)には絶縁材料(図示せず)を挟んで、金属部材3の熱を放熱するための冷却器4が接合されている。冷却器4は、水冷式、油冷式、空冷式のいずれかを用いることができる。
そして、本実施形態では、以下の(1)〜(4)に示すように、半導体素子1、熱伝導部材2、及び金属部材3のサイズを設定する。
(1)半導体素子1のY軸方向(第2の軸方向)の長さL5に対する、熱伝導部材2のY軸方向(第2の軸方向)の長さL6の比率「L6/L5」が、40%以上(好ましくは、70%以上、且つ95%以下)となるように、各長さL5、L6を設定する。
或いは、半導体素子1の平面視(半導体素子1の表面の法線方向視)の面積に対する、半導体素子1と熱伝導部材2が重複する面積の比率が40%以上(好ましくは、70%以上、且つ95%以下)となるように半導体素子1及び熱伝導部材2の少なくとも一方の大きさを設定する。
(2)Y軸方向において、熱伝導部材2を完全に覆うように半導体素子1を配置する。つまり、図1に示すように、熱伝導部材2の上面に半導体素子1を接合する際に、Y軸方向において、半導体素子1が熱伝導部材2に対して重複するように配置する。従って、図1に示す長さL7、L8が正の数値となる。即ち、半導体素子1のY軸方向(第2の軸方向)の一方の端部は、熱伝導部材2のY軸方向(第2の軸方向)の一方の端部から延在し、半導体素子1のY軸方向(第2の軸方向)の他方の端部は、熱伝導部材2のY軸方向(第2の軸方向)の他方の端部から延在している。
(3)図2に示すように、金属部材3の厚みL11を、熱伝導部材2の厚みL12よりも長くする。即ち、金属部材3の、表面に対する法線方向の長さを、熱伝導部材2の表面に対する法線方向の長さよりも長くする。
(4)X軸方向において、熱伝導部材2の両端の、半導体素子1と接していない領域の長さ(図1に示すL3、L4)を、金属部材3の厚み(図2に示すL11)以上とする。即ち、熱伝導部材2のX軸方向(第1の軸方向)の長さは、半導体素子1のX軸方向(第1の軸方向)の長さよりも長く、半導体素子1のX軸方向(第1の軸方向)の一端から、熱伝導部材2のX軸方向(第1の軸方向)の一端までの長さ、及び、半導体素子1のX軸方向(第1の軸方向)の他端から、熱伝導部材2のX軸方向(第1の軸方向)の他端までの長さは、金属部材3の、表面に対する法線方向の長さ以上である。
[本実施形態の作用の説明]
次に、上記のように構成された本実施形態に係る半導体装置の作用について説明する。図1に示したように、金属部材3の表面に平面視で長方形状をなす熱伝導部材2を設け、この熱伝導部材2に接するように、半導体素子1を接合している。このため、半導体素子1で発生した熱は、初期的に熱伝導部材2によりX軸方向に拡散され、その後、金属部材3の全体に拡散される。即ち、半導体素子1で発生した熱を早期に広い範囲(熱伝導部材2の領域)に拡散し、その後、熱伝導部材2から金属部材3に熱を伝達する。この際、半導体素子1の一部が金属部材3と接していることにより、半導体素子1に残されている熱(熱伝導部材2で拡散されなかった熱)を金属部材3を経由して放熱することができる。更に、金属部材3に拡散した熱は冷却器4を経由して外部に放熱される。
次に、上記した比率「L6/L5」を40%以上(好ましくは、70〜95%)とする理由について説明する。図4、図5は、横軸を半導体素子1の幅(Y軸方向の長さ)に対する熱伝導部材2の幅の比率、即ち、「L6/L5」とし、縦軸を熱抵抗比(熱伝導部材2の幅を1mm、厚み2mm、金属部材3の厚みを2mmとしたときの熱抵抗で規格化した熱抵抗比)としたグラフである。図4は、熱伝導部材2の厚みを2mmとした場合、図5は、熱伝導部材2の厚みを5mmとした場合である。
図4、図5に示すように、上記の比率「L6/L5」が40%以上の範囲では、比率「L6/L5」に対する、熱抵抗比の感度が低く、且つ、熱抵抗比自体も低いことが理解される。更に、70〜95%の範囲にすることにより、より一層熱抵抗比が低くなることが理解される。このため、上記の比率を40%以上、好ましくは、70〜95%の範囲となるように、熱伝導部材2及び半導体素子1のサイズを設定することにより、熱抵抗を低下させることができる。同様に、半導体素子1の平面視の面積に対する、半導体素子1と熱伝導部材2が平面視で重複する面積の比率が40%以上、好ましくは70〜95%の範囲となるように、熱伝導部材2及び半導体素子1のサイズを設定することにより、熱抵抗を低下させることができる。
次に、図6A、図6B、図6Cに示す説明図を参照して、半導体素子1で発生した熱の伝達について説明する。図6A〜図6Cは、半導体装置のY軸−Z軸平面を示す説明図であり、図6Aは比率「L6/L5」が70%未満である場合、図6Bは、比率「L6/L5」が70〜95%である場合、図6Cは、比率「L6/L5」が95%を上回っている場合の構成を示している。
図6Aに示すように、比率「L6/L5」が70%未満である場合には、半導体素子1にて発生した熱を熱伝導部材2でX軸、Z軸方向に拡散する。更に、半導体素子1と熱伝導部材2が接触しない非接触領域(半導体素子1と金属部材3が接触する領域)にて熱を3次元的に拡散することができる。従って、半導体素子1の放熱効果を高めるという効果を得ることができる。
また、図6Cに示すように、比率「L6/L5」が95%を上回る場合においても、半導体素子1にて発生した熱を熱伝導部材2でX軸、Z軸方向に拡散し、更に、半導体素子1と金属部材3が接触する領域にて熱を3次元的に拡散することができる。従って、半導体素子1の放熱効果を高めるという効果を得ることができる。
図6Bに示すように、比率「L6/L5」が70〜95%の範囲である場合には、半導体素子1と熱伝導部材2とが接していない非接触領域(半導体素子1と金属部材3が接触する領域)が5〜30%の割合で存在する。従って、半導体素子1にて発生した熱は、短時間で熱伝導部材2の広い範囲に拡散し、更に拡散した熱は非接触領域にて金属部材3に伝達される。即ち、半導体素子1で発生した熱を早期に広い範囲へ拡散し、その後、三次元的な拡散で金属部材3全体に熱を伝達することを極めて高い効率で行うことができる。このため、トータル的な熱の拡散量が増大する。
これは、グラファイト等の熱伝導部材2の高熱伝導方向がX軸、Z軸の2方向のみである、即ち、2次元的な拡散であるのに対し、銅等の金属部材3では熱を3次元的に拡散することに起因する。
即ち、本実施形態では、比率「L6/L5」を40%以上、好ましくは70〜95%の範囲とすること、或いは半導体素子1の平面視の面積に対する、半導体素子1と熱伝導部材1とが重複する面積の比率を40%以上、好ましくは70〜95%の範囲とすることにより、熱抵抗を低減し放熱効果をより一層向上させることができることが裏付けられた。
次に、Y軸方向に熱伝導部材2で半導体素子1を覆う理由について説明する。図7A、図7Bは、Y軸方向における熱伝導部材2に対する半導体素子1の位置関係を示す説明図であり、図7Aは熱伝導部材2の上面が半導体素子1で覆われている場合、図7Bは熱伝導部材2の一部が露出している場合を示す。
図7Aに示すように、熱伝導部材2と半導体素子1の中心が一致している場合には、半導体素子1より放出される熱が熱伝導部材2、及び金属部材3を経由して効率良く拡散されるので、放熱効率が向上し熱抵抗を低減できる。
これに対して図7Bに示すように、熱伝導部材2と半導体素子1の中心にずれが生じており、且つ、Y軸方向において熱伝導部材2の一部が露出している場合には、一方の端部において熱を3次元的に拡散することができない。このため、熱抵抗が増加してしまう。即ち、本実施形態では、半導体素子1のY軸方向のそれぞれの端部(両端)が、金属部材3の表面と接するように配置されることにより、熱抵抗を低減できることが裏付けられた。
次に、金属部材3の厚みL11を、熱伝導部材2の厚みL12よりも大きくする理由について説明する。図8Aは、L11>L12としたときの放熱の様子を示す説明図、図8Bは、L11=L12としたときの放熱の様子を示す説明図である。
図8A、図8Bは、半導体装置のY軸−Z軸断面を示している。図8Aに示すように、L11>L12の場合には、熱伝導部材2の下面に金属部材3が存在するので、熱伝導部材2を経由して拡散した熱は、図中、左右方向、及び下方向に熱が拡散される。これに対し、図8Bに示すように、L11=L12の場合には、熱伝導部材2の下方に金属部材3が存在しないので、熱伝導部材2を経由して拡散した熱は、図中左右方向にのみ拡散する。従って、熱抵抗が大きくなり、放熱効率が低減する。即ち、本実施形態では、金属部材3の厚みを熱伝導部材2の厚みよりも大きくすることにより放熱効率を向上させ、熱抵抗を低減できることが裏付けられた。
次に、X軸方向において、熱伝導部材2の両端の、半導体素子1と接していない領域の長さ(図1に示すL3、L4)を、金属部材3の厚み(図2に示すL11)以上とする理由について説明する。
図9は、図1に示す長さL3(またはL4)と、熱伝導部材2の厚みL11との比率「L3/L11」を横軸とし、熱抵抗比を縦軸としたグラフである。なお、縦軸の熱抵抗比は、「L3/L11」を「1」で規格化している。また、図9において、熱伝導部材2は幅(Y軸方向の長さ)3.5mm、厚み(Z軸方向の長さ)5mmであり、金属部材3の厚みは10mmである。図9から理解されるように、上記の比率「L3/L11」が「1」未満では、熱抵抗比が大きく変動し、「1」以上では、熱抵抗比がほぼ一定値となることが理解される。換言すれば、図1に示す長さL3(または、L4)を、熱伝導部材2の厚みL11に設定すると(即ち、L3=L11)、ほぼ熱抵抗を最小値とすることができる。即ち、X軸方向にて、熱伝導部材2の両端の、半導体素子1と接していない領域の長さを、金属部材3の厚み以上とすることにより、放熱効率を向上させ、熱抵抗を低減できることが裏付けられた。
[本実施形態の効果の説明]
本実施形態に係る半導体装置では、以下に示す効果が得られる。
(1)金属部材3に形成した長方形状の溝Mに、熱伝導部材2を設け、この熱伝導部材2に接するように、半導体素子1を接合しているので、半導体素子1で発生した熱の放熱効率を向上させることができる。その結果、半導体装置を小型化することが可能となる。
(2)金属部材3の裏面に金属部材3の熱を放熱する冷却器4を設けているので、金属部材3に拡散された熱を冷却器4により、効率良く放出することができる。
(3)半導体素子1のY軸方向の長さL5に対する、熱伝導部材2のY軸方向の長さL6の比率「L6/L5」を40%以上、好ましくは70〜95%の範囲に設定することにより、放熱効率を向上させることができる。更に、半導体素子1の表面の法線方向視の面積に対する、半導体素子1と熱伝導部材2の法線方向視の重複面積が40%以上、好ましくは70〜95%の範囲に設定することにより、放熱効率を向上させることができる。また、熱伝導部材2の幅L6(図1のY軸方向の長さ)にばらつきが生じている場合でも、放熱効率のばらつきを抑制できる。
例えば、熱伝導部材2のY軸方向の長さL6が、想定する長さよりも小さい場合(製造時の誤差等に起因して余儀なく小さい場合)は、熱伝導部材2で拡散する熱量が低下する。しかし、その分金属部材3と半導体素子1が接触する面積が大きくなることで、金属部材3により拡散可能な熱量が増加する。従って、上記の比率「L6/L5」を40%以上、好ましくは、70〜95%の範囲にすることにより、熱伝導部材2のY軸方向の長さL6のばらつきに起因する熱抵抗への影響を抑制することができる。
また、熱伝導部材2のY軸方向の長さL6を必要に以上に大きくする必要がなく、熱伝導部材2の使用量を削減でき、コストを低減することが可能となる。
(4)熱伝導部材2の低熱伝導方向(Y軸方向、第2の軸方向)において、半導体素子1の端部は金属部材3の表面と接している。従って、半導体素子1で発生した熱を、金属部材3を経由して3次元的に拡散させることができ、熱抵抗をより一層低減することができる。
(5)金属部材3の厚みL12を、熱伝導部材2の厚みL11よりも大きくすることにより、熱伝導部材2で2次元的に拡散した熱を、金属部材3によりさらに3次元的に拡散できるため、熱抵抗を低減することができる。
(6)熱伝導部材2のX軸方向の長さL2は、半導体素子1のX軸方向の長さL1よりも長く、半導体素子1のX軸方向の一端から、熱伝導部材2のX軸方向の一端までの長さL3、及び、半導体素子1のX軸方向の他端から、熱伝導部材2のX軸方向の他端までの長さL4を、金属部材3の厚みL11以上、即ち、表面に対する法線方向の長さ以上としている。このため、厚み方向(Z軸方向)の熱抵抗に対して、X軸方向の熱抵抗を低下させることができ、X軸方向に熱を優先的に拡散してから冷却器4に放熱することができ、より一層熱抵抗を低下させることができる。
(7)短冊状のグラファイトを積層して熱伝導部材2を形成しており、グラファイトは、熱伝導の異方性を有するので、半導体素子1で発生する熱を効率よくX軸方向に拡散することができる。
なお、上記した実施形態では、金属部材3の表面と熱伝導部材2の表面が一致して配置される例について示したが、金属部材3の表面と熱伝導部材2の表面に段差が有る構成とすることも可能である。この場合には、半導体素子1の接合面に段差を形成すれば良い。
以上、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
1 半導体素子
2 熱伝導部材(グラファイト等)
3 金属部材(銅等)
4 冷却器

Claims (9)

  1. 表面に溝が形成された金属部材と、
    前記溝の内部に設けられ、前記表面における第1の軸方向の熱伝導率が、前記表面上で前記第1の軸方向と直交する第2の軸方向の熱伝導率よりも高い熱伝導部材と、
    前記金属部材の表面に設けられ、少なくとも一部が前記熱伝導部材と接する半導体素子と、を備え、
    前記半導体素子の前記第2の軸方向の一方の端部は、前記熱伝導部材の前記第2の軸方向の一方の端部から延在し、
    前記半導体素子の前記第2の軸方向の他方の端部は、前記熱伝導部材の前記第2の軸方向の他方の端部から延在していること
    を特徴とする半導体装置。
  2. 前記半導体素子の前記第2の軸方向の長さに対する、前記熱伝導部材の前記第2の軸方向の長さの比率が40%以上であること
    を特徴とする請求項1に記載の半導体装置。
  3. 前記半導体素子の前記第2の軸方向の長さに対する、前記熱伝導部材の前記第2の軸方向の長さの比率が95%以下であること
    を特徴とする請求項2に記載の半導体装置。
  4. 前記半導体素子表面の法線方向視の面積に対する、前記半導体素子と前記熱伝導部材とが前記法線方向視で重複する面積の比率が40%以上であること
    を特徴とする請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記半導体素子表面の法線方向視の面積に対する、前記半導体素子と前記熱伝導部材とが前記法線方向視で重複する面積の比率が95%以下であること
    を特徴とする請求項4に記載の半導体装置。
  6. 前記金属部材の、前記表面に対する法線方向の長さは、前記熱伝導部材の前記表面に対する法線方向の長さよりも長いこと
    を特徴とする請求項1〜4、6のいずれか1項に記載の半導体装置。
  7. 前記熱伝導部材の前記第1の軸方向の長さは、前記半導体素子の前記第1の軸方向の長さよりも長く、
    前記半導体素子の前記第1の軸方向の一端から、前記熱伝導部材の前記第1の軸方向の一端までの長さ、及び、
    前記半導体素子の前記第1の軸方向の他端から、前記熱伝導部材の前記第1の軸方向の他端までの長さは、
    前記金属部材の、前記表面に対する法線方向の長さ以上であること
    を特徴とする請求項1〜4、6、7のいずれか1項に記載の半導体装置。
  8. 前記熱伝導部材は、短冊状のグラファイトを積層して形成されること
    を特徴とする請求項1〜4、6〜8のいずれか1項に記載の半導体装置。
  9. 前記金属部材の、前記表面と対向する裏面に、前記金属部材の熱を放熱する冷却器を設けたこと
    を特徴とする請求項1〜4、6〜9のいずれか1項に記載の半導体装置。
JP2019549798A 2017-10-27 2017-10-27 半導体装置 Active JP6835244B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038868 WO2019082371A1 (ja) 2017-10-27 2017-10-27 半導体装置

Publications (2)

Publication Number Publication Date
JPWO2019082371A1 JPWO2019082371A1 (ja) 2020-12-10
JP6835244B2 true JP6835244B2 (ja) 2021-02-24

Family

ID=66247229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549798A Active JP6835244B2 (ja) 2017-10-27 2017-10-27 半導体装置

Country Status (5)

Country Link
US (1) US20210183726A1 (ja)
EP (1) EP3703115A4 (ja)
JP (1) JP6835244B2 (ja)
CN (1) CN111433908A (ja)
WO (1) WO2019082371A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014207B2 (ja) * 2019-06-10 2022-02-01 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939214B1 (ja) 1970-06-25 1974-10-24
US5494753A (en) * 1994-06-20 1996-02-27 General Electric Company Articles having thermal conductors of graphite
CN1189000A (zh) * 1997-01-09 1998-07-29 日本电气株式会社 半导体激光组件
JP2000150743A (ja) * 1998-11-11 2000-05-30 Furukawa Electric Co Ltd:The 半導体装置用基板及びその製造方法
US6680015B2 (en) * 2000-02-01 2004-01-20 Cool Options, Inc. Method of manufacturing a heat sink assembly with overmolded carbon matrix
EP1187199A2 (de) * 2000-08-28 2002-03-13 Alcan Technology & Management AG Kühlkörper für Halbleiterbauelemente, Verfahren zu seiner Herstellung sowie Formwerkzeug dafür
US6758263B2 (en) * 2001-12-13 2004-07-06 Advanced Energy Technology Inc. Heat dissipating component using high conducting inserts
US7108055B2 (en) * 2002-03-29 2006-09-19 Advanced Energy Technology Inc. Optimized heat sink using high thermal conducting base and low thermal conducting fins
US6771502B2 (en) * 2002-06-28 2004-08-03 Advanced Energy Technology Inc. Heat sink made from longer and shorter graphite sheets
DE10234995A1 (de) * 2002-07-31 2004-02-12 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung mit thermischem Chipanschluß und Leuchtdiodenmodul
TWI239606B (en) * 2002-11-07 2005-09-11 Kobe Steel Ltd Heat spreader and semiconductor device and package using the same
US6898084B2 (en) * 2003-07-17 2005-05-24 The Bergquist Company Thermal diffusion apparatus
JP2006202798A (ja) * 2005-01-18 2006-08-03 Fuji Electric Holdings Co Ltd ヒートシンク
JP4646642B2 (ja) * 2005-01-27 2011-03-09 京セラ株式会社 半導体素子用パッケージ
JP4466644B2 (ja) * 2006-12-26 2010-05-26 住友電気工業株式会社 ヒートシンク
US8085531B2 (en) * 2009-07-14 2011-12-27 Specialty Minerals (Michigan) Inc. Anisotropic thermal conduction element and manufacturing method
JP5276565B2 (ja) * 2009-10-14 2013-08-28 新光電気工業株式会社 放熱用部品
KR101605666B1 (ko) * 2013-02-20 2016-03-22 미쓰비시덴키 가부시키가이샤 냉각 장치 및 이것을 이용한 냉각 장치가 부착된 파워 모듈
JP6380037B2 (ja) * 2014-11-19 2018-08-29 株式会社デンソー 半導体装置およびそれを用いた電子部品

Also Published As

Publication number Publication date
CN111433908A (zh) 2020-07-17
WO2019082371A1 (ja) 2019-05-02
EP3703115A1 (en) 2020-09-02
JPWO2019082371A1 (ja) 2020-12-10
EP3703115A4 (en) 2020-10-28
US20210183726A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP4867793B2 (ja) 半導体装置
US9997432B2 (en) Semiconductor device and electronic component using the same
JP5236127B1 (ja) 電力半導体装置
JP4989552B2 (ja) 電子部品
JP2011091088A (ja) 発熱体の放熱構造、および該放熱構造を用いた半導体装置
JP2016066639A (ja) 接続方法が異なる複数のフィンを備えたヒートシンク
JP5904006B2 (ja) 半導体装置
JP6835244B2 (ja) 半導体装置
US20090120611A1 (en) Heat dissipation module
JP6146466B2 (ja) 半導体装置
JP2013229363A (ja) パワーモジュール
JP6003109B2 (ja) パワーモジュール
JP6190732B2 (ja) 放熱板及び半導体装置
JP2020096009A (ja) 半導体装置
JP6037578B1 (ja) ヒートシンク及びその製造方法
JP5117303B2 (ja) ヒートシンク
TW201340851A (zh) 散熱單元及其製造方法
JP6245229B2 (ja) 半導体装置と半導体装置の製造方法
JP6401945B2 (ja) ヒートシンク
JP2017059566A (ja) 半導体モジュール
JP6347203B2 (ja) 半導体装置とその製造方法
JP2019087716A (ja) 半導体装置
JP2019040940A (ja) 半導体装置
JP2011103312A (ja) 半導体装置
JP2017069311A (ja) 放熱板

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under section 34 (pct)

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6835244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151