JP2017028105A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2017028105A
JP2017028105A JP2015145228A JP2015145228A JP2017028105A JP 2017028105 A JP2017028105 A JP 2017028105A JP 2015145228 A JP2015145228 A JP 2015145228A JP 2015145228 A JP2015145228 A JP 2015145228A JP 2017028105 A JP2017028105 A JP 2017028105A
Authority
JP
Japan
Prior art keywords
lead frame
hole
diode
plate
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015145228A
Other languages
English (en)
Inventor
隆興 小川
Takaoki Ogawa
隆興 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015145228A priority Critical patent/JP2017028105A/ja
Publication of JP2017028105A publication Critical patent/JP2017028105A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】放熱板を兼用する導電プレートに貫通孔が形成される場合において、高い放熱性を実現することができる技術を開示する。
【解決手段】半導体装置2は、ダイオード20、第1放熱板30、第1リードフレーム70及び、これらを封止するモールド樹脂90を備える。第1リードフレーム70は第1放熱板30に接合されている。第1リードフレーム70の端部はモールド樹脂90の外側に突出しており、図示しない導電体を接続して用いる。その接続位置とダイオード20の間において、第1放熱板30に貫通孔32が形成されている。貫通孔32は、貫通孔32とダイオード20との間の距離D1が、第1放熱板30の厚さよりも大きくなる位置に形成されている。
【選択図】図1

Description

本明細書で開示する技術は、半導体装置に関する。
特許文献1に、面状に広がっている電極を備えた半導体素子が、放熱板を兼用する導電プレートにはんだ接合されている半導体装置が開示されている。この半導体装置は、導電体を導電プレートに接続して用いる。導電体と半導体素子の間を、導電プレートを介して電流が流れる。
特開2006−147852号公報
特許文献1の半導体装置では、導電体と半導体素子の間に電流が流れる場合、半導体素子の面状電極と導電プレートを接合するはんだ層のうち、導電プレートと導電体の接続位置側の辺の近傍に電流が集中する可能性がある。
そのため、従来、この種の半導体装置では、半導体素子の配置位置と導電体との接続位置との間(即ち、導電体から導電プレートを介してはんだ層の前記辺の近傍に至る経路上)において導電プレートに貫通孔を形成する場合がある。この場合、貫通孔によって電流経路が分散し、はんだ層の前記辺以外の部分に電流を流すことができるようになる。
また、この種の半導体装置では、導電プレートが放熱板を兼用する場合もある。その場合、半導体素子の動作時に発生する熱は、導電プレートの半導体素子側の面から反対側の面に向けて伝熱され、反対側の面から外部に放熱される。この際、半導体素子から発生する熱は、導電プレート内を放射状に伝熱する。そのため、導電プレートが放熱板を兼用する場合において、導電プレートに貫通孔が形成されていると、半導体素子から発生された熱が導電プレート内を放射状に電熱する際に、貫通孔によって伝熱が妨げられてしまい、高い放熱性を実現できない可能性がある。
本明細書では、放熱板を兼用する導電プレートに貫通孔が形成される場合において、高い放熱性を実現することができる技術を提供する。
本明細書で開示する半導体装置では、面状に広がっている電極を備えた半導体素子が導電プレートにはんだ接合されており、導電体を導電プレートに接続して用いる際に、導電体と半導体素子の間を導電プレートを介して電流が流れる。また、半導体素子の配置位置と導電体との接続位置の間において導電プレートに貫通孔が形成されている。本明細書で開示する半導体装置は、導電プレートが放熱板を兼用しており、導電プレートを平面視したときに、半導体素子と貫通孔の間の距離が、導電プレートの厚さよりも大きいことを特徴とする。
上記において、「半導体素子が導電プレートにはんだ接合されている」は、半導体素子が導電プレートに直接はんだ接合されている場合と、半導体素子が他の導電部材(例えば導電ブロック)を介して導電プレートにはんだ接合されている場合の双方を含む。
上記の半導体装置では、半導体素子の動作時に発生する熱は、導電プレートの半導体素子側の面から反対側の面に向けて伝熱され、反対側の面から外部に放熱される。この際、半導体素子から発生する熱は、導電プレート内を放射状に伝熱する。また、その際の放射角度が45°程度であることも知られている。上記の構成によると、半導体素子と貫通孔の間の距離が、導電プレートの厚さよりも大きいため、半導体素子から発生された熱が導電プレート内を放射状に電熱する際に、貫通孔によって伝熱が妨げられることを抑制できる。その結果、放熱板を兼用する導電プレートに貫通孔が形成される場合において、高い放熱性を実現することができる。
第1実施例の半導体装置を模式的に示す平面図。 図1のII−II断面を示す断面図。 図1のIII−III断面を示す断面図。 半導体装置の回路図。 IGBT10がオンする場合の電流の経路を示す平面図。 ダイオード20がオンする場合の電流の経路を示す平面図。 第2実施例の半導体装置を模式的に示す平面図。 図7のVIII−VIII断面を示す断面図。 図7のIX−IX断面を示す断面図。 図7のX−X断面を示す断面図。 半導体装置の回路図。 IGBT110がオンする場合の電流の経路を示す平面図。 IGBT210がオンする場合の電流の経路を示す平面図。 ダイオード120がオンする場合の電流の経路を示す平面図。 ダイオード220がオンする場合の電流の経路を示す平面図。
(第1実施例)
図1〜図3に示す半導体装置2は、IGBT(Insulated Gate Bipolar Transistor)10と、ダイオード20と、第1放熱板30と、第2放熱板40と、第1リードフレーム70と、第2リードフレーム75と、導電ブロック50、60と、これらを接続するはんだ層52、54、56、62、64、66と、これらを封止するモールド樹脂90とを備える。なお、図1では、理解の容易のためにモールド樹脂90を仮想線で図示している。第1リードフレーム70の一方の端部(即ち図1の右側の端部)と、第2リードフレーム75の一方の端部(即ち図1の右側の端部)はモールド樹脂90の外側に突出している。また、第1放熱板30の上面(即ち図2、図3の上側の面)と、第2放熱板40の下面(即ち図2、図3の下側の面)は、モールド樹脂90の表面に露出している。なお、以下では、図2、図3の上側の面のことを「上面」と呼び、下側の面のことを「下面」と呼ぶ場合がある。また、本明細書でいう放熱板は、導電路を構成する部材と伝熱路を構成する部材とを兼用している。即ち、放熱板は導電プレートでもある。また、本明細書では、二つの部材が機械的に固定され、電気的に接続することを「接合」と呼ぶ場合がある。
IGBT10は、縦型のIGBTである。IGBT10は、上面に面状に広がるエミッタ電極とゲート電極パッド(図示省略)を備え、下面に面状に広がるコレクタ電極(図示省略)を備えている。
ダイオード20は、上面に面状に広がるアノード電極(図示省略)を備え、下面に面状に広がるカソード電極(図示省略)を備えている。
第1放熱板30及び第2放熱板40は、ともに板状の導電性部材である。第1放熱板30及び第2放熱板40は、例えば、Cu又はAlによって形成することができる。図2、図3に示すように、本実施例の半導体装置2では、第1放熱板30が上側に配置され、第2放熱板40が下側に配置される。
図2に示すように、第1放熱板30の下面は、はんだ層56と、導電ブロック50と、はんだ層54とを介して、ダイオード20の上面のアノード電極に接合されている。導電ブロック50は、Cu製のブロック材である。また、第2放熱板40の上面は、はんだ層52を介して、ダイオード20の下面のカソード電極に接合されている。
さらに、図3に示すように、第1放熱板30の下面は、はんだ層66と、導電ブロック60と、はんだ層64を介して、IGBT10の上面のエミッタ電極に接合されている。導電ブロック60は、導電ブロック50と同様にCu製のブロック材である。また、第2放熱板40の上面は、はんだ層62を介して、IGBT10の下面のコレクタ電極に接合されている。
本実施例では、第1放熱板30、第2放熱板40、及び、導電ブロック50、60は、IGBT10及びダイオード20が発生する熱の伝熱材としての機能を果たし、同時に、IGBT10及びダイオード20に至る導電路の一部を構成する。
なお、IGBT10の上面のゲート電極パッドには、図示しない位置で、図示しない線状の導電性部材であるワイヤの一端がボンディングされている。ワイヤの他端は、図示しない他の導電部材にボンディングされている。
第1放熱板30の側面には、第1リードフレーム70の一方の端部70aが接合されている。第1リードフレーム70は、第1放熱板30と同じ材料で形成されている板状の導電性部材である。第1リードフレーム70の厚さ(即ち図2の上下方向の長さ)は、第1放熱板30の厚さより薄い。第1リードフレーム70のうち、端部70aと反対側の端部は、モールド樹脂90の外側に突出している。半導体装置2の使用時には、第1リードフレーム70には図示しない他の導電体が接合される。
図1、図2に示すように、第1放熱板30のうち、第1リードフレーム70と図示しない導電体の接合位置とダイオード20の配置位置との間には、貫通孔32が形成されている。貫通孔32の内部には、モールド樹脂90が充填されている。図1に示すように、第1放熱板30を平面視したときに、貫通孔32は、ダイオード20の第1リードフレーム70側の辺20aの両端と、第1リードフレーム70の端部70aの両端とを頂点とする四角形領域80を、ダイオード20側と第1リードフレーム70側とに分断する位置に形成されている。言い換えると、貫通孔32は、電流が第1リードフレーム70から第1放熱板30を介してダイオード20の第1リードフレーム70側の辺20aに流れ込む場合の最短経路を分断する位置に形成されている。また、貫通孔32は、第1放熱板30を平面視したときの貫通孔32とダイオード20との間の距離D1が、第1放熱板30の厚さT1(図2参照)よりも大きくなる位置に形成されている。本実施例では、第1リードフレーム70のほぼ全域が図示しない導電体に接続される。第1リードフレーム70と導電体の接続範囲は、第1リードフレーム70の平面形状にほぼ等しい。
一方、第2放熱板40の側面には、第2リードフレーム75の一方の端部75aが接合されている。第2リードフレーム75も、第2放熱板40と同じ材料で形成されている板状の導電性部材である。第2リードフレーム75の厚さ(即ち図3の上下方向の長さ)は、第2放熱板40の厚さより薄い。第2リードフレーム75のうち、端部75aと反対側の端部は、モールド樹脂90の外側に突出している。半導体装置2の使用時には、第2リードフレーム75には図示しない他の導電体が接合される。
図1、図3に示すように、第2放熱板40のうち、第2リードフレーム75と図示しない導電体の接合位置とIGBT10の配置位置との間には、貫通孔42が形成されている。貫通孔42の内部には、モールド樹脂90が充填されている。図1に示すように、第2放熱板40を平面視したときに、貫通孔42は、IGBT10の第2リードフレーム75側の辺10aの両端と、第2リードフレーム75の端部75aの両端とを頂点とする四角形領域85を、IGBT10側と第2リードフレーム75側とに分断する位置に形成されている。言い換えると、貫通孔42は、電流が第2リードフレーム75から第2放熱板40を介してIGBT10の第2リードフレーム75側の辺10aに流れ込む場合の最短経路を分断する位置に形成されている。また、貫通孔42は、貫通孔42とIGBT10との間の距離D2が、第2放熱板40の厚さT2(図3参照)よりも大きくなる位置に形成されている。本実施例では、第2リードフレーム75のほぼ全域が図示しない導電体に接続される。第2リードフレーム75と導電体の接続範囲は、第2リードフレーム75の平面形状にほぼ等しい。
モールド樹脂90は、IGBT10、ダイオード20、導電ブロック50、60、第1放熱板30、第2放熱板40、第1リードフレーム70、及び、第2リードフレーム75を封止する部材である。モールド樹脂90は、シリカが混入されたエポキシ樹脂である。モールド樹脂90で各部材を封止することにより、各部材を保護することができる。
本実施例の半導体装置2は、図4に示す回路図を形成する。即ち、IGBT10のエミッタ電極とダイオード20のアノード電極は、第1リードフレーム70に接続されている。IGBT10のコレクタ電極とダイオード20のカソード電極は、第2リードフレーム75に接続されている。
本実施例の半導体装置2の作用効果を説明するために、図5、図6を参照して、各素子がオンする場合の半導体装置2内の電流の流れを説明する。図5、図6中の実線矢印は、第1リードフレーム70及び第1放熱板30を流れる電流を示し、破線矢印は、第2放熱板40及び第2リードフレーム75を流れる電流を示す。円で囲まれた点は、紙面の奥側から手前側に向かって流れる電流を示す。円で囲まれた十字は、紙面の手前側から奥側に向かって流れる電流を示す。
図5は、IGBT10がオンする場合の半導体装置2内の電流の流れを示す。IGBT10がオンする場合、電流は、第2リードフレーム75から第2放熱板40を介してIGBT10のコレクタ電極に向かって流れる。ただし、本実施例では、電流が第2リードフレーム75からIGBT10のコレクタ電極に向かって流れる際の最短経路(即ち、図1の四角形領域85)に貫通孔42が形成されている。上記の通り、貫通孔42は、上記の最短経路をIGBT10側と第2リードフレーム75側とに分断している。そのため、電流が貫通孔42を避けて流れる。その結果、電流経路が分散され、面状に広がっているはんだ層62のうちの第2リードフレーム75側の辺10aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。IGBT10のコレクタ電極に流れた電流は、エミッタ電極、第1放熱板30を介して第1リードフレーム70に流れる。なお、IGBT10と第1放熱板30を接続するはんだ層64、66の第1リードフレーム70側の辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第1放熱板30に、IGBT10と第1リードフレーム70の間を分断する貫通孔を形成してもよい。
図6は、ダイオード20がオンする場合の半導体装置2内の電流の流れを示す。ダイオード20がオンする場合、電流は、第1リードフレーム70から第1放熱板30と導電ブロック50とを介してダイオード20のアノード電極に向かって流れる。ただし、本実施例では、電流が第1リードフレーム70からダイオード20のアノード電極に向かって流れる際の最短経路(即ち、図1の四角形領域80)に貫通孔32が形成されている。上記の通り、貫通孔32は、最短経路をダイオード20側と第1リードフレーム70側とに分断している。そのため、電流が貫通孔32を避けて流れる。その結果、電流経路が分散され、はんだ層56、54のうちの第1リードフレーム70側の辺20aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。ダイオード20のアノード電極に流れた電流は、カソード電極、第2放熱板40を介して第2リードフレーム75に流れる。なお、ダイオード20と第2放熱板40を接続するはんだ層52の第2リードフレーム75側の辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第2放熱板40に、ダイオード20と第2リードフレーム75の間を分断する貫通孔を形成してもよい。
また、IGBT10及びダイオード20の動作時には熱が発生する。IGBT10及びダイオード20の熱は、第1放熱板30及び第2放熱板40を介して外部に放熱される。この際、IGBT10及びダイオード20から発生する熱は、図2、図3中の矢印Hに示すように、第1放熱板30及び第2放熱板40の厚み方向に伝熱するとともに、面と平行方向に広がりながら伝熱する。また、その際の放射角度θが45°程度であることも知られている。本実施例では、第1放熱板30を平面視したときに、ダイオード20と貫通孔32との間の距離D1が、第1放熱板30の厚さT1(図2参照)よりも大きい。即ち、ダイオード20の熱が、導電ブロック50を介して第1放熱板30の下面から上面に向けて45°の角度で放射状に伝熱される場合に、貫通孔32が伝熱を妨げることがない。同様に、本実施例では、第2放熱板40を平面視したときに、IGBT10と貫通孔42との間の距離D2が、第2放熱板40の厚さT2(図3参照)よりも大きい。IGBT10の熱が、第2放熱板40の上面から下面に向けて45°の角度で放射状に伝熱される場合に、貫通孔42が伝熱を妨げることがない。従って、本実施例の半導体装置2によると、高い放熱性を実現することができる。
以下、本実施例と請求項の記載との対応関係を説明する。ダイオード20及びIGBT10が「半導体素子」の一例である。第1放熱板30、第2放熱板40が「導電プレート」の一例である。第1リードフレーム70及び第2リードフレーム75は「導電プレート」の一部であり、導電プレートに接続される導電体との接続位置に形成されている。
(第2実施例)
図7〜図10に示す半導体装置102は、2個のIGBT110、210と、2個のダイオード120、220と、第1放熱板130と、第2放熱板140と、第3放熱板230と、第4放熱板240と、継手板134、234、244と、第1リードフレーム170と、第2リードフレーム270と、第3リードフレーム280と、導電ブロック150、160、250、260と、これらを接続するはんだ層152、154、156、162、164、166、252、254、256、262、264、266、290、300と、これらを封止するモールド樹脂190とを備える。なお、図7では、理解の容易のためにモールド樹脂190を仮想線で図示している。各リードフレーム170、270、280の一方の端部(即ち図7の右側の端部)はモールド樹脂190の外側に突出している。また、第1放熱板130の上面(即ち図8、図10の上側の面)と、第2放熱板140の下面(即ち図8、図10の下側の面)と、第3放熱板230の上面(即ち図9、図10の上側の面)と、第4放熱板240の下面(即ち図9、図10の下側の面)は、モールド樹脂190の表面に露出している。なお、以下では、図8〜図10の上側の面のことを「上面」と呼び、下側の面のことを「下面」と呼ぶ場合がある。
IGBT110、210は、ともに縦型のIGBTである。IGBT110、210は、ともに上面に面状に広がるエミッタ電極とゲート電極パッド(図示省略)を備え、下面に面状に広がるコレクタ電極(図示省略)を備えている。
ダイオード120、220は、ともに上面に面状に広がるアノード電極(図示省略)を備え、下面に面状に広がるカソード電極(図示省略)を備えている。
各放熱板130、140、230、240は、いずれも導電プレートでもある。図7、図8に示すように、第1放熱板130はIGBT110及びダイオード120の上側に配置され、第2放熱板140はIGBT110及びダイオード120の下側に配置される。また、図7、図9に示すように、第3放熱板230はIGBT210及びダイオード220の上側に配置され、第4放熱板240はIGBT210及びダイオード220の下側に配置される。
図8に示すように、第1放熱板130の下面は、はんだ層156と、導電ブロック150と、はんだ層154とを介して、ダイオード120の上面のアノード電極に接合されている。また、第1放熱板130の下面は、はんだ層166と、導電ブロック160と、はんだ層164とを介して、IGBT110の上面のエミッタ電極にも接合されている。導電ブロック150、160は、ともにCu製のブロック材である。第2放熱板140の上面は、はんだ層152を介して、ダイオード120の下面のカソード電極に接合されているとともに、はんだ層162を介して、IGBT110の下面のコレクタ電極にも接合されている。第1放熱板130、第2放熱板140、及び、導電ブロック150、160は、IGBT110及びダイオード120が発生する熱の伝熱材としての機能を果たし、同時に、IGBT110及びダイオード120に至る導電路の一部を構成する。
なお、IGBT110の上面のゲート電極パッドには、図示しない位置で、図示しないワイヤの一端がボンディングされている。ワイヤの他端は、図示しない他の導電部材にボンディングされている。
図7に示すように、第1放熱板130の側面には、継手板134が接合されている。継手板134は、第1放熱板130と同じ材料で形成されている板状の導電性部材である。図10に示すように、継手板134の厚さ(即ち図10の上下方向の長さ)は、第1放熱板130の厚さより薄い。継手板134の下面は、はんだ層290を介して、第4放熱板240に接合されている継手板244の上面と接合されている。
図7、図8に示すように、第1放熱板130のうち、継手板134との接合位置とダイオード120の配置位置との間には貫通孔132が形成されている。貫通孔132の内部には、モールド樹脂190が充填されている。貫通孔132は、電流が継手板134から第1放熱板130を介してダイオード120の継手板134側の辺120aに流れ込む場合の最短経路上に形成されている。また、貫通孔132は、第1放熱板130を平面視したときの貫通孔132とダイオード120との間の距離D11が、第1放熱板130の厚さT11(図8参照)よりも大きくなる位置に形成されている。さらに、貫通孔132は、第1放熱板130を平面視したときの貫通孔132とIGBT110との間の距離D12が、第1放熱板130の厚さT11よりも大きくなる位置に形成されている。
一方、第2放熱板140の側面には、半導体装置102のPアームを構成する第1リードフレーム170の一方の端部170aが接合されている。第1リードフレーム170は、第2放熱板140と同じ材料で形成されている板状の導電性部材である。第1リードフレーム170の厚さ(即ち図8の上下方向の長さ)は、第2放熱板140の厚さより薄い。第1リードフレーム170のうち、端部170aと反対側の端部は、モールド樹脂190の外側に突出している。半導体装置102の使用時には、第1リードフレーム170には図示しない他の導電体が接合される。
図7、図8に示すように、第2放熱板140のうち、第1リードフレーム170と図示しない導電体の接合位置とIGBT110の配置位置との間には貫通孔142が形成されている。貫通孔142の内部には、モールド樹脂190が充填されている。貫通孔142は、電流が第1リードフレーム170から第2放熱板140を介してIGBT110の第1リードフレーム170側の辺110aに流れ込む場合の最短経路上に形成されている。また、貫通孔142は、第2放熱板140を平面視したときの貫通孔142とIGBT110との間の距離D13が、第2放熱板140の厚さT12(図8参照)よりも大きくなる位置に形成されている。さらに、貫通孔142は、第2放熱板140を平面視したときの貫通孔142とダイオード120との間の距離D14も、第2放熱板130の厚さT12よりも大きくなる位置に形成されている。
図9に示すように、第3放熱板230の下面は、はんだ層256と、導電ブロック250と、はんだ層254とを介して、ダイオード220の上面のアノード電極に接合されている。また、第3放熱板230の下面は、はんだ層266と、導電ブロック260と、はんだ層264とを介して、IGBT210の上面のエミッタ電極にも接合されている。導電ブロック250、260は、ともにCu製のブロック材である。第4放熱板240の上面は、はんだ層252を介して、ダイオード220の下面のカソード電極に接合されているとともに、はんだ層262を介して、IGBT210の下面のコレクタ電極にも接合されている。第3放熱板230、第4放熱板240、及び、導電ブロック250、260は、IGBT210及びダイオード220が発生する熱の伝熱材としての機能を果たし、同時に、IGBT210及びダイオード220に至る導電路の一部を構成する。
なお、IGBT210の上面のゲート電極パッドには、図示しない位置で、図示しないワイヤの一端がボンディングされている。ワイヤの他端は、図示しない他の導電部材にボンディングされている。
図7に示すように、第3放熱板230の側面には、継手板234が接合されている。継手板234は、第3放熱板230と同じ材料で形成されている板状の導電性部材である。図示しないが、継手板234の厚さは、第3放熱板230の厚さより薄い。継手板234の下面は、はんだ層300を介して、半導体装置102のNアームを構成する第3リードフレーム280の一方の端部の上面と接合されている。
第3リードフレーム280は、継手板234と同じ材料で形成されている板状の導電性部材である。図示しないが、第3リードフレーム280の厚さも、第3放熱板230の厚さより薄い。第3リードフレーム280の他方の端部は、モールド樹脂190の外側に突出している。半導体装置102の使用時には、第3リードフレーム280には図示しない他の導電体が接合される。
図7に示すように、第3放熱板230のうち、継手板234との接合位置とダイオード220の配置位置との間には貫通孔232が形成されている。貫通孔232の内部には、モールド樹脂190が充填されている。貫通孔232は、電流が継手板234から第3放熱板230を介してダイオード220の継手板234側の辺220aに流れ込む場合の最短経路に形成されている。また、貫通孔232は、第3放熱板230を平面視したときの貫通孔232とダイオード220との間の距離D21が、第3放熱板230の厚さT21(図9参照)よりも大きくなる位置に形成されている。さらに、貫通孔232は、第3放熱板230を平面視したときの貫通孔232とIGBT210との間の距離D22も、第3放熱板230の厚さT21よりも大きくなる位置に形成されている。
一方、第4放熱板240のダイオード220寄りの側面には、半導体装置102のOアームを構成する第2リードフレーム270の一方の端部270aが接合されている。第2リードフレーム270は、第4放熱板240と同じ材料で形成されている板状の導電性部材である。第2リードフレームの厚さ(即ち図9の上下方向の長さ)は、第4放熱板240の厚さより薄い。第2リードフレーム270のうち、端部270aと反対側の端部は、モールド樹脂190の外側に突出している。半導体装置102の使用時には、第2リードフレーム270には図示しない他の導電体が接合される。
また、図7、図10に示すように、第4放熱板240のIGBT210寄りの側面には、継手板244が接合されている。継手板244は、第4放熱板240と同じ材料で形成されている板状の導電性部材である。図10に示すように、継手板244は、第1放熱板130に接合されている継手板134に近づくように上方に曲げられている。継手板244の上面は、はんだ層290を介して、継手板134の下面に接合されている。
図7、図9に示すように、第4放熱板240のうち、第2リードフレーム270と図示しない導電体の接合位置とIGBT210の配置位置との間には貫通孔242が形成されている。貫通孔242の内部には、モールド樹脂190が充填されている。貫通孔242は、電流が第2リードフレーム270から第4放熱板240を介してIGBT210の第2リードフレーム270側の辺210aに流れ込む場合の最短経路に形成されている。また、貫通孔242は、第4放熱板240を平面視したときの貫通孔242とIGBT210との間の距離D23が、第4放熱板240の厚さT22(図9参照)よりも大きくなる位置に形成されている。さらに、貫通孔242は、第4放熱板240を平面視したときの貫通孔242とダイオード220との間の距離D24が、第4放熱板240の厚さT22よりも大きくなる位置に形成されている。
モールド樹脂190は、IGBT110、210と、ダイオード120、220と、各放熱板130、140、240、240と、継手板134、234、244と、各リードフレーム170、270、280と、導電ブロック150、160、250、260とを封止する部材である。モールド樹脂190は、シリカが混入されたエポキシ樹脂である。モールド樹脂190で各部材を封止することにより、各部材を保護することができる。
本実施例の半導体装置102は、図11に示す回路図を形成する。即ち、IGBT110のコレクタ電極とダイオード120のカソード電極は、Pアームを構成する第1リードフレーム170に接続されている。IGBT110のエミッタ電極とダイオード120のアノード電極、及び、IGBT210のコレクタ電極とダイオード220のカソード電極は、Oアームを構成する第2リードフレーム270に接続されている。IGBT210のエミッタ電極とダイオード220のアノード電極は、Nアームを構成する第3リードフレーム280に接続されている。
本実施例の半導体装置102の作用効果を説明するために、図12〜図15を参照して、各素子がオンする場合の半導体装置102内の電流の流れを説明する。図12〜図15中の実線矢印は、第1放熱板130、継手板134、第3放熱板230、及び、継手板234を流れる電流を示す。破線矢印は、各リードフレーム170、270、280、第2放熱板140、第4放熱板240、及び、継手板244を流れる電流を示す。円で囲まれた点は、紙面の奥側から手前側に向かって流れる電流を示す。円で囲まれた十字は、紙面の手前側から奥側に向かって流れる電流を示す。
図12は、IGBT110がオンする場合の半導体装置102内の電流の流れを示す。IGBT110がオンする場合、電流は、第1リードフレーム170(即ちPアーム)からIGBT110を介して第2リードフレーム270(即ちOアーム)に流れる。詳しく言うと、電流は、第1リードフレーム170から第2放熱板140を介してIGBT110のコレクタ電極に向かって流れる。本実施例では、電流が第1リードフレーム170からIGBT110のコレクタ電極に向かって流れる際の最短経路上に貫通孔142が形成されている。そのため、電流が貫通孔142を避けて流れる。その結果、電流経路が分散され、面状に広がっているはんだ層162のうちの第1リードフレーム170側の辺110aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。IGBT110のコレクタ電極に流れた電流は、エミッタ電極、第1放熱板130、継手板134、継手板244、及び、第4放熱板240を介して、第2リードフレーム270に流れる。なお、はんだ層164、166の継手板134側の辺、あるいははんだ層290のIGBT110側の辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第1放熱板130に、両辺の間を分断する貫通孔を形成してもよい。
図13は、IGBT210がオンする場合の半導体装置102内の電流の流れを示す。IGBT210がオンする場合、電流は、第2リードフレーム270(即ちOアーム)からIGBT210を介して第3リードフレーム280(即ちNアーム)に流れる。詳しく言うと、電流は、第2リードフレーム270から第4放熱板240を介してIGBT210のコレクタ電極に向かって流れる。本実施例では、電流が第2リードフレーム270からIGBT210のコレクタ電極に向かって流れる際の最短経路上に貫通孔242が形成されている。そのため、電流が貫通孔242を避けて流れる。その結果、電流経路が分散され、面状に広がっているはんだ層262のうちの第1リードフレーム270側の辺210aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。IGBT210のコレクタ電極に流れた電流は、エミッタ電極、第3放熱板230及び継手板234を介して、第3リードフレーム280に流れる。なお、はんだ層300のIGBT210側の辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第3放熱板230にIGBT210とはんだ層300の間を分断する貫通孔を形成してもよい。
図14は、ダイオード120がオンする場合の半導体装置102内の電流の流れを示す。ダイオード120がオンする場合、電流は、第2リードフレーム270(即ちOアーム)からダイオード120を介して第1リードフレーム170(即ちPアーム)に流れる。詳しく言うと、電流は、第2リードフレーム270から、第4放熱板240、継手板244、134を通過して第1放熱板130に向かって流れる。さらに、電流は、第1放熱板130内を通過してダイオード120のアノード電極に向かって流れる。本実施例では、電流が継手板134からダイオード120の継手板134側の辺120aに向かって流れる際の最短経路上に貫通孔132が形成されている。そのため、電流が貫通孔132を避けて流れる。その結果、電流経路が分散され、はんだ層156、154のうちの継手板134側の辺120aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。ダイオード120のアノード電極に流れた電流は、カソード電極及び第2放熱板140を介して、第1リードフレーム170に流れる。なお、はんだ層290の第2リードフレーム270側の辺(即ち、IGBT210側の辺)の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第4放熱板240に、IGBT210とはんだ層300の間を分断する貫通孔を形成してもよい。
図15は、ダイオード220がオンする場合の半導体装置102内の電流の流れを示す。ダイオード220がオンする場合、電流は、第3リードフレーム280(即ちNアーム)からダイオード220を介して第2リードフレーム270(即ちOアーム)に流れる。詳しく言うと、電流は、第3リードフレーム280から継手板234を介して第3放熱板230に向かって流れる。さらに、電流は、第3放熱板230内を通過してダイオード220のアノード電極に向かって流れる。本実施例では、電流が継手板234からダイオード220の継手板234側の辺220aに向かって流れる際の最短経路上に貫通孔232が形成されている。そのため、電流が貫通孔232を避けて流れる。その結果、電流経路が分散され、はんだ層256、254のうちの継手板234側の辺220aの近傍に電流が集中することを抑制でき、局所的にエレクトロマイグレーションが進行することを防止できる。ダイオード220のアノード電極に流れた電流は、カソード電極及び第4放熱板240を介して、第2リードフレーム270に流れる。なお、はんだ層300のうちモールド樹脂190の外側寄りの辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第3リードフレーム280に、第3リードフレーム280の端部とはんだ層300の間を分断する貫通孔を形成してもよい。
同様に、はんだ層252の第2リードフレーム270側の辺の近傍に電流が集中して局所的にエレクトロマイグレーションが進行する場合には、第2リードフレーム270に、第2リードフレーム270の端部とはんだ層252(即ちダイオード220)との間を分断する貫通孔を形成してもよい。
また、本実施例でも、第1放熱板130を平面視したときに、貫通孔132とダイオード120との間の距離D11及び貫通孔132とIGBT110との間の距離D12が、第1放熱板130の厚さT11(図8参照)よりも大きい。同様に、第2放熱板140を平面視したときに、貫通孔142とIGBT110との間の距離D13及び貫通孔142とダイオード120との間の距離D14が、第2放熱板140の厚さT12(図8参照)よりも大きい。さらに、第3放熱板230を平面視したときに、貫通孔232とダイオード220との間の距離D21及び貫通孔232とIGBT210との間の距離D22が、第3放熱板230の厚さT21(図9参照)よりも大きい。同様に、第4放熱板240を平面視したときに、貫通孔242とIGBT210との間の距離D23及び貫通孔242とダイオード220との間の距離D24が、第4放熱板240の厚さT22(図9参照)よりも大きい。そのため、本実施例でも、各素子110、120、210、220の熱が、放熱板130、140、230、240内を放射状に伝熱される場合に、貫通孔132、142、232、242が伝熱を妨げることがない。従って、本実施例の半導体装置102による場合も、高い放熱性を実現することができる。
以下、本実施例と請求項との記載との対応関係を説明する。IGBT110、210、ダイオード120、220が「半導体素子」の一例である。放熱板130、140、230、240が「導電プレート」の一例である。第1リードフレーム170、第2リードフレーム270、第3リードフレーム280、継手板134、234は、「導電プレート」の一部である。第1リードフレーム170、第2リードフレーム270、第3リードフレーム280は、導電体と導電プレートの接続位置に形成されている。
以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、以下の変形例を採用してもよい。
(変形例1)上記の第1実施例では、図1に示すように、第1放熱板30には貫通孔32が形成され、第2放熱板40には貫通孔42が形成されている。これに限られず、貫通孔32と貫通孔42のうち一方を省略してもよい。また、上記の第2実施例でも、貫通孔132、142、232、242が形成されているが、貫通孔132、142、232、242のうち、いずれか1〜3個を省略してもよい。
(変形例2)上記の各実施例では、半導体素子(IGBT、ダイオード)、リードフレーム等の各構成部材は、モールド樹脂によって封止されている。これに限られず、各構成部材は、モールド樹脂で封止されていなくてもよい。従って、例えば、各構成部材が絶縁性のケーシングに収容されていてもよい。
(変形例3)上記の各実施例では、リードフレーム及び継手板は、放熱板の側面に接合されている。これに限られず、リードフレーム及び継手板は、放熱板の任意の面(例えば上面又は下面)に接合されていてもよい。あるいは、放熱板と、リードフレーム及び継手板とが一体に成形されていてもよい。一般的に言うと、導電体が導電プレートに接続されて用いられればよい。
(変形例4)上記の各実施例の半導体装置2、102は、IGBTとダイオードの双方を含む。これに限られず、半導体装置は、半導体素子を1個だけ含むものであってもよい。
(変形例5)上記の各実施例では、スイッチング素子としてIGBTを用いる例を説明した。これに限られず、スイッチング素子としてMOSFET等、他のスイッチング素子を用いてもよい。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:半導体装置
10:IGBT
20:ダイオード
30:第1放熱板
32:貫通孔
40:第2放熱板
42:貫通孔
50:導電ブロック
52、54、56:はんだ層
60:導電ブロック
62、64、66:はんだ層
70:第1リードフレーム
70a:端部
75:第2リードフレーム
75a:端部
80、85:四角形領域
90:モールド樹脂
102:半導体装置
110:IGBT
120:ダイオード
130:第1放熱板
132:貫通孔
134:継手板
140:第2放熱板
142:貫通孔
150:導電ブロック
152、154、156:はんだ層
160:導電ブロック
162、164、166:はんだ層
170:第1リードフレーム
170a:端部
190:モールド樹脂
210:IGBT
220:ダイオード
230:第3放熱板
232:貫通孔
234:継手板
240:第4放熱板
242:貫通孔
244:継手板
250:導電ブロック
252、254、256:はんだ層
260:導電ブロック
262、264、266:はんだ層
270:第2リードフレーム
270a:端部
280:第3リードフレーム
290、300:はんだ層

Claims (1)

  1. 面状に広がっている電極を備えた半導体素子が導電プレートにはんだ接合されており、導電体を前記導電プレートに接続して用いる際に前記導電体と前記半導体素子の間を前記導電プレートを介して電流が流れる半導体装置であり、
    前記半導体素子の配置位置と前記導電体との接続位置の間において前記導電プレートに貫通孔が形成されており、
    前記導電プレートが放熱板を兼用しており、前記導電プレートを平面視したときに、前記半導体素子と前記貫通孔の間の距離が、前記導電プレートの厚さよりも大きい、半導体装置。
JP2015145228A 2015-07-22 2015-07-22 半導体装置 Pending JP2017028105A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015145228A JP2017028105A (ja) 2015-07-22 2015-07-22 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015145228A JP2017028105A (ja) 2015-07-22 2015-07-22 半導体装置

Publications (1)

Publication Number Publication Date
JP2017028105A true JP2017028105A (ja) 2017-02-02

Family

ID=57950707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015145228A Pending JP2017028105A (ja) 2015-07-22 2015-07-22 半導体装置

Country Status (1)

Country Link
JP (1) JP2017028105A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364520A (zh) * 2018-04-11 2019-10-22 丰田自动车株式会社 半导体装置
JP2019201076A (ja) * 2018-05-15 2019-11-21 トヨタ自動車株式会社 半導体装置
US11107761B2 (en) 2018-02-06 2021-08-31 Denso Corporation Semiconductor device
WO2024057432A1 (ja) * 2022-09-14 2024-03-21 三菱電機株式会社 半導体装置、半導体装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107761B2 (en) 2018-02-06 2021-08-31 Denso Corporation Semiconductor device
CN110364520A (zh) * 2018-04-11 2019-10-22 丰田自动车株式会社 半导体装置
US10943877B2 (en) 2018-04-11 2021-03-09 Denso Corporation Semiconductor device
CN110364520B (zh) * 2018-04-11 2024-01-05 株式会社电装 半导体装置
JP2019201076A (ja) * 2018-05-15 2019-11-21 トヨタ自動車株式会社 半導体装置
JP7159609B2 (ja) 2018-05-15 2022-10-25 株式会社デンソー 半導体装置
WO2024057432A1 (ja) * 2022-09-14 2024-03-21 三菱電機株式会社 半導体装置、半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP6366612B2 (ja) 電力用半導体モジュール
JP6114149B2 (ja) 半導体装置
US11515292B2 (en) Semiconductor device
JP2015018943A (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
JP2019153752A (ja) 半導体装置
JP2017028105A (ja) 半導体装置
JP2023024670A (ja) 半導体装置
JP2019033226A (ja) 半導体装置
JP2009124082A (ja) 電力用半導体装置
WO2021002132A1 (ja) 半導体モジュールの回路構造
JP2005197435A (ja) 電力半導体装置
JP5869285B2 (ja) 半導体装置
JP6919392B2 (ja) 半導体モジュール
JP5429413B2 (ja) 半導体装置
JP2019212808A (ja) 半導体装置の製造方法
JP7147186B2 (ja) 半導体装置
JP6763246B2 (ja) 半導体装置
JP2019129228A (ja) 半導体装置及びその製造方法
JP7069848B2 (ja) 半導体装置
JP2006294729A (ja) 半導体装置
JP2005268496A (ja) 半導体装置
JP7147187B2 (ja) 半導体装置
JP7192886B2 (ja) 半導体装置
JP7106891B2 (ja) 半導体装置
US11658231B2 (en) Semiconductor device