JP6241919B2 - 光学半導体デバイス - Google Patents

光学半導体デバイス Download PDF

Info

Publication number
JP6241919B2
JP6241919B2 JP2013205233A JP2013205233A JP6241919B2 JP 6241919 B2 JP6241919 B2 JP 6241919B2 JP 2013205233 A JP2013205233 A JP 2013205233A JP 2013205233 A JP2013205233 A JP 2013205233A JP 6241919 B2 JP6241919 B2 JP 6241919B2
Authority
JP
Japan
Prior art keywords
insulating film
heater
region
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013205233A
Other languages
English (en)
Other versions
JP2015070207A (ja
JP2015070207A5 (ja
Inventor
太郎 長谷川
太郎 長谷川
利之 田口
利之 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2013205233A priority Critical patent/JP6241919B2/ja
Priority to US14/500,292 priority patent/US9985413B2/en
Publication of JP2015070207A publication Critical patent/JP2015070207A/ja
Publication of JP2015070207A5 publication Critical patent/JP2015070207A5/ja
Application granted granted Critical
Publication of JP6241919B2 publication Critical patent/JP6241919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1212Chirped grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Description

本発明は、光学半導体デバイスおよびその製造方法に関するものである。
波長可変半導体レーザに代表される光学半導体デバイスにおいては、その屈折率制御のために、対象となる部位の温度制御が実施される場合がある。典型的には、温度制御のためにヒータが用いられる(例えば、特許文献1参照)。
特開2007−48988号公報
温度制御によってその屈折率制御を行う場合、その温度制御の精度は、光学半導体デバイスの光学特性に影響する。したがって、温度制御のためにヒータを用いる場合には、ヒータの信頼性は重要な要件である。
本発明は上記課題に鑑みなされたものであり、ヒータの劣化を抑制することができる光学半導体デバイスおよびその製造方法を提供することを目的とする。
本発明に係る光学半導体デバイスは、半導体層上に設けられた第1絶縁膜と、前記第1絶縁膜上に設けられたヒータと、前記ヒータ上に設けられる第2絶縁膜と、前記ヒータ上に、前記ヒータと接触し、かつ前記第2絶縁膜上に延在して設けられた電極と、を備え、前記電極が延在する部分における前記第2絶縁膜の厚さは、前記第1絶縁膜の厚さよりも大きいものである。この前記ヒータ上において、前記電極が延在しない部分における前記第2絶縁膜の厚さは、前記電極が延在する部分における前記第2絶縁膜の厚さより小さくすることができる。また前記ヒータ上においては、前記第2絶縁膜の厚さが、前記電極が延在する部分のみ、前記電極が延在しない部分における前記第2絶縁膜の厚さより大きくすることができる。また、前記第2絶縁膜は、異なる成膜工程を経て形成された、複数の絶縁膜を含むことができる。また、前記第1絶縁膜および前記第2絶縁膜は、窒化シリコンとすることができる。前記電極が延在する部分の前記第2絶縁膜の厚さは、前記第1絶縁膜の厚さの2倍以上とすることができる。
本発明に係る光学半導体デバイスの製造方法は、半導体層上に第1絶縁膜を形成する工程と、前記第1絶縁膜上にヒータを形成する工程と、前記ヒータ上に、前記第1絶縁膜よりも大きい厚さを有する第2絶縁膜を形成する工程と、前記第2絶縁膜に、前記ヒータを露出させる窓を形成する工程と、前記窓内の前記ヒータに接触し、且つ前記第2絶縁膜上に延在する電極を形成する工程と、を含む。また、前記電極が延在しない部分における前記第2絶縁膜の厚みを減じる工程をさらに含むことができる。前記第2絶縁膜の厚みを減じる工程は、前記電極をマスクとして用いて、前記第2絶縁膜にエッチング処理を施す工程とすることができる。前記第2絶縁膜を形成する工程は、その一部を構成する層を成長した後、その成長温度から常温へ降温する工程の後、その残部を構成する層を成長する工程を含むことができる。
本発明に係る光学半導体デバイスおよびその製造方法によれば、ヒータの劣化を抑制することができる。
実施例1に係る半導体レーザの全体構成を示す模式的断面図である。 (a)はCSG−DBR領域Bの一部拡大図であり、(b)は(a)の上面図である。 (a)は実施例2に係るヒータ周辺の拡大図であり、(b)は(a)の上面図である。 (a)は実施例3に係るヒータ周辺の拡大図であり、(b)は(a)の上面図である。 (a)は実施例4に係るヒータ周辺の拡大図であり、(b)は(a)の上面図である。 (a)および(b)は製造プロセスを表す図である。 (a)および(b)は製造プロセスを表す図である。 (a)および(b)は製造プロセスを表す図である。
以下、図面を参照しつつ、実施例について説明する。
実施例1においては、半導体チップの一例として半導体レーザについて説明する。図1は、実施例1に係る半導体レーザ100の全体構成を示す模式的断面図である。図1に示すように、半導体レーザ100は、SG−DFB(Sampled Grating Distributed Feedback)領域Aと、CSG−DBR(Chirped Sampled Grating Distributed Bragg Reflector)領域Bと、SOA(Semiconductor Optical Amplifier)領域Cと、光吸収領域Dと、反射防止膜ARと、反射膜HRとを備える。
一例として、半導体レーザ100において、フロント側からリア側にかけて、反射防止膜AR、SOA領域C、SG−DFB領域A、CSG−DBR領域B、光吸収領域D、反射膜HRがこの順に配置されている。SG−DFB領域Aは、利得を有しサンプルドグレーティングを備える。CSG−DBR領域Bは、利得を有さずにサンプルドグレーティングを備える。SOA領域Cは、光増幅器として機能する。
SG−DFB領域Aは、基板1上に、下クラッド層2、導波路3、上クラッド層4、およびコンタクト層5が積層された構造を有する。導波路3は、光伝搬方向において利得領域31と屈折率可変領域32とが交互に形成された構造を有する。コンタクト層5は、利得領域31と屈折率可変領域32との界面の上方でそれぞれ分離されている。コンタクト層5において、分離された箇所には絶縁膜が形成されている。利得領域31の上方のコンタクト層5上には、利得制御用電極7が形成されている。屈折率可変領域32の上方のコンタクト層5上には、屈折率調整用電極8が形成されている。
CSG−DBR領域Bは、基板上1に、下クラッド層2、光導波層19、上クラッド層4、絶縁膜6、および複数のヒータ20が積層された構造を有する。ヒータ20のそれぞれには、電源電極21およびグランド電極22が設けられている。なお、ヒータ20の詳細は後述する。SOA領域Cは、基板1上に、下クラッド層2、光増幅層16、上クラッド層4、コンタクト層17、および電極18が積層された構造を有する。光吸収領域Dは、基板1上に、下クラッド層2、光吸収層13、上クラッド層4、コンタクト層14、および電極15が積層された構造を有する。端面膜11は、AR(Anti Reflection)膜からなる。反射膜12は、HR(High Reflection)膜からなる。
SG−DFB領域A、CSG−DBR領域B、SOA領域Cおよび光吸収領域Dにおいて、基板1、下クラッド層2、および上クラッド層4は、一体的に形成されている。導波路3、光導波層19、光吸収層13および光増幅層16は、同一面上に形成されている。SG−DFB領域AとCSG−DBR領域Bとの境界は、導波路3と光導波層19との境界と対応している。
基板1、下クラッド層2、光増幅層16および上クラッド層4のSOA領域C側の端面には、端面膜11が形成されている。本実施例では、端面膜11はAR(Anti Reflection)膜である。端面膜11は、半導体レーザ100のフロント側端面として機能する。基板1、下クラッド層2、光吸収層13、および上クラッド層4の光吸収領域D側の端面には、反射膜12が形成されている。反射膜12は、半導体レーザ100のリア側端面として機能する。
基板1は、例えば、n型InPからなる結晶基板である。下クラッド層2はn型、上クラッド層4はp型であり、それぞれ例えばInPによって構成される。下クラッド層2および上クラッド層4は、導波路3、光導波層19、光吸収層13および光増幅層16を上下で光閉込めしている。
導波路3の利得領域31は、例えば量子井戸構造を有しており、例えばGa0.32In0.68As0.920.08(厚さ5nm)からなる井戸層と、Ga0.22In0.78As0.470.53(厚さ10nm)からなる障壁層が交互に積層された構造を有する。導波路3の屈折率可変領域32は、例えばGa0.28In0.72As0.610.39結晶からなる導波層である。光導波層19は、例えばバルク半導体層で構成することができ、例えばGa0.22In0.78As0.470.53によって構成することができる。本実施例においては、光導波層19は、利得領域31よりも大きいエネルギギャップを有する。
光吸収層13は、半導体レーザ100の発振波長に対して、吸収特性を有する材料が選択される。光吸収層13としては、その吸収端波長が例えば半導体レーザ100の発振波長に対して長波長側に位置する材料を選択することができる。なお、半導体レーザ100の発振波長のうち、もっとも長い発振波長よりも吸収端波長が長波長側に位置していることが好ましい。
光吸収層13は、例えば、量子井戸構造で構成することが可能であり、例えばGa0.47In0.53As(厚さ5nm)の井戸層とGa0.28In0.72As0.610.39(厚さ10nm)の障壁層が交互に積層された構造を有する。また、光吸収層13はバルク半導体であってよく、例えばGa0.46In0.54As0.980.02からなる材料を選択することもできる。なお、光吸収層13は、利得領域31と同じ材料で構成してもよく、その場合は、利得領域31と光吸収層13とを同一工程で作製することができるから、製造工程が簡素化される。
光増幅層16は、電極18からの電流注入によって利得が与えられ、それによって光増幅をなす領域である。光増幅層16は、例えば量子井戸構造で構成することができ、例えばGa0.35In0.65As0.990.01(厚さ5nm)の井戸層とGa0.15In0.85As0.320.68(厚さ10nm)の障壁層が交互に積層された構造とすることができる。また、他の構造として、例えばGa0.44In0.56As0.950.05からなるバルク半導体を採用することもできる。なお、光増幅層16と利得領域31とを同じ材料で構成することもできる。この場合、光増幅層16と利得領域31とを同一工程で作製することができるため、製造工程が簡素化される。
コンタクト層5,14,17は、例えばp型Ga0.47In0.53As結晶によって構成することができる。絶縁膜6は、窒化シリコン(SiN),酸化シリコン(SiO)等の絶縁体からなる保護膜である。ヒータ20は、チタンタングステン(TiW)あるいはニッケルクロム(NiCr)等で構成された薄膜抵抗体である。ヒータ20のそれぞれは、CSG−DBR領域Bの複数のセグメントにまたがって形成されている。セグメントの詳細については後述する。
利得制御用電極7、屈折率調整用電極8、電極15,18、電源電極21およびグランド電極22は、金等の導電性材料からなる。基板1の下部には、裏面電極10が形成されている。裏面電極10は、SG−DFB領域A、CSG−DBR領域B、SOA領域C,および光吸収領域Dにまたがって形成されている。
端面膜11は、1.0%以下の反射率を有するAR膜であり、実質的にその端面が無反射となる特性を有する。AR膜は、例えばMgFおよびTiONからなる誘電体膜で構成することができる。反射膜12は、10%以上(一例として20%)の反射率を有するHR膜であり、反射膜12から外部に漏洩する光出力を抑制することができる。例えばSiOとTiONとを交互に3周期積層した多層膜で構成することができる。なお、ここで反射率とは、半導体レーザ内部に対する反射率を指す。反射膜12が10%以上の反射率を有しているので、外部からリア側端面に入射する迷光に対してもその侵入が抑制される。また、リア側端面から半導体レーザ100に侵入した迷光は、光吸収層13で光吸収される。それにより、半導体レーザ100の共振器部分、すなわち、SG−DFB領域AおよびCSG−DBR領域Bへの迷光の到達が抑制される。
回折格子(コルゲーション)9は、SG−DFB領域AおよびCSG−DBR領域Bの下クラッド層2に所定の間隔を空けて複数箇所に形成されている。それにより、SG−DFB領域AおよびCSG−DBR領域Bにサンプルドグレーティングが形成される。SG−DFB領域Aにおいては、回折格子9は、下クラッド層2において、利得領域31下と屈折率可変領域32下とにそれぞれ形成されている。
SG−DFB領域AおよびCSG−DBR領域Bにおいて、下クラッド層2に複数のセグメントが設けられている。ここでセグメントとは、回折格子9が設けられている回折格子部と回折格子9が設けられていないスペース部とが1つずつ連続する領域のことをいう。すなわち、セグメントとは、両端が回折格子部によって挟まれたスペース部と回折格子部とが連結された領域のことをいう。回折格子9は、下クラッド層2とは異なる屈折率の材料で構成されている。下クラッド層2がInPの場合、回折格子を構成する材料として、例えばGa0.22In0.78As0.470.53を用いることができる。
回折格子9は、2光束干渉露光法を使用したパターニングにより形成することができる。回折格子9の間に位置するスペース部は、回折格子9のパターンをレジストに露光した後、スペース部に相当する位置に再度露光を施すことで実現できる。SG−DFB領域Aにおける回折格子9のピッチと、CSG−DBR領域Bにおける回折格子9のピッチとは、同一でもよく、異なっていてもよい。本実施例においては、一例として、両ピッチは同一に設定してある。また、各セグメントにおいて、回折格子9は同じ長さを有していてもよく、異なる長さを有していてもよい。また、SG−DFB領域Aの各回折格子9が同じ長さを有し、CSG−DBR領域Bの各回折格子9が同じ長さを有し、SG−DFB領域AとCSG−DBR領域Bとで回折格子9の長さが異なっていてもよい。
続いて、半導体レーザ100の動作について説明する。まず、図示しない温度制御装置により、半導体レーザ100の温度を所定値に設定する。次に、利得制御用電極7に所定の駆動電流を注入するとともに、屈折率調整用電極8に所定の電気信号を入力する。それにより、屈折率可変領域32の等価屈折率が所定の値に調整される。その結果、SG−DFB領域Aにおいては、ピーク強度が所定の波長間隔を有する離散的な利得スペクトルが生成される。一方、電源電極21には、所定の駆動電流が供給される。それにより、各ヒータ20がCSG−DBR領域Bの光導波層19の等価屈折率が所定の値に調整される。その結果、CSG−DBR領域Bにおいては、ピーク強度が所定の波長間隔を有する離散的な反射スペクトルが生成される。利得スペクトルおよび反射スペクトルの組み合わせにより、バーニア効果を利用して、所望の波長で安定してレーザ発振させることができる。
図2(a)は、本実施例におけるCSG−DBR領域Bの一部拡大図である。図2(a)に示すように、ヒータは回折格子が設けられた光導波路に対応して設けられることが典型的である。別の典型例では回折格子が設けられた利得部(一般にはレーザ活性層に対応する領域)に対応して設けられる場合もある。図2(b)は、図2(a)の上面図である。図1では図示が省略されていたが、図2(a)に示すように、ヒータ20の表面には、ヒータ20を構成する薄膜抵抗体の表面を保護する絶縁膜40が設けられている。
ヒータ20は、絶縁膜6と絶縁膜40とによって挟まれている。ヒータ20が形成されていない領域では、絶縁膜40は、絶縁膜6上に形成されている。ヒータ20と接続される電源電極21およびグランド電極22は、絶縁膜40上にも延在している。典型的には、電源電極21とグランド電極22は断面略T字の形状を有している。ところで、ヒータ20を構成する薄膜抵抗体のうち、電源電極21あるいはグランド電極22との接触部分の近傍には電流の集中する部位ができやすい。しかも、この部位に対応する絶縁膜40の上には電源電極21あるいはグランド電極21が延在していることから、電源電極21あるいはグランド電極22によって生じる応力が印加されている。このように電流集中と応力印加により、薄膜抵抗体のうち、電源電極21あるいはグランド電極22との接触部分の近傍は、他の部分に比べてヒータ20の信頼性が低下する要因が大きい。
そこで、本実施例においては、電源電極21およびグランド電極22の近傍における応力緩和の構成を設ける。具体的には、絶縁膜6の厚さをd1とし、電源電極21下およびグランド電極22下の絶縁膜40の厚さをd2とした場合に、厚さd2を厚さd1よりも大きくする。これにより、絶縁膜40上に延在した、電源電極21あるいはグランド電極22からヒータ20に印加される応力が緩和される。その結果、ヒータ20の信頼性の低下が抑制される。なお、一例として、厚さd1は、2000Åであり、厚さd2は、4000Å〜6000Å程度である。厚さd2は、厚さd1の2倍以上、さらには3倍以上であることが好ましい。
なお、絶縁膜6,40の材料は、窒化シリコンを用いることが好ましい。絶縁膜6,40に酸素が含まれず、ヒータ20の劣化が抑制されるからである。
図3(a)は、実施例2に係るヒータ20周辺の拡大図である。図3(b)は、図3(a)の上面図である。図3(a)に示すように、絶縁膜40は、電源電極21とグランド電極22との間の領域、すなわち電源電極21あるいはグランド電極22が延在しない領域において、その厚みを小さくしてもよい。実施例1では電源電極21あるいはグランド電極22によるヒータ20への応力の印加を緩和するために、絶縁膜40の厚みを大きくした。しかし、この応力の緩和を前提に絶縁膜40の厚みを定めた場合、電源電極21およびグランド電極22が延在しない領域での絶縁膜40の厚みも大きくなってしまう。絶縁膜40は、一方でヒータ20の表面を保護する機能を提供するが、他方、その熱伝導性により、ヒータ20から発生する熱の伝達経路を提供している。本実施例では、電源電極21およびグランド電極22が延在しない領域において絶縁膜40の厚みが減じられていることから、ヒータ20から発生する熱の伝達経路を縮小できる。これにより、ヒータ20の発熱効率の向上が期待できる。
図4(a)は、実施例3に係るヒータ20周辺の拡大図である。図4(b)は、図4(a)の上面図である。図4(a)に示すように、ヒータ20に対応した領域において、絶縁膜40は、電源電極21下およびグランド電極22下においてのみ、大きい厚さを有していてもよい。本発明において絶縁膜40の厚みを大きくする理由は、電源電極21あるいはグランド電極22から、絶縁膜40を介してヒータ20に対して印加される応力を低減するためである。本実施例では、電源電極21あるいはグランド電極22が延在しない領域の絶縁膜40については、ヒータ20に対応した領域のすべてにおいて、電源電極21あるいはグランド電極22が延在する領域に比べて、その厚みその厚みを小さくしている。これにより、絶縁膜40を厚くする弊害、典型的には実施例2で説明した如きヒータ20の熱効率の低下を抑制することができる。
図5(a)は、実施例4に係るヒータ20周辺の拡大図である。図5(b)は、図5(a)の上面図である。図5(a)に示すように、実施例3と異なる点は、絶縁膜40が、2層の絶縁膜41,42によって構成されている点である。これら絶縁膜41,42は、異なる成膜工程を経て形成されている。すなわち一旦成膜温度まで昇温した後、常温にまで降温する工程が介在する。これにより、絶縁膜40を一度に全部の厚さだけ成長するよりも、熱履歴が介在する分、ヒータ20に対する応力の抑制が期待できる。これは、電源電極21およびグランド電極22が延在する部分の絶縁膜40の厚みを本発明により大きくしたことによる、ヒータ20上のとりわけ電源電極21およびグランド電極22が延在しない部分における応力対策として有効である。
図6(a)〜図8(b)は、図5(a)の構成の製造プロセスを表す図である。まず、図6(a)に示すように、基板1上に、下クラッド層2、光導波層19、上クラッド層4、絶縁膜6を形成する。その後、絶縁膜6上にヒータ20を形成し、パターニングによってヒータ20を所望の形状にする。次に、図6(b)に示すように、ヒータ20および絶縁膜6の露出部分が覆われるように、絶縁膜41を形成する。絶縁膜41の形成後、徐冷して常温に戻す。必要があれば、チャンバから半導体チップを取り出す。チャンバから取り出す場合には、半導体チップを洗浄してもよい。なお、絶縁膜41の厚さは、2000Å程度である。
次に、図7(a)に示すように、絶縁膜41上に絶縁膜42を形成する。絶縁膜42の厚さは、絶縁膜41の厚さよりも大きいことが好ましい。例えば、絶縁膜42の厚さは、6000Å程度である。次に、図7(b)に示すように、電源電極21およびグランド電極22を設ける箇所において、エッチングにより絶縁膜41および絶縁膜42に窓を形成する。
次に、図8(a)に示すように、図7(b)で形成された窓に、メッキにより電源電極21およびグランド電極22を形成する。メッキにより電源電極21およびグランド電極22を形成することから、電源電極21およびグランド電極22は、絶縁膜41,42の窓よりも広がって形成される。それにより、電源電極21およびグランド電極22は、断面略T字状となる。次に、図8(b)に示すように、電源電極21およびグランド電極22をエッチングマスクとして用いて、ドライエッチングを行う。それにより、電源電極21とグランド電極22との間における絶縁膜42の厚さが低減される。以上の工程により、製造プロセスが完結する。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 基板
2 下クラッド層
4 上クラッド層
6 絶縁膜
20 ヒータ
21 電源電極
22 グランド電極
40 絶縁膜
100 半導体レーザ

Claims (2)

  1. 半導体層上に設けられた第1絶縁膜と、
    前記第1絶縁膜上に設けられたヒータと、
    前記ヒータ上に設けられる第2絶縁膜と、
    前記ヒータ上に、前記ヒータと接触し、かつ前記第2絶縁膜上に延在して設けられた電極と、を備え、
    前記電極が延在する部分における前記第2絶縁膜の厚さは、前記第1絶縁膜の厚さよりも大きく、
    前記ヒータ上において、前記電極が延在しない部分における前記第2絶縁膜の厚さは、前記電極が延在する部分における前記第2絶縁膜の厚さより小さい光学半導体デバイス。
  2. 前記電極が延在しない部分における前記第2絶縁膜の上面は、空隙である、請求項1記載の光学半導体デバイス。
JP2013205233A 2013-09-30 2013-09-30 光学半導体デバイス Active JP6241919B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013205233A JP6241919B2 (ja) 2013-09-30 2013-09-30 光学半導体デバイス
US14/500,292 US9985413B2 (en) 2013-09-30 2014-09-29 Optical semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205233A JP6241919B2 (ja) 2013-09-30 2013-09-30 光学半導体デバイス

Publications (3)

Publication Number Publication Date
JP2015070207A JP2015070207A (ja) 2015-04-13
JP2015070207A5 JP2015070207A5 (ja) 2016-11-04
JP6241919B2 true JP6241919B2 (ja) 2017-12-06

Family

ID=52740147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205233A Active JP6241919B2 (ja) 2013-09-30 2013-09-30 光学半導体デバイス

Country Status (2)

Country Link
US (1) US9985413B2 (ja)
JP (1) JP6241919B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756507B2 (en) * 2017-01-23 2020-08-25 Sumitomo Electric Industries, Ltd. Process of forming epitaxial substrate and semiconductor optical device
US11374380B2 (en) * 2017-12-15 2022-06-28 Horiba, Ltd. Semiconductor laser
CN110376766B (zh) * 2018-04-12 2021-03-30 海思光电子有限公司 一种反射装置及可调谐激光器
GB2589335B (en) * 2019-11-26 2022-12-14 Rockley Photonics Ltd Integrated III-V/silicon optoelectronic device and method of manufacture thereof

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156556A (en) * 1976-06-23 1977-12-27 Hitachi Ltd Electrode structure
FR2575604B1 (fr) * 1984-12-28 1987-01-30 Thomson Csf Guide d'ondes rectangulaire a moulures, muni d'une fenetre etanche
US5323138A (en) * 1992-09-04 1994-06-21 Trw Inc. Reliable thin film resistors for integrated circuit applications
US5379318A (en) * 1994-01-31 1995-01-03 Telefonaktiebolaget L M Ericsson Alternating grating tunable DBR laser
JP3141811B2 (ja) * 1997-02-20 2001-03-07 日本電気株式会社 半導体レーザ装置、その製造方法
US6909734B2 (en) * 1999-09-02 2005-06-21 Agility Communications, Inc. High-power, manufacturable sampled grating distributed Bragg reflector lasers
US6243517B1 (en) * 1999-11-04 2001-06-05 Sparkolor Corporation Channel-switched cross-connect
US6937638B2 (en) * 2000-06-09 2005-08-30 Agility Communications, Inc. Manufacturable sampled grating mirrors
JP4989834B2 (ja) * 2000-05-04 2012-08-01 ジェイディーエス ユニフェイズ コーポレイション サンプル格子分布型ブラッグ反射レーザー用のミラー及び空洞設計の改良
JP2002026255A (ja) * 2000-07-03 2002-01-25 Nec Corp 薄膜抵抗体及びその製造方法並びに電子回路装置
US7653093B2 (en) * 2001-09-10 2010-01-26 Imec Widely tunable twin guide laser structure
US7023886B2 (en) * 2001-11-08 2006-04-04 Intel Corporation Wavelength tunable optical components
US20030147588A1 (en) * 2002-02-04 2003-08-07 Lightwaves 2020, Inc. Step-chirped, sampled optical waveguide gratings for WDM channel operations and method of manufacture therefor
GB2385979B (en) * 2002-02-28 2005-10-12 Bookham Technology Plc Control for a tunable laser
KR100541913B1 (ko) * 2003-05-02 2006-01-10 한국전자통신연구원 추출 격자 브래그 반사기와 결합된 추출 격자 분포궤환파장가변 반도체 레이저
JP4474887B2 (ja) * 2003-10-01 2010-06-09 日亜化学工業株式会社 半導体レーザ素子
JP4498819B2 (ja) * 2004-05-14 2010-07-07 株式会社デンソー 薄膜抵抗装置及び抵抗温度特性調整方法
JP2006100603A (ja) * 2004-09-29 2006-04-13 Taiyo Yuden Co Ltd 薄膜キャパシタ
JP5108234B2 (ja) * 2005-02-07 2012-12-26 日本特殊陶業株式会社 マイクロヒータ及びセンサ
EP1703603B1 (en) * 2005-03-17 2015-03-18 Fujitsu Limited Tunable laser
JP2006269577A (ja) * 2005-03-23 2006-10-05 Nec Electronics Corp 半導体装置
JP2006278864A (ja) * 2005-03-30 2006-10-12 Renesas Technology Corp 相変化型不揮発性メモリ及びその製造方法
JP4657853B2 (ja) 2005-08-11 2011-03-23 住友電工デバイス・イノベーション株式会社 半導体レーザ、レーザモジュール、光学部品、レーザ装置、半導体レーザの製造方法および半導体レーザの制御方法
JP2007294914A (ja) * 2006-03-30 2007-11-08 Eudyna Devices Inc 光半導体装置
JP2007273644A (ja) * 2006-03-30 2007-10-18 Eudyna Devices Inc 光半導体装置、レーザチップおよびレーザモジュール
JP2007273650A (ja) * 2006-03-30 2007-10-18 Eudyna Devices Inc 光半導体装置
JP4936313B2 (ja) * 2006-08-25 2012-05-23 日本碍子株式会社 光変調素子
EP1978612B1 (en) * 2007-04-05 2017-08-16 Sumitomo Electric Device Innovations, Inc. Optical semiconductor device and method of controlling the same
JP5217494B2 (ja) * 2007-05-08 2013-06-19 旭硝子株式会社 人工媒質、その製造方法およびアンテナ装置
US7864824B2 (en) * 2008-12-04 2011-01-04 Electronics And Telecommunications Research Institute Multiple distributed feedback laser devices
KR20100072534A (ko) * 2008-12-22 2010-07-01 한국전자통신연구원 반도체 레이저 장치
JP2010182999A (ja) * 2009-02-09 2010-08-19 Nec Corp 半導体レーザ、光送信デバイス、光送受信装置、光送信デバイスの駆動方法
EP2489106B1 (en) * 2009-10-13 2021-02-17 Skorpios Technologies, Inc. Method and system for hybrid integration of a tunable laser
JP5366149B2 (ja) * 2010-03-16 2013-12-11 独立行政法人産業技術総合研究所 半導体レーザー装置
JP5585940B2 (ja) * 2010-04-22 2014-09-10 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び面発光レーザ素子の製造方法
JP5582868B2 (ja) * 2010-05-14 2014-09-03 シチズンホールディングス株式会社 光デバイス
JP5499903B2 (ja) * 2010-05-27 2014-05-21 住友電気工業株式会社 半導体レーザ
JP5597029B2 (ja) * 2010-05-27 2014-10-01 住友電気工業株式会社 波長可変半導体レーザ
JP2012049338A (ja) * 2010-08-27 2012-03-08 Hitachi Ltd ヒータ配線付き半導体チップ
KR101381235B1 (ko) * 2010-08-31 2014-04-04 한국전자통신연구원 이중 모드 반도체 레이저 및 이를 이용한 테라헤르츠파 장치
JP2013033892A (ja) * 2011-06-29 2013-02-14 Sumitomo Electric Ind Ltd 半導体レーザおよびレーザ装置
US9209601B2 (en) * 2011-08-26 2015-12-08 Oclaro Technology Ltd Monolithically integrated tunable semiconductor laser
GB2493988B (en) * 2011-08-26 2016-01-13 Oclaro Technology Ltd Monolithically integrated tunable semiconductor laser
KR20130040283A (ko) * 2011-10-14 2013-04-24 주식회사 동부하이텍 반도체 소자 및 그 제조방법
JP6107089B2 (ja) * 2012-11-30 2017-04-05 株式会社リコー 面発光レーザ素子及び原子発振器
US9134478B2 (en) * 2013-09-16 2015-09-15 Intel Corporation Hybrid optical apparatuses including optical waveguides
JP6308089B2 (ja) * 2013-09-30 2018-04-11 住友電気工業株式会社 光半導体装置の制御方法

Also Published As

Publication number Publication date
JP2015070207A (ja) 2015-04-13
US20150092799A1 (en) 2015-04-02
US9985413B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP6273701B2 (ja) 光半導体素子
EP2149943B1 (en) Temperature tuning of the wavelength of a laser diode by heating
JP5597029B2 (ja) 波長可変半導体レーザ
US9356425B2 (en) Semiconductor DBR laser
KR20090058548A (ko) 반도체 레이저에서의 열 보상
KR20090036138A (ko) 반도체 레이저 초소형 가열 소자 구조
JP5499903B2 (ja) 半導体レーザ
JP6241919B2 (ja) 光学半導体デバイス
KR20090068268A (ko) 반도체 레이저에서의 열 보상
US7515779B2 (en) Optical semiconductor device
US9564735B2 (en) Method for controlling wavelength tunable laser
JP2013033892A (ja) 半導体レーザおよびレーザ装置
JP6186864B2 (ja) 半導体レーザ
JP2007273694A (ja) 光半導体装置
JP6308089B2 (ja) 光半導体装置の制御方法
JP2010541278A (ja) 櫛形ヒータ電極及び下部電流閉込層をもつレーザ源
JP6256745B2 (ja) 波長可変レーザの制御方法
JP2020004808A (ja) 波長可変レーザ装置の制御方法
JP6382506B2 (ja) 波長可変レーザの制御方法
JP5303580B2 (ja) 光半導体装置、レーザチップおよびレーザモジュール
JP6256746B2 (ja) 波長可変レーザの制御方法
JP6294049B2 (ja) 波長可変レーザの制御方法
JP2013077645A (ja) 半導体レーザおよびその制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6241919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250