JP6229309B2 - 光走査装置、画像形成装置、画像投影装置 - Google Patents

光走査装置、画像形成装置、画像投影装置 Download PDF

Info

Publication number
JP6229309B2
JP6229309B2 JP2013109988A JP2013109988A JP6229309B2 JP 6229309 B2 JP6229309 B2 JP 6229309B2 JP 2013109988 A JP2013109988 A JP 2013109988A JP 2013109988 A JP2013109988 A JP 2013109988A JP 6229309 B2 JP6229309 B2 JP 6229309B2
Authority
JP
Japan
Prior art keywords
light
locus
optical scanning
reflected
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013109988A
Other languages
English (en)
Other versions
JP2014228783A (ja
Inventor
北澤 智文
智文 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013109988A priority Critical patent/JP6229309B2/ja
Publication of JP2014228783A publication Critical patent/JP2014228783A/ja
Application granted granted Critical
Publication of JP6229309B2 publication Critical patent/JP6229309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

本開示は、光走査を行う技術に関する。
近年、光を偏向・走査する手段として、半導体製造技術を応用したシリコンやガラスを微細加工するマイクロマシニング技術により、半導体基板上に、反射面を設けた可動部や可動部を支持する梁部を一体形成した小型の光偏向器(光偏向素子)が開発されている。
例えば、図1に示すように、梁部10に支持された可動部11の反射面により光の向きを変える光偏向器24がある。図1は、光偏向器24の構成例を示す図である。図1は、可動部11を回転させた状態を示している。
なお、可動部11を共振駆動させることで、小さなエネルギーで、大きな振幅角を得られるようにする構成の光偏向器24もある。
可動部11を共振駆動した場合は、図2に示すように、1周期間中に直線に近い線形的な波形を示す時間sはわずかである。図2は、可動部11の反射面の振幅角(回転角)と時間との関係を示す図である。この図2に示すわずかな時間sだけを使用すると描画に使える時間が短くなってしまう。
そこで、図3に示すように、蛇行した梁部10で可動部11を支持し、梁部10の変位を図4に示すように累積させることで、梁部10のバネ定数を小さくし、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となるように梁部10を駆動させることも提案されている。これにより、1周期間中に直線に近い線形的な波形を示す時間を多くすることができる。図3は、光偏向器24の構成例を示し、図4は、図3に示す梁部10が異なる方向に撓んだ状態を示す。図5は、可動部11の反射面の振幅角(回転角)と時間との関係を示す図である。
図3に示す光偏向器24の構成の場合は、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となっているか可動部11の向きをモニタリングする。そして、可動部11の反射面の振幅波形に、図6に示すようなジッターが発生している場合は、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となるように、可動部11を制御する。図6は、可動部11の反射面の振幅角(回転角)と時間との関係を示す図であり、振幅波形にジッターが発生した状態を示す。
可動部11の向きをモニタリングする手段としては、梁部10などの駆動によって変形が生じる箇所に、梁部10の変形量を検出するためのPZT膜、ピエゾ抵抗素子、歪ゲージ素子などを配置し、梁部10の変形量を基に、可動部11の向きをモニタリングすることが提案されている。例えば、図7、図8に示す構成が挙げられる。図7、図8は、梁部10に梁部変形検出部12を設けた構成例を示している。梁部変形検出部12は、梁部10の変形量を検出するものであり、上述したPZT膜、ピエゾ抵抗素子、歪ゲージ素子などで構成する。図7は、可動部10の反射面の振幅により大きな応力の発生する梁部10の付け根に梁部変形検出部12を設けた構成例を示している。図7に示す4つの梁部変形検出部12は、それぞれで梁部10の変形量を検出する。このため、4つの梁部変形検出部12でそれぞれ検出した梁部10の変形量を演算し、梁部変形検出部12により得られた値とする。図8は、駆動用のPZTパターン9に並行して梁部10の変形量を検出する梁部変形検出部12である検出用PZTパターンを配置した構成例を示している。図8においては、梁部変形検出部12として、PZT膜を用いた構成例を示したが、ピエゾ抵抗素子、歪ゲージ素子などを用いて構成することも可能である。図8に示す梁部変形検出部12は、図8に示すA、Bのそれぞれで梁部10の変形量を検出する。このため、A、Bのそれぞれで検出した梁部10の変形量を演算し、梁部変形検出部12により得られた値とする。
梁部10にPZT膜を配置した場合は、圧電効果を利用し、PZT膜の変形に応じて電位が発生する。この電位を検出することで、梁部10の変形量を検出することができる。そして、梁部10の変形量から可動部11の向きをモニタリングし、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となるように可動部11を制御する。
ピエゾ抵抗素子や歪ゲージ素子などの検出素子は、検出素子を取り付けた箇所が伸びると、その伸びに応じて、検出素子が伸び、検出素子の断面積が小さくなり、抵抗が大きくなる。逆に、検出素子が縮むと抵抗が小さくなる。このため、梁部10に検出素子を配置し、抵抗変化をモニタリングすることで、梁部10の変形量を検出することができる。そして、梁部10の変形量から可動部11の向きをモニタリングし、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となるように可動部11を制御する。
しかし、梁部変形検出部12を構成するPZT膜は、温度によって圧電定数が変化する。このため、梁部10の変形量が同じであっても、温度変化によって電位が違ってしまうことになる。また、梁部変形検出部12を構成する歪ゲージ素子も温度によって抵抗係数が変化する。このため、梁部10の変形量が同じであっても、温度変化によって異なった抵抗値を示すことになる。その結果、梁部変形検出部12により得られた値は、梁部10の変形量が同じであっても、梁部10の温度変化によって異なってしまうことになる。
上記の問題を解決するには、梁部変形検出部12の近傍に温度センサを配置し、温度センサにより検出された温度を基に、梁部変形検出部12により得られた値を温度に応じて補正することも考えられる。しかし、梁部変形検出部12の位置の温度を温度センサで直接検出できるわけではないので、梁部変形検出部12の位置の温度を温度センサで精度良く検出することができない。また、梁部変形検出部12により得られた値は、梁部10の経年変化などによっても変化する。このため、温度センサにより検出された温度を基に梁部変形検出部12により得られた値を温度に応じて補正しても、梁部10の経年変化などによる誤差が含まれたままになってしまう。
このようなことから、梁部10の温度変化や経年変化などの発生にかかわらず梁部変形検出部12により得られた値を基に、可動部11の向きをモニタリングし、可動部11を制御することが可能な仕組みが必要視されている。
なお、特許文献1(特開2012−118125号公報)には、可動部の裏面に光線を投射し、その反射光を受光する位置によって可動部の向きを検出する方法が提案されている。特許文献1の方法は、本来の光走査を妨げることなく、可動部の向きを正確にモニタリングすることができる。
しかし、特許文献1の方法を行うためには、別の発光部、受光部が必要となる。このため、装置が大型化し、コストが増加してしまうことになる。また、適応できる構成が限られてしまうことになる。例えば、可動部の裏面は平面に限られるので、可動部にリブをつけて、可動部の歪を抑制することが難しくなる。また、光偏向器24全体を囲うパッケージングを行えないか、仮に行えたとしても、パッケージングを行った光偏向器24が非常に大きくなってしまうなどの実装上の問題が発生することになる。
可動部11の駆動が共振駆動で、単に、可動部11の振幅をモニタリングし、梁部変形検出部12により得られた値を補正するだけならば、例えば、特許文献2(特開2011−112975号公報)に提案されている方法を用いることができる。しかし、共振駆動だけではなく、可動部11の振れ角を等速度で変化させたい場合、可動部11の反射面で反射した反射光の光スポットを線形的に等速で動かしたい場合、可動部11を低速で移動させたい場合などは、所望のタイミングで光スポットが移動しているかを検出する必要がある。
また、特許文献1、2では、梁部10の温度変化や経年変化などの発生にかかわらず梁部変形検出部12により得られた値を基に、可動部11を制御することについては何ら考慮されていない。
本開示の目的は、梁部の温度変化や経年変化などの発生にかかわらず梁部変形検出手段により得られた値を基に、可動部を制御することが可能な光走査装置を提供することにある。
本開示の一態様にかかる光走査装置は、
光偏向器を構成する梁部に支持された可動部の反射面の向きを変える光走査装置であって、
前記梁部の変形量を検出する梁部変形検出手段と、
前記反射面で反射された反射光の軌跡を検出する光軌跡検出手段と、
該光軌跡検出手段を光走査領域内に挿入退避する挿脱手段と、
該挿脱手段により、該光軌跡検出手段を光走査領域内に挿入した状態で、前記光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に前記梁部変形検出手段により得られた値を記憶する記憶手段と、
前記挿脱手段により、該光軌跡検出手段を光走査領域内から退避させた状態で、前記梁部変形検出手段により得られた値が前記記憶手段に記憶された値となるように前記可動部を制御する制御手段と、
を有することを特徴とする。
本開示の一態様によれば、梁部の温度変化や経年変化などの発生にかかわらず梁部変形検出手段により得られた値を基に、可動部を制御することができる。
光偏向器の構成例を示す図である。 可動部の反射面の振幅角(回転角)と時間との関係を示す図である。 光偏向器の構成例を示す図である。 図3に示す梁部が異なる方向に撓んだ状態を示す図である。 可動部の反射面の振幅角(回転角)と時間との関係を示す図である。 振幅波形にジッターが発生した状態を示す図である。 梁部に梁部変形検出部を設けた構成例を示す図である。 梁部に梁部変形検出部を設けた構成例を示す図である。 本実施形態の光走査装置の構成例を示す図である。 光軌跡検出部を光偏向器の光の反射領域に挿入退避できるように構成する例を示す図である。 光軌跡検出部を光偏向器の光の反射領域に挿入退避できるように構成する例を示す図である。 光軌跡検出部を光偏向器の光の反射領域に挿入退避できるように構成する例を示す図である。 光軌跡検出部を光偏向器の光の反射領域に挿入退避できるように構成する例を示す図である。 所望の(時間的)軌跡を示す図である。 図14に示す所望の(時間的)軌跡に近づいた反射光の軌跡を示す図である。 梁部変形検出部により得られた理想的な信号波形を示す図である。 ジッターが発生した反射光の軌跡を示す図である。 ジッターが発生した信号波形を示す図である。 光走査の開始前に行う事前準備の処理動作例を示す図である。 光走査の動作中の処理動作例を示す図である。 光偏向器の構成例を示す図である。 電圧信号を示す図である。 光走査装置の構成例を示す図である。 光軌跡検出部の配置位置と、反射光の投影範囲と、の関係を示す図である。 光軌跡検出部の配置位置と、反射光の投影範囲と、の関係を示す図である。 正しい投影位置と、実際の投影位置と、の関係を示す図である。 光検出部の配置位置を示す図である。 可動部の反射面の振幅角(回転角)と時間との関係を示す図である。 可動部の反射面の振幅角(回転角)と時間との関係を示す図である。 光偏向器の構成例を示す図である。 画像形成装置の構成例を示す図である。 画像投影装置の構成例を示す図である。 画像投影装置の構成例を示す図である。
(本開示の一態様にかかる光走査装置の実施形態の概要)
まず、図7〜図9を参照しながら、本開示の一態様にかかる光走査装置の実施形態の概要について説明する。図7、図8は、光走査装置を構成する光偏向器24の構成例を示す。図9は、光走査装置の構成例を示す。
本開示の一態様にかかる光走査装置は、図7、図8に示す光偏向器24を構成する梁部10に支持された可動部11の反射面の向きを変える光走査装置である。
本開示の一態様にかかる光走査装置は、梁部変形検出手段、光軌跡検出手段、記憶手段、制御手段を有して構成する。
梁部変形検出手段は、梁部10の変形量を検出する。梁部変形検出手段は、図7、図8に示す梁部変形検出部12が機能する。
光軌跡検出手段は、光偏向器24の可動部11の反射面で反射された反射光の軌跡を検出する。光軌跡検出手段は、図9に示す光軌跡検出部26が機能する。
記憶手段は、光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に梁部変形検出手段により得られた値を記憶する。記憶手段は、図9に示す記憶部21が機能する。
制御手段は、梁部変形検出手段により得られた値が記憶手段に記憶された値となるように可動部11を制御する。制御手段は、図9に示す制御部20が機能する。
本開示の一態様にかかる光走査装置は、光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に梁部変形検出手段により得られた値を記憶手段に記憶する。光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に梁部変形検出手段により得られた値は、梁部10の温度変化や経年変化などが発生した状態を踏まえて梁部変形検出手段により得られた値である。このため、その値を記憶手段に記憶し、梁部変形検出手段により得られた値が記憶手段に記憶された値となるように可動部11を制御する。これにより、梁部10の温度変化や経年変化などの発生にかかわらず梁部変形検出手段により得られた値を基に、可動部11を制御することができる。以下、添付図面を参照しながら、本開示の一態様にかかる光走査装置の実施形態について詳細に説明する。
(第1の実施形態)
<光走査装置の構成例>
まず、図9を参照しながら、本実施形態の光走査装置の構成例について説明する。図9は、本実施形態の光走査装置の構成例を示す図である。
本実施形態の光走査装置は、図9に示すように、制御部20、記憶部21、LD22、LDドライバ23、光偏向器24、光偏向器ドライバ25、光軌跡検出部26、モータ27、モータドライバ28を有して構成する。
制御部20は、光走査装置全体を制御する。制御部20は、LDドライバ23、光偏向器ドライバ25、モータドライバ28を制御する。記憶部21は、各種情報を記憶する。例えば、LDドライバ23を駆動する際の駆動条件、光偏向器ドライバ25を駆動する際の駆動条件、モータドライバ28を駆動する際の駆動条件を記憶する。
LD22は、光を照射する。LDドライバ23は、LD22を駆動制御する。
光偏向器24は、LD22から照射された光を偏向・走査する。光偏向器ドライバ25は、光偏向器24を駆動制御する。
光軌跡検出部26は、光偏向器24から偏向された光の軌跡を検出する。モータ27は、光軌跡検出部26を駆動制御する。モータドライバ28は、モータ27を駆動制御する。
本実施形態の光偏向器24は、例えば、図7、8に示すように、光偏向器24を構成する梁部10に、梁部変形検出部12を配置している。梁部変形検出部は、梁部10の変形量を検出する。梁部変形検出部は、例えば、PZT膜、ピエゾ抵抗素子、歪ゲージ素子などで構成する。梁部10の変形量を検出することで、梁部10の変形量を基に、光偏向器24を構成する可動部11の向きを把握することができる。
しかし、梁部10は、温度変化の影響を受けやすく、また、経年変化も発生する。このため、梁部10の温度変化や梁部10の経年変化に応じて、梁部変形検出部12により得られた値を補正する必要がある。
本実施形態では、梁部変形検出部12により得られた値を補正する補正手段として、光軌跡検出部26により得られた値を基に、梁部変形検出部12により得られた値を補正する。光軌跡検出部26は、フォトダイオードアレイなどで構成し、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を検出する。フォトダイオードアレイは、フォトダイオードを狭ピッチに配置して構成する。フォトダイオードアレイなどの光軌跡検出部26は、温度の影響を受けにくいが、反射光を受光しないと、反射光の軌跡を検出することができない。そのため、光走査装置に光軌跡検出部26を組み込む場合に、光軌跡検出部26として機能するタイミング、光軌跡検出部26を配置する場所に制限がある。
本実施形態では、例えば、光走査の動作開始前、あるいは、実際の光走査の動作の合間などにおいて、光軌跡検出部26を光偏向器24の光の反射領域に挿入し、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を光軌跡検出部26で検出する。そして、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡となるように、光偏向器24の可動部11の駆動条件を変更する。そして、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡となったときに梁部変形検出部12により得られた値(信号波形)を、実際に光走査を行う際に梁部変形検出部12により得られる目標値(目標信号波形)として記憶部21に記憶する。
光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡となったときに梁部変形検出部12により得られた値(信号波形)は、梁部10の温度変化や経年変化などが発生した状態を踏まえて梁部変形検出部12により得られた値である。このため、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡となったときに梁部変形検出部12により得られた値(信号波形)を、実際に光走査を行う際に梁部変形検出部12により得られる目標値(目標信号波形)として記憶部21に記憶する。これにより、梁部10の温度変化や梁部の経年変化に応じて、梁部変形検出部12により得られた値を補正して記憶部21に記憶して管理することができる。
光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるように構成する方法としては、例えば、図10、図11に示す構成例が挙げられる。図10、図11の構成例は、ピニオン30の回転で、ラック31に固定した光軌跡検出部26を移動させ、光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるようにしている。図10は、光軌跡検出部26を光偏向器24の光の反射領域に挿入した状態を示し、図11は、光軌跡検出部26を光偏向器24の光の反射領域から退避した状態を示している。
他の構成例としては、図12、13に示す構成例が挙げられる。図12、図13の構成例は、光軌跡検出部26を回動可能に支持しておき、ストッパー(図示せず)で光軌跡検出部26を所定位置に停止させ、光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるようにしている。図12は、光軌跡検出部26を光偏向器24の光の反射領域に挿入した状態を示し、図13は、光軌跡検出部26を光偏向器24の光の反射領域から退避した状態を示している。
なお、逆に、光軌跡検出部26を固定し、可動部11の反射面を中心に光偏向器24の向きを変えられるように構成し、本来の反射位置への反射と、光軌跡検出部26への反射と、で光偏向器24からの反射光の光路を変えるようにしてもよい。
梁部変形検出部12により得られた値(信号波形)を記憶部21に記憶した後は、光軌跡検出部26を退避させる。そして、実際の光走査の動作を実行する。光走査の動作中は、梁部変形検出部12により得られた値(信号波形)が、記憶部21に記憶した目標値(目標信号波形)となるように可動部11の駆動条件を変更する。
例えば、所望の(時間的)軌跡が図14に示すような波形である場合、実際の光走査の動作を始める前に、光軌跡検出部26を光偏向器24の光の反射領域に挿入し、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を光軌跡検出部26で検出する。図14は、所望の(時間的)軌跡を示す図である。そして、光軌跡検出部26により得られた反射光の軌跡が図14に示すような所望の(時間的)軌跡となるように、光偏向器24の可動部11の駆動条件を変更する。なお、光軌跡検出部26により得られた反射光の軌跡が図17に示すような軌跡の波形の場合は、波形にジッターが発生している。このため、光軌跡検出部26により得られた反射光の軌跡が図14に示すような所望の(時間的)軌跡となるように可動部11の駆動条件を変更する。図17は、ジッターが発生した反射光の軌跡を示す図である。そして、光軌跡検出部26により得られた反射光の軌跡が図15に示すような軌跡の波形になった場合は、図14に示すような所望の(時間的)軌跡となったと判定する。図15は、図14に示す所望の(時間的)軌跡に近づいた反射光の軌跡を示す図である。そして、光軌跡検出部26により得られた反射光の軌跡が図15に示すような軌跡の波形になったときに梁部変形検出部12により得られた値(信号波形)を処理(場合によっては、増幅や演算を施す)する。そして、梁部変形検出部12により得られた値(信号波形)を、実際に光走査を行う際に梁部変形検出部12により得られる目標値(目標信号波形)として記憶部21に記憶する。そして、実際の光走査の動作中は、梁部変形検出部12により得られた値(信号波形)が、記憶部21に記憶した目標値(目標信号波形)と同じになっているかモニタリングする。そして、梁部変形検出部12により得られた値(信号波形)が、記憶部21に記憶した目標値(目標信号波形)となるように可動部11の駆動条件を変更する。
なお、記憶部21に記憶した目標値(目標信号波形)が図16に示すような波形であった場合、光走査をしているうちに、梁部変形検出部12により得られた値(信号波形)が、図18に示す波形になってきたとする。図16は、梁部変形検出部により得られた理想的な信号波形を示す図である。図18は、ジッターが発生した信号波形を示す図である。この場合、走査している光の軌跡もおかしくなってきていると判断できる。制御部20は、可動部11の駆動条件を少しずつ変更しながら、梁部変形検出部12により得られた値(信号波形)を確認する。そして、梁部変形検出部12により得られた値(信号波形)が記憶部21に記憶した図16に示すような波形となるように、可動部11の駆動条件を変更する。もし、可動部11の駆動条件を変更しても、梁部変形検出部12により得られた値(信号波形)が記憶部21に記憶した図16に示すような波形となる改善の見込みがない場合は、光走査装置の故障を通知する。通知の方法は特に限定せず、ブザー音やアラーム表示など任意の方法で通知する。また、記憶部21にメールアドレス等を記憶し、そのメールアドレスの宛先に故障を通知するようにしても良い。
光走査の開始前に行う事前準備の処理動作例を図19に示す。また、光走査の動作中の処理動作例を図20に示す。
まず、図19を参照しながら、事前準備の処理動作例について説明する。
まず、光軌跡検出部26を光偏向器24の光の反射領域内に挿入する(ステップS1)。
次に、LD22を点灯させ、光偏向器24の可動部11を振幅させる(ステップS2)。これにより、光軌跡検出部26は、光偏向器24の可動部11の反射面で反射された反射光の軌跡を検出する(ステップS3)。
制御部20は、光軌跡検出部26により得られた反射光の軌跡が設定範囲にあるか否かを判定する(ステップS4)。設定範囲は、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡となる範囲であり、予め設定されている。
制御部20は、反射光の軌跡が設定範囲にない場合は(ステップS4/No)、光偏向器24の可動部11の駆動条件を変更する(ステップS5)。そして、光軌跡検出部26は、駆動条件の変更後に光偏向器24の可動部11の反射面で反射された反射光の軌跡を検出する(ステップS3)。制御部20は、反射光の軌跡が設定範囲にあると判定するまでステップS3〜S5の処理を繰り返し行う。なお、上記処理を所定回数繰り返し行っても、反射光の軌跡が設定範囲にあると判定できない場合は、エラー通知を行うようにしても良い。
制御部20は、反射光の軌跡が設定範囲にある場合は(ステップS4/Yes)、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡であると判定する。この場合、制御部20は、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡の波形になったときに梁部変形検出部12により得られた値(信号波形)を処理(場合によっては、増幅や演算を施す)する(ステップS6)。制御部20は、光軌跡検出部26により得られた反射光の軌跡が所望の(時間的)軌跡の波形になったときに梁部変形検出部12により得られた値(信号波形)を、実際に光走査を行う際に梁部変形検出部12により得られる目標値(目標信号波形)として記憶部21に記憶する(ステップS7)。これにより、理想的な駆動を行っている際に梁部変形検出部12により得られる最適な信号波形が記憶部21に記憶されることになる。次に、光軌跡検出部26を光偏向器24の光の反射領域外に退避する(ステップS8)。
次に、図20を参照しながら、光走査の動作中の処理動作例について説明する。
まず、制御部20は、梁部変形検出部12により得られた値(信号波形)を処理(場合によっては、増幅や演算を施す)する(ステップS11)。
次に、制御部20は、上記処理した梁部変形検出部12により得られた値(信号波形)と、図19の処理で事前に記憶部21に記憶した目標値(目標信号波形)と、を比較する(ステップS12)。
制御部20は、梁部変形検出部12により得られた値(信号波形)と、図19の処理で事前に記憶部21に記憶した目標値(目標信号波形)と、を比較した比較結果が許容値内にあるか否かを判定する(ステップS13)。許容値は、予め設定しておく。制御部20は、比較結果が許容値内にある場合は(ステップS13/Yes)、ステップS11〜ステップS13の処理を繰り返し行うことになる。また、比較結果が許容値内にない場合は(ステップS13/No)、光偏向器24の可動部11の駆動条件を変更する(ステップS14)。駆動条件の変更方法は特に限定せず、任意の方法で変更してもよい。例えば、所定の量で段階的に駆動条件を変更しても良く、比較結果に応じた量で駆動条件を変更するようにしても良い。
制御部20は、光走査の動作を終了しない場合は(ステップS15/No)、ステップS11に移行し、駆動条件を変更した後に梁部変形検出部12により得られた値(信号波形)を処理(場合によっては、増幅や演算を施す)する(ステップS11)。そして、ステップS12、S13の処理を行うことになる。また、光走査の動作を終了する場合は(ステップS15/Yes)、処理を終了する(End)。
可動部11の駆動条件を変更する方法としては、例えば、以下の方法が挙げられる。例えば、図21に示す光偏向器24の構成において、梁部10a、10bの蛇行した各梁部にそれぞれ設けられた複数の圧電部材15の1つ置きに印加する電圧信号a、bの相対的位相、駆動周波数、電圧値を変化させて、梁部10a、10bを駆動し、可動部11の駆動条件を変更する。図21は、光偏向器24の構成例を示す図である。図21に示す梁部10a、10bの蛇行した各梁部(回転軸X−Xに垂直な方向の各梁部)にそれぞれ設けられた複数の圧電部材15を1つ置きにA、Bとする。ここで、Aの圧電部材15には、図22の波形aに示す電圧信号aを印加し、Bの圧電部材15には、図22の波形bに示す電圧信号bを印加するようにする。図22は、電圧信号を示す図である。この場合、図22の(a)、(b)に示すように、圧電部材15のAに印加する電圧信号aとBに印加する電圧信号bとの位相を相対的にずらしながら梁部10a、10bを駆動し、可動部11の駆動条件を変更する。図22(a)、(b)に示すm、nは、電圧信号a、bの相対的位相のずれ量を示す。また、電圧信号a、bの駆動周波数、電圧値を変化させて、梁部10a、10bを駆動し、可動部11の駆動条件を変更する。図21に示す光偏向器24の構成の場合は、梁部変形検出部12は、図21に示すA、Bのそれぞれで梁部10a、10bの変形量を検出する。このため、A、Bのそれぞれで検出した梁部10a、10bの変形量を演算し、梁部変形検出部12により得られた値とする。図21において16は、枠である。
<本実施形態の光走査装置の作用・効果>
このように、本実施形態の光走査装置は、光偏向器24を構成する梁部10に支持された可動部11の反射面で反射された反射光の軌跡を検出する光軌跡検出部26と、梁部10の変形量を検出する梁部変形検出部12と、を有して構成する。そして、光軌跡検出部26により得られた反射光の軌跡が所望の設定範囲である場合に梁部変形検出部12により得られた値を記憶部21に記憶する。光軌跡検出部26により得られた反射光の軌跡が所望の設定範囲である場合に梁部変形検出部12により得られた値は、梁部10の温度変化や経年変化などが発生した状態を踏まえて梁部変形検出部12により得られた値である。このため、その値を記憶部21に記憶し、梁部変形検出部12により得られた値が記憶部21に記憶された値となるように可動部11を制御する。これにより、梁部10の温度変化や経年変化などの発生にかかわらず梁部変形検出部12により得られた値を基に、可動部11を制御することができる。
なお、本実施形態の光走査装置は、可動部11の振幅全体を検出している。このため、例えば、特許文献2(特開2011−112975号公報)と同じように、可動部11の振幅をモニタリングし、梁部変形検出部12により得られた値を補正することも可能である。この場合、可動部11の駆動条件を調整しても、梁部変形検出部12により得られた値(信号波形)が記憶部21に記憶した目標値(目標信号波形)から外れる場合は、故障警告を行うようにしても良い。
(第2の実施形態)
次に、第2の実施形態について説明する。
第1の実施形態は、光軌跡検出部26をフォトダイオードアレイで構成している。
本実施形態は、光軌跡検出部26をPSD(Position Sensitive Detector)で構成する。
フォトダイオードアレイは、複数のフォトダイオードで構成しているため、光をそれぞれのフォトダイオードで間欠的にしか検出することができない。その結果、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を間欠的にしか検出することができない。
本実施形態では、光軌跡検出部26をPSDで構成し、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を連続的に検出するようにしている。これにより、光軌跡検出部26により得られた反射光の軌跡にわずかなジッターが発生している場合でも、そのジッターを発見することができる。
PSDは、スポット状の光の位置を検出できる。PSDは、受光量に応じた電圧を発生する材料を一様に塗布した一定の面積を有するセンサに光のスポットが当たると、受光量に応じた電圧を発生する。光スポットの位置から離れた点の電位は、膜材質の抵抗によりそれぞれ低下するので、センサの両端に発生する電圧の比から、光スポットのセンサ位置を求めることができる。アナログ電圧の演算からセンサ位置を求めるので、分解能は理論的には無限小である。例えば、図9〜図13に示す光軌跡検出部26をPSDで構成する場合は、光の走査方向とPSDのセンサ面の長手方向とが一致するように構成する。
光軌跡検出部26をPSDで構成することで、光偏向器24を構成する可動部11の反射面で反射した反射光の軌跡を連続的に検出することができる。その結果、光軌跡検出部26により得られた反射光の軌跡にわずかなジッターが発生している場合でも、そのジッターを発見することができる。
(第3の実施形態)
次に、第3の実施形態について説明する。
第1の実施形態では、光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるように構成している。しかし、光偏向器24の反射光が移動する反射領域に、光軌跡検出部26を挿入退避するためだけの機構を配置することはなるべく避けた方が好ましい。
本実施形態では、図23に示すように、光偏向器24の可動部11の反射面で反射された反射光により実際に投影する投影範囲外に光軌跡検出部26を配置している。図23は、光走査装置の構成例を示す図である。そして、可動部11の反射面で反射された反射光が光軌跡検出部26に当たるように可動部11を制御している。これにより、第1の実施形態のように光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるように構成しなくとも、光偏向器24の反射面で反射した反射光の軌跡を光軌跡検出部26で検出することができる。
本実施形態では、主走査方向は、可動部11を共振駆動により駆動させ、副走査方向は、可動部11の反射面の振幅波形が図5に示すような鋸状の振幅波形となるように可動部11を駆動させ、2次元的に画像を投影する場合を例に説明する。
主走査方向の中央部と周辺部とでは光の走査速度が異なってしまうが、光スポットの速度が速い中央部は輝度を高めに、遅い周辺部では輝度を下げるように、LD22から照射する光の出力を調整し、光の明るさのむらができないようにする。
図23に示すように2次元的に光を走査する場合は、主走査方向の必要投影範囲の外側に光軌跡検出部26を配置する。必要投影範囲とは、光偏向器24の可動部11の反射面で反射した反射光を実際に投影する投影範囲を意味する。そして、実際に光の投影を行う前に、図24に示すように、必要投影範囲よりも大きく主走査方向に可動部11を振幅させ、可動部11の反射面で反射した反射光が、光軌跡検出部26を通過するように可動部11を制御する。図24は、光軌跡検出部26の配置位置と、反射光の投影範囲と、の関係を示す図である。図24に示すように、副走査方向にも反射光が振れているので、間欠的になるが、一定周期で副走査方向の反射光の移動軌跡を検出することができる。
本実施形態の場合は、光軌跡検出部26により得られた副走査方向の反射光の移動軌跡が図5に示すような所望の(時間的)軌跡となるように、光偏向器24の可動部11の副走査方向の駆動条件を変更する。そして、光軌跡検出部26により得られた副走査方向の反射光の軌跡が図5に示すような所望の(時間的)軌跡となったときに梁部変形検出部12により得られた値(信号波形)を、実際に副走査方向の光走査を行う際に梁部変形検出部12により得られる目標値(目標信号波形)として記憶部21に記憶する。この場合、梁部変形検出部12は、副走査方向の振幅に伴う梁部10の変形量を検出するように梁部10に設けることになる。
実際に光の投影を行うときは、主走査方向の振幅は、上述した事前の調整時よりも小さくし、図25に示すように、主走査方向の必要投影範囲に反射光が通過するように必要最低限の振幅にする。図25は、光軌跡検出部26の配置位置と、反射光の投影範囲と、の関係を示す図である。これにより、1周期あたりの描画時間の割合を大きくすることができる。また、梁部変形検出部12により得られた値(信号波形)をモニタリングし、梁部変形検出部12により得られた値(信号波形)が、記憶部21に記憶した目標値(目標信号波形)となるように可動部11の副走査方向の振幅角(回転角)を調整する。
本実施形態では、図23に示すように、光偏向器24の反射面で反射された反射光により実際に投影する投影範囲外に光軌跡検出部26を配置している。これにより、第1の実施形態のように光軌跡検出部26を光偏向器24の光の反射領域に挿入退避できるように構成しなくとも、光偏向器24の反射面で反射した反射光の軌跡を光軌跡検出部26で検出することができる。
なお、上述した実施形態において可動部11の主走査方向の振幅角(回転角)を調整することも可能である。
この場合、梁部変形検出部12は、副走査方向の振幅に伴う梁部10の変形量も検出するように梁部10に設けることになる。そして、実際に光の投影を行う事前準備の処理動作において、可動部11の主走査方向についても駆動電圧を上げるなどして、可動部11の主走査方向の振幅角(回転角)を少しずつ大きくしていく。光軌跡検出部26が反射光を受光したときの可動部11の主走査方向の振幅角は、光軌跡検出部26の配置から把握することができる。そして、実際に光の投影を行う場合は、この可動部11の主走査方向の振幅角(回転角)の情報を基に、主走査方向側の梁部変形検出部12により得られた値をモニタリングする。そして、可動部11の主走査方向の振幅角(回転角)を一定に保つように、主走査方向の可動部11の振幅角(回転角)を調整する。これにより、可動部11の主走査方向の振幅角(回転角)を調整することができる。
(第4の実施形態)
次に、第4の実施形態について説明する。
光偏向器24の反射面で反射された反射光の実際の投影位置が、例えば、図26に示すように、本来の正しい投影位置に対してずれているとする。図26は、正しい投影位置と、実際の投影位置と、の関係を示す図である。反射光の軌跡を光軌跡検出部26で検出しているので、反射光の実際の投影位置が本来の正しい投影位置に対してずれていても、反射光のずれ量を把握することができる。このため、光軌跡検出部26で検出した反射光の軌跡を基に、反射光のずれ量を把握し、そのずれ量に応じてLD22から照射する光の発光タイミングを調整し、実際の投影位置を本来の正しい投影位置に調整することができる。
例えば、図27に示すように、主走査方向において光軌跡検出部26を設けた側とは反対側に光検出部40を配置し、投影画像1コマの中で、主走査方向の振幅を最低1回ずつは光軌跡検出部26と光検出部40とで検出できるようにする。図27は、光検出部の配置位置を示す図である。
反射光が外側に動くときと内側に動くときに、光軌跡検出部26と光検出部40との2つの検出部を反射光が横切る。このため、反射光の軌跡は、図28に示すように、1周期の中で、所定の位置を2回ずつ4回通過することになる。図28は、可動部11の反射面の振幅角(回転角)と時間との関係を示す図である。
主走査振幅yは、以下の式で表すことができる。
y=A・sin(ωt+θ)+c
但し、A:振幅、ω:角速度、ω=2πf(f:周波数)、t:時間、θ:位相、c:中心位置ずれ量を表す。
未知のパラメータが、A、ω、θ、cの4つで、方程式が4つ以上得られるので、A、ω、θ、cの値が求まる。また、ωを2πで除すことによって、駆動周波数を求めることができる。駆動信号の共振周波数と、実際の反射面の振幅の周波数と、が同じと考えれば、未知のパラメータが減るので、計算は更に容易になる。cの値が主走査駆動の投影範囲の中心位置ずれ量となる。もし、主走査振幅の中心位置ずれを検出したら、正しい位置に投影されるように、図29に示すように、LD22から照射する光の発光タイミングを調整し、実際の投影位置を本来の正しい投影位置に調整する。図29は、可動部11の反射面の振幅角(回転角)と時間との関係を示す図である。図29では太線がLD22を発光させている時間、破線が可動部11の反射面の振幅を示している。
なお、図27は、光軌跡検出部26よりも幅が狭い光検出部40を設けた例を示している。しかし、両側に光軌跡検出部26のように幅の長い受光領域を持った光検出部40を配置することも可能である。この構成により、主走査方向全体の反射光の位置ずれをモニタリングすることができる。また、副走査方向の反射光の軌跡を更に細かく検出し、光軌跡検出部26での検出精度を向上させることができる。
(第5の実施形態)
次に、第5の実施形態について説明する。
梁部10の温度変化が激しい場合は、実際の光走査を行う事前に記憶部21に記憶した値を基に可動部11の振幅を調整しても、可動部11の振幅を調整するための環境条件が変わってしまうため、可動部11の振幅を正しく調整することが困難となる。
本実施形態では、光走査装置に温度センサ(図示せず)を設ける。そして、温度センサにより検出した温度情報を基に、温度が著しく変化したと判定した場合は、梁部変形検出部12により得られた値ではなく、光軌跡検出部26により得られた反射光の軌跡を基に可動部11の振幅を調整する。温度が著しく変化したか否かは、例えば、温度センサにより検出した温度の変化量が所定の値以上の場合に、温度が著しく変化したと判定する。温度が著しく変化したと判定した際は、LD22の発光タイミングを調整し、必要投影範囲より反射光を大きく振幅させて、光軌跡検出部26に反射光を入射させるように、可動部11の振幅角(回転角)の大きさを切り替える。なお、可動部11の振幅角(回転角)に対して描画に有効な時間の割合が小さくなってしまった場合は、投影画像の輝度を下げるか、LD22により発光する光の輝度を上げるかする。LD22の発光タイミングを調整しても、光軌跡検出部26からは精度の高い検出結果を得ることができるので、光軌跡検出部26により得られた値を基に可動部11の振幅を調整することで、ジッターの発生を抑制し、投影画像の歪み発生を防ぐことができる。なお、温度センサの設置位置は特に限定せず、任意の位置に設けることが可能である。但し、梁部変形検出部12の近傍に温度センサを設けることが好ましい。
(第6の実施形態)
次に、第6の実施形態について説明する。
可動部11の反射面から離れるほど、反射面によって反射された反射光の振幅が大きくなる。このため、可動部11の反射面から光軌跡検出部26が離れるほど、光軌跡検出部26で反射光を検出する領域が大きくなってしまう。光軌跡検出部26で反射光を検出する領域が大きくなってしまうと、光走査装置を組み込む場合の設計自由度を向上させる観点から好ましくない。
本実施形態では、例えば、図30に示すように、光軌跡検出部26を光偏向器24に取り付けるようにしている。図30は、光偏向器の構成例を示す図である。図30に示すように、光軌跡検出部26を光偏向器24に取り付けることで、可動部11の反射面から近い位置で反射光の軌跡を検出することができる。その結果、光軌跡検出部26で反射光を検出する領域を小さくすることができ、光軌跡検出部26を小型化することができる。また、光軌跡検出部26を保持するための新たな部材を必要とせずに、光軌跡検出部26を光走査装置に搭載することができる。
本実施形態では、例えば、図30に示すように、可動部11の反射面の回転振幅を制御できる光偏向器24をパッケージ部50に収容し、光が透過可能なガラスなどの窓51を設けた蓋部52で光偏向器24を封止する。この蓋部52に光軌跡検出部26を配置する。光軌跡検出部26の配置位置は、反射面からの反射光の反射方向や、反射面の振幅角によって任意に決定すればよい。反射面が多少傾いている可能性もあるので、光軌跡検出部26が適正な配置位置に配置するように蓋部52の位置を調整してから、蓋部52をパッケージ部50に固定する。図30に示す蓋部52は、枠53、窓51、光軌跡検出部26を有して構成している。
(第7の実施形態)
次に、第7の実施形態について説明する。
本実施形態では、上述した光走査装置を画像形成装置に搭載している。
実際にレーザ光を感光体ドラムなどの像担持体に照射して像担持体上に画像を形成する際は、撮像領域から光軌跡検出部26を退避させる。レーザ光を像担持体に照射しない時(画像形成前、画像形成の間など)は、反射光を受光できる位置に光軌跡検出部26を移動し、光偏向器24の可動部11の反射面の振幅制御を行う。これにより、光偏向器24の可動部11の反射面の振幅制御を正確に行うことができるため、光走査装置を長期的に使用しても、良好な画質を形成することができる。
図31は、画像形成装置の構成例を示す。図31において、901は光書込装置、902は光書込装置901の被走査面を提供する感光体ドラム(像担持体)である。光書込装置901は、記録信号によって変調された1本又は複数本のレーザ光で感光体ドラム902の表面(被走査面)を同ドラムの軸方向に走査する。
感光体ドラム902は、矢印903方向に回転駆動され、帯電部904で帯電された表面に光書込装置901により光走査されることによって静電潜像が形成される。
この静電潜像は現像部905でトナー像に顕像化され、このトナー像は転写部906で記録紙908に転写される。
転写されたトナー像は定着部907によって記録紙908に定着される。感光体ドラム902の転写部906を通過した表面部分はクリーニング部909で残留トナーが除去される。なお、感光体ドラム902に代えてベルト状の感光体を用いる構成も可能である。また、トナー像を転写媒体に一旦転写し、この転写媒体からトナー像を記録紙に転写して定着させる構成とすることも可能である。
光書込装置901は、光源部910、振動ミラー921、結像光学系922、走査光学系923から構成される。光源部910は、記録信号によって変調された1本又は複数本のレーザ光を発する。振動ミラー921は、上述した実施形態の光走査装置である。結像光学系922は、振動ミラー921のミラー基板のミラー面に光源部910からのレーザ光を結像させるための光学系である。走査光学系923は、振動ミラー921のミラー面で反射された1本又は複数本のレーザ光を感光体ドラム902の表面(被走査面)に結像させるための光学系である。振動ミラー921は、駆動のための集積回路924とともに回路基板925に実装された形で光書込装置901に組み込まれる。
上述した構成の光書込装置901は、次のような利点を有する。振動ミラー921は、各歪みセンサ(図示省略)の出力に基づく変位算出回路における検出精度、ならびに駆動制御回路における制御性に優れる。このため、画像形成装置の高画質化に有利である。
なお、記録紙908の搬送機構、感光体ドラム902の駆動機構、現像部905、転写部906などの制御手段、光源部910の駆動系などは、従来の画像形成装置と同様でよいため、図中では省略されている(必要であれば、特許第4151959号参照)。
(第8の実施形態)
次に、第8の実施形態について説明する。
本実施形態では、上述した光走査装置を画像投影装置に搭載している。
実際に画像を投影する際は、撮像領域から光軌跡検出部26を退避させる。画像を投影しない時(画像投影前、画像投影の間など)は、反射光を受光できる位置に光軌跡検出部26を移動し、光偏向器24の可動部11の反射面の振幅制御を行う。これにより、光偏向器24の可動部11の反射面の振幅制御を正確に行うことができるため、光走査装置を長期的に使用しても、良好な画質を投影することができる。
図32は、2軸駆動の光走査装置を画像投影装置に搭載した構成例を示す。
画像投影装置は、図32に示すように、赤色光源装置1R、緑色光源装置1G、青色光源装置1B、クロスダイクロイックプリズム2Q、光走査装置3Qを備え、投射面(スクリーン)4Qに投影する。赤色光源装置1Rは、赤色のレーザ光を射出する。緑色光源装置1Gは、緑色のレーザ光を射出する。青色光源装置1Bは、青色のレーザ光を射出する。クロスダイクロイックプリズム2Qは、レーザ光を光走査装置3Qに導く。光走査装置3Qは、クロスダイクロイックプリズム2Qから射出されたレーザ光を走査する。投影装置は投射面4Qを一体とする構成であってもよい。
赤色光源装置1Rは、中心波長が630nmである半導体レーザー(LD)であり、青色光源装置1Bは、中心波長が430nmである半導体レーザー(LD)である。緑色光源装置1Gは、中心波長が540nmである緑色のレーザ光を出射する。
また、光走査装置3Qは、2軸周りに回動できる構造であり、入射したレーザ光を投射面(スクリーン)4Qに反射させる。
上記構成により、光走査装置3Qのミラー部投影面内で2方向に振動運動が可能となっている。また、投射面4Qの水平方向及び垂直方向にレーザ光を走査することが可能となる。これにより、投影位置に応じて各色の光源の発光量を調整し、所望の画像を表示することができる。
なお、画像投影装置は、図33に示すように、赤色光源装置1R、緑色光源装置1G、青色光源装置1Bが光路合成を行わない構成であってもよい。図33は、2軸駆動の光走査装置を画像投影装置に搭載した構成例を示す。なお、本実施形態では、カラー画像を投影する例について述べているが、白黒画像を投影する場合にも本実施形態の光走査装置を適用可能することが可能である。
なお、上述する実施形態は、本発明の好適な実施形態であり、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
例えば、上記実施形態の光走査装置を構成する各装置における制御動作は、ハードウェア、ソフトウェア、あるいは、両者の複合構成を用いて実行することも可能である。
なお、ソフトウェアを用いて処理を実行する場合には、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれているコンピュータ内のメモリにインストールして実行させることが可能である。あるいは、各種処理が実行可能な汎用コンピュータ内のメモリにインストールして実行させることが可能である。
例えば、プログラムは、記録媒体としてのハードディスクやROM(Read Only Memory)に予め記録しておくことが可能である。あるいは、プログラムは、リムーバブル記録媒体に一時的、あるいは、永続的に格納(記録)しておくことが可能である。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウエアとして提供することが可能である。リムーバブル記録媒体は、磁気ディスク、半導体メモリなどの各種記録媒体が挙げられる。
なお、プログラムは、上述したようなリムーバブル記録媒体からコンピュータにインストールすることになる。また、ダウンロードサイトからコンピュータに無線転送することになる。また、ネットワークを介してコンピュータに有線で転送することになる。
また、上記実施形態の光走査装置を構成する各装置は、上記実施形態で説明した処理動作に従って時系列的に処理を実行するだけに限定するものでない。例えば、処理を実行する装置の処理能力、あるいは、必要に応じて並列的にあるいは個別に処理を実行するように構築することも可能である。
10 梁部
11 可動部
12 梁部変形検出部
20 制御部
21 記憶部
22 LD
23 LDドライバ
24 光偏向器
25 光偏向器ドライバ
26 光軌跡検出部
27 モータ
28 モータドライバ
特開2012−118125号公報 特開2011−112975号公報

Claims (10)

  1. 光偏向器を構成する梁部に支持された可動部の反射面の向きを変える光走査装置であって、
    前記梁部の変形量を検出する梁部変形検出手段と、
    前記反射面で反射された反射光の軌跡を検出する光軌跡検出手段と、
    該光軌跡検出手段を光走査領域内に挿入退避する挿脱手段と、
    該挿脱手段により、該光軌跡検出手段を光走査領域内に挿入した状態で、前記光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に前記梁部変形検出手段により得られた値を記憶する記憶手段と、
    前記挿脱手段により、該光軌跡検出手段を光走査領域内から退避させた状態で、前記梁部変形検出手段により得られた値が前記記憶手段に記憶された値となるように前記可動部を制御する制御手段と、
    を有することを特徴とする光走査装置。
  2. 光偏向器を構成する梁部に支持された可動部の反射面の向きを変える光走査装置であって、
    前記梁部の変形量を検出する梁部変形検出手段と、
    前記反射面で反射された反射光の軌跡を検出する光軌跡検出手段と、
    前記光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に前記梁部変形検出手段により得られた値を記憶する記憶手段と、
    前記梁部変形検出手段により得られた値が前記記憶手段に記憶された値となるように前記可動部を制御する制御手段と、
    反射光を検出する光検出手段と、
    を有し、
    前記光軌跡検出手段は、
    前記反射面で反射された反射光により実際に投影する投影範囲外に配置されており、
    前記反射面で反射された反射光が前記光軌跡検出手段に当たるように前記可動部を制御し、
    前記光検出手段と前記光軌跡検出手段とにより得られた反射光の軌跡を基に、前記反射面に光を照射する光源の発光タイミングを調整する、ことを特徴とする光走査装置。
  3. 前記光軌跡検出手段は、
    前記反射面で反射された反射光により実際に投影する投影範囲外に配置されており、
    前記反射面で反射された反射光が前記光軌跡検出手段に当たるように前記可動部を制御する、ことを特徴とする請求項に記載の光走査装置。
  4. 反射光を検出する光検出手段を有し、
    前記光検出手段と前記光軌跡検出手段とにより得られた反射光の軌跡を基に、前記反射面に光を照射する光源の発光タイミングを調整する、ことを特徴とする請求項に記載の光走査装置。
  5. 温度センサを有し、
    前記制御手段は、
    前記温度センサで得られた温度の変化量が所定の値以上の場合は、前記光軌跡検出手段により得られた反射光の軌跡を基に前記可動部を制御する、ことを特徴とする請求項2から請求項4の何れか1項に記載の光走査装置。
  6. 前記記憶手段は、
    前記可動部を制御して前記光軌跡検出手段により得られた反射光の軌跡が所望の設定範囲である場合に前記梁部変形検出手段により得られた値を記憶する、ことを特徴とする請求項1から請求項5の何れか1項に記載の光走査装置。
  7. 前記光軌跡検出手段は、
    PSD(Position
    Sensitive Detector)で構成する、ことを特徴とする請求項1から請求項6の何れか1項に記載の光走査装置。
  8. 前記光軌跡検出手段は、
    前記光偏向器に設けられている、ことを特徴とする請求項1から請求項の何れか1項に記載の光走査装置。
  9. 請求項1から請求項8の何れか1項に記載の光走査装置を搭載したことを特徴とする画像形成装置。
  10. 請求項1から請求項8の何れか1項に記載の光走査装置を搭載したことを特徴とする画像投影装置。
JP2013109988A 2013-05-24 2013-05-24 光走査装置、画像形成装置、画像投影装置 Active JP6229309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109988A JP6229309B2 (ja) 2013-05-24 2013-05-24 光走査装置、画像形成装置、画像投影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109988A JP6229309B2 (ja) 2013-05-24 2013-05-24 光走査装置、画像形成装置、画像投影装置

Publications (2)

Publication Number Publication Date
JP2014228783A JP2014228783A (ja) 2014-12-08
JP6229309B2 true JP6229309B2 (ja) 2017-11-15

Family

ID=52128641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109988A Active JP6229309B2 (ja) 2013-05-24 2013-05-24 光走査装置、画像形成装置、画像投影装置

Country Status (1)

Country Link
JP (1) JP6229309B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168353B2 (ja) * 2013-09-13 2017-07-26 株式会社リコー 光偏向装置、画像形成装置、車両、光偏向装置の制御方法、及び光偏向装置の調整方法
CN110067972B (zh) 2014-12-26 2022-01-04 麦克赛尔株式会社 照明装置
JP6369357B2 (ja) * 2015-03-04 2018-08-08 株式会社デンソー 走査装置
JP6694772B2 (ja) * 2016-07-13 2020-05-20 株式会社日立エルジーデータストレージ レーザ投射表示装置
JP6961502B2 (ja) * 2018-01-22 2021-11-05 スタンレー電気株式会社 光走査装置
JP7315827B2 (ja) * 2019-07-01 2023-07-27 ミツミ電機株式会社 光走査装置及びその制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732751B2 (en) * 2005-06-13 2010-06-08 Arete' Associates Optical systems and methods using microelectromechanical-systems mirrors exceeding thirty microns
JP2007109929A (ja) * 2005-10-14 2007-04-26 Ricoh Co Ltd 二次元vcselアレイの駆動装置および駆動方法および画像形成方法および光走査装置および画像形成装置
JP2007199682A (ja) * 2005-12-27 2007-08-09 Konica Minolta Holdings Inc 光偏向器および光ビーム走査装置
US8519324B2 (en) * 2006-09-15 2013-08-27 Nec Corporation Laser projector for projecting and displaying an image based on the raster scanning of a laser beam
JP5095311B2 (ja) * 2007-08-30 2012-12-12 株式会社日立製作所 画像表示装置、及び画像表示装置における反射鏡の振動状態調整方法
JP2009128014A (ja) * 2007-11-19 2009-06-11 Sanyo Electric Co Ltd ビーム照射装置
JP5312302B2 (ja) * 2009-11-30 2013-10-09 日本信号株式会社 光走査装置
JP5452197B2 (ja) * 2009-12-03 2014-03-26 パナソニック株式会社 Mems光スキャナ
JP2011154324A (ja) * 2010-01-28 2011-08-11 Pioneer Electronic Corp 画像表示装置

Also Published As

Publication number Publication date
JP2014228783A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6229309B2 (ja) 光走査装置、画像形成装置、画像投影装置
JP4620901B2 (ja) 2次元光走査装置、及び該2次元光走査装置の駆動方法
JP6558447B2 (ja) 光偏向装置とヘッドアップディスプレイ装置と光書込みユニットと画像形成装置と物体認識装置
JP6891402B2 (ja) 光偏向装置、画像形成装置、画像表示装置、物体装置、及び光偏向装置の調整方法
US20150077823A1 (en) Optical deflection device, apparatus including the same, and method of controlling optical deflecting device
JP6311322B2 (ja) 光偏向装置および画像表示装置並びにヘッドアップディスプレイ
JP6398599B2 (ja) 光偏向装置、光走査装置、画像投影装置、及びヘッドアップディスプレイ
JP2009198988A (ja) 画像表示装置
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP6311314B2 (ja) 光偏向装置、光走査装置、画像表示装置及び画像形成装置
JP2017116842A (ja) 光偏向器及び画像投影装置
JP6533365B2 (ja) 光偏向装置、光偏向ミラー及び画像表示装置
JP2005241482A (ja) 光偏向器、光偏向器における偏向手段の共振周波数を検出する検出装置及び方法
JP2009276481A (ja) 光偏向装置、及び画像形成装置
US8345339B2 (en) Optical deflector
JP5063012B2 (ja) 光学走査装置及び画像形成装置
JP6582519B2 (ja) 光偏向装置、2次元画像表示装置、光走査装置及び画像形成装置
JP7027689B2 (ja) 光偏向装置および画像投影装置
JP6946708B2 (ja) 制御装置、画像投影装置、および制御方法
US20100142980A1 (en) Image forming apparatus for and method of correcting color registration error
JP2020101589A (ja) 光偏向装置、画像投影装置、レーザヘッドランプ及び移動体
JP5716992B2 (ja) 光偏向装置、光走査装置、画像形成装置及び画像投影装置
JP2014048571A (ja) 光偏向器、画像形成装置及び画像投影装置
JP2013195479A (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
JP2005326745A (ja) 光偏向装置およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R151 Written notification of patent or utility model registration

Ref document number: 6229309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151