JP6108872B2 - コンバインド発電システム、運転方法、及び制御装置 - Google Patents

コンバインド発電システム、運転方法、及び制御装置 Download PDF

Info

Publication number
JP6108872B2
JP6108872B2 JP2013036181A JP2013036181A JP6108872B2 JP 6108872 B2 JP6108872 B2 JP 6108872B2 JP 2013036181 A JP2013036181 A JP 2013036181A JP 2013036181 A JP2013036181 A JP 2013036181A JP 6108872 B2 JP6108872 B2 JP 6108872B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust
pressure
line
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013036181A
Other languages
English (en)
Other versions
JP2014165072A (ja
Inventor
陽喜 椋本
陽喜 椋本
眞竹 徳久
徳久 眞竹
勝仁 桐木平
勝仁 桐木平
森 龍太郎
龍太郎 森
大澤 弘行
弘行 大澤
昌弘 水原
昌弘 水原
雄一 寺本
雄一 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013036181A priority Critical patent/JP6108872B2/ja
Publication of JP2014165072A publication Critical patent/JP2014165072A/ja
Application granted granted Critical
Publication of JP6108872B2 publication Critical patent/JP6108872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池を備えるコンバインド発電システム、並びに当該発電システムの運転方法及び制御装置に関する。
燃料電池、例えば固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)は、低公害で発電効率が高いため、近年、各種分野での利用が期待されている。燃料電池を用いた高効率発電システムとしては、燃料電池とガスタービンとを連携したコンバインド発電システムが知られている(例えば、特許文献1を参照)。
このようなコンバインド発電システムにおいて、燃料電池はガスタービンの燃焼機の上流に設置され、燃料電池から排出される未燃分の燃料(残燃料)を含む排燃料ガスをガスタービンの燃焼機に導入している。すなわち、燃料電池とガスタービンの燃焼機とが配管にて接続されている。これにより、コンバインド発電システムは、燃料を無駄なく発電に利用することができる。また、ガスタービンの圧縮機で圧縮された空気は、燃料電池に供給され、燃料の燃焼に利用される。
特開2010−146934号公報
ところで、コンバインド発電システムにおいて燃料電池から排出される排空気と排燃料をガスタービンの燃焼器に供給するため、燃料電池の運転圧力とガスタービンの運転圧力とを等しくする必要がある。このため、コンバインド発電システムの起動時には、燃料電池の内圧を、ガスタービンの運転圧力まで昇圧させる必要がある。したがって、燃料電池の内圧がガスタービンの運転圧力に達するまでは、排燃料ガス燃焼器に供給せず燃料電池の燃料極に再循環させることで、燃料電池の内圧を高め、その後に排燃料ガスを燃焼器に供給する必要がある。
特許文献1に示すコンバインド発電システムにおいて、燃料電池の内圧は、ベント調整弁の開度によって制御される。ベント調整弁とは、燃料電池に循環される排燃料ガス及びガスタービンに供給される排燃料ガスの流量を制御する弁のことである。しかしながら、ベント調整弁は一般的に、定常運転時のガス条件(流量、温度など)に合わせて設計されるため、起動時や停止時などガス条件が定常運転時と大きく異なる場合、当該弁によって流量制御を行うことが困難であるという問題がある。
本発明の目的は、上述した課題を解決するためになされたものであり、燃料電池の起動時や運転開始時において燃料電池の内圧を適切に制御するコンバインド発電システム、発電システムの運転方法、及び制御装置を提供することにある。
本発明は上記の課題を解決するためになされたものであり、燃料ガスと酸化剤ガスとで発電する燃料電池と、前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と、弁の動作を制御する制御装置と、前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンとを備え、前記制御装置は、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定することを特徴とするコンバインド発電システムである。
また、本発明において前記制御装置は、前記排燃料ラインの圧力が所定の設定圧力になるように前記排出流量制御弁の開度を制御し、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力を再設定することを特徴とする。
また、本発明において前記制御装置は、前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように前記差圧制御手段を制御し、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定差圧を再設定することを特徴とする。
また、本発明は、前記再循環ラインを通る燃料ガスの流量を調整する再循環流量制御弁を備え、前記制御装置は、前記再循環流量制御弁の開度が所定範囲内になるように前記排出流量制御弁の開度または前記差圧制御手段を制御することを特徴とする。
また、本発明において前記制御装置は、前記排燃料ラインの圧力が所定の設定圧力になるように前記排出流量制御弁の開度を制御し、前記再循環流量制御弁の開度が所定範囲外になったときに前記設定圧力を再設定することを特徴とする。
また、本発明において前記制御装置は、前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように前記差圧制御手段を制御し、前記再循環流量制御弁の開度が所定範囲外になったときに前記設定差圧を再設定することを特徴とする。
また、本発明は、前記排出流量制御弁として前記排燃料ラインから前記タービンに供給する燃料ガスの流量を制御する排燃料供給弁と、前記排燃料ラインから排出系統に供給する燃料ガスの流量を制御する排気弁とを備えることを特徴とする。
また、本発明において前記制御装置は、前記燃料電池による発電を開始したときに、前記排燃料供給弁を閉じ、前記燃料電池の内圧が一定になるように前記排気弁の開度制御を開始し、前記燃料電池が定格運転に至ったときに、前記排気弁の開度を固定し、前記燃料電池の内圧が一定になるように前記排燃料供給弁の開度制御を開始することを特徴とする。
また、本発明において前記制御装置は、前記燃料電池が定格運転に至るまでは、前記運転圧力制御弁の開度が所定範囲内になるように前記排気弁の開度を制御し、前記燃料電池が定格運転に至った以降は、前記運転圧力制御弁の開度が所定範囲内になるように前記差圧制御手段を制御することを特徴とする。
また、本発明は、前記排出流量制御弁として前記排燃料ラインから前記タービンに供給する燃料ガスの流量を制御する排燃料供給弁と、前記排燃料ラインから排出系統に供給する燃料ガスの流量を制御する排気弁とを備え、前記制御装置は、前記燃料電池による発電を開始したときに、前記排燃料供給弁を閉じ、前記燃料電池の内圧が一定になるように前記排気弁の開度制御を開始し、前記燃料電池が定格運転に至るまでは、前記再循環流量制御弁の開度が所定範囲内になるように前記差圧制御手段を制御し、前記燃料電池が定格運転に至ったときに、前記排気弁の開度を固定し、前記燃料電池の内圧が一定になるように前記排燃料供給弁の開度制御を開始し、前記燃料電池が定格運転に至った以降は、前記再循環流量制御弁の開度が所定範囲内になるように前記排燃料供給弁の開度を制御することを特徴とする。
また、本発明は、燃料ガスと酸化剤ガスとで発電する燃料電池と、前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と、前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンとを備えるコンバインド発電システムの運転方法であって、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定することを特徴とする。
また、本発明は、燃料ガスと酸化剤ガスとで発電する燃料電池と、前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と、前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンとを備えるコンバインド発電システムを制御する制御装置であって、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定することを特徴とする。
本発明によれば、制御装置は、運転圧力制御弁の開度が所定範囲内になるように排出流量制御弁の開度を制御する。つまり、本発明によれば、制御装置は、外部に排出する排燃料ガスの量を制御することで、排燃料ラインを流れる排燃料ガスの流量を、運転圧力制御弁の制御に適切な流量にする。これにより、制御装置は、起動時や運転開始時などガス条件が定常運転時と大きく異なる場合においても、運転圧力制御弁によって細かな流量制御を行うことができる。
本発明の第1の実施形態に係るコンバインド発電システムの系統図である。 本発明の第1の実施形態に係る燃料電池モジュールの概略構成を示す模式図である。 本発明の第1の実施形態に係るセルスタックの要部断面図である。 本発明の第1の実施形態に係るカートリッジの断面図である。 本発明の第1の実施形態に係るカートリッジの斜視図である。 本発明の第1の実施形態に係る燃料電池モジュールの起動方法を示す第1のフローチャートである。 本発明の第1の実施形態に係る燃料電池モジュールの起動方法を示す第2のフローチャートである。 本発明の第1の実施形態に係る燃料電池モジュールの起動時における各バルブの開度の遷移を示すタイムチャートである。 本発明の第2の実施形態に係るコンバインド発電システムの系統図である。 本発明の第3の実施形態に係るコンバインド発電システムの系統図である。
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
《第1の実施形態》
図1は、本発明の第1の実施形態に係るコンバインド発電システムの系統図である。
図1に示すように、本実施形態のコンバインド発電システム1は燃料電池モジュール2と、ガスタービン3とを組み合わせた発電システムである。
ガスタービン3は、空気圧縮機4と、燃焼機5と、タービン6とを主な構成要素として有している。空気圧縮機4及びタービン6のロータ7は、互いに連結されており、空気圧縮機4は外気を吸入して圧縮する。さらに、ガスタービン3には、発電機8が接続されている。
燃焼機5は、空気圧縮機4で圧縮された空気(酸化剤ガス)に燃料ガスを噴射して、高温燃焼ガスを生成する。タービン6は、燃焼機5により生成された高温燃焼ガスの供給を受けて回転駆動力を発生させ、この回転駆動力をロータ7に伝達するものである。タービン6には、タービン6を回転駆動した後の高温燃焼ガス、即ち、排ガスが導入されるガスタービン排ガスダクト9が設けられている。ガスタービン排ガスダクト9は、排ガスを外部に導く配管である。
燃料電池モジュール2は圧力容器10と圧力容器10の内部に収納された複数のカートリッジ201とを有している。
カートリッジ201は、燃料ガスF1及び空気O1の供給を受けて発電を行うものであって、燃料電池モジュール2に少なくとも一つ設けられている。
カートリッジ201には、ガスタービン3から空気O1を供給する空気配管330と、燃料供給部20から燃料ガスF1を供給する燃料配管310(燃料ライン)が接続されている。
燃料ガスF1としては、例えば、水素、一酸化炭素、メタン等の炭化水素系ガス、石炭等の炭素質原料のガス化により得られたガス、又は、これらの2以上の成分を含むガス等が利用される。また、本実施形態では、燃料電池モジュール2における酸化剤ガスとして、空気圧縮機4が圧縮した空気O1を用いているが、これに限られない。例えば、酸化剤ガスとしては、酸素を15〜30vol%含むガス等を利用することができ、例えば排燃焼ガスと空気との混合ガスや、酸素と空気との混合ガスを利用してもよい。
さらに、コンバインド発電システム1には、カートリッジ201における発電に用いられた排空気O2を、ガスタービン3の燃焼機5に供給する排空気配管340と、カートリッジ201から排出される燃料ガス(排燃料ガスF2)を燃焼機5に供給する排燃料配管320(排燃料ライン)とが設けられている。排燃料配管320には、排燃料配管320を流れる排燃料ガスF2を加圧するブロワ14(差圧制御手段)が設けられている。ここで、排燃料ガスF2とは、カートリッジ201を通過したガスであるが、カートリッジ201の通過時点においては、排燃料ガスF2に燃焼成分が残っている。
燃料配管310には、燃料電池モジュール2に供給する燃料ガスF1の流量を調整する燃料流量調整バルブ401が設けられている。また、燃料配管310からは、燃料ガスF1を燃焼機5に直接導入する燃料分岐配管311が設けられている。燃料分岐配管311には、燃焼機5に供給する燃料ガスの流量を調整する燃料分岐調整バルブ402が設けられている。
排燃料配管320には、排燃料ガスF2の一部を燃料配管310に再循環させる燃料再循環配管321(再循環ライン)が接続されている。即ち、燃料再循環配管321の一方の端部は排燃料配管320に接続され、他方の端部は燃料配管310に接続されている。燃料再循環配管321には、燃料再循環配管321を流れる排燃料ガスF2の流量を調整する再循環調整バルブ410(再循環流量制御弁)が設けられている。また、燃料再循環配管321には、燃料再循環配管321を流れる排燃料ガスF2の一部を排燃料配管320に戻す再循環バイパス配管323が接続されている。再循環バイパス配管323には、排燃料配管320と燃料再循環配管321の差圧(ブロワヘッド)を調整する差圧制御バルブ409(差圧制御手段)が設けられている。
また、排燃料配管320には、排燃料ガスF2の一部を外部に放出する配管であるベント配管322が接続されている。即ち、ベント配管322の一方の端部は排燃料配管320に接続され、他方の端部は外部に開放されている。ベント配管322には、外部に放出される排燃料ガスF2の流量を制御する排気バルブ403(排出流量制御弁、排気弁)が設けられている。
燃料配管310には、燃料供給部20から燃料電池モジュール2に向かって順に、燃料分岐配管311との接続部、燃料流量調整バルブ401、燃料再循環配管321との接続部が設けられている。
排燃料配管320には、カートリッジ201から燃焼機5に向かって順に、運転圧力制御バルブ404(運転圧力制御弁)、ベント配管322との接続部、再循環バイパス配管323との接続部、ブロワ14、燃料再循環配管321との接続部、排燃料バルブ405(排出流量制御弁、排燃料供給弁)が設けられている。運転圧力制御バルブ404は、排燃料配管320に流れる排燃料ガスF2の流量を調整することで、燃料電池モジュール2の燃料側の運転圧力を調整する。また、排燃料バルブ405は、燃焼機5に供給する排燃料ガスF2の流量を調整する。
空気配管330は、ガスタービン3の空気圧縮機4において圧縮された空気O1をカートリッジ201に導く配管である。空気配管330からは、空気O1を排空気配管340へ分岐する空気分岐配管331が設けられており、空気分岐配管331には、排空気配管340へバイパスする空気O1の流量を調整する空気分岐調整バルブ406が設けられている。また、空気配管330には、燃料電池モジュール2に供給する空気O1の流量を調整する空気流量調整バルブ407が設けられている。また、排空気配管340には、燃焼機5に供給する空気O2の流量を調整する排空気流量調整バルブ408が設けられている。
そして、コンバインド発電システム1は、各バルブの開度を制御する制御装置900を備える。制御装置900は、燃料電池モジュール2の内圧を管理し、各バルブの開度を制御する。
次に、燃料電池モジュール2の詳細構造について説明する。
図2は、本発明の第1の実施形態に係る燃料電池モジュールの概略構成を示す模式図である。
図2に示すように、燃料電池モジュール2は、容器中心軸Avを中心として容器中心軸方向Dvに延びる円筒形状の圧力容器10と、この圧力容器10内に配置されている複数のカートリッジ201を有している。
圧力容器10は、例えば、内部の圧力が0.1MPa〜約5MPa、内部の温度が大気温度〜約550℃で運用される。このため、この圧力容器10は、耐圧性を考慮して、円筒形状の胴部11と、胴部11の中心軸方向における両端部に形成されている半球状の鏡部12とを有している。この圧力容器10は、全体として円筒形状を成し、その容器中心軸Avが上下方向に延びるよう設置されている。また、この圧力容器10は、耐圧性と共に、使用条件によって空気O1中に含まれる酸素などの酸化剤に対する耐食性も要求される場合は、例えば、SUS304などのステンレス系材で形成しても良い。
図3は、本発明の第1の実施形態に係るセルスタックの要部断面図である。
カートリッジ201は、複数のセルスタックの束で構成されている。図3に示すように、セル集合体であるセルスタック101は、円筒形状(又は管形状)の基体管103と、基体管103の外周面に形成されている複数の燃料電池セル105と、隣り合う燃料電池セル105の間に形成されているインターコネクタ107とを有する。燃料電池セル105は、燃料極112と固体電解質111と空気極113とが積層して形成されている。セルスタック101は、さらに、基体管103の外周面に形成されている複数の燃料電池セル105のうちで、基体管103の軸方向において最も端に形成されている燃料電池セル105の空気極113に、インターコネクタ107を介して電気的に接続されているリード膜115を有する。
本実施形態では、この円筒形状(又は管形状)のセルスタック101の内周側に燃料ガスF1が通り、外周側に空気O1が通る。
基体管103は、例えば、CaO安定化ZrO(CSZ)、Y安定化ZrO(YSZ)、MgAl等のいずれかで形成されている多孔質体である。この基体管103は、燃料電池セル105とインターコネクタ107とリード膜115とを支持する役目を担っている。さらに、この基体管103は、内周側に供給された燃料ガスF1を基体管103の細孔を介して基体管103の外周面に形成される燃料電池セル105に拡散させる役目も担っている。
燃料極112は、例えば、Ni/YSZ等、Niとジルコニア系電解質材料との複合材の酸化物で形成されている。この場合、燃料極112は、燃料極112の成分であるNiが燃料ガスF1に対して触媒としても作用する。この触媒としての作用は、基体管103を介して供給された燃料ガスF1中に、例えば、メタン(CH)と水蒸気とが含まれている場合、これら相互を反応させ、水素(H)と一酸化炭素(CO)に改質する作用である。
空気極113は、例えば、LaSrMnO系酸化物、又はLaCoO系酸化物で形成されている。この空気極113は、固体電解質111との界面付近において、供給される空気O1中の酸素を解離させて酸素イオン(O2−)を生成する。
固体電解質111は、例えば、主としてYSZで形成されている。このYSZは、ガスを通しにくい気密性と、高温下での高い酸素イオン導電性とを有している。この固体電解質111は、空気極113で生成された酸素イオン(O2−)を燃料極112に移動させる。
前述の燃料極112では、固体電解質111との界面付近において、改質により得られた水素(H)及び一酸化炭素(CO)と、固体電解質111から供給された酸素イオン(O2−)とが反応し、水(HO)及び二酸化炭素(CO)が生成される。この燃料電池セル105では、この反応過程で酸素イオンから電子が放出されて、発電が行われる。
インターコネクタ107は、例えば、SrTiO系などのM1−xLxTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物で形成されている。このインターコネクタ107は、燃料ガスF1と空気O1とが混合しないように緻密な膜で、酸化雰囲気と還元雰囲気との両雰囲気下で安定した電気導電性を有する。このインターコネクタ107は、隣り合う燃料電池セル105において、一方の燃料電池セル105の空気極113と他方の燃料電池セル105の燃料極112とを電気的に接続する。つまり、このインターコネクタ107は、隣り合う燃料電池セル105同士を電気的に直列接続する。
リード膜115は、電子伝導性を有すること、及びセルスタック101を構成する他の材料との熱膨張係数が近いことが必要であることから、例えば、Ni/YSZ等のNiとジルコニア系電解質材料との複合材で形成されている。このリード膜115は、インターコネクタ107により電気的に直列接続されている複数の燃料電池セル105で発電された直流電力をセルスタック101の端部付近まで導出する役目を担っている。
図4は、本発明の第1の実施形態に係るカートリッジの断面図である。
図5は、本発明の第1の実施形態に係るカートリッジの斜視図である。
カートリッジ201は、図4及び図5に示すように、複数のセルスタック101と、複数のセルスタック101の束の一方の端部を覆う第一カートリッジヘッダ220aと、複数のセルスタック101の束の他方の端部を覆う第二カートリッジヘッダ220bと、を有している。複数のセルスタック101は、互いに平行で且つその長手方向における互いの位置が揃って、全体として円柱形状を成している。また、第一カートリッジヘッダ220a及び第二カートリッジヘッダ220bは、円柱形状を成している複数のセルスタック101の束の外径よりわずかに大きな外径の円筒形状を成している。このため、カートリッジ201は、全体として、セルスタック101の長手方向に長い円柱形状を成している。
第一カートリッジヘッダ220a及び第二カートリッジヘッダ220bは、いずれも、複数のセルスタック101の束の端部が開口228から内部に入り込む円筒形状のケーシング229a,229bと、ケーシング229a,229bの開口228を塞ぐ断熱体227a,227bと、ケーシング229a,229bの内部空間をセルスタック101の長手方向で2つの空間に仕切る管板225a,225bと、を有している。管板225a,225b等は、高温耐久性のある金属材料で形成されている。管板225a,225b及び断熱体227a,227bには、複数のセルスタック101の端部のそれぞれが挿通可能な貫通孔が形成されている。管板225a,225bは、その貫通孔に挿通されたセルスタック101の端部をシール部材又は接着剤237を介して支持する。このため、この管板225a,225bには貫通孔が形成されているものの、この管板225a,225bを基準にしてケーシング229a,229b内の一方の空間に対する他方の空間の気密性が確保されている。断熱体227a,227bの貫通孔の内径は、ここに挿通されるセルスタック101の外径よりも大きく形成されている。つまり、断熱体227a,227bの貫通孔の内周面と、この貫通孔に挿通されたセルスタック101の外周面との間には隙間235a,235bが存在する。
第一カートリッジヘッダ220aのケーシング229aと管板225aとで形成されている空間は、燃料ガスF1が供給される燃料ガス供給室217を形成している。このケーシング229aには、燃料配管310からの燃料ガスF1を燃料ガス供給室217に導くための燃料ガス供給孔231aが形成されている。この燃料ガス供給室217内には、複数のセルスタック101における基体管103の端部が位置し、ここで開放している。燃料配管310から燃料ガス供給室217に導かれた燃料ガスF1は、複数のセルスタック101の基体管103の内部に流れ込む。この際、燃料ガスF1は、燃料ガス供給室217により、複数のセルスタック101の各基体管103に対してほぼ均等流量に配分される。このため、複数のセルスタック101における各発電量の均一化を図ることができる。
第二カートリッジヘッダ220bのケーシング229bと管板225bとで形成されている空間は、セルスタック101の基体管103内を通過した排燃料ガスF2が流れ込む燃料ガス排出室219を形成している。このケーシング229bには、燃料ガス排出室219に流れ込んだ排燃料ガスF2を排燃料配管320に導くための燃料ガス排出孔231bが形成されている。この燃料ガス排出室219内には、複数のセルスタック101における基体管103の端部が位置し、ここで開放している。複数のセルスタック101の各基体管103内を通過した排燃料ガスF2は、前述したように、燃料ガス排出室219に流入した後、排燃料配管320を通って、圧力容器10外へ排出される。
第二カートリッジヘッダ220bのケーシング229bと断熱体227bと管板225bとで形成されている空間は、空気供給室216を形成している。このケーシング229bには、空気配管330からの空気O1を空気供給室216に導くための空気供給孔233bが形成されている。この空気供給室216内に導かれた空気O1は、断熱体227bの貫通孔の内周面と、この貫通孔に挿通されているセルスタック101の外周面との間の隙間235bから、第一カートリッジヘッダ220aと第二カートリッジヘッダ220bとの間の発電室215へと流出する。
第一カートリッジヘッダ220aと第二カートリッジヘッダ220bとの間の発電室215には、複数のセルスタック101の燃料電池セル105が配置されている。このため、この発電室215では、燃料ガスF1と空気O1とが電気化学的反応して、発電が行われる。なお、この発電室215で、セルスタック101の長手方向における中央部付近の温度は、燃料電池モジュール2の定常運転時に、およそ700℃〜1100℃の高温雰囲気になる。また、この発電室215は、第一カートリッジヘッダ220aと第二カートリッジヘッダ220bとの間であって、外周側が後述の内側断熱材16で囲まれた空間である。
第一カートリッジヘッダ220aのケーシング229aと断熱体227aと管板225aとで形成されている空間は、発電室215を通った排空気O2が流入する空気排出室218を形成している。このケーシング229aには、空気排出室218に流れ込んだ排空気O2を排空気配管340に導くための空気排出孔233aが形成されている。発電室215中の空気O1は、断熱体227aの貫通孔の内周面と、この貫通孔に挿通されているセルスタック101の外周面との間の隙間235aから空気排出室218内に流入した後、排空気配管340を通って、圧力容器10外へ排空気O2として排出される。
発電室215の高温化に伴って、各カートリッジヘッダ220a,220bの管板225a,225bが高温化する。第一カートリッジヘッダ220a及び第二カートリッジヘッダ220bの断熱体227a,227bは、この管板225a,225bが高温化による強度低下や空気O1中に含まれている酸化剤による腐食を抑える。さらに、この断熱体227a,227bは、管板225a,225bの熱変形も抑える。
前述したように、発電室215中の空気O1と、この発電室215に配置されている複数のセルスタック101の内側を通る燃料ガスF1とは、セルスタック101における複数の燃料電池セル105で電気化学反応する。この結果、複数の燃料電池セル105で発電が行われる。
複数の燃料電池セル105での発電で得られた直流電流は、複数の燃料電池セル105相互間に設けられているインターコネクタ107を経て、セルスタック101の端部側へ流れ、このセルスタック101のリード膜115に流れ込む。そして、この直流電流は、リード膜115から、集電板(不図示)を介して、カートリッジ201の集電棒(不図示)に流れ、カートリッジ201外部へ取り出される。複数の集電棒は、互いに直列及び/又は並列接続されている。集電棒のうち、最も下流側の集電棒は、例えば、図示されていないインバータに接続されている。カートリッジ201外部に取り出された直流電流は、直列及び/又は並列接続されている複数の集電棒を経て、例えば、インバータに流れ、ここで交流電流に変換されて、電力負荷へと供給される。
セルスタック101の内周側を流れる燃料ガスF1とセルスタック101の外周側を流れる空気O1とは、このセルスタック101を介して熱交換する。この結果、燃料ガスF1は、空気O1により加熱され、空気O1は、逆に燃料ガスF1により冷却される。本実施形態では、これら燃料ガスF1と空気O1とがセルスタック101の内周側と外周側とを対向して流れる。このため、燃料ガスF1と空気O1との熱交換率が高まり、燃料ガスF1による空気O1の冷却効率、及び空気O1による燃料ガスF1の加熱効率が高まる。よって、本実施形態において、空気O1は、第一カートリッジヘッダ220aを形成する管板225a等が座屈変形等しない温度に冷却されてから、この第一カートリッジヘッダ220aの空気排出室218に流れ込む。また、本実施形態において、燃料ガスF1は、発電室215内のセルスタック101内で、ヒーター等を用いることなく発電に適した温度に予熱昇温される。
なお、本実施形態では、燃料ガスF1と空気O1とがセルスタック101の内周側と外周側とを対向して流れる、つまり燃料ガスF1と空気O1とが逆向きに流れるが、必ずしもこの必要はなく、例えば、燃料ガスF1と空気O1とがセルスタック101の内周側と外周側で同じ向きに流れてもよいし、空気O1が燃料ガスF1の流れに対して直交する方向に流れてもよい。
円柱形状の複数のカートリッジ201は、図2に示すように、いずれも、カートリッジ中心軸Acが圧力容器10の容器中心軸Avと平行になるよう、圧力容器10内に配置されている。つまり、本実施形態では、カートリッジ中心軸Acは、容器中心軸Avと同様、上下方向に延びている。
なお、カートリッジ201の構成は上記したものに限らず、カートリッジを圧力容器の中心軸と直交する方向に延びるように配置してもよい。また、カートリッジは円柱形状に限らず、角柱形状としてもよい。
次に、上記の構成からなるコンバインド発電システム1の動作について説明する。
まず、起動時におけるコンバインド発電システム1の動作について説明する。
コンバインド発電システム1の起動は、まずガスタービン3のみを起動させ、燃料電池モジュール2の内圧がガスタービン3の運転圧力に達したときに、燃料電池モジュール2を起動させることで行う。このとき、燃料電池モジュール2が定常運転に至るまでは、排燃料バルブ405は全閉とし、排気バルブ403の制御により燃料電池モジュール2の内圧を制御する。
なお、燃料電池モジュール2の起動前には、各バルブは以下に示すような制御がなされている。燃料流量調整バルブ401は、燃料電池モジュール2の空気側と燃料側との差圧が所定の値になるように開度制御がされている。燃料分岐調整バルブ402は、燃焼機5の稼動に必要な流量だけ燃料ガスF1が供給されるように開度制御がされている。排気バルブ403、運転圧力制御バルブ404、差圧制御バルブ409及び再循環調整バルブ410は、所定開度で開度が固定されている。排燃料バルブ405及び空気分岐調整バルブ406は、全閉となっている。空気流量調整バルブ407及び排空気流量調整バルブ408は、全開となっている。また、燃料電池モジュール2の起動前には、ブロワ14は規定回転数で運転している。
図6は、本発明の第1の実施形態に係る燃料電池モジュールの起動方法を示す第1のフローチャートである。
図7は、本発明の第1の実施形態に係る燃料電池モジュールの起動方法を示す第2のフローチャートである。
図8は、本発明の第1の実施形態に係る燃料電池モジュールの起動時における各バルブの開度の遷移を示すタイムチャートである。
ガスタービン3が定常運転に至り、燃料電池モジュール2を起動させると、制御装置900は、ブロワ14の回転数及び差圧制御バルブ409の開度を、排燃料配管320と燃料再循環配管321の差圧(ブロワヘッド)が所定の設定差圧になるようにする制御を開始する(ステップS1)。なお、制御している機器は、バルブ409とブロワ14の回転数である。ブロワの回転数は動力がモータの場合は、インバータで調整することができる。
なお、本実施形態では、ブロワ14と差圧制御バルブ409のそれぞれによってブロワヘッドの制御を行うため、制御の干渉を防止する必要がある。制御の干渉を防止する方法としては、制御範囲を異ならせる方法が挙げられる。具体的には、再循環バイパス配管323の圧力または流量が差圧制御バルブ409の制御範囲内である場合は差圧制御バルブ409によってブロワヘッドの制御を行い、差圧制御バルブ409の制御範囲を超える場合はブロワ14によってブロワヘッドの制御を行う方法が挙げられる。
また、このほかブロワ14と差圧制御バルブ409の制御周期を異ならせることで制御の干渉を防止しても良い。
次に、制御装置900は、燃料再循環配管321の流量が一定になるよう、再循環制御バルブ410の開度制御を開始する(ステップS2)。次に、制御装置900は、燃料流量調整バルブ401の開度制御を、差圧を一定にする制御から、燃料ガスF1の流量を一定にする制御に変更する(ステップS3)。次に、制御装置900は、排燃料配管320のブロワ14の吸い込み側の圧力が所定の設定圧力になるよう、排気バルブ403の開度制御を開始する(ステップS4)。次に、制御装置900は、燃料電池モジュール2の空気側と燃料側との差圧が所定の値になるよう、燃料流量調整バルブ401の開度制御を開始する(ステップS5)。
次に、制御装置900は、燃料電池モジュール2が定常動作に至ったか否かを判定する(ステップS6)。燃料電池モジュール2が定常動作に至っていないと判定した場合(ステップS6:NO)、制御装置900は、運転圧力制御バルブ404の開度が規定範囲内(例えば、30%〜70%)であるか否かを判定する(ステップS7)。
運転圧力制御バルブ404の開度が規定範囲の下限値未満になっている場合(ステップS7:下限値未満)、制御装置900は、排気バルブ403の設定圧力を所定値だけ増加させる(ステップS8)。他方、運転圧力制御バルブ404の開度が規定範囲の上限値を超えている場合(ステップS7:上限値超)、制御装置900は、排気バルブ403の設定圧力を所定値だけ減少させる(ステップS9)。
ステップS8、S9により排気バルブ403の設定圧力を変更した場合、または運転圧力制御バルブ404の開度が規定範囲内である場合(ステップS7:規定範囲内)、制御装置900は、再循環制御バルブ410の開度が規定範囲内(例えば、30%〜70%)であるか否かを判定する(ステップS10)。
再循環制御バルブ410の開度が規定範囲の下限値未満になっている場合(ステップS10:下限値未満)、制御装置900は、ブロワ14及び差圧制御バルブ409の設定差圧を所定値だけ減少させる(ステップS11)。他方、再循環制御バルブ410の開度が規定範囲の上限値を超えている場合(ステップS10:上限値超)、制御装置900は、ブロワ14及び差圧制御バルブ409の設定差圧を所定値だけ増加させる(ステップS12)。
そして、ステップS11、S12により排気バルブ403の設定圧力を変更した場合、または再循環制御バルブ410の開度が規定範囲内である場合(ステップS10:規定範囲内)、ステップS6に戻り、燃料電池モジュール2が定常動作に至ったか否かを判定する。なお、この間にもステップS1〜S5で開始した各バルブの開度制御は継続して実行される。
他方、ステップS6において燃料電池モジュール2が定常動作に至ったと判定した場合(ステップS6:YES)、制御装置900は、排気バルブ403の開度を固定する(ステップS13)。次に、制御装置900は、排燃料配管320のブロワ14吐出側の圧力が所定の設定圧力になるよう、排燃料バルブ405の開度制御を開始する(ステップS14)。なお、排燃料バルブ405の開度制御に用いる設定圧力は、ステップS4で設定し、ステップS8、S9で変更なされた設定圧力にブロワ14及び差圧制御バルブ409の設定差圧を足したものである。
次に、制御装置900は、排気バルブ403の開度を徐々に下げる(ステップS15)。これにより、排燃料配管320の圧力が徐々に高まるため、ステップS14で開度の制御を開始した排燃料バルブ405の開度は徐々に大きくなる。
次に、制御装置900は、排気バルブ403が全閉されたか否かを判定する(ステップS16)。排気バルブ403が全閉となっていないと判定した場合(ステップS16:NO)、制御装置900は、運転圧力制御バルブ404の開度が規定範囲内であるか否かを判定する(ステップS17)。
運転圧力制御バルブ404の開度が規定範囲の下限値未満になっている場合(ステップS17:下限値未満)、制御装置900は、ブロワ14及び差圧制御バルブ409の設定差圧を所定値だけ減少させる(ステップS18)。他方、再循環制御バルブ410の開度が規定範囲の上限値を超えている場合(ステップS17:上限値超)、制御装置900は、ブロワ14及び差圧制御バルブ409の設定差圧を所定値だけ増加させる(ステップS19)。
ステップS18、S19によりブロワ14及び差圧制御バルブ409の設定差圧を変更した場合、または運転圧力制御バルブ404の開度が規定範囲内である場合(ステップS17:規定範囲内)、制御装置900は、再循環制御バルブ410の開度が規定範囲内(例えば、30%〜70%)であるか否かを判定する(ステップS20)。
再循環制御バルブ410の開度が規定範囲の下限値未満になっている場合(ステップS20:下限値未満)、制御装置900は、排燃料バルブ405の設定圧力を所定値だけ減少させる(ステップS21)。他方、運転圧力制御バルブ404の開度が規定範囲の上限値を超えている場合(ステップS20:上限値超)、制御装置900は、排燃料バルブ405の設定圧力を所定値だけ増加させる(ステップS22)。
そして、ステップS21、S22により排燃料バルブ405の設定圧力を変更した場合、または再循環制御バルブ410の開度が規定範囲内である場合(ステップS20:規定範囲内)、ステップS16に戻り、排気バルブ403が全閉になったか否かを判定する。なお、この間にもステップS1〜S5、S14、S15で開始した各バルブの開度制御は継続して実行される。
他方、ステップS16において排気バルブ403が全閉となったと判定した場合(ステップS16:YES)、制御装置900は、再循環調整バルブ410の開度を固定し、排燃料バルブ405の制御対象を排燃料配管320のブロワ14吐出側の圧力から再循環流量制御とし(ステップS23)、燃料電池モジュールの起動処理を終了する。
このように、本実施形態によれば、制御装置900は、運転圧力制御バルブ404の開度が制御範囲内に収まるように、排燃料バルブ405の開度の調整、またはブロワ14及び差圧制御バルブ409の開度の調整を行う。これにより、燃料電池モジュール2の起動時において排燃料配管320を通過するガスのガス条件を、運転圧力制御バルブ404の制御範囲に納めることができる。
また、本実施形態によれば、制御装置900は、再循環調整バルブ410の開度が制御範囲内に収まるように、排気バルブ403の開度の調整、またはブロワ14及び差圧制御バルブ409の開度の調整を行う。これにより、燃料電池モジュール2の起動時において燃料再循環配管321を通過するガスのガス条件を、再循環調整バルブ410の制御範囲に納めることができる。
また、本実施形態によれば、制御装置900は、燃料電池モジュール2が定格運転に至るまでは、排気バルブ403の開度により燃料電池モジュール2の内圧を制御し、燃料電池モジュール2が定格運転に至った以降は、排燃料バルブ405の開度により燃料電池モジュール2の内圧を制御する。これにより、燃料電池モジュール2の内圧を保ったまま、排燃料ガスF2の燃焼機5への供給を開始することができる。
また、本実施形態では、燃料流量調整バルブ401が流量を一定にする制御に切り替わった後(ステップS3)の動作として、排気バルブ403の開度制御を開始してから(ステップS4)運転圧力制御バルブ404の開度の制御を開始する(ステップS5)場合について説明したが、これに限られない。例えば、ステップS4とステップS5の実行順序を逆にしても良い。
《第2の実施形態》
図9は、本発明の第2の実施形態に係るコンバインド発電システムの系統図である。
第2の実施形態に係るコンバインド発電システム1は、第1の実施形態に係るコンバインド発電システム1の差圧制御バルブ409に代えて圧損体411を設けたものである。
したがって、第1の実施形態では、ステップS1において、ブロワヘッドが設定差圧になるように、ブロワ14と差圧制御バルブ409とを制御していたところ、第2の実施形態では、ブロワ14のみによりブロワヘッドを制御する。
このように、第2の実施形態によれば、第1の実施形態から制御すべきバルブの数を1つ減らすことができる。
《第3の実施形態》
図10は、本発明の第3の実施形態に係るコンバインド発電システムの系統図である。
第3の実施形態に係るコンバインド発電システム1は、第2の実施形態に係るコンバインド発電システム1から再循環制御バルブ410を除外したものである。
したがって、第1、第2の実施形態では、燃料電池モジュール2が定常動作に至るまでは、ステップS2において、燃料再循環配管321の流量を再循環調整バルブ410によって制御していたところ、第3の実施形態では、燃料再循環配管321の流量制御を行わない。
また、燃料電池モジュール2が定常動作に至った以降は、第1、第2の実施形態と同様に、ステップS23において排燃料バルブ405によって燃料再循環配管321の流量を制御する。
このように、第2の実施形態によれば、第2の実施形態から制御すべきバルブの数をさらにもう1つ減らすことができる。
なお、本実施形態では、燃料電池モジュール2が定常動作に至るまで燃料再循環配管321の流量制御を行わない場合について説明したが、これに限られず、ブロワ14がブロワヘッドを調整することで、燃料再循環配管321の流量制御を行うものとしても良い。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
なお、上述の制御装置900は内部に、コンピュータシステムを有している。そして、上述した各動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
1…コンバインド発電システム 2…燃料電池モジュール 3…ガスタービン 310…燃料配管 320…排燃料配管 321…燃料再循環配管 322…ベント配管 323…再循環バイパス配管 403…排気バルブ 404…運転圧力制御バルブ 405…排燃料バルブ 409…差圧調整バルブ 410…再循環調整バルブ

Claims (12)

  1. 燃料ガスと酸化剤ガスとで発電する燃料電池と、
    前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、
    前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、
    前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、
    前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、
    前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、
    前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と、
    弁の動作を制御する制御装置と、
    前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンと
    を備え、
    前記制御装置は、前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定する
    ことを特徴とするコンバインド発電システム。
  2. 前記制御装置は、
    前記排燃料ラインの圧力が所定の設定圧力になるように前記排出流量制御弁の開度を制御し、
    前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力を再設定する
    ことを特徴とする請求項1に記載のコンバインド発電システム。
  3. 前記制御装置は、
    前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように前記差圧制御手段を制御し、
    前記運転圧力制御弁の開度が所定範囲外になったときに前記設定差圧を再設定する
    ことを特徴とする請求項1または請求項2に記載のコンバインド発電システム。
  4. 前記再循環ラインを通る燃料ガスの流量を調整する再循環流量制御弁を備え、
    前記制御装置は、前記再循環流量制御弁の開度が所定範囲内になるように前記排出流量制御弁の開度または前記差圧制御手段を制御する
    ことを特徴とする請求項1から請求項3の何れか1項に記載のコンバインド発電システム。
  5. 前記制御装置は、
    前記排燃料ラインの圧力が所定の設定圧力になるように前記排出流量制御弁の開度を制御し、
    前記再循環流量制御弁の開度が所定範囲外になったときに前記設定圧力を再設定する
    ことを特徴とする請求項4に記載のコンバインド発電システム。
  6. 前記制御装置は、
    前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように前記差圧制御手段を制御し、
    前記再循環流量制御弁の開度が所定範囲外になったときに前記設定差圧を再設定する
    ことを特徴とする請求項4または請求項5に記載のコンバインド発電システム。
  7. 前記排出流量制御弁として
    前記排燃料ラインから前記タービンに供給する燃料ガスの流量を制御する排燃料供給弁と、
    前記排燃料ラインから排出系統に供給する燃料ガスの流量を制御する排気弁と
    を備えることを特徴とする請求項1から請求項6の何れか1項に記載のコンバインド発電システム。
  8. 前記制御装置は、
    前記燃料電池による発電を開始したときに、前記排燃料供給弁を閉じ、前記燃料電池の内圧が一定になるように前記排気弁の開度制御を開始し、
    前記燃料電池が定格運転に至ったときに、前記排気弁の開度を固定し、前記燃料電池の内圧が一定になるように前記排燃料供給弁の開度制御を開始する
    ことを特徴とする請求項7に記載のコンバインド発電システム。
  9. 前記制御装置は、
    前記燃料電池が定格運転に至るまでは、前記運転圧力制御弁の開度が所定範囲内になるように前記排気弁の開度を制御し、
    前記燃料電池が定格運転に至った以降は、前記運転圧力制御弁の開度が所定範囲内になるように前記差圧制御手段を制御する
    ことを特徴とする請求項8に記載のコンバインド発電システム。
  10. 前記排出流量制御弁として
    前記排燃料ラインから前記タービンに供給する燃料ガスの流量を制御する排燃料供給弁と、
    前記排燃料ラインから排出系統に供給する燃料ガスの流量を制御する排気弁と
    を備え、
    前記制御装置は、
    前記燃料電池による発電を開始したときに、前記排燃料供給弁を閉じ、前記燃料電池の内圧が一定になるように前記排気弁の開度制御を開始し、
    前記燃料電池が定格運転に至るまでは、前記再循環流量制御弁の開度が所定範囲内になるように前記差圧制御手段を制御し、
    前記燃料電池が定格運転に至ったときに、前記排気弁の開度を固定し、前記燃料電池の内圧が一定になるように前記排燃料供給弁の開度制御を開始し、
    前記燃料電池が定格運転に至った以降は、前記再循環流量制御弁の開度が所定範囲内になるように前記排燃料供給弁の開度を制御する
    ことを特徴とする請求項4に記載のコンバインド発電システム。
  11. 燃料ガスと酸化剤ガスとで発電する燃料電池と、
    前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、
    前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、
    前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、
    前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、
    前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、
    前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と
    前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンと
    を備えるコンバインド発電システムの運転方法であって、
    前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定する
    ことを特徴とする運転方法。
  12. 燃料ガスと酸化剤ガスとで発電する燃料電池と、
    前記燃料ガスが燃料供給部から前記燃料電池に供給される燃料ラインと、
    前記燃料ガスが前記燃料電池から外部に排出される排燃料ラインと、
    前記排燃料ラインから前記燃料ガスを前記燃料ラインへ再循環させる再循環ラインと、
    前記排燃料ラインを通る燃料ガスの流量を調整することで前記燃料電池の燃料側の圧力を制御する運転圧力制御弁と、
    前記排燃料ラインの圧力が所定の設定圧力になるように、前記排燃料ラインから外部に排出する燃料ガスの流量を制御する排出流量制御弁と、
    前記排燃料ラインと前記再循環ラインとの差圧が所定の設定差圧になるように制御する差圧制御手段と、
    前記排燃料ラインから排出された燃料ガスを燃焼させて駆動するタービンと
    を備えるコンバインド発電システムを制御する制御装置であって、
    前記運転圧力制御弁の開度が所定範囲外になったときに前記設定圧力または前記設定差圧を再設定する
    ことを特徴とする制御装置。
JP2013036181A 2013-02-26 2013-02-26 コンバインド発電システム、運転方法、及び制御装置 Active JP6108872B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036181A JP6108872B2 (ja) 2013-02-26 2013-02-26 コンバインド発電システム、運転方法、及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036181A JP6108872B2 (ja) 2013-02-26 2013-02-26 コンバインド発電システム、運転方法、及び制御装置

Publications (2)

Publication Number Publication Date
JP2014165072A JP2014165072A (ja) 2014-09-08
JP6108872B2 true JP6108872B2 (ja) 2017-04-05

Family

ID=51615499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036181A Active JP6108872B2 (ja) 2013-02-26 2013-02-26 コンバインド発電システム、運転方法、及び制御装置

Country Status (1)

Country Link
JP (1) JP6108872B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352147B2 (ja) * 2014-10-28 2018-07-04 三菱日立パワーシステムズ株式会社 複合発電システム及び複合発電システムの制御方法
JP6472638B2 (ja) * 2014-10-30 2019-02-20 三菱日立パワーシステムズ株式会社 複合発電システム、その制御装置及び方法並びにプログラム
KR102025503B1 (ko) * 2016-03-22 2019-09-26 닛산 지도우샤 가부시키가이샤 연료 전지 시스템 및 연료 전지 시스템의 제어 방법
KR102119441B1 (ko) * 2018-02-15 2020-06-08 미츠비시 히타치 파워 시스템즈 가부시키가이샤 연료 전지 시스템 및 복합 발전 시스템, 그리고 연료 전지 시스템의 제어 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268178A (ja) * 2004-03-22 2005-09-29 Nissan Motor Co Ltd 燃料電池システム
JP5185657B2 (ja) * 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム
JP5185659B2 (ja) * 2008-02-27 2013-04-17 三菱重工業株式会社 コンバインドシステム

Also Published As

Publication number Publication date
JP2014165072A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
JP5980144B2 (ja) 発電システム、発電システムの運転方法、及び制御装置
JP6616054B1 (ja) 燃料電池システム及び複合発電システム並びに燃料電池システムの制御方法
KR102132314B1 (ko) 연료 전지의 온도 분포 제어 시스템, 연료 전지 및 온도 분포 제어 방법
JP6108872B2 (ja) コンバインド発電システム、運転方法、及び制御装置
JP2018006003A (ja) 燃料電池の制御装置及び制御方法並びに発電システム
JP6099408B2 (ja) 発電システム、及び発電システムの運転方法
JP2018006004A (ja) 燃料電池の制御装置及び制御方法並びに発電システム
KR20220034198A (ko) 연료 전지 시스템 및 그 제어 방법
JP6734048B2 (ja) 燃料電池カートリッジ及び燃料電池モジュール並びに燃料電池カートリッジの制御装置及び制御方法
JP6352147B2 (ja) 複合発電システム及び複合発電システムの制御方法
JP6239229B2 (ja) 燃料電池システムおよび燃料電池運転方法
JP6749799B2 (ja) 燃料電池の制御装置及び制御方法並びに発電システム
KR20220034189A (ko) 연료 전지 시스템 및 그 기동 방법
JP2018032472A (ja) 燃料電池システム及びその制御方法、並びに、発電システム及びその制御方法
JP6943904B2 (ja) 燃料電池モジュール、発電システム及び燃料電池モジュールの運転方法
JP5931775B2 (ja) コンバインド発電システム
JP2017147124A (ja) 燃料電池発電システムの制御装置、発電システム及び燃料電池発電システム制御方法
JP6071575B2 (ja) 発電システム
JP6771962B2 (ja) 燃料電池の制御装置及び制御方法並びに発電システム
JP2016085927A (ja) 複合発電システム及び複合発電システムの制御方法
JP6012485B2 (ja) 燃料電池システム
WO2021171884A1 (ja) 燃料電池システム及びその制御方法
JP6843531B2 (ja) 燃料電池の制御装置及び制御方法並びに発電システム
JP2016091816A (ja) 複合発電システムの制御装置及び方法並びにプログラム、それを備えた複合発電システム
JP6632911B2 (ja) 燃料電池及び燃料電池複合発電システム並びに燃料電池の停止方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6108872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350