JP6049921B1 - ガスエンジンの制御方法およびガスエンジン駆動システム - Google Patents

ガスエンジンの制御方法およびガスエンジン駆動システム Download PDF

Info

Publication number
JP6049921B1
JP6049921B1 JP2016015775A JP2016015775A JP6049921B1 JP 6049921 B1 JP6049921 B1 JP 6049921B1 JP 2016015775 A JP2016015775 A JP 2016015775A JP 2016015775 A JP2016015775 A JP 2016015775A JP 6049921 B1 JP6049921 B1 JP 6049921B1
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
actual
gas engine
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015775A
Other languages
English (en)
Other versions
JP2017133464A (ja
Inventor
木塚 智昭
智昭 木塚
洋輔 野中
洋輔 野中
宏佳 石井
宏佳 石井
知 深尾
知 深尾
重治 藤原
重治 藤原
永遠 平山
永遠 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2016015775A priority Critical patent/JP6049921B1/ja
Priority to PCT/JP2016/082433 priority patent/WO2017130501A1/ja
Priority to US16/074,003 priority patent/US10480426B2/en
Priority to EP16888086.2A priority patent/EP3409928B1/en
Application granted granted Critical
Publication of JP6049921B1 publication Critical patent/JP6049921B1/ja
Publication of JP2017133464A publication Critical patent/JP2017133464A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Signal Processing (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

【課題】負荷が上昇したときにノッキングを抑制しながら負荷応答性を向上させることができるガスエンジン駆動システムを提供する。【解決手段】圧縮機およびタービンを含む過給機と接続されたガスエンジンの制御方法であって、定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に負荷が上昇した場合には、負荷の上昇度合いが相対的に小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、負荷の上昇度合いが相対的に大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる。【選択図】図1

Description

本発明は、過給機(ターボチャージャー)と接続されたガスエンジンの制御方法に関する。また、本発明は、それらの過給機およびガスエンジンを含むガスエンジン駆動システムに関する。
従来、天然ガスや都市ガス等の燃料ガスを燃焼させるガスエンジンは主に発電設備に用いられていた(例えば、特許文献1参照)。近年では、原油資源量の問題や排ガス規制の問題などから、船舶の主機として、重油を燃料とするディーゼルエンジンに代えてガスエンジンを用いることが試みられている。
例えば、特許文献2には、船舶の主機として用いられる4ストロークガスエンジンが開示されている。このガスエンジンは、給気路および排気路を介して過給機の圧縮機およびタービンと接続されている。給気路にはスロットル弁が設けられており、圧縮機の上流側には燃料流量制御弁から供給される燃料ガスと空気とを混合する混合器が設けられている。
特許文献2に開示されたガスエンジンでは、高精度の空燃比(空気過剰率ともいう)制御を維持しながら負荷応答性を向上させるために、エンジン回転速度の目標値である速度指令値信号が変化したときに、燃料流量制御弁による燃料ガス流量およびスロットル弁の開度が変更される。特に、特許文献2には、燃料ガス流量に関し、失火や異常燃焼を防止するために、燃料ガス流量の上限値を空気過剰率の下限値から決めてもよいことが記載されている。
特開2010−84681号公報 特開2009−57870号公報
ところで、負荷が変化する用途に用いられるガスエンジンにおいては、負荷がほとんど変化しない定常運転時には特許文献1に記載されているようなノッキング制御運転が行われることが望ましい。このノッキング制御運転は、NOの排出量が少なくかつ高効率が実現可能なリーンバーンのうちでも最も高い効率が得られるように点火タイミングを最適化するものである。具体的には、ガスエンジンの各シリンダにおいて、所定サイクル数ごとに、その間のノッキング出現率と目標出現率との偏差に基づいて点火タイミングがアドバンスされたりリタードされたりする。
一般に、ガスエンジンにおいては、図13に示すように、空燃比と正味平均有効圧(BMEP)との関係でノッキング領域および失火領域が存在することが知られている。従って、リーンバーンにおいて高出力を得るには、図中に範囲Xで示すように、空燃比をノッキング領域と失火領域の間に制御することが重要である。参考までに、自動車に用いられている現在のガスエンジンでは、効率が重視されておらず理論空燃比近傍での燃焼が行われている。
上述したノッキング制御運転では、リーンバーンのうちでも最も高い効率が得られるように、目標出現率がノッキング限界(図13中のノッキング領域を規定する線上の点)の直ぐ近くに設定される。そのため、定常運転としてノッキング制御運転を行っている際に、負荷が上昇して燃料ガスを増やす際には、ガスエンジンに供給される空気量も増やさなければ、範囲X中の作動点が左に移動してノッキング出現率がノッキング限界を超えてしまう。
しかしながら、過給機と接続されたガスエンジンでは、燃料ガスを増やしてもターボラグのために圧縮機から吐出される空気量は直ぐには上昇しない。従って、圧縮機とガスエンジンの間の給気路にスロットル弁が設けられていない場合には、如何にしてノッキングを抑制しながら燃料ガスを迅速に増やすかが問題となる。
そこで、本発明は、給気路にスロットル弁が設けられていなくても、負荷が上昇したときにノッキングを抑制しながら負荷応答性(要求出力に対する実出力の追従性)を向上させることができるガスエンジンの制御方法を提供すること、およびそのガスエンジンを含むガスエンジン駆動システムを提供することを目的とする。
前記課題を解決するために、本発明の発明者らは、鋭意研究の結果、負荷がゆっくり上昇する場合には、ノッキング制御運転におけるノッキング出現率からノッキング限界までの余裕代で燃料ガスを増加させても負荷応答性にそれほど問題はなく、負荷が速く上昇する場合に負荷応答性を改善する必要があることを突き止めた。そして、負荷が速く上昇する場合には、点火タイミングをリタードさせることによりノッキング限界までの余裕代が大きくなることを見出した。本発明は、このような観点からなされたものである。
すなわち、本発明のガスエンジンの制御方法は、圧縮機およびタービンを含む過給機と接続されたガスエンジンの制御方法であって、定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に負荷が上昇した場合には、前記負荷の上昇度合いが相対的に小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記負荷の上昇度合いが相対的に大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ことを特徴とする。
上記の構成によれば、負荷の上昇度合いが相対的に大きい場合には、点火タイミングをリタードさせることで、ノッキング限界までの空気過剰率の余裕が大きくなり、これにより実燃料噴射量を大きな幅で増加させることが可能になる。その結果、ノッキングを抑制しながら、負荷応答性を向上させることができる。
前記負荷が上昇した場合は、必要燃料噴射量が上昇した場合であり、前記負荷の上昇度合いが相対的に小さいときは、前記必要燃料噴射量の上昇速度が閾値よりも小さいときであり、前記負荷の上昇度合いが相対的に大きいときは、前記必要燃料噴射量の上昇速度が閾値よりも大きいときであってもよい。この構成によれば、必要燃料噴射量の監視により、負荷が上昇したか否かと負荷の上昇度合いを判定することができる。
前記負荷が上昇した場合は、前記ガスエンジンの実回転数が目標回転数から低下した場合であり、前記負荷の上昇度合いが相対的に小さいときは、前記実回転数と前記目標回転数との偏差が閾値よりも小さいときであり、前記負荷の上昇度合いが相対的に大きいときは、前記実回転数と前記目標回転数との偏差が閾値よりも大きいときであってもよい。この構成によれば、実回転数の監視により、負荷が上昇したか否かと負荷の上昇度合いを判定することができる。
前記負荷が上昇した場合は、前記圧縮機の吐出圧である実過給圧が目標過給圧から低下した場合であり、前記負荷の上昇度合いが相対的に小さいときは、前記実過給圧と前記目標過給圧との偏差が閾値よりも小さいときであり、前記負荷の上昇度合いが相対的に大きいときは、前記実過給圧と前記目標過給圧との偏差が閾値よりも大きいときであってもよい。この構成によれば、実過給圧の監視により、負荷が上昇したか否かと負荷の上昇度合いを判定することができる。
前記負荷の上昇度合いが相対的に小さいときは、空気過剰率が第1下限を超えないように実燃料噴射量を徐々に増加させ、前記負荷の上昇度合いが相対的に大きいときは、前記空気過剰率が前記第1下限よりも小さい第2下限を超えないように実燃料噴射量を徐々に増加させてもよい。この構成によれば、負荷の上昇度合いが相対的に小さいときも大きいときも、空気過剰率の下限を用いて、実燃料噴射量の増加幅を最大となるように決定することができる。
前記負荷の上昇度合いが相対的に小さいときは、実燃料噴射量が第1上限を超えないように実燃料噴射量を徐々に増加させ、前記負荷の上昇度合いが相対的に大きいときは、前記実燃料噴射量が前記第1上限よりも大きい第2上限を超えないように実燃料噴射量を徐々に増加させてもよい。この構成によれば、負荷の上昇度合いが相対的に小さいときも大きいときも、実燃料噴射量の上限を用いて、実燃料噴射量の増加幅を最大となるように決定することができる。
例えば、前記ガスエンジンは船舶の主機として用いられるものであってもよい。
また、本発明のガスエンジン駆動システムは、圧縮機およびタービンを含む過給機と接続されたガスエンジンと、前記ガスエンジンに供給される空気中に燃料ガスを噴射する燃料噴射機構と、前記燃料ガスと前記空気の混合気に点火するための点火装置と、前記燃料噴射機構および前記点火装置を制御する制御装置と、を備え、前記制御装置は、定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に負荷が上昇した場合には、前記負荷の上昇度合いが相対的に小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記負荷の上昇度合いが相対的に大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ことを特徴とする。
上記の構成によれば、負荷の上昇度合いが相対的に大きい場合には、点火タイミングをリタードさせることで、ノッキング限界までの空気過剰率の余裕が大きくなり、これにより実燃料噴射量を大きな幅で増加させることが可能になる。その結果、ノッキングを抑制しながら、負荷応答性を向上させることができる。
本発明によれば、負荷が上昇したときにノッキングを抑制しながら負荷応答性を向上させることができる。
(a)は本発明の第1実施形態に係るガスエンジン駆動システムが搭載された船舶の概略構成図、(b)は変形例の船舶の概略構成図である。 ガスエンジンの1つの燃焼室付近の断面図である。 第2圧力センサにより計測される圧力波形の一例である。 (a)は必要燃料噴射量Qの上昇速度が遅い場合の必要燃料噴射量Qおよび実燃料噴射量qの経時的変化を示すグラフ、(b)は必要燃料噴射量Qの上昇速度が速い場合の必要燃料噴射量Qおよび実燃料噴射量qの経時的変化を示すグラフである。 本発明の第1実施形態における負荷増加運転のフローチャートである。 (a)は実燃料噴射量qおよび実回転数Nに応じてリタード角度値が定められたリタード角度マップであり、(b)は実過給圧Pおよび実回転数Nに応じてリタード角度値が定められたリタード角度マップである。 (a)は実燃料噴射量qおよび実回転数Nに応じて空気過剰率の第1下限値が定められた空気過剰率第1下限マップであり、(b)は実燃料噴射量qおよび実回転数Nに応じて空気過剰率の第2下限値が定められた空気過剰率第2下限マップである。 特定の回転数および燃料噴射量における空気過剰率ごとの点火タイミングとノッキング出現率の関係を示すグラフである。 本発明の第2実施形態における負荷増加運転のフローチャートである。 (a)は実過給圧Pおよび実回転数Nに応じて燃料噴射量の第1上限値が定められた噴射量第1上限マップであり、(b)は実過給圧Pおよび実回転数Nに応じて燃料噴射量の第2上限値が定められた噴射量第2上限マップである。 特定の回転数および過給圧における燃料噴射量ごとの点火タイミングとノッキング出現率の関係を示すグラフである。 エンジンの実回転数Nの経時的変化を示すグラフである。 ガスエンジンにおけるノッキング領域および失火領域を示す、横軸に空燃比、縦軸に正味平均有効圧をとったグラフである。
(第1実施形態)
図1(a)に、本発明の第1実施形態に係るガスエンジン駆動システム1(以下、単に「システム1」という。)が搭載された船舶11を示す。システム1は、ガスエンジン2、過給機3および制御装置7(図2参照)を備えている。本実施形態では、プロペラ12が取り付けられた推進軸13がシステム1のガスエンジン2により直接的に駆動される。ただし、推進軸13は、図1(b)に示すように、モータ14および発電機15を介して間接的にガスエンジン2により駆動されてもよい。ガスエンジン2は、図1(a)に示す場合も図1(b)に示す場合も船舶11の主機として用いられる。
ガスエンジン2は、例えば燃料ガス(例えば、天然ガス)のみを燃焼させるガス専焼エンジンである。ただし、ガスエンジン2は、状況によって燃料ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンであってもよい。また、本実施形態では、ガスエンジン2が4ストロークエンジンであるが、ガスエンジン2は2ストロークエンジンであってもよい。
図2は、ガスエンジン2の要部の断面図である。ガスエンジン2は、複数のシリンダ21を有する(図2では1つのシリンダ21のみを図示)。各シリンダ21内にはピストン22が往復動自在に配設されており、シリンダ21およびピストン22によって燃焼室20が形成されている。ピストン22は、図略の連結棒により図略のクランク軸と連結されている。
各シリンダ21において、ピストン22が二往復することにより、ガスエンジン2の1サイクル(給気、圧縮、膨張、排気)が行われる。各シリンダ21における1サイクルの間のガスエンジン2の位相角(0〜720度)は、位相角検出器63により検出される。位相角としては、クランク軸の回転角(クランク角)やピストン22の位置などを用いることができる。例えば、位相角検出器63は、電磁ピックアップ、近接スイッチまたはロータリーエンコーダである。また、位相角検出器63からは、ガスエンジン2の実回転数Nも検出される。
図1(a)に戻って、過給機3は、圧縮機31とタービン32を含む。ガスエンジン2は、給気路41を介して圧縮機31と接続されているとともに、排気路42を介してタービン32と接続されている。給気路41は、圧縮機31で圧縮された空気を各シリンダ21に導き、排気路42は、各シリンダ21から燃焼後の排ガスをタービン32に導く。なお、給気路41の下流側部分および排気路42の上流側部分は実際はシリンダ21と同数の分岐路にマニホールドから分岐しているが、図1(a)および(b)では図面の簡略化のために給気路41および排気路42を1本の流路で描いている。
給気路41には、圧縮機31で圧縮された空気を冷却するための放熱器43が設けられている。また、給気路41には、圧縮機31の吐出圧である実過給圧Pを検出する第1圧力センサ61と、当該給気路41を通じて燃焼室20に導入される空気の温度である過給温を検出する温度センサ65が設けられている。第1圧力センサ61は、給気路41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。同様に、温度センサ65は、給気路41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。さらに、給気路41には、各シリンダ21ごとに、圧縮機31から吐出される空気中に燃料ガスを噴射する主燃料噴射弁51(本発明の燃料噴射機構に相当)が設けられている。
ただし、本発明の燃料噴射機構は、ガスエンジン2に供給される空気中に燃料ガスを噴射するものであれば、必ずしも燃料噴射弁51である必要はない。例えば、特許文献2と同様に、燃料噴射機構が、圧縮機31の吸入口につながれた空気供給路に合流する燃料ガス供給路と、この燃料ガス供給路に設けられた燃料流量制御弁を含み、圧縮機31に吸入される空気中に燃料ガスを噴射するように構成されていてもよい。
各シリンダ21には、給気路41の燃焼室20に対する開口である給気ポートを開閉する吸気弁23と、排気路42の燃焼室20に対する開口である排気ポートを開閉する排気弁24が設けられている。また、各シリンダ21には、燃焼室20内で燃料ガスと空気の混合気に点火するための点火プラグ(本発明の点火装置に相当)55が設けられている。
本実施形態では、燃焼室20が、給気路41および排気路42と連通する主燃焼室20Aと、連通孔が設けられた隔壁25により主燃焼室20Aと隔てられた副燃焼室20Bとからなる。点火プラグ55は副燃焼室20Bに配置されており、副燃焼室20B内には副燃料噴射弁52から燃料ガスが噴射される。副燃料噴射弁52からの燃料ガスの噴射により副燃焼室20B内にはリッチな混合気が形成され、この混合気が点火プラグ55により点火される。これにより副燃焼室20B内に火炎が発生し、その火炎が隔壁25の連通孔を通じて主燃焼室20A内に伝播することにより主燃焼室20A内のリーンな混合気にも点火される。主燃焼室20Aには、当該主燃焼室20A内の圧力である筒内圧を検出する第2圧力センサ62が設けられている。
ただし、本発明の点火装置は、副燃焼室20B内の混合気に点火する点火プラグ55に限られない。例えば、点火装置としては、主燃焼室20A内に高圧のパイロット燃料(オイルや燃料ガス)を直接的に噴射することにより当該パイロット燃料を自己発火させるパイロット燃料噴射弁を採用することも可能である。
燃焼後の排ガスは、排気路42を通じて燃焼室20からタービン32に送られ、ここで圧縮機31を駆動する動力として使用される。
制御装置7は、各シリンダ21ごとに、位相角検出器63で検出される位相角に基づいて燃料噴射弁51,52および点火プラグ55を制御する。具体的に、制御装置7は、負荷がほとんど変化しない間は定常運転としてノッキング制御運転を行い、定常運転中に負荷が上昇すると負荷増加運転に移行する。ノッキング制御運転および負荷増加運転の双方において、制御装置7は、実回転数Nを目標回転数NTに維持するPID制御も行う。なお、定常運転とは、ガスエンジン2の負荷の高低に関係なく、燃料噴射量がほぼ一定の運転である。負荷が上昇する要因としては、船舶の操縦者による船速アップの指令、操縦者が舵を取ったときの旋回指令、船体が強い風波を受けたときの船速維持の指令、プロペラ12が可変ピッチプロペラである場合にはプロペラピッチが大きくされることなどがある。
本実施形態では、制御装置7が、要求出力に応じた必要燃料噴射量Q(要求出力を得るのに必要な燃料ガスの噴射量)を算出する。本実施形態では、燃料ガスが主燃料噴射弁51から間欠的に噴射されるので、燃料ガスの噴射量は、一回あたりの噴射量(例えば、m3)である。ただし、特許文献2と同様に燃料ガスが連続的に噴射される場合は、燃料ガスの噴射量は流量(例えば、m3/s)であってもよい。そして、制御装置7は、必要燃料噴射量Qが上昇したときに、負荷が上昇したと判定する。
以下、ノッキング制御運転および負荷増加運転について詳細に説明する。ただし、以下では1つのシリンダ21に対する制御を代表して説明するが、全てのシリンダ21に対しても同様の制御が行われる。
(1)ノッキング制御運転
ノッキング制御運転は、リーンバーンを実現する空気過剰率λを一定に保ったままで点火タイミングを最適化する運転である。ノッキング制御運転では、第2圧力センサ62で検出される筒内圧に基づく制御が行われる。図3は、第2圧力センサ62により計測される圧力波形の一例である。
制御装置7は、所定サイクル数Cy(例えば、5〜20サイクル)ごとに点火タイミングiTを更新する。点火タイミングiTは、例えば、ピストン22が上死点に位置するタイミングを基準(0度)とし、そこからどれだけ早い段階で点火を行うかをガスエンジン2の位相角で示すものである。
まず、制御装置7は、第2圧力センサ62で検出される筒内圧に基づいて、1サイクルごとに、燃焼状態が、大ノック、小ノック、通常、失火のいずれであったかを判定する。そして、制御装置7は、所定サイクル数Cyに対する小ノックが出現したサイクル数CyLの比率であるノッキング出現率R(R=CyL/Cy)を算出する。
燃焼状態の判定の仕方としては、例えば次のような方法がある。制御装置7は、図3に示す波形をフィルタに通して、ピストン22が上死点に達してから所定時間ΔT内の高周波成分を抽出する。さらに、制御装置7は、抽出した高周波成分のうちから複数個の高周波成分をサンプリングし、サンプリングされた高周波成分の平均値PAを算出する。平均値PAが第1閾値γ1以上の場合(γ1≦PA)は燃焼状態が大ノックであったと判定され、平均値PAが第1閾値γ1未満かつ第2閾値γ2以上の場合(γ2≦PA<γ1)は燃焼状態が小ノックであったと判定される。また、制御装置7は、上死点前後の筒内圧の偏差ΔPを算出する。偏差ΔPが第3閾値γ3未満の場合(ΔP<γ3)には燃焼状態が失火であったと判定される。偏差ΔPが第3閾値γ3以上であって上述した平均値PAが第2閾値γ2未満の場合(γ3≦ΔP、PA<γ2)には燃焼状態が通常であったと判定される。
ノッキング出現率Rを算出した後は、制御装置7は、ノッキング出現率Rと目標出現率RTとの偏差ΔR(ΔR=RT−R)を算出する。目標出現率RTは、ガスエンジン2に大きな損傷を与えることなく高い効率が得られる比率であり、実験または数値シミュレーションにより予め決定される。また、目標出現率RTは、図8に示すように、ノッキング限界RLよりも少し低い値に設定される。そして、制御装置7は、算出した偏差ΔRにゲインKを積算した値を点火タイミングの補正値βとし(β=ΔR×K)、現在の点火タイミングiT’に補正値βを加えた値を新たな点火タイミングiTとする(iT=iT’+β)。補正値βが正の場合、すなわちノッキング出現率Rが目標出現率RTよりも小さな場合は点火タイミングが補正値βだけアドバンスされ、補正値βが負の場合、すなわちノッキング出現率Rが目標出現率RTよりも大きな場合は点火タイミングが補正値βだけリタードされる。このようにして、点火タイミングiTは最適なタイミングに調整される。
換言すれば、ノッキング制御運転は、例えば空気過剰率γが2.0である場合、ノッキング出現率を図8の実線に沿って目標出現率RTに近づける運転である。
(2)負荷増加運転
上述したように、定常運転中に負荷が上昇(すなわち、必要燃料噴射量Qが上昇)すると、制御装置7は負荷増加運転に移行する。負荷増加運転では、第1圧力センサ61で検出される実過給圧P、温度センサ65で検出される過給温および位相角検出器63で検出されるガスエンジン2の実回転数Nに基づく制御が行われる。図5は負荷増加運転のフローチャートである。
まず、制御装置7は、必要燃料噴射量Qの上昇速度V(V=dQ/dt)を算出する(ステップS1)。図4(a)に負荷の上昇度合いが相対的に小さい場合、すなわち必要燃料噴射量Qの上昇速度Vが遅い場合を示し、図4(b)に負荷の上昇度合いが相対的に大きい場合、すなわち必要燃料噴射量Qの上昇速度Vが速い場合を示す。例えば、負荷の上昇度合いが相対的に小さい場合とは、操船レバー等がゆっくり操作される場合であり、負荷の上昇度合いが相対的に大きい場合とは、操船レバー等が速く操作される場合である。
ついで、制御装置7は、算出した上昇速度Vを閾値αと比較する(ステップS2)。図8に示すように、ノッキング制御運転においてはノッキング出現率が目標出現率RT近くに調整されるため、ノッキング限界RLまでにはまだ少し余裕がある。そのため、ノッキング制御運転において調整された点火タイミングiTでのノッキング限界RLを通る線である空気過剰率の第1下限λ1まで燃料ガスを増やすことができる。
このようにして燃料ガスを増やした場合には、必要燃料噴射量Qの上昇速度Vが遅いときは、図4(a)に示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Bが必要燃料噴射量Qの上昇指示終了点Aからそれほど遅れることはない。しかし、必要燃料噴射量Qの上昇速度Vが速いときは、図4(b)中に二点鎖線で示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Bが必要燃料噴射量Qの上昇指示終了点Aから大きく遅れることになる。閾値αは、第1下限λ1に基づいて制御したときに上昇指示終了点Aから時期Bまでの遅れが許容できない場合の上昇速度である。このような閾値αは、実験または数値シミュレーションにより予め決定される。なお、閾値αは、実燃料噴射量qおよび実回転数Nごとに定められていてもよい。
必要燃料噴射量Qの上昇速度Vが閾値αよりも小さい場合はステップS3に進み、上昇速度Vが閾値αよりも大きい場合はステップS8に進む。なお、本実施形態では、上昇速度Vが閾値αと等しい場合はステップS3に進みようになっているが、上昇速度Vが閾値αと等しい場合はステップS8に進んでもよい。
ステップS3以降では、制御装置7は、ノッキング制御運転において調整された点火タイミングiTを維持したままで、空気過剰率λが第1下限λ1を超えないように実燃料噴射量qを徐々に増加させる。空気過剰率λは、実燃料噴射量q、第1圧力センサ61で検出される実過給圧Pおよび温度センサ65で検出される過給温から求められる。
まず、制御装置7は、図7(a)に示す空気過剰率第1下限λ1マップを選択する(ステップS3)。空気過剰率第1下限λ1マップでは、実燃料噴射量qおよび実回転数Nに応じて空気過剰率の第1下限値λ1l,k(1≦l≦i、1≦k≦j)が定められている。制御装置7は、空気過剰率第1下限λ1マップを使用して、実燃料噴射量qと実回転数Nから第1下限λ1を決定する(ステップS4)。なお、空気過剰率第1下限λ1マップは、実燃料噴射量qおよび実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
その後、制御装置7は、実燃料噴射量q、第1圧力センサ61で検出される実過給圧Pおよび温度センサ65で検出される過給温から現在の空気過剰率λを算出し、算出した空気過剰率λをステップS4で決定した第1下限λ1にするのに必要な燃料噴射量の増加幅Δqを算出する(ステップS5)。空気過剰率λは、実過給圧Pおよび過給温から求められる実際に燃焼室20に供給される空気量を、実燃料噴射量qの燃料ガスを完全に燃焼させるのに必要な理論空気量で割った値である。
増加幅Δqを算出した後は、制御装置7は、実燃料噴射量qをΔqだけ増加させ(ステップS6)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS7)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷増加運転を終了して定常運転に戻る。
一方、ステップS8以降では、制御装置7は、点火タイミングiTを角度εだけリタードさせた上で、空気過剰率λが第1下限λ1よりも小さな第2下限λ2を超えないように実燃料噴射量qを徐々に増加させる。図8に示すように、第2下限λ2は、点火タイミングiTを角度εだけリタードさせたときのノッキング限界RLを通る線である。これにより、図4(b)に示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Cは、時期Bよりも大幅に早められる。
まず、制御装置7は、点火タイミングiTを角度εだけリタードさせる(ステップS8)。リタードさせる角度εは、図6(a)に示すリタード角度εマップを使用して実燃料噴射量qと実回転数Nから決定してもよいし、図6(b)に示すリタード角度マップを使用して第1圧力センサ61で検出される実過給圧Pと実回転数Nから決定してもよい。図6(a)に示すリタード角度εマップでは、実燃料噴射量qおよび実回転数Nに応じてリタード角度値εl,k(1≦l≦n、1≦k≦m)が定められ、図6(b)に示すリタード角度εマップでは、実過給圧Pおよび実回転数Nに応じてリタード角度値εl,k(1≦l≦n、1≦k≦m)が定められている。
点火タイミングiTをリタードさせた後は、制御装置7は、図7(b)に示す空気過剰率第2下限λ2マップを選択する(ステップS9)。空気過剰率第2下限λ2マップでは、実燃料噴射量qおよび実回転数Nに応じて空気過剰率の第2下限値λ2l,k(1≦l≦i、1≦k≦j)が定められている。全ての第2下限値λ2l,kは、対応する、すなわち実燃料噴射量qおよび実回転数Nが同一の第1下限値λ1l,kよりも小さい。制御装置7は、空気過剰率第2下限λ2マップを使用して、実燃料噴射量qと実回転数Nから第2下限λ2を決定する(ステップS10)。なお、空気過剰率第2下限λ2マップは、実燃料噴射量qおよび実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
その後、制御装置7は、実燃料噴射量q、第1圧力センサ61で検出される過給圧Pおよび温度センサ65で検出される過給温から現在の空気過剰率λを算出し、算出した空気過剰率λをステップS10で決定した第2下限λ2にするのに必要な燃料噴射量増加幅Δqを算出する(ステップS11)。
増加幅Δqを算出した後は、制御装置7は、実燃料噴射量qをΔqだけ増加させ(ステップS12)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS13)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷増加運転を終了して定常運転に戻る。
以上説明したように、本実施形態のガスエンジン駆動システム1では、負荷の上昇度合いが相対的に大きい場合には、点火タイミングiTをリタードさせることで、ノッキング限界RLまでの空気過剰率λの余裕が大きくなり、これにより実燃料噴射量qを大きな幅で増加させることが可能になる。その結果、ノッキングを抑制しながら、負荷応答性を向上させることができる。
また、本実施形態では、負荷の上昇度合いが相対的に小さいときも大きいときも、空気過剰率λの下限λ1,λ2を用いて、実燃料噴射量qの増加幅Δqを最大となるように決定することができる。
(第2実施形態)
次に、図9〜11を参照して、本発明の第2実施形態に係るガスエンジン駆動システムを説明する。ただし、本実施形態のガスエンジン駆動システムは、第1実施形態のガスエンジン駆動システム1に比べて、負荷増加運転におけるフローチャートの一部が異なるだけであるので、以下ではその点についてのみ説明する。
本実施形態では、図9に示すように、図5に示すフローチャートにおけるステップS3〜S6の代わりにステップS21〜S23が採用され、図5に示すフローチャートにおけるステップS9〜S12の代わりにステップS24〜S26が採用されている。すなわち、必要燃料噴射量Qの上昇速度Vが閾値αよりも小さい場合はステップS21に進み、上昇速度Vが閾値αよりも大きい場合はステップS8の後にステップS24に進む。なお、本実施形態では、上昇速度Vが閾値αと等しい場合はステップS21に進みようになっているが、上昇速度Vが閾値αと等しい場合はステップS8に進んでもよい。
ステップS21以降では、制御装置7は、ノッキング制御運転において調整された点火タイミングiTを維持したままで、実燃料噴射量qが第1上限q1を超えないように実燃料噴射量qを徐々に増加させる。図11に示すように、第1上限q1は、ノッキング制御運転において調整された点火タイミングiTでのノッキング限界RLを通る線である。
まず、制御装置7は、図10(a)に示す噴射量第1上限q1マップを選択する(ステップS3)。噴射量第1上限q1マップでは、実過給圧Pおよび実回転数Nに応じて燃料噴射量の第1上限値q1l,k(1≦l≦i、1≦k≦j)が定められている。制御装置7は、噴射量第1上限q1マップを使用して、第1圧力センサ61で検出される実過給圧Pと実回転数Nから第1上限q1を決定する(ステップS22)。なお、噴射量第1上限q1マップは、実過給圧Pおよび実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
その後、制御装置7は、実燃料噴射量qを第1上限q1まで増加させ(ステップS22)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS7)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷増加運転を終了して定常運転に戻る。
一方、ステップS8以降では、制御装置7は、点火タイミングiTを角度εだけリタードさせた上で、実燃料噴射量qが第2上限q2であって第1上限q1よりも大きな第2上限q2を超えないように実燃料噴射量qを徐々に増加させる。図11に示すように、第2下限λ2は、点火タイミングiTを角度εだけリタードさせたときのノッキング限界RLを通る線である。
制御装置7は、ステップS8で点火タイミングiTをリタードさせた後は、図10(b)に示す噴射量第2上限q2マップを選択する(ステップS24)。噴射量第2上限q2マップでは、実過給圧Pおよび実回転数Nに応じて燃料噴射量の第2上限値q2l,k(1≦l≦i、1≦k≦j)が定められている。全ての第2上限値q2l,kは、対応する、すなわち実過給圧Pおよび実回転数Nが同一の第1上限値q1l,kよりも大きい。制御装置7は、噴射量第2上限q2マップを使用して、第1圧力センサ61で検出される実過給圧Pと実回転数Nから第2上限q2を決定する(ステップS25)。なお、噴射量第2上限q2マップは、実過給圧Pおよび実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
その後、制御装置7は、実燃料噴射量qを第2上限q2まで増加させ(ステップS26)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS13)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷増加運転を終了して定常運転に戻る。
以上説明したように、本実施形態のガスエンジン駆動システム1では、負荷の上昇度合いが相対的に大きい場合には、点火タイミングiTをリタードさせることで、ノッキング限界RLまでの空気過剰率λの余裕が大きくなり、これにより実燃料噴射量qを大きな幅で増加させることが可能になる。その結果、ノッキングを抑制しながら、負荷応答性を向上させることができる。
また、本実施形態では、負荷の上昇度合いが相対的に小さいときも大きいときも、実燃料噴射量qの上限q1,q2を用いて、実燃料噴射量qの増加幅Δqを最大となるように決定することができる。
さらに、本実施形態では、空気過剰率λを算出する必要がないので、過給温を検出する温度センサ65(図2参照)を省略することができる。
(その他の実施形態)
第1および第2実施形態において、タービン32は、タービンインペラに排ガスを吹き付けるノズルの開度が変更可能な可変ジオメトリターボであり、制御装置7によって制御されることが望ましい。この場合、制御装置7は、負荷の上昇度合いが相対的に大きいとき(必要燃料噴射量Qの上昇速度Vが閾値αよりも大きいとき)は、タービン32をノズルの開度が小さくなるように制御してもよい。このようにすれば、実過給圧Pが迅速に立ち上がるため、負荷応答性をさらに向上させることができる。
このような過給機3を速やかに働かせるという観点からは、負荷の上昇度合いが相対的に大きいときには、図略の蓄圧タンクに蓄圧された圧縮空気を過給機3の圧縮機31に供給してもよい(いわゆる、ジェットアシスト)。
前記第1および第2実施形態では、負荷が上昇したか否かおよび負荷の上昇度合いを必要燃料噴射量Qの監視により判定していた。しかしながら、負荷が上昇したか否かおよび負荷の上昇度合いは、ガスエンジン2の実回転数Nまたは実過給圧Pの監視により判定することも可能である。
例えば、図12に示すように、負荷が上昇した場合には、ガスエンジン2の実回転数Nが目標回転数NTから低下する。しかも、実回転数Nがどれだけ低下するかは負荷の度合いに依存する。図12中の実線は負荷の上昇度合いが相対的に大きいときを示し、図12中の一点鎖線は負荷の上昇度合いが相対的に小さいときを示す。従って、実回転数Nと目標回転数NTとの偏差が閾値β1よりも小さければ、負荷の上昇度合いが相対的に小さいと判定することができ、実回転数Nと目標回転数NTとの偏差が閾値β1よりも大きければ、負荷の上昇度合いが相対的に大きいと判定することができる。
あるいは、推進軸13にトルク計が設けられている場合、トルク計で計測されるトルクにより、負荷が上昇したか否かおよび負荷の上昇度合いを判定してもよい。
図示は省略するが、負荷が上昇した場合には、通常、負荷に応じて目標過給圧PTが上昇し、その目標過給圧PTの上昇に対し実過給圧Pの上昇が遅れるため(いわゆる、ターボラグ)、実過給圧Pと目標過給圧PTとの偏差が増大する。しかも、その偏差の増大の大きさは負荷の度合いに依存する。従って、実過給圧Pと目標過給圧PTとの偏差が閾値β2よりも小さければ、負荷の上昇度合いが相対的に小さいと判定することができ、実過給圧Pと目標過給圧PTとの偏差が閾値β2よりも大きければ、負荷の上昇度合いが相対的に大きいと判定することができる。
あるいは、負荷が上昇したか否かおよび負荷の上昇度合いは、主燃料噴射弁51の燃料噴射期間により判定してもよい。また、プロペラ12が可変ピッチプロペラである場合、プロペラピッチにより、負荷が上昇したか否かおよび負荷の上昇度合いを判定してもよい。さらには、船舶の操縦者によって操作される操船レバー等の操作量により、負荷が上昇したか否かおよび負荷の上昇度合いを判定してもよい。
また、前記第1および第2実施形態では、負荷の急上昇に対応するための技術が提案されているが、ノッキングを抑制するためには、負荷の急上昇そのものを抑制してもよい。例えば、船舶の操縦者によって急激な船速アップの操作がなされても、実燃料噴射量qの増加速度に上限を設け、ガスエンジン2の実出力をゆっくりと上昇させてもよい。あるいは、プロペラ12が可変ピッチプロペラである場合、プロペラピッチをゆっくりと大きくしてもよい。
本発明のガスエンジン駆動システムは、必ずしも船舶に用いられる必要はなく、例えば、発電設備、建設機械、鉄道などに用いられてもよい。
1 ガスエンジン駆動システム
2 ガスエンジン
3 過給機
31 圧縮機
32 タービン
51 主燃料噴射弁(燃料噴射機構)
55 点火プラグ(点火装置)
7 制御装置

Claims (7)

  1. 圧縮機およびタービンを含む過給機と接続されたガスエンジンの制御方法であって、
    定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に必要燃料噴射量が上昇した場合には、前記必要燃料噴射量の上昇速度が閾値よりも小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記必要燃料噴射量の上昇速度が閾値よりも大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ガスエンジンの制御方法。
  2. 圧縮機およびタービンを含む過給機と接続されたガスエンジンの制御方法であって、
    定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に前記ガスエンジンの実回転数が目標回転数から低下した場合には、前記実回転数と前記目標回転数との偏差が閾値よりも小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記実回転数と前記目標回転数との偏差が閾値よりも大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ガスエンジンの制御方法。
  3. 圧縮機およびタービンを含む過給機と接続されたガスエンジンの制御方法であって、
    定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に前記圧縮機の吐出圧である実過給圧が目標過給圧から低下した場合には、前記実過給圧と前記目標過給圧との偏差が閾値よりも小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記実過給圧と前記目標過給圧との偏差が閾値よりも大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ガスエンジンの制御方法。
  4. 前記必要燃料噴射量の上昇速度が閾値よりも小さいとき、前記実回転数と前記目標回転数との偏差が閾値よりも小さいとき、または前記実過給圧と前記目標過給圧との偏差が閾値よりも小さいときは、空気過剰率が第1下限を超えないように実燃料噴射量を徐々に増加させ、
    前記必要燃料噴射量の上昇速度が閾値よりも大きいとき、前記実回転数と前記目標回転数との偏差が閾値よりも大きいとき、または前記実過給圧と前記目標過給圧との偏差が閾値よりも大きいときは、前記空気過剰率が前記第1下限よりも小さい第2下限を超えないように実燃料噴射量を徐々に増加させる、請求項1〜のいずれか一項に記載のガスエンジンの制御方法。
  5. 前記必要燃料噴射量の上昇速度が閾値よりも小さいとき、前記実回転数と前記目標回転数との偏差が閾値よりも小さいとき、または前記実過給圧と前記目標過給圧との偏差が閾値よりも小さいときは、実燃料噴射量が第1上限を超えないように実燃料噴射量を徐々に増加させ、
    前記必要燃料噴射量の上昇速度が閾値よりも大きいとき、前記実回転数と前記目標回転数との偏差が閾値よりも大きいとき、または前記実過給圧と前記目標過給圧との偏差が閾値よりも大きいときは、前記実燃料噴射量が前記第1上限よりも大きい第2上限を超えないように実燃料噴射量を徐々に増加させる、請求項1〜のいずれか一項に記載のガスエンジンの制御方法。
  6. 前記ガスエンジンは船舶の主機として用いられるものである、請求項1〜のいずれか一項に記載のガスエンジンの制御方法。
  7. 圧縮機およびタービンを含む過給機と接続されたガスエンジンと、
    前記ガスエンジンに供給される空気中に燃料ガスを噴射する燃料噴射機構と、
    前記燃料ガスと前記空気の混合気に点火するための点火装置と、
    前記燃料噴射機構および前記点火装置を制御する制御装置と、を備え、
    前記制御装置は、定常運転として点火タイミングを最適化するノッキング制御運転を行い、定常運転中に必要燃料噴射量が上昇した場合には、前記必要燃料噴射量の上昇速度が閾値よりも小さいときは点火タイミングを維持したままで実燃料噴射量を徐々に増加させ、前記必要燃料噴射量の上昇速度が閾値よりも大きいときは点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させる、ガスエンジン駆動システム。
JP2016015775A 2016-01-29 2016-01-29 ガスエンジンの制御方法およびガスエンジン駆動システム Active JP6049921B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016015775A JP6049921B1 (ja) 2016-01-29 2016-01-29 ガスエンジンの制御方法およびガスエンジン駆動システム
PCT/JP2016/082433 WO2017130501A1 (ja) 2016-01-29 2016-11-01 ガスエンジンの制御方法およびガスエンジン駆動システム
US16/074,003 US10480426B2 (en) 2016-01-29 2016-11-01 Method of controlling gas engine and gas engine drive system
EP16888086.2A EP3409928B1 (en) 2016-01-29 2016-11-01 Method of controlling gas engine and gas engine drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015775A JP6049921B1 (ja) 2016-01-29 2016-01-29 ガスエンジンの制御方法およびガスエンジン駆動システム

Publications (2)

Publication Number Publication Date
JP6049921B1 true JP6049921B1 (ja) 2016-12-21
JP2017133464A JP2017133464A (ja) 2017-08-03

Family

ID=57572396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015775A Active JP6049921B1 (ja) 2016-01-29 2016-01-29 ガスエンジンの制御方法およびガスエンジン駆動システム

Country Status (4)

Country Link
US (1) US10480426B2 (ja)
EP (1) EP3409928B1 (ja)
JP (1) JP6049921B1 (ja)
WO (1) WO2017130501A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120142A (ja) * 2017-12-28 2019-07-22 川崎重工業株式会社 ガスエンジンの制御方法及びガスエンジンシステム
WO2020205039A1 (en) * 2019-04-02 2020-10-08 Cummins Inc. Intake manifold pressure control strategy
DK180308B1 (en) * 2019-06-13 2020-10-28 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged gaseous fueled engine and method for controlling conditions in combustion chamber
CN111664015B (zh) * 2020-06-22 2022-08-23 潍柴动力股份有限公司 天然气发动机的瞬态响应控制方法及装置
CN112761796B (zh) * 2020-12-29 2021-09-28 中国航发控制系统研究所 一种功率闭环控制系统及其方法
WO2022208575A1 (ja) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 エンジンの制御装置
DK181009B1 (en) * 2021-07-27 2022-09-19 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke turbocharged uniflow scavenged internal combustion engine and method of operating the engine
EP4219922A1 (en) 2022-01-31 2023-08-02 Winterthur Gas & Diesel Ltd. Device and method for operating a large engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038355A1 (ja) * 2008-10-02 2010-04-08 川崎重工業株式会社 ガスエンジンのノッキング制御装置
JP2010084681A (ja) * 2008-10-01 2010-04-15 Kawasaki Heavy Ind Ltd ガスエンジンのノッキング制御装置
JP2015132185A (ja) * 2014-01-10 2015-07-23 三菱重工業株式会社 内燃機関のノッキング判定装置及びノッキング制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208410B (en) * 1987-08-01 1991-07-17 Ford Motor Co Engine calibration
JP3591230B2 (ja) * 1997-07-18 2004-11-17 日産自動車株式会社 内燃機関の点火制御装置
US6536411B2 (en) * 1999-11-10 2003-03-25 Daimlerchrysler Ag Method of operating an internal combustion engine
JP4058927B2 (ja) * 2001-09-18 2008-03-12 日産自動車株式会社 内燃機関の制御装置
JP4476317B2 (ja) 2007-08-30 2010-06-09 三菱重工業株式会社 ガスエンジンの統合制御方法及び装置
JP5278464B2 (ja) * 2011-02-08 2013-09-04 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2015132206A (ja) * 2014-01-14 2015-07-23 三菱重工業株式会社 ガスエンジンの制御装置および制御方法ならびに制御装置を備えたガスエンジン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084681A (ja) * 2008-10-01 2010-04-15 Kawasaki Heavy Ind Ltd ガスエンジンのノッキング制御装置
WO2010038355A1 (ja) * 2008-10-02 2010-04-08 川崎重工業株式会社 ガスエンジンのノッキング制御装置
JP2015132185A (ja) * 2014-01-10 2015-07-23 三菱重工業株式会社 内燃機関のノッキング判定装置及びノッキング制御装置

Also Published As

Publication number Publication date
EP3409928A4 (en) 2019-09-18
JP2017133464A (ja) 2017-08-03
EP3409928B1 (en) 2022-01-05
US20190040806A1 (en) 2019-02-07
EP3409928A1 (en) 2018-12-05
US10480426B2 (en) 2019-11-19
WO2017130501A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6049921B1 (ja) ガスエンジンの制御方法およびガスエンジン駆動システム
JP5418032B2 (ja) エンジンの制御方法および制御装置
JPWO2006104271A1 (ja) エンジンの制御装置
JP2016094828A (ja) ガソリンエンジンの始動制御装置
JP6241412B2 (ja) 内燃機関の制御装置
JP6002339B1 (ja) ガスエンジン駆動システムおよびガスエンジン制御方法
WO2021079665A1 (ja) 内燃機関制御装置
JP4518251B2 (ja) 内燃機関の制御装置
US11293395B2 (en) Control device for engine
JP2018096311A (ja) 内燃機関の制御装置
WO2020179141A1 (ja) ターボ過給機付きガスエンジン及びその燃焼方法
JP2004028027A (ja) 筒内噴射型内燃機関とその燃焼方法
JP5925099B2 (ja) 内燃機関の制御装置
JP3903832B2 (ja) 内燃機関の制御方法
JP5418031B2 (ja) 火花点火式エンジンの制御方法および制御装置
WO2019130660A1 (ja) ガスエンジンの制御方法及びガスエンジンシステム
JP4539408B2 (ja) 吸気制御装置およびその方法
JP7070159B2 (ja) 圧縮着火式エンジンの制御装置
JP7070160B2 (ja) 圧縮着火式エンジンの制御装置
JP4534968B2 (ja) 内燃機関の制御装置
JP6866871B2 (ja) エンジンの制御装置及び制御方法
JP2017002855A (ja) 内燃機関の制御装置
JP2021059999A (ja) 内燃機関
JP2020125719A (ja) ガスエンジンシステム及びその制御方法
JP2020183729A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250