WO2019130660A1 - ガスエンジンの制御方法及びガスエンジンシステム - Google Patents

ガスエンジンの制御方法及びガスエンジンシステム Download PDF

Info

Publication number
WO2019130660A1
WO2019130660A1 PCT/JP2018/032551 JP2018032551W WO2019130660A1 WO 2019130660 A1 WO2019130660 A1 WO 2019130660A1 JP 2018032551 W JP2018032551 W JP 2018032551W WO 2019130660 A1 WO2019130660 A1 WO 2019130660A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas engine
increase
load
gas
fuel injection
Prior art date
Application number
PCT/JP2018/032551
Other languages
English (en)
French (fr)
Inventor
雅人 仲井
洋輔 野中
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201880083294.5A priority Critical patent/CN111527294A/zh
Publication of WO2019130660A1 publication Critical patent/WO2019130660A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a method of controlling a gas engine connected with a turbocharger.
  • the invention also relates to a gas engine system comprising such a turbocharger and a gas engine.
  • Patent Documents 1 and 2 disclose gas engines of this type.
  • the gas engine disclosed in Patent Document 1 is a supercharged gas engine.
  • the main chamber of the gas engine is connected to the compressor of the supercharger through the air supply passage, and is connected to the turbine of the supercharger through the exhaust passage.
  • the air supply passage is provided with a fuel injection valve for injecting a fuel gas into the air discharged from the compressor.
  • the subchamber of the gas engine is supplied with a mixture of air and fuel gas with an ignorable excess air ratio (also referred to as air-fuel ratio), and the main chamber is supplied with a lean mixture of air and fuel gas. Ru.
  • the burnt gas in the sub chamber spouts to the main chamber due to volumetric expansion accompanying the combustion, and the high temperature is spouted into the main chamber
  • the load rising operation is started when the load increases during steady operation, and the ignition timing is retarded if the increase degree of the load becomes relatively large during the load rising operation.
  • the actual fuel injection amount is gradually increased.
  • the margin of the excess air ratio up to the knocking limit becomes large, and it becomes possible to increase the actual fuel injection amount with a large width, so it is possible to rapidly increase the fuel gas.
  • the speed of the propulsion shaft connected with the propeller for propulsion or the engine connected directly therewith becomes the target engine speed.
  • Fuel supply is controlled.
  • the number of revolutions of a propulsion propeller of a ship is likely to change in a short time due to tidal current, waves, and the steering angle of the ship.
  • Patent Document 2 proposes a technology that enables the required amount of fuel to be supplied to the engine in response to a short-term fluctuation in the rotational speed of the propulsion propeller. More specifically, the engine disclosed in Patent Document 2 is based on the information on the current steering angle given to the ship, the information on the rotation speed of the current propulsion axis, and the information on the current speed of the ship. The future predicted ship speed of the ship is calculated, the predicted torque is calculated based on the predicted ship speed, the predicted fuel supply amount is determined based on the predicted torque, and the engine is supplied by the compressor based on the predicted fuel supply amount. The pressure of the fuel is controlled.
  • Patent 6049921 gazette JP, 2016-205270, A
  • the control device of the main engine of the ship can not follow the increase in load because the engine output can not follow the increase in engine speed and detects the increase in load, and increases the fuel gas according to the increase in load. Issue a command to However, it may be possible to predict the future load increase at a timing before the actual load increase is detected. For example, when the rudder angle operation amount of a ship changes, depending on various conditions such as the rudder angle after change, ship speed, ocean current, waves, etc., until the rudder angle operation amount changes and the load fluctuates. Time lag may occur.
  • the injection amount of fuel gas can be rapidly increased accordingly, whereby load response (for the required output).
  • the objective is to improve the followability of the actual output.
  • a control method of a gas engine is a control method of a gas engine connected to a supercharger including a compressor and a turbine, Actually, the load increase is predicted before the load of the gas engine increases, and when the predicted increase in load exceeds a predetermined threshold value, the turbocharger speed is increased while suppressing the increase in the boost pressure. When the increase in load of the gas engine is detected, the supercharging pressure and the fuel injection amount are increased.
  • the difference between the target engine speed and the actual engine speed of the gas engine, the difference between the target output and the required output, the difference between the required fuel injection quantity and the actual fuel injection quantity, and the index of the increase degree of the load of the gas engine At least one of the difference between the target boost pressure and the actual boost pressure may be used.
  • a gas engine system is A turbocharger including a compressor and a turbine; A gas engine connected to the compressor via an air supply passage and connected to the turbine via an exhaust passage; A fuel injection mechanism for injecting a fuel gas into air supplied to the gas engine through the air supply passage; The turbocharger, a gas engine, and a control device for controlling the fuel injection mechanism; The control device predicts an increase in load before the load on the gas engine actually increases, and when the predicted increase in load exceeds a predetermined threshold, the supercharger suppresses the increase in boost pressure.
  • a process of increasing the rotational speed is performed, and when an increase in load of the gas engine is detected during the steady operation, a process of increasing the supercharging pressure and the fuel injection amount is performed.
  • the gas engine control method and the gas engine system it is possible to predict the increase in load before the load on the gas engine actually increases, and to increase the turbocharger speed before the increase in load. Therefore, when the load on the gas engine actually increases, the supercharger rotational speed has already increased, so the supercharging pressure can be increased immediately, and fuel can be rapidly reduced within the appropriate air excess ratio range.
  • the injection amount can be increased. As a result, it is possible to improve the load responsiveness (followability of the actual output to the required output) of the gas engine.
  • a charge air blow-off valve for releasing gas from the charge air passage is provided in the air charge passage, and in the process of increasing the number of revolutions of the supercharger, the control device is the supercharger
  • the air supply blow-off valve may be controlled to cause the same.
  • the pressure can be increased.
  • the gas engine is a main engine of a ship, and a predicted increase in the load of the gas engine depends on a change in a steering angle operation amount of the ship. It may be an increase in the load of the gas engine as it changes.
  • the gas engine is a main engine of a ship equipped with a swing type thruster, and a predicted increase in the load of the gas engine is a steering angle operation amount of the ship. It may be an increase in the load of the gas engine after the pivoting thruster starts turning in response to a change.
  • a time lag may occur from when the rudder angle operation amount changes to when the load on the gas engine actually increases.
  • the supercharger rotational speed can be increased in preparation for the actual increase in load.
  • increasing the rotational speed of the supercharger increases an excess air ratio of a mixture of fuel gas and air sent to a combustion chamber of the gas engine, and retards an ignition timing.
  • Retarding pilot fuel injection timing, jet assisting the rotation of the compressor, reducing the opening area of the nozzle of the turbine, and discharging the gas discharged from the exhaust passage of the combustion chamber to the outside of the system It may include at least one of reducing.
  • the air supply passage is provided with a charge air blow-off valve for releasing the gas from the air supply passage, and the process of increasing the number of revolutions of the supercharger is sent to the combustion chamber of the gas engine
  • the air supply blow-off valve may be operated to increase the excess air ratio of the mixture of gas and air.
  • the gas engine has an igniter for igniting a mixture of the fuel gas and the air, and the process for increasing the number of revolutions of the supercharger retards the ignition timing.
  • the igniter may be operated to retard a pilot fuel injection timing.
  • the compressor is provided with a nozzle for supplying high pressure air supplied from a high pressure air source, and a jet assist valve provided between the high pressure air source and the nozzle.
  • the process of increasing the turbocharger rotational speed may be a process of switching the jet assist valve such that the rotation of the compressor is jet assisted by high pressure air ejected from the nozzle.
  • the opening degree of the nozzle for blowing the exhaust gas to the turbine impeller is variable, and the processing for increasing the turbocharger rotational speed reduces the opening area of the nozzle. It may be.
  • an exhaust waste gate valve for releasing gas from the exhaust gas passage is provided in the exhaust gas passage, and a process for increasing the turbocharger rotational speed reduces the opening degree of the exhaust waste gate valve. It may be.
  • the number of revolutions of the turbocharger can be increased while suppressing the influence on the steady operation of the gas engine.
  • the injection amount of fuel gas can be rapidly increased accordingly. This is expected to improve the load response of the gas engine.
  • FIG. 1 is a view showing an example of a ship equipped with a gas engine according to the present embodiment.
  • FIG. 2 is an enlarged view of the marine vessel propulsion device shown in FIG.
  • FIG. 3 is a schematic block diagram of a gas engine system.
  • FIG. 4 is a cross-sectional view of the main part of the gas engine.
  • FIG. 5 is a diagram showing the configuration of a control system of the gas engine system and the marine propulsion device.
  • FIG. 6 is a graph showing the relationship between the ignition timing for each air ratio and the occurrence rate of knocking at a specific rotation speed and fuel injection amount.
  • FIG. 7 is a flowchart of the load increase operation.
  • FIG. 1 is a view showing an example of a ship equipped with a gas engine according to the present embodiment.
  • FIG. 2 is an enlarged view of the marine vessel propulsion device shown in FIG.
  • FIG. 3 is a schematic block diagram of a gas engine system.
  • FIG. 4 is a cross-sectional view of the
  • FIG. 8A is a graph showing temporal changes in the required fuel injection amount Q and the actual fuel injection amount q when the degree of increase in load is relatively small.
  • FIG. 8B is a graph showing temporal changes in the required fuel injection amount Q and the actual fuel injection amount q when the degree of increase in load is relatively large.
  • FIG. 9A is an air excess ratio first lower limit map in which a first lower limit value of the air excess ratio is determined according to the actual fuel injection amount q and the actual rotation speed N.
  • FIG. 9B is an excess air ratio second lower limit map in which the second lower limit value of the excess air ratio is determined according to the actual fuel injection amount q and the actual rotation speed N.
  • FIG. 9A is an air excess ratio first lower limit map in which a first lower limit value of the air excess ratio is determined according to the actual fuel injection amount q and the actual rotation speed N.
  • FIG. 9B is an excess air ratio second lower limit map in which the second lower limit value of the excess air ratio is determined according to the actual fuel injection amount q and
  • FIG. 10 is a graph showing temporal changes in the change of the turning angle and the fluctuation of the load of the gas engine when the steering angle operation amount changes.
  • FIG. 11 is a flowchart of load increase preparation processing.
  • FIG. 12 is a graph showing the knocking area and the misfire area in the gas engine, with the air-fuel ratio on the horizontal axis and the net average effective pressure on the vertical axis.
  • FIG. 1 is a view showing an example of a ship 11 on which a gas engine 2 according to the present embodiment is mounted
  • FIG. 2 is an enlarged view of a marine propulsion device 8 of the ship 11 shown in FIG.
  • the ship 11 shown in FIG. 1 is a tugboat equipped with a gas engine 2 as a main engine, and provided with a revolving thruster (azimuth thruster) as a marine propulsion device 8.
  • a revolving thruster azimuth thruster
  • the ship 11 to which the present invention is applied is not limited to this embodiment.
  • the marine propulsion device 8 includes an upper gearbox 81 fixed at the upper part of the platform 80 installed at the bottom of the hull, a revolving cylinder 82 rotatably supported at the lower part of the platform 80 and an end of the revolving cylinder 82
  • a propulsion wing (propeller) 83 provided, a drive mechanism of the propulsion wing 83 formed in the upper gearbox 81 and the swirl cylinder 82, and a pivot drive device 84 for pivotally driving the pivot cylinder 82 are provided.
  • a clutch 85 that switches between transmission and disconnection of power and a gear group that changes the transmission direction of power are provided inside the upper gear box 81.
  • the driving force of the gas engine 2 which is the main engine is transmitted to the input shaft 86 to the upper gear box 81 through an intermediate shaft, a joint, and the like.
  • a horizontal shaft 87 arranged in series with the input shaft 86 is disposed such that the axis of the input shaft 86 is aligned with the axis.
  • a clutch 85 is provided which switches between transmission and disconnection of power between the input shaft 86 and the horizontal shaft 87.
  • An upper bevel pinion gear 88 which rotates integrally with the horizontal shaft 87 is provided in the upper gear box 81.
  • the upper bevel pinion gear 88 meshes with the upper bevel wheel gear 89.
  • the upper bevel wheel gear 89 is provided at the upper end of a vertical shaft 90 disposed substantially orthogonal to the horizontal shaft 87 and generally perpendicular to the platform 80.
  • the vertical shaft 90 is inserted into the swivel cylinder 82 and rotatably supported by the swivel cylinder 82.
  • a lower bevel pinion gear 91 is provided at the lower end portion of the vertical shaft 90 in the revolving cylinder 82.
  • a propulsion shaft 93 provided with a lower bevel wheel gear 92 which meshes with the lower bevel pinion gear 91 is inserted.
  • the propulsion shaft 93 is disposed to be substantially orthogonal to the vertical shaft 90, and a propulsion wing 83 is provided at an end portion projecting from the swirl cylinder 82.
  • a cylindrical duct 94 having a wing-shaped cross section is provided around the propulsion wing 83.
  • the upper end portion of the swivel cylinder 82 is pivotally suspended on the platform 80 via a swivel ring bearing (not shown).
  • a turning gear 95 is formed on the inner peripheral edge of the upper end portion of the turning cylinder 82.
  • the swing gear 95 meshes with a drive gear 97 that is rotated by the rotational output of a swing motor 96 fixed to the platform 80.
  • the swing motor 96 may be a hydraulic or an electric motor.
  • the turning angle (turning position) of the turning cylinder 82 is detected by a turning angle sensor 66.
  • the propulsion wing 83 when the driving force of the gas engine 2 is transmitted from the input shaft 86 to the horizontal shaft 87 via the clutch 85, the horizontal shaft 87 rotates. The rotation of the horizontal shaft 87 is transmitted to the vertical shaft 90 via the upper bevel gear mechanisms 88 and 89, and further transmitted to the propulsion shaft 93 from the vertical shaft 90 via the lower bevel gear mechanisms 91 and 92, and the propulsion wing 83 is propelled. It rotates integrally with the shaft 93. When the propulsion wing 83 rotates, the seawater sucked into the duct 94 is spouted, and the spouted stream propels the hull.
  • the marine propulsion device 8 configured as described above, by rotating the drive gear 97 by means of the swing motor 96, the swing cylinder 82 can be swiveled 360 ° in the horizontal direction. Then, by turning the turning cylinder 82 to an arbitrary position, the hull can be steered in any direction.
  • FIG. 3 is a schematic block diagram of the gas engine system 1.
  • the gas engine system 1 shown in FIG. 3 includes a gas engine 2, a supercharger 3, and a control device 7 (see FIG. 4).
  • the propulsion shaft 93 to which the propulsion wing 83 is attached is directly driven by the gas engine 2.
  • the propulsion shaft 93 may be driven indirectly by the gas engine 2 via a motor and a generator (both not shown).
  • the gas engine 2 may be a gas combustion engine that burns only fuel gas (for example, natural gas). However, the gas engine 2 may be a binary fuel engine that burns one or both of the fuel gas and the fuel oil depending on the situation. Further, in the present embodiment, the gas engine 2 is a four-stroke engine, but the gas engine 2 may be a two-stroke engine.
  • FIG. 4 is a cross-sectional view of the main part of the gas engine 2.
  • the gas engine 2 has a plurality of cylinders 21 (only one cylinder 21 is shown in FIG. 4).
  • a piston 22 is disposed in each cylinder 21 so as to be capable of reciprocating, and a combustion chamber 20 is formed by the cylinder 21 and the piston 22.
  • the piston 22 is connected to a crankshaft (not shown) by a connecting rod (not shown).
  • phase angle detector 63 As the phase angle, the rotation angle (crank angle) of the crankshaft, the position of the piston 22, or the like can be used.
  • the phase angle detector 63 is an electromagnetic pickup, a proximity switch, or a rotary encoder. The phase angle detector 63 also detects the actual rotational speed N of the gas engine 2.
  • the turbocharger 3 includes a compressor 31 and a turbine 32.
  • the gas engine 2 is connected to the compressor 31 via the air supply passage 41 and connected to the turbine 32 via the exhaust passage 42.
  • the air supply passage 41 guides the air compressed by the compressor 31 to the cylinders 21, and the exhaust passage 42 guides the exhaust gas after combustion from the cylinders 21 to the turbine 32.
  • the air supply passage 41 is provided with an air supply blow-off valve 48 for releasing the gas from the air supply passage 41 and releasing the pressure of the air supply passage 41.
  • the exhaust passage 42 is provided with an exhaust waste gate valve 49 which adjusts the inflow to the turbine 32 by diverting a part of the gas from the exhaust passage 42.
  • a radiator 43 for cooling the air compressed by the compressor 31 is provided in the air supply passage 41.
  • a first pressure sensor 61 for detecting an actual supercharging pressure P which is a discharge pressure of the compressor 31, is introduced to the combustion chamber 20 through the air supply passage 41 on the downstream side of the radiator 43 of the air supply passage 41.
  • a temperature sensor 65 for detecting the supercharging temperature which is the temperature of the air.
  • the first pressure sensor 61 may be provided in each of the above-described branched passages on the downstream side of the air supply passage 41, or only one may be provided in the above-described manifold.
  • the temperature sensor 65 may be provided in each of the above-described branched passages on the downstream side of the air supply passage 41, or only one may be provided in the above-described manifold.
  • the air supply passage 41 is provided with a main fuel injection valve 51 (corresponding to the fuel injection mechanism of the present invention) for injecting the fuel gas into the air discharged from the compressor 31 for each cylinder 21.
  • the fuel injection mechanism of the present invention may not necessarily be the fuel injection valve 51 as long as the fuel gas is injected into the air supplied to the gas engine 2.
  • the fuel injection mechanism includes a fuel gas supply passage joining an air supply passage connected to the suction port of the compressor 31, and a fuel flow control valve provided in the fuel gas supply passage. May be configured to inject fuel gas into the
  • Each cylinder 21 has an air supply valve 23 for opening and closing an air supply port which is an opening for the combustion chamber 20 of the air supply path 41 and an exhaust valve 24 for opening and closing an exhaust port which is an opening for the combustion chamber 20 of the exhaust path 42. It is provided.
  • Each cylinder 21 is provided with an igniter 55 for igniting a mixture of fuel gas and air in the combustion chamber 20.
  • the combustion chamber 20 includes a main chamber 20A communicating with the air supply passage 41 and the exhaust passage 42, and a sub chamber 20B separated from the main chamber 20A by a partition 25 provided with a communication hole.
  • the igniter 55 is disposed in the sub chamber 20B, and fuel gas is injected from the sub fuel injection valve 52 into the sub chamber 20B.
  • a rich air-fuel mixture is formed in the sub chamber 20 B by the injection of the fuel gas from the sub fuel injection valve 52, and this air fuel mixture is ignited by the igniter 55.
  • a flame is generated in the sub chamber 20B, and the flame propagates into the main chamber 20A through the communication hole of the partition wall 25, whereby the lean mixture in the main chamber 20A is also ignited.
  • the main chamber 20A is provided with a second pressure sensor 62 for detecting the in-cylinder pressure which is the pressure in the main chamber 20A.
  • the exhaust gas after combustion is introduced from the combustion chamber 20 to the turbine 32 through the exhaust passage 42, and is used as motive power for driving the compressor 31 here.
  • FIG. 5 is a view showing the configuration of the control system of the gas engine system 1 and the marine propulsion device 8.
  • the control device 7 includes a propulsion device control unit 71 that controls the operation of the marine propulsion device 8 and an engine control unit 72 that controls the operation of the gas engine system 1.
  • the control device 7 is a so-called computer, and has an arithmetic processing unit such as a CPU and a storage unit such as a ROM and a RAM (all not shown).
  • the storage unit stores programs executed by the arithmetic processing unit, various fixed data, and the like.
  • the arithmetic processing unit performs data transmission and reception with an external device. Further, the arithmetic processing unit performs input of detection signals from various sensors and output of control signals to each control target.
  • the control unit 7 performs processing for controlling the operation of the gas engine system 1 and the marine propulsion device 8 by the arithmetic processing unit reading and executing software such as a program stored in the storage unit.
  • the control device 7 may execute each process by centralized control by a single computer, or may execute each process by distributed control by cooperation of a plurality of computers. Further, the control device 7 may be configured of a microcontroller, a programmable logic controller (PLC) or the like.
  • PLC programmable logic controller
  • a not-shown cockpit provided on the hull is provided with a steering angle operating tool 73 for operating input of the steering angle, and a boat maneuvering operating tool 74 for operating input of the number of rotations of the gas engine 2 and forward / reverse.
  • the steering angle operation information input by the operator is input to the control device 7 via the steering angle operation tool 73.
  • the boat maneuvering operation information input by the operator is input to the control device 7 through the boat maneuvering operation tool 74.
  • These operation tools 73 and 74 may be, for example, a handle or a lever.
  • the control device 7 is communicably connected to the steering angle operation tool 73, the boat maneuvering operation tool 74, the boat speed meter 67, the turning drive device 84, and the turning angle sensor 66 via wired or wireless information communication means. .
  • the control device 7 operates the turning drive device 84 of the marine propulsion device 8 based on the steering angle operation information input via the steering angle operation tool 73, the actual turning angle detected by the turning angle sensor 66, and the like. Control. Specifically, the control device 7 obtains steering angle operation information and an actual turning angle, obtains a target turning angle based on the steering angle operation information, and makes a turning angle instruction value so that the actual turning angle becomes the target turning angle. And outputs the turning angle command value to the turning drive device 84. In the turning drive device 84, the turning motor 96 operates based on the obtained turning angle instruction value, and as a result, the actual turning angle of the propulsion wing 83 becomes a target turning angle corresponding to the steering angle operation information.
  • control device 7 includes the main fuel injection valve 51, the auxiliary fuel injection valve 52, the ignition device 55, the first pressure sensor 61, the second pressure sensor 62, the phase angle detector 63, and the temperature sensor 65 of the gas engine system 1.
  • the jet assist valve 37, the air supply blow-off valve 48, and the exhaust waste gate valve 49 are communicably connected via a wired or wireless information communication means.
  • the controller 7 controls the fuel injection valves 51 and 52 and the igniter 55 based on the phase angle detected by the phase angle detector 63 for each cylinder 21. Specifically, the control device 7 performs the steady operation while the load hardly changes, and shifts to the load increasing operation when the load increases during the steady operation. In both the steady operation and the load increase operation, the control device 7 also performs PID control to maintain the actual rotation number N at the target rotation number NT based on the operation amount of the boat maneuvering operation tool 74.
  • the steady operation is an operation in which the fuel injection amount is substantially constant regardless of the level of the load of the gas engine 2.
  • the factors causing the load to rise include a command to increase the boat speed by the pilot of the ship 11, a command to maintain the boat speed when the ship is subjected to a strong wind wave, and a propeller pitch if the propulsion wing 83 is a variable pitch propeller. There are things that are enlarged and so on.
  • the control device 7 calculates the required fuel injection amount Q (the injection amount of fuel gas necessary to obtain the required output) according to the required output. Specifically, the control device 7 sets the target rotation speed NT based on the operation amount of the boat maneuvering operation tool 74, the actual rotation speed N detected by the phase angle detector 63, and the current ship detected by the ship speed meter 67. The required output of the gas engine 2 is obtained based on the actual ship speed which is the speed, the hull performance model stored in advance in the storage unit, etc., and the difference between the required output and the actual output is obtained. The required fuel injection amount Q is calculated from the difference.
  • the fuel injection amount is the injection amount of the fuel gas per one time.
  • the fuel injection amount may be the flow rate of the fuel gas.
  • control device 7 performs the steady operation while the load hardly changes, and shifts to the load increasing operation when the load increases during the steady operation. Furthermore, during steady-state operation, the controller 7 predicts an increase in load, and performs a load increase preparation process for increasing the number of revolutions of the supercharger while suppressing an increase in boost pressure prior to the increase in actual load.
  • (1) steady operation, (2) load increase operation, and (3) load increase preparation processing of the gas engine 2 will be described in detail.
  • the control for one cylinder 21 of the gas engine 2 will be described as a representative, but the same control is performed for all the cylinders 21.
  • knocking control operation is performed as steady operation.
  • the steady-state operation is not limited to the present embodiment as long as the fuel injection amount and the supercharging amount are adjusted so that the excess air ratio falls between the knocking region and the misfire region.
  • the knocking control operation is to optimize the ignition timing so as to obtain the highest efficiency among the lean burns in which the NOx emission amount is small and the high efficiency can be realized. Specifically, while maintaining the excess air ratio ⁇ for realizing lean burn constant in each cylinder 21 of the gas engine 2, based on the difference between the knocking appearance rate and the target appearance rate for every predetermined number of cycles.
  • the ignition timing is advanced or retarded.
  • the ignition timing is, for example, based on the timing (0 degree) at which the piston 22 is located at the top dead center, and indicates the phase angle of the gas engine 2 as to how early the ignition is performed from there.
  • control based on the in-cylinder pressure detected by the second pressure sensor 62 is performed.
  • the correction value ⁇ positive, that is, when the knocking appearance ratio R is smaller than the target appearance ratio RT, the ignition timing is advanced by the correction value ⁇ , and when the correction value ⁇ is negative, that is, the knocking appearance ratio R is the target appearance ratio If it is larger than RT, the ignition timing is retarded by the correction value ⁇ .
  • the ignition timing iT is adjusted to the optimum timing.
  • FIG. 8A shows the case where the load increase degree is relatively small, that is, the increase rate V of the required fuel injection amount Q is slow
  • FIG. 8B shows the case where the load increase degree is relatively large, that is, the required fuel injection amount Q Shows a case where the rising speed V of the
  • control device 7 compares the calculated rising speed V with the threshold value ⁇ (step S2). As shown in FIG. 6, the fuel gas can be increased to the first lower limit ⁇ 1 of the excess air ratio, which is a line passing the knocking limit RL at the ignition timing iT adjusted in the knocking control operation.
  • the threshold value ⁇ is a rising speed when the delay from the rising instruction end point A to the timing B can not be tolerated when the control is performed based on the first lower limit ⁇ 1. Such threshold value ⁇ is determined in advance by experiment or numerical simulation. The threshold value ⁇ may be determined for each of the actual fuel injection amount q and the actual rotational speed N.
  • step S3 If the rate of increase V of the required fuel injection amount Q is equal to or less than the threshold value ⁇ , the process proceeds to step S3, and if the rate of increase V is larger than the threshold value ⁇ , the process proceeds to step S8.
  • the process when the rising speed V is equal to the threshold value ⁇ , the process proceeds to step S3, but when the rising speed V is equal to the threshold value ⁇ , the process may proceed to step S8.
  • step S3 the control device 7 gradually increases the actual fuel injection amount q so that the excess air ratio ⁇ does not exceed the first lower limit ⁇ 1 while maintaining the ignition timing iT adjusted in the knocking control operation.
  • the excess air ratio ⁇ is obtained from the actual fuel injection amount q, the actual supercharging pressure P detected by the first pressure sensor 61, and the supercharging temperature detected by the temperature sensor 65.
  • the control device 7 selects the excess air ratio first lower limit ⁇ 1 map shown in FIG. 9A (step S3).
  • the excess air ratio first lower limit ⁇ 1 map the first lower limit value ⁇ 1 l, k (1 ⁇ l ⁇ i, 1 ⁇ k ⁇ j) of the excess air ratio is determined according to the actual fuel injection amount q and the actual rotation speed N It is done.
  • the controller 7 determines the first lower limit ⁇ 1 from the actual fuel injection amount q and the actual rotational speed N using the air excess ratio first lower limit ⁇ 1 map (step S4).
  • the excess air ratio first lower limit ⁇ 1 map may be a three-dimensional map using the supercharging temperature as a variable in addition to the actual fuel injection amount q and the actual rotational speed N.
  • control device 7 calculates and calculates the current excess air ratio ⁇ from the actual fuel injection amount q, the actual boost pressure P detected by the first pressure sensor 61, and the supercharging temperature detected by the temperature sensor 65.
  • the increase width ⁇ q of the fuel injection amount necessary to bring the excess air ratio ⁇ to the first lower limit ⁇ 1 determined in step S4 is calculated (step S5).
  • the excess air ratio ⁇ is the theoretical air amount required to completely burn the fuel gas of the actual fuel injection amount q, with the amount of air actually supplied to the combustion chamber 20 determined from the actual supercharging pressure P and the supercharging temperature It is the value divided by the amount.
  • the control device 7 After calculating the increase width ⁇ q, the control device 7 increases the actual fuel injection amount q by ⁇ q (step S6), and determines whether the actual fuel injection amount q is equal to or more than the required fuel injection amount Q Step S7). If the actual fuel injection amount q is less than the required fuel injection amount Q, the process returns to step S1. If the actual fuel injection amount q is equal to or more than the required fuel injection amount Q, the load increase operation is ended and the process returns to the steady operation.
  • step S8 the controller 7 retards the ignition timing iT by the angle ⁇ , and then the actual fuel injection amount so that the excess air ratio ⁇ does not exceed the second lower limit ⁇ 2 smaller than the first lower limit ⁇ 1. Increase q gradually.
  • the second lower limit ⁇ 2 is a line passing the knocking limit RL when the ignition timing iT is retarded by the angle ⁇ .
  • the time C at which the actual fuel injection amount q becomes the required fuel injection amount Q is significantly earlier than the time B.
  • the controller 7 retards the ignition timing iT by the angle ⁇ (step S8).
  • the retarding angle ⁇ may be determined from the actual fuel injection amount q and the actual rotational speed N, or may be determined from the actual supercharging pressure P and the actual rotational speed N detected by the first pressure sensor 61.
  • the information representing the relationship between the angle ⁇ and the actual fuel injection amount q and the actual rotational speed N, or the information representing the relationship between the angle ⁇ and the actual supercharging pressure P and the actual rotational speed N is stored in advance in the storage unit The controller 7 can use this to determine the angle ⁇ .
  • the control device 7 selects the air excess ratio second lower limit ⁇ 2 map shown in FIG. 9B (step S9).
  • the excess air ratio second lower limit ⁇ 2 map the second lower limit value ⁇ 21 , k (1 ⁇ l ⁇ i, 1 ⁇ k ⁇ j) of the excess air ratio is determined according to the actual fuel injection amount q and the actual rotational speed N It is done. All the second lower limits ⁇ 2 l, k are correspondingly smaller, ie, the actual fuel injection amount q and the actual rotational speed N are smaller than the same first lower limits ⁇ 1 l, k .
  • the control device 7 determines the second lower limit ⁇ 2 from the actual fuel injection amount q and the actual rotational speed N using the air excess ratio second lower limit ⁇ 2 map (step S10).
  • the excess air ratio second lower limit ⁇ 2 map may be a three-dimensional map in which the supercharging temperature is used as a variable in addition to the actual fuel injection amount q and the actual rotation speed N.
  • control device 7 calculates and calculates the current excess air ratio ⁇ from the actual fuel injection amount q, the actual boost pressure P detected by the first pressure sensor 61, and the supercharging temperature detected by the temperature sensor 65.
  • a fuel injection amount increase width ⁇ q necessary for setting the excess air ratio ⁇ to the second lower limit ⁇ 2 determined in step S10 is calculated (step S11).
  • the controller 7 After calculating the increase width ⁇ q, the controller 7 increases the actual fuel injection amount q by ⁇ q (step S12), and determines whether the actual fuel injection amount q has become equal to or more than the required fuel injection amount Q Step S13). If the actual fuel injection amount q is less than the required fuel injection amount Q, the process returns to step S1. If the actual fuel injection amount q is equal to or more than the required fuel injection amount Q, the load increase operation is ended and the process returns to the steady operation.
  • FIG. 10 is a graph showing the change over time of the actual turning angle of the propulsion wing 83 and the load of the gas engine 2.
  • the time axes of the upper and lower graphs in FIG. 10 correspond to each other.
  • the steering angle operation information is input to the control device 7 at time T1, and based on the change in the steering angle operation amount, the elapsed time of the actual turning angle when the turning angle changes from ⁇ 1 to ⁇ 2 Change is shown.
  • the graph in the upper part of FIG. 10 represents the change in the load of the gas engine 2 when the actual turning angle changes as described above.
  • Steady operation is performed at time T1 when the steering angle operation amount has changed, and the load of the gas engine 2 starts to rise while the actual turning angle changes from ⁇ 1 to ⁇ 2. That is, there is a time lag from time T1 when the steering angle operation amount has changed to when the load of the gas engine 2 actually starts to rise correspondingly. Moreover, from time T1 when the steering angle operation amount has changed, the load on the gas engine 2 is actually increased corresponding to this, and there is a further large time lag before the load increase operation starts.
  • the controller 7 can predict the future load fluctuation of the gas engine 2 due to the change of the turning angle. That is, the control device 7 can predict the load fluctuation of the gas engine 2 before the load of the gas engine 2 fluctuates due to the change of the turning angle of the propulsion wing 83. Therefore, in the gas engine system 1 according to the present embodiment, the change of the load due to the change of the turning angle of the propulsion wing 83 is predicted based on the change of the steering angle operation amount, and the load is actually made using the time lag described above.
  • the amount of air in the air supply passage 41 (that is, the amount of air that can be supplied to the combustion chamber 20) can be rapidly increased before the air pressure rises, and when the load actually increases, the supercharge amount and fuel can be rapidly increased. It is possible to increase the gas.
  • the load increase preparation processing by the control device 7 will be described with reference to the flowchart of FIG.
  • the control device 7 monitors a change in the steering angle operation amount included in the steering angle operation information during steady operation.
  • the steering angle operation amount is input by the operation of the steering angle operation tool 73 described above, and may be input from an automatic steering device (not shown) during automatic steering. As shown in FIG. 11, when the steering angle operation amount changes during steady operation (YES in step S31), the control device 7 starts load increase preparation processing (step S32).
  • the control device 7 that has started the load increase preparation process first calculates the predicted necessary fuel injection amount Qp (step S33).
  • the predicted required fuel injection amount Qp is an example of an indicator of the degree of increase in load.
  • the control device 7 is based on the target rotation speed NT based on the operation amount of the boat maneuvering operation tool 74, the actual rotation speed N which is the current rotation speed of the gas engine 2, and the operation amount of the steering angle operation tool 73.
  • a ship performance model stored in advance in a storage unit by acquiring information such as a target turning angle, an actual turning angle which is the turning angle of the current propulsion wing 83, and an actual ship speed which is the current ship speed. Is used to obtain the predicted demand output of the gas engine 2, the difference between the predicted demand output and the actual output is obtained, and the predicted required fuel injection amount Qp is calculated from the difference between the predicted demand output and the actual output.
  • the predicted required fuel injection amount Qp may be a temporal change of the required fuel injection amount Q from the start of the turning operation according to the rudder angle operation information to the end of the turning operation.
  • the predicted required fuel injection amount Qp is the temporal change of the required fuel injection amount Q from the start of the turning operation corresponding to the steering angle operation information until the predetermined time elapses after the end of the turning operation. It may be a change.
  • the control device 7 compares the calculated rising speed Vp with a predetermined threshold value ⁇ (step S35).
  • the threshold value ⁇ may be the same value as the threshold value ⁇ used in the above-described load increase operation. Alternatively, the threshold ⁇ may be smaller or larger than the threshold ⁇ used in the load increase operation.
  • step S35 If the increase rate Vp of the predicted necessary fuel injection amount Qp is equal to or less than the threshold value ⁇ (NO in step S35), the load increase preparation process is ended. On the other hand, if the increase rate Vp of the predicted required fuel injection amount Qp is larger than the threshold value ⁇ (YES in step S35), the process proceeds to step S36, and the load increase preparation process is ended. In the present embodiment, although the load increase preparation process is ended when the rising speed Vp is equal to the threshold value ⁇ , the process may proceed to step S36 when the rising speed Vp is equal to the threshold value ⁇ .
  • step S36 the control device 7 performs a supercharger rotational speed increasing operation to increase the rotational speed of the supercharger 3 while suppressing an increase in the supercharging pressure.
  • the amount of air in the air supply passage 41 that is, the amount of air that can be supplied to the combustion chamber 20
  • the supercharging pressure is rapidly increased so that the excess air ratio ⁇ falls within the appropriate range, and the actual fuel injection amount q is made more quickly. It is possible to increase In other words, it is possible to improve the load responsiveness (followability of the actual output to the required output) of the gas engine 2.
  • the supercharger rotational speed increasing operation may be any one or a combination of two or more of the following (a) to (e):
  • (A) Increase the excess air ratio ⁇ .
  • the controller 7 operates the charge air blow-off valve 48 so as to increase the excess air ratio ⁇ of the mixture of fuel gas and air sent to the combustion chamber 20 within the range not exceeding the first lower limit ⁇ 1.
  • the combustion temperature is raised by burning the fuel while the air in the cylinder 21 is further thickened, and the exhaust temperature from the gas engine 2 is increased, that is, the exhaust energy is increased.
  • the rotational speed of the turbine 32 can be increased.
  • the controller 7 operates the igniter 55 so as to retard the ignition or the ignition timing.
  • the exhaust gas temperature from the gas engine 2 is increased, that is, the exhaust energy is increased, so that the rotational speed of the turbine 32 of the turbocharger 3 can be increased.
  • an ignition method of the gas engine 2 a spark ignition method of igniting the mixture with sparks generated by a spark plug and a mixture of fuel ignited with the pilot fuel oil injected into the combustion chamber 20 and self-ignited (ignite)
  • the spark ignition type ignition device 55 includes an ignition plug, and the ignition timing can be retarded by the operation of the ignition device 55 so as to retard the generation timing of the spark of the ignition plug.
  • the pilot oil ignition system igniter 55 includes a pilot fuel injection valve, and the igniter 55 operates to retard the pilot fuel injection timing from the pilot fuel injection valve to retard the ignition timing. it can.
  • a nozzle 36 for supplying high pressure air supplied from the high pressure air source 35 and a jet assist valve 37 provided between the high pressure air source 35 and the nozzle 36 are provided on the inlet side of the compressor 31. (See Figure 3). Then, the control device 7 switches the jet assist valve 37 so that the rotation of the compressor 31 is jet assisted by the high pressure air jetted from the nozzle 36.
  • the rotation of the compressor 31 is assisted by the flow of the high pressure air blown, and as a result, the number of rotations of the compressor 31 of the turbocharger 3 can be increased.
  • (D) Reduce the gas exhausted from the exhaust passage 42 to the outside of the system.
  • the control device 7 operates the exhaust waste gate valve 49 so that the opening degree of the exhaust waste gate valve 49 is reduced or closed. If the opening degree of the exhaust waste gate valve 49 becomes smaller, the amount of exhaust gas discharged from the exhaust passage 42 decreases, so that the rotational speed of the turbine 32 of the turbocharger 3 can be increased.
  • the control device 7 performs an operation of increasing the rotational speed of the turbocharger 3 as described above in the supercharger rotational speed increasing operation, and an operation of suppressing an increase in supercharging pressure accompanying an increase in the turbocharger rotational speed. .
  • the controller 7 increases the opening degree of the air supply blow-off valve 48 so as to suppress an increase in supercharging pressure accompanying an increase in the number of revolutions of the supercharger.
  • the opening degree of the air supply blow-off valve 48 is increased, the amount of air discharged from the air supply passage 41 is increased, so that the increase in supercharging pressure can be suppressed even if the turbocharger rotational speed is increased.
  • the control device 7 adjusts the opening degree of the air supply blow-off valve 48 so that the fluctuation of the pressure detected by the first pressure sensor 61 is suppressed to a predetermined width.
  • the controller 7 sets the actual boost pressure P and the actual boost pressure P such that the actual boost pressure P satisfies the excess air ratio ⁇ corresponding to the required fuel injection amount Q.
  • the opening degree of the charge air blow-off valve 48 is reduced or closed based on the supercharging temperature. Since the turbocharger rotation speed of the turbocharger 3 has already increased by the load increase preparation process, the charge increase operation is started by reducing or closing the opening degree of the air supply blow-off valve 48, and then the supercharging pressure The boost pressure can be raised more quickly than when raising the pressure.
  • the control method of the gas engine according to the present embodiment is a control method of the gas engine 2 connected to the turbocharger 3 including the compressor 31 and the turbine 32, and the load of the gas engine 2 is actually loaded.
  • the load increase is predicted before the load rises, and when the predicted load increase exceeds the predetermined threshold ⁇ , the supercharger rotational speed is increased while the charge pressure increase is suppressed, and the load of the gas engine 2 is increased.
  • the operation shifts to a load increase operation to increase the boost pressure and the fuel injection amount.
  • the prediction of the increase in load, the increase in supercharging pressure, and the detection of the increase in load of gas engine 2 are performed during steady operation.
  • the gas engine system 1 is connected to the turbocharger 3 including the compressor 31 and the turbine 32 via the compressor 31 and the air supply passage 41, and via the turbine 32 and the exhaust passage 42.
  • a fuel injection mechanism main fuel injection valve 51 for injecting a fuel gas into air supplied to the gas engine 2 through the air supply passage, a supercharger 3, a gas engine 2, And a controller 7 for controlling the fuel injection mechanism.
  • the controller 7 predicts an increase in load before the load on the gas engine 2 actually increases, and when the predicted increase in load exceeds a predetermined threshold value ⁇ , while suppressing an increase in supercharging pressure
  • a process of increasing the turbocharger rotational speed is performed, and when an increase in load of the gas engine is detected (transition from steady operation to load increase operation), a process of increasing the supercharging pressure and the fuel injection amount is performed.
  • the load increase is predicted before the load of the gas engine 2 actually increases, and the supercharger rotational speed is increased to increase the supercharge before the load increase. It can be prepared to increase the pressure. Therefore, when the load of the gas engine 2 actually increases, the supercharging pressure and the fuel injection amount can be rapidly increased so as to be within the range of an appropriate excess air ratio. Thereby, the load response of the gas engine 2 can be improved.
  • the air supply passage 41 is provided with the air supply blow-off valve 48 for releasing the gas from the air supply passage 41, and the control device 7 increases the number of revolutions of the turbocharger.
  • the opening degree of the charge air blow-off valve 48 is increased to suppress the increase of the charging pressure due to the increase of the turbocharger rotation speed.
  • the air supply blow-off valve 48 is controlled to reduce or close the valve.
  • the gas engine 2 is the main engine of the ship 11, and the predicted increase in the load of the gas engine 2 is the steering angle operation amount of the ship 11.
  • the load on the gas engine 2 is increased when the steering angle changes in accordance with the change in.
  • the gas engine 2 is the main engine of the ship 11 provided with the swing type thruster (marine propulsion device 8), and the predicted gas engine
  • the increase of the load 2 is an increase of the load of the gas engine 2 after the swing type thruster starts turning according to the change of the steering angle operation amount of the ship 11.
  • the mechanism for determining the traveling direction of the ship 11 may be a steering plate driven by a hydraulic or electric actuator. Even in this case, after the steering angle operation amount changes, the hydraulic or electric actuator operates to change the steering angle, and a time lag may occur before the load actually increases.
  • the feeder rotational speed can be increased in advance.
  • the excess air ratio of the mixture of the fuel gas and the air sent to the combustion chamber 20 is increased, and the igniter 55 is a spark ignition system. Retarding the ignition timing of the spark plug, retarding the pilot fuel injection timing when the ignition device 55 is a pilot oil ignition system, jet assisting the rotation of the compressor 31, the geometry of the turbocharger 3 being variable. In the case of a turbo, at least one of reducing the opening area of the nozzle of the turbine 32 and reducing the gas discharged from the exhaust passage 42 of the combustion chamber 20 to the outside of the system reduces the turbocharger speed. increase.
  • the controller 7 decreases the opening degree of the charge air blow-off valve 48 so as to increase the excess air ratio of the mixture of fuel gas and air sent to the combustion chamber 20 in order to increase the number of revolutions of the turbocharger. Do the process. Further, for example, the control device 7 performs processing for operating the igniter 55 so as to retard the ignition timing or retard the pilot fuel injection timing in order to increase the turbocharger rotational speed. Further, for example, in order to increase the number of revolutions of the supercharger, the control device 7 performs a process of switching the jet assist valve 37 such that the rotation of the compressor 31 is jet assisted by the high pressure air jetted from the nozzle 36 .
  • control device 7 performs a process to reduce the opening area of the turbine 32 in order to increase the turbocharger rotation speed. Also, for example, the control device 7 performs processing to reduce the opening degree of the exhaust waste gate valve 49 in order to increase the turbocharger rotation speed.
  • the number of revolutions of the turbocharger can be increased while suppressing the influence on the steady operation of the gas engine 2.
  • the ignition timing is retarded and the fuel injection amount
  • the fuel injection amount may be increased.
  • the required fuel injection amount Q (predicted necessary fuel injection amount Qp) is used as an indicator of the degree of increase in load of the gas engine 2
  • the gas engine 2 is used as an indicator of load of the gas engine 2.
  • the difference between the required output (predicted required torque) and the actual output, the difference between the target rotational speed and the actual rotational speed, and the difference between the target boost pressure and the actual boost pressure may be used.
  • the actual rotational speed of the gas engine 2 decreases from the target rotational speed. Moreover, how much the actual rotational speed decreases depends on the degree of load. Therefore, the difference between the target rotational speed and the actual rotational speed can be used as an indicator of the degree of increase in load.
  • the target boost pressure increases according to the load, and the increase in the actual boost pressure is delayed with respect to the increase in the target boost pressure (so-called turbo lag). And the target boost pressure increase. Moreover, the magnitude of the increase in the difference depends on the degree of load. Therefore, the difference between the target boost pressure and the actual boost pressure can be used as an indicator of the degree of increase in load.
  • the gas engine system of the present invention does not necessarily have to be used for ships, and may be used, for example, for power generation equipment, construction machines, railways and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Ocean & Marine Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

過給機と接続されたガスエンジンにおいて、実際にガスエンジンの負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値を超えると、過給圧の増加を抑えながら過給機回転数を増加させ、ガスエンジンの負荷の上昇が検出されると、過給圧及び燃料噴射量を増加させるように、ガスエンジンを制御する。

Description

ガスエンジンの制御方法及びガスエンジンシステム
 本発明は、過給機と接続されたガスエンジンの制御方法に関する。また、本発明は、それらの過給機及びガスエンジンを含むガスエンジンシステムに関する。
 従来、船舶の主機関(推進用内燃機関)として用いられるガスエンジンが知られている。この種のガスエンジンが、例えば、特許文献1,2に開示されている。
 特許文献1に開示されたガスエンジンは、過給機付きガスエンジンである。このガスエンジンの主室は、給気路を介して過給機の圧縮機と接続され、排気路を介して過給機のタービンと接続されている。給気路には、圧縮機から吐出される空気中に燃料ガスを噴射する燃料噴射弁が設けられている。ガスエンジンの副室には、空気と燃料ガスから成る点火可能な空気過剰率(空燃比ともいう)の混合気が供給され、主室には、空気と燃料ガスから成る希薄混合気が供給される。そして、点火装置により副室の混合気に点火を行い、副室内の混合気を燃焼させると、燃焼に伴う体積膨張により副室内の既燃ガスが主室へ噴出し、主室に噴出した高温の噴流は主室内の希薄混合気を着火させ主室内に火炎伝播する。
 一般に、ガスエンジンにおいては、図12に示すように、空気過剰率と正味平均有効圧(BMEP)との関係でノッキング領域及び失火領域が存在することが知られている。リーンバーンにおいて高出力を得るには、図中に範囲Xで示すように、空気過剰率をノッキング領域と失火領域の間に制御することが重要である。従って、定常運転時のガスエンジンでは、空気過剰率がノッキング領域と失火領域の間に収まるように、燃料噴射量と過給量とが制御される。
 ガスエンジンの負荷が急上昇し、それに対応して燃料ガスを増やす際には、ガスエンジンに供給される空気も増やさなければ、範囲X中の作動点が左に移動してノッキング出現率がノッキング限界を超えてしまう。つまり、異常燃焼を生じさせずに、急負荷変動に追従する出力を得るためには、燃料ガスの増減の速度と対応する速度で空気を増減させる必要がある。しかし、過給機と接続されたガスエンジンでは、燃料ガスを増やしてもターボラグのために空気は直ぐには増加しないので、燃料ガスを迅速に増やすことができない。
 そこで、特許文献1のガスエンジンでは、定常運転中に負荷が上昇すると負荷上昇運転を開始し、負荷上昇運転中に負荷の上昇度合いが相対的に大きくなれば、点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させるようにしている。これにより、ノッキング限界までの空気過剰率の余裕が大きくなり、実燃料噴射量を大きな幅で上昇させることが可能になるので、燃料ガスを迅速に増やすことができる。
 ところで、海洋や河川を航行する船舶の主機関では、一般に、推進用プロペラと連結された推進軸又はそれと直結されたエンジンの回転数が与えられた目標回転数となるように、主機関への燃料供給量が制御される。船舶の推進用プロペラの回転数は、潮流、波、及び、船舶の舵角などによって短期に変化しやすい。
 そこで、特許文献2では、推進用プロペラの回転数の短期の変動に対応して、要求される量の燃料をエンジンへ供給できるようにする技術が提案されている。より詳細には、特許文献2に開示されたエンジンでは、船舶に与える現在の舵角の情報と、現在の推進軸の回転数の情報と、船舶の現在の船速の情報とに基づいて、船舶の将来の予測船速を算出し、予測船速に基づいて予測トルクを算出し、予測トルクに基づいて予測燃料供給量を求め、予測燃料供給量に基づいて圧縮機によるエンジンへ供給される燃料の圧力を制御するようにしている。
特許6049921号公報 特開2016-205270号公報
 一般に、船舶の主機関の制御装置は、負荷の上昇にエンジン出力が追従できなくなって、エンジンの回転数が低下して初めて負荷の上昇を検知し、この負荷の上昇に応じて燃料ガスを増加させるように指令を出す。しかし、このように実際の負荷の上昇が検知されるよりも前のタイミングで、将来の負荷の上昇を予測できる場合がある。例えば、船舶の舵角操作量が変化した場合には、変化後の舵角、船速や海流、波浪など諸々の条件によるが、実際に舵角操作量が変化して負荷が変動するまでにタイムラグが生じることがある。
 特許文献1では、点火タイミングをリタードさせた上で実燃料噴射量を徐々に増加させることにより、燃料ガスを迅速に増やすことができるようにしているが、前述のように将来の負荷の上昇を事前に予測できる場合には、負荷が実際に上昇する前に過給量を増やしておくことで、負荷の上昇時に燃料ガスをより迅速に増やすことが可能となる。
 そこで本発明では、過給機と接続されたガスエンジンにおいて、負荷が急上昇したときに、それに応じて燃料ガスの噴射量を迅速に増加できるようにして、これにより、負荷応答性(要求出力に対する実出力の追従性)を向上させることを目的とする。
 本発明の一態様に係るガスエンジンの制御方法は、圧縮機及びタービンを含む過給機と接続されたガスエンジンの制御方法であって、
実際に前記ガスエンジンの負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値を超えると、過給圧の増加を抑えながら過給機回転数を増加させ、前記ガスエンジンの負荷の上昇が検出されると、前記過給圧及び燃料噴射量を増加させることを特徴としている。
なお、ガスエンジンの負荷の上昇度合いの指標として、ガスエンジンの目標回転数と実回転数との差、目標出力と要求出力との差、必要燃料噴射量と実燃料噴射量との差、及び、目標過給圧と実過給圧との差のうち少なくとも1つを用いてよい。
 また、本発明の一態様に係るガスエンジンシステムは、
圧縮機及びタービンを含む過給機と、
前記圧縮機と給気路を介して接続され、前記タービンと排気路を介して接続されたガスエンジンと、
前記給気路を通じて前記ガスエンジンに供給される空気中に燃料ガスを噴射する燃料噴射機構と、
前記過給機、ガスエンジン、及び、前記燃料噴射機構を制御する制御装置と、を備え、
前記制御装置は、実際に前記ガスエンジンの負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値を超えると、過給圧の増加を抑えながら過給機回転数を増加させる処理を行い、前記定常運転中に前記ガスエンジンの負荷の上昇が検出されると、前記過給圧及び燃料噴射量を増加させる処理を行うことを特徴としている。
 上記ガスエンジンの制御方法及びガスエンジンシステムによれば、実際にガスエンジンの負荷が上昇する前に負荷の上昇を予測し、負荷の上昇に先だって過給機回転数を増加させることができる。従って、実際にガスエンジンの負荷が上昇した際に、既に過給機回転数が増加した状態にあるので直ちに過給圧を増加させることができ、適切な空気過剰率の範囲内において速やかに燃料噴射量を増やすことができる。これにより、ガスエンジンの負荷応答性(要求出力に対する実出力の追従性)を向上させることができる。
 上記ガスエンジンシステムにおいて、前記給気路に当該給気路から気体を逃がす給気ブローオフ弁が設けられており、前記制御装置は、前記過給機回転数を増加させる処理では、前記過給機回転数の増加に伴う前記過給圧の増加を抑えるように前記給気ブローオフ弁の開度を増加させ、前記過給圧を増加させる処理では、前記給気ブローオフ弁の開度を減少又は閉止させるように前記給気ブローオフ弁を制御してよい。
 これにより、過給圧の増加を抑えながら過給機回転数の増加を回転させることができ、また、過給圧の増加を抑えながら過給機回転数を増加させた状態で速やかに過給圧を高めることができる。
 上記ガスエンジンの制御方法及びガスエンジンシステムにおいて、前記ガスエンジンが船舶の主機関であり、予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて舵角が変化する際の前記ガスエンジンの負荷の上昇であってよい。
 また、上記ガスエンジンの制御方法及びガスエンジンシステムにおいて、前記ガスエンジンが旋回式スラスタを備える船舶の主機関であり、予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて前記旋回式スラスタが旋回を開始してからの前記ガスエンジンの負荷の上昇であってよい。
 上記のように前記船舶の舵角操作量が変化する場合には、舵角操作量が変化してから実際にガスエンジンの負荷が上昇するまでにタイムラグが生じることがあり、このタイムラグを利用して、実際の負荷の上昇に備えて、過給機回転数を増加させておくことができる。
 上記ガスエンジンの制御方法において、前記過給機回転数を増加させることが、前記ガスエンジンの燃焼室へ送る燃料ガスと空気の混合気の空気過剰率を増加させること、点火タイミングをリタードさせること、パイロット燃料噴射タイミングをリタードさせること、前記圧縮機の回転をジェットアシストすること、前記タービンのノズルの開口面積を小さくすること、及び、前記燃焼室の排気路から系外へ排出されるガスを減少させることの少なくとも1つを含んでいてよい。
 上記ガスエンジンシステムにおいて、前記給気路に当該給気路から気体を逃がす給気ブローオフ弁が設けられており、前記過給機回転数を増加させる処理が、前記ガスエンジンの燃焼室へ送る燃料ガスと空気の混合気の空気過剰率を増加させるように、前記給気ブローオフ弁を動作させる処理であってよい。
 或いは、上記ガスエンジンシステムにおいて、前記ガスエンジンは、前記燃料ガスと前記空気の混合気に点火する点火装置を有し、前記過給機回転数を増加させる処理が、点火タイミングをリタードさせるように、又は、パイロット燃料噴射タイミングをリタードさせるように前記点火装置を動作させる処理であってよい。
 或いは、上記ガスエンジンシステムにおいて、前記圧縮機に、高圧空気源から供給される高圧空気を供給するノズルと、前記高圧空気源と前記ノズルとの間に設けられたジェットアシスト弁とが設けられており、前記過給機回転数を増加させる処理が、前記圧縮機の回転が前記ノズルから噴出する高圧空気によってジェットアシストされるように、前記ジェットアシスト弁を切り替える処理であってよい。
 或いは、上記ガスエンジンシステムにおいて、前記過給機は、タービンインペラに排ガスを吹き付けるノズルの開度が可変であり、前記過給機回転数を増加させる処理が、前記ノズルの開口面積を小さくする処理であってよい。
 或いは、上記ガスエンジンシステムにおいて、前記排気路に当該排気路から気体を逃がす排気ウエストゲート弁を設け、前記過給機回転数を増加させる処理が、前記排気ウエストゲート弁の開度を減少させる処理であってよい。
 上記の過給機回転数を増加させる処理のいずれによっても、ガスエンジンの定常運転に与える影響を抑えつつ、過給機回転数を増加させることができる。
 本発明によれば、過給機と接続されたガスエンジンにおいて、負荷が急上昇したときに、それに応じて燃料ガスの噴射量を迅速に増加させることができる。これにより、ガスエンジンの負荷応答性の向上が期待される。
図1は、本実施形態に係るガスエンジンが搭載された船舶の一例を示す図である。 図2は、図1に示す船舶の舶用推進装置の拡大図である。 図3は、ガスエンジンシステムの概略構成図である。 図4は、ガスエンジンの要部の断面図である。 図5は、ガスエンジンシステム及び舶用推進装置の制御系統の構成を示す図である。 図6は、特定の回転数及び燃料噴射量における空気比ごとの点火タイミングとノッキング出現率との関係を示すグラフである。 図7は、負荷上昇運転のフローチャートである。 図8Aは、負荷の上昇度合いが相対的に小さい場合の必要燃料噴射量Q及び実燃料噴射量qの経時的変化を示すグラフである。 図8Bは、負荷の上昇度合いが相対的に大きい場合の必要燃料噴射量Q及び実燃料噴射量qの経時的変化を示すグラフである。 図9Aは、実燃料噴射量q及び実回転数Nに応じて空気過剰率の第1下限値が定められた空気過剰率第1下限マップである。 図9Bは、実燃料噴射量q及び実回転数Nに応じて空気過剰率の第2下限値が定められた空気過剰率第2下限マップである。 図10は、舵角操作量が変化した際の、旋回角の変化とガスエンジンの負荷の変動との経時的変化を示すグラフである。 図11は、負荷上昇準備処理のフローチャートである。 図12は、ガスエンジンにおけるノッキング領域及び失火領域を示す、横軸に空燃比、縦軸に正味平均有効圧をとったグラフである。
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本実施形態に係るガスエンジン2が搭載された船舶11の一例を示す図であり、図2は図1に示す船舶11の舶用推進装置8の拡大図である。図1の船舶11は、主機関としてガスエンジン2を搭載し、舶用推進装置8として旋回式スラスタ(アジマススラスタ)を備えたタグボートである。但し、本発明が適用される船舶11は本実施形態に限定されない。
〔舶用推進装置8の構成〕
 舶用推進装置8は、船体底部に設置されるプラットホーム80の上部に固設された上部ギヤボックス81と、プラットホーム80の下部に旋回可能に支持された旋回筒82と、旋回筒82の端部に設けられた推進翼(プロペラ)83と、上部ギヤボックス81及び旋回筒82内に構成された推進翼83の駆動機構と、旋回筒82を旋回駆動する旋回駆動装置84とを備えている。
 上部ギヤボックス81の内部には、動力の伝達と遮断を切り替えるクラッチ85と、動力の伝達方向を変換するギヤ群とが設けられている。上部ギヤボックス81への入力軸86には、主機関であるガスエンジン2の駆動力が、中間軸や継手などを介して伝達される。
 上部ギヤボックス81内には、入力軸86と軸心が同一直線をなすように、入力軸86と直列的に並べられた水平軸87が配置されている。水平軸87と入力軸86との間には、入力軸86と水平軸87との間で動力の伝達と遮断を切り替えるクラッチ85が設けられている。
 上部ギヤボックス81内には、水平軸87と一体的に回転する上部ベベルピニオンギヤ88が設けられている。この上部ベベルピニオンギヤ88は、上部ベベルホイールギヤ89と噛合している。上部ベベルホイールギヤ89は、水平軸87と略直交し且つプラットホーム80に対し略垂直に配置された垂直軸90の上端部に設けられている。
 垂直軸90は、旋回筒82内に挿入され、旋回筒82に回動可能に支持されている。旋回筒82内において、垂直軸90の下端部には下部ベベルピニオンギヤ91が設けられている。また、旋回筒82の下部には、下部ベベルピニオンギヤ91と噛合する下部ベベルホイールギヤ92が設けられた推進軸93が挿入されている。推進軸93は垂直軸90と略直交するように配置され、旋回筒82から突出した端部に推進翼83が設けられている。推進翼83の周囲には、断面が翼型の円筒形ダクト94が設けられている。
 旋回筒82の上端部は、プラットホーム80に旋回輪軸受(図示略)を介して旋回可能に吊り下げられている。旋回筒82の上端部の内周縁には旋回ギヤ95が形成されている。この旋回ギヤ95は、プラットホーム80に固定された旋回モータ96の回転出力によって回転する駆動ギヤ97と噛合している。旋回モータ96は、油圧又は電動モータであってよい。旋回筒82の旋回角(旋回位置)は、旋回角センサ66によって検出される。
 上記構成の舶用推進装置8は、ガスエンジン2の駆動力が入力軸86から、クラッチ85を介して水平軸87へ伝達されると、水平軸87が回転する。水平軸87の回転は、上部ベベルギヤ機構88,89を介して垂直軸90に伝達され、更に、垂直軸90から下部ベベルギヤ機構91,92を介して推進軸93へ伝達され、推進翼83が推進軸93と一体的に回転する。推進翼83が回転すると、ダクト94内に吸い込まれた海水が噴出し、この噴出流によって船体が推進される。
 また、上記構成の舶用推進装置8では、旋回モータ96によって駆動ギヤ97を回転させることにより、旋回筒82を水平方向に360°旋回させることができる。そして、旋回筒82を任意の位置へ旋回させることにより、船体を任意の方向に操舵することができる。
〔ガスエンジンシステム1の構成〕
 図3は、ガスエンジンシステム1の概略構成図である。図3に示すガスエンジンシステム1は、ガスエンジン2、過給機3、及び、制御装置7(図4参照)を備えている。本実施形態では、推進翼83が取り付けられた推進軸93がガスエンジン2により直接的に駆動される。但し、推進軸93は、モータ及び発電機(いずれも図示略)を介して間接的にガスエンジン2により駆動されてもよい。
 ガスエンジン2は、燃料ガス(例えば、天然ガス)のみを燃焼させるガス専焼エンジンであってよい。但し、ガスエンジン2は、状況によって燃料ガスと燃料油の一方又は双方を燃焼させる二元燃料エンジンであってもよい。また、本実施形態では、ガスエンジン2は4ストロークエンジンであるが、ガスエンジン2は2ストロークエンジンであってもよい。
 図4は、ガスエンジン2の要部の断面図である。ガスエンジン2は、複数のシリンダ21を有する(図4では1つのシリンダ21のみを図示)。各シリンダ21内にはピストン22が往復動自在に配設されており、シリンダ21及びピストン22によって燃焼室20が形成されている。ピストン22は、図略の連接棒により図略のクランク軸と連結されている。
 各シリンダ21において、ピストン22が二往復することにより、ガスエンジン2の1サイクル(給気、圧縮、膨張、排気)が行われる。各シリンダ21における1サイクルの間のガスエンジン2の位相角(0~720度)は、位相角検出器63により検出される。位相角としては、クランク軸の回転角(クランク角)やピストン22の位置などを用いることができる。例えば、位相角検出器63は、電磁ピックアップ、近接スイッチ又はロータリーエンコーダである。また、位相角検出器63からは、ガスエンジン2の実回転数Nも検出される。
 図3に戻って、過給機3は、圧縮機31とタービン32を含む。ガスエンジン2は、給気路41を介して圧縮機31と接続されているとともに、排気路42を介してタービン32と接続されている。給気路41は、圧縮機31で圧縮された空気を各シリンダ21に導き、排気路42は、各シリンダ21から燃焼後の排ガスをタービン32に導く。給気路41には、給気路41から気体を逃がして給気路41の圧力を開放する給気ブローオフ弁48が設けられている。また、排気路42には、排気路42から気体の一部を分流させることによりタービン32への流入量を調節する排気ウエストゲート弁49が設けられている。なお、給気路41の下流側部分及び排気路42の上流側部分は実際はシリンダ21と同数の分岐路にマニホールドから分岐しているが、図3では図面の簡略化のために給気路41及び排気路42を1本の流路で描いている。
 給気路41には、圧縮機31で圧縮された空気を冷却するための放熱器43が設けられている。また、給気路41の放熱器43より下流側には、圧縮機31の吐出圧である実過給圧Pを検出する第1圧力センサ61と、給気路41を通じて燃焼室20に導入される空気の温度である過給温を検出する温度センサ65とが設けられている。第1圧力センサ61は、給気路41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。同様に、温度センサ65は、給気路41の下流側の上述した各分岐路に設けられていてもよいし、上述したマニホールドに1つだけ設けられていてもよい。
 更に、給気路41には、シリンダ21ごとに、圧縮機31から吐出される空気中に燃料ガスを噴射する主燃料噴射弁51(本発明の燃料噴射機構に相当)が設けられている。但し、本発明の燃料噴射機構は、ガスエンジン2に供給される空気中に燃料ガスを噴射するものであれば、必ずしも燃料噴射弁51でなくてよい。例えば、燃料噴射機構が、圧縮機31の吸入口に接続された空気供給路に合流する燃料ガス供給路と、この燃料ガス供給路に設けられた燃料流量制御弁を含み、圧縮機31に吸入される空気中に燃料ガスを噴射するように構成されていてもよい。
 各シリンダ21には、給気路41の燃焼室20に対する開口である給気ポートを開閉する給気弁23と、排気路42の燃焼室20に対する開口である排気ポートを開閉する排気弁24が設けられている。また、各シリンダ21には、燃焼室20内で燃料ガスと空気の混合気に点火するための点火装置55が設けられている。
 本実施形態では、燃焼室20が、給気路41及び排気路42と連通する主室20Aと、連通孔が設けられた隔壁25により主室20Aと隔てられた副室20Bとからなる。点火装置55は副室20Bに配置されており、副室20B内には副燃料噴射弁52から燃料ガスが噴射される。副燃料噴射弁52からの燃料ガスの噴射により副室20B内にはリッチな混合気が形成され、この混合気が点火装置55により点火される。これにより副室20B内に火炎が発生し、その火炎が隔壁25の連通孔を通じて主室20A内に伝播することにより主室20A内のリーンな混合気にも点火される。主室20Aには、当該主室20A内の圧力である筒内圧を検出する第2圧力センサ62が設けられている。燃焼後の排ガスは、排気路42を通じて燃焼室20からタービン32に導入されて、ここで圧縮機31を駆動する動力として使用される。
〔ガスエンジンシステム1の制御系統の構成〕
 以下、ガスエンジンシステム1の制御系統の構成について説明する。図5は、ガスエンジンシステム1及び舶用推進装置8の制御系統の構成を示す図である。制御装置7は、舶用推進装置8の動作を制御する推進装置制御部71と、ガスエンジンシステム1の動作を制御するエンジン制御部72とを含む。制御装置7は、いわゆるコンピュータであって、CPU等の演算処理部、ROM、RAM等の記憶部を有している(いずれも図示せず)。記憶部には、演算処理部が実行するプログラム、各種固定データ等が記憶されている。演算処理部は、外部装置とのデータ送受信を行う。また、演算処理部は、各種センサからの検出信号の入力や各制御対象への制御信号の出力を行う。制御装置7は、記憶部に記憶されたプログラム等のソフトウェアを演算処理部が読み出して実行することにより、ガスエンジンシステム1や舶用推進装置8の動作を制御するための処理を行う。なお、制御装置7は単一のコンピュータによる集中制御により各処理を実行してもよいし、複数のコンピュータの協働による分散制御により各処理を実行してもよい。また、制御装置7は、マイクロコントローラ、プログラマブルロジックコントローラ(PLC)等から構成されていてもよい。
 船体に設けられた図示しない操縦室には、舵角を操作入力するための舵角操作具73と、ガスエンジン2の回転数や前進/後進を操作入力する操船操作具74とが設けられている。舵角操作具73を介して、操縦者が入力した舵角操作情報が制御装置7へ入力される。操船操作具74を介して、操縦者が入力した操船操作情報が制御装置7へ入力される。これらの操作具73,74は、例えば、ハンドルやレバーであってよい。
 制御装置7は、舵角操作具73、操船操作具74、船速計67、旋回駆動装置84、及び、旋回角センサ66と有線又は無線の情報通信手段を介して通信可能に接続されている。
 制御装置7は、舵角操作具73を介して入力された舵角操作情報と旋回角センサ66で検出された実旋回角などとに基づいて、舶用推進装置8の旋回駆動装置84の動作を制御する。具体的に、制御装置7は、舵角操作情報と実旋回角とを取得し、舵角操作情報に基づいて目標旋回角を求め、実旋回角が目標旋回角となるように旋回角指示値を生成し、旋回角指示値を旋回駆動装置84へ出力する。旋回駆動装置84では、取得した旋回角指示値に基づいて、旋回モータ96が動作し、その結果、推進翼83の実旋回角が舵角操作情報と対応する目標旋回角となる。
 また、制御装置7は、ガスエンジンシステム1の主燃料噴射弁51、副燃料噴射弁52、点火装置55、第1圧力センサ61、第2圧力センサ62、位相角検出器63、温度センサ65、ジェットアシスト弁37、給気ブローオフ弁48、及び、排気ウエストゲート弁49と有線又は無線の情報通信手段を介して通信可能に接続されている。
 制御装置7は、シリンダ21ごとに、位相角検出器63で検出される位相角に基づいて燃料噴射弁51,52及び点火装置55を制御する。具体的に、制御装置7は、負荷が殆ど変化しない間は定常運転を行い、定常運転中に負荷が上昇すると負荷上昇運転に移行する。定常運転及び負荷上昇運転の双方において、制御装置7は、操船操作具74の操作量に基づく目標回転数NTに実回転数Nを維持するPID制御も行う。なお、定常運転とは、ガスエンジン2の負荷の高低に関係なく、燃料噴射量が略一定の運転である。負荷が上昇する要因としては、船舶11の操縦者による船速アップの指令、船体が強い風波を受けたときの船速維持の指令、推進翼83が可変ピッチプロペラである場合にはプロペラピッチが大きくされることなどがある。
 本実施形態では、制御装置7が、要求出力に応じた必要燃料噴射量Q(要求出力を得るのに必要な燃料ガスの噴射量)を算出する。具体的に、制御装置7は、操船操作具74の操作量に基づく目標回転数NTと、位相角検出器63で検出された実回転数Nと、船速計67で検出された現在の船速である実船速と、記憶部に予め記憶された船体性能モデルなどとに基づいてガスエンジン2の要求出力を求め、要求出力と実出力との差を求め、要求出力と実出力との差から必要燃料噴射量Qを算出する。本実施形態では、燃料ガスが主燃料噴射弁51から間欠的に噴射されるので、燃料噴射量は、一回あたりの燃料ガスの噴射量である。但し、特許文献1と同様に燃料ガスが連続的に噴射される場合は、燃料噴射量は、燃料ガスの流量であってもよい。
〔ガスエンジンシステム1の制御方法〕
 前述の通り、制御装置7は、負荷が殆ど変化しない間は定常運転を行い、定常運転中に負荷が上昇すると負荷上昇運転に移行する。更に、制御装置7は、定常運転中に、負荷の上昇を予測し、実際の負荷の上昇に先だって過給圧の増加を抑えながら過給機回転数を増加させる負荷上昇準備処理を行う。以下、ガスエンジン2の(1)定常運転、(2)負荷上昇運転、及び、(3)負荷上昇準備処理について詳細に説明する。なお、以下ではガスエンジン2の1つのシリンダ21に対する制御を代表して説明するが、全てのシリンダ21に対しても同様の制御が行われる。
(1)定常運転
 本実施形態に係るガスエンジン2では、定常運転としてノッキング制御運転を行う。但し、定常運転は、空気過剰率がノッキング領域と失火領域の間に収まるように、燃料噴射量と過給量とが調整される制御であれば、本実施形態に限定されない。
 ノッキング制御運転は、NOXの排出量が少なくかつ高効率が実現可能なリーンバーンのうちでも最も高い効率が得られるように点火タイミングを最適化するものである。具体的には、ガスエンジン2の各シリンダ21において、リーンバーンを実現する空気過剰率λを一定に保ったままで、所定サイクル数ごとに、その間のノッキング出現率と目標出現率との差に基づいて点火タイミングがアドバンスされたりリタードされたりする。点火タイミングは、例えば、ピストン22が上死点に位置するタイミングを基準(0度)とし、そこからどれだけ早い段階で点火を行うかをガスエンジン2の位相角で示すものである。
 ノッキング制御運転では、第2圧力センサ62で検出される筒内圧に基づく制御が行われる。まず、制御装置7は、第2圧力センサ62で検出される筒内圧に基づいて、1サイクルごとに、燃焼状態が、大ノック、小ノック、通常、失火のいずれであったかを判定する。そして、制御装置7は、所定サイクル数Cyに対する小ノックが出現したサイクル数CyLの比率であるノッキング出現率R(R=CyL/Cy)を算出する。
 ノッキング出現率Rを算出した後は、制御装置7は、ノッキング出現率Rと目標出現率RTとの差ΔR(ΔR=RT-R)を算出する。目標出現率RTは、ガスエンジン2に大きな損傷を与えることなく高い効率が得られる比率であり、実験又は数値シミュレーションにより予め決定される。また、目標出現率RTは、図6に示すように、ノッキング限界RLよりも少し低い値に設定される。そして、制御装置7は、算出した差ΔRにゲインKを積算した値を点火タイミングの補正値βとし(β=ΔR×K)、現在の点火タイミングiT’に補正値βを加えた値を新たな点火タイミングiTとする(iT=iT’+β)。補正値βが正の場合、すなわちノッキング出現率Rが目標出現率RTよりも小さな場合は点火タイミングが補正値βだけアドバンスされ、補正値βが負の場合、すなわちノッキング出現率Rが目標出現率RTよりも大きな場合は点火タイミングが補正値βだけリタードされる。このようにして、点火タイミングiTは最適なタイミングに調整される。
(2)負荷上昇運転
 定常運転中に負荷が上昇(すなわち、必要燃料噴射量Qが増加)すると、制御装置7は負荷上昇運転に移行する。負荷上昇運転では、第1圧力センサ61で検出される実過給圧P、温度センサ65で検出される過給温及び位相角検出器63で検出されるガスエンジン2の実回転数Nに基づく制御が行われる。図7は負荷上昇運転のフローチャートである。
 まず、制御装置7は、必要燃料噴射量Qの上昇速度V(V=dQ/dt)を算出する(ステップS1)。図8Aに負荷の上昇度合いが相対的に小さい場合、すなわち必要燃料噴射量Qの上昇速度Vが遅い場合を示し、図8Bに負荷の上昇度合いが相対的に大きい場合、すなわち必要燃料噴射量Qの上昇速度Vが速い場合を示す。
 ついで、制御装置7は、算出した上昇速度Vを閾値αと比較する(ステップS2)。図6に示すように、ノッキング制御運転において調整された点火タイミングiTでのノッキング限界RLを通る線である空気過剰率の第1下限λ1まで、燃料ガスを増やすことができる。
 燃料ガスを増やした場合には、必要燃料噴射量Qの上昇速度Vが遅いときは、図8Aに示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Bが必要燃料噴射量Qの上昇指示終了点Aからそれほど遅れることはない。しかし、必要燃料噴射量Qの上昇速度Vが速いときは、図8B中に二点鎖線で示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Bが必要燃料噴射量Qの上昇指示終了点Aから大きく遅れることになる。閾値αは、第1下限λ1に基づいて制御したときに上昇指示終了点Aから時期Bまでの遅れが許容できない場合の上昇速度である。このような閾値αは、実験又は数値シミュレーションにより予め決定される。なお、閾値αは、実燃料噴射量q及び実回転数Nごとに定められていてもよい。
 必要燃料噴射量Qの上昇速度Vが閾値α以下である場合はステップS3に進み、上昇速度Vが閾値αよりも大きい場合はステップS8に進む。なお、本実施形態では、上昇速度Vが閾値αと等しい場合はステップS3に進むようになっているが、上昇速度Vが閾値αと等しい場合はステップS8に進んでもよい。
 ステップS3以降では、制御装置7は、ノッキング制御運転において調整された点火タイミングiTを維持したままで、空気過剰率λが第1下限λ1を超えないように実燃料噴射量qを徐々に増加させる。空気過剰率λは、実燃料噴射量q、第1圧力センサ61で検出される実過給圧P及び温度センサ65で検出される過給温から求められる。
 まず、制御装置7は、図9Aに示す空気過剰率第1下限λ1マップを選択する(ステップS3)。空気過剰率第1下限λ1マップでは、実燃料噴射量q及び実回転数Nに応じて空気過剰率の第1下限値λ1l,k(1≦l≦i、1≦k≦j)が定められている。制御装置7は、空気過剰率第1下限λ1マップを使用して、実燃料噴射量qと実回転数Nから第1下限λ1を決定する(ステップS4)。なお、空気過剰率第1下限λ1マップは、実燃料噴射量q及び実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
 その後、制御装置7は、実燃料噴射量q、第1圧力センサ61で検出される実過給圧P及び温度センサ65で検出される過給温から現在の空気過剰率λを算出し、算出した空気過剰率λをステップS4で決定した第1下限λ1にするのに必要な燃料噴射量の増加幅Δqを算出する(ステップS5)。空気過剰率λは、実過給圧P及び過給温から求められる実際に燃焼室20に供給される空気量を、実燃料噴射量qの燃料ガスを完全に燃焼させるのに必要な理論空気量で割った値である。
 増加幅Δqを算出した後は、制御装置7は、実燃料噴射量qをΔqだけ増加させ(ステップS6)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS7)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷上昇運転を終了して定常運転に戻る。
 一方、ステップS8以降では、制御装置7は、点火タイミングiTを角度εだけリタードさせた上で、空気過剰率λが第1下限λ1よりも小さな第2下限λ2を超えないように実燃料噴射量qを徐々に増加させる。図6に示すように、第2下限λ2は、点火タイミングiTを角度εだけリタードさせたときのノッキング限界RLを通る線である。これにより、図8Bに示すように、実燃料噴射量qが必要燃料噴射量Qとなる時期Cは、時期Bよりも大幅に早められる。
 まず、制御装置7は、点火タイミングiTを角度εだけリタードさせる(ステップS8)。リタードさせる角度εは、実燃料噴射量qと実回転数Nから決定してもよいし、第1圧力センサ61で検出される実過給圧Pと実回転数Nから決定してもよい。角度εと実燃料噴射量q及び実回転数Nとの関係を表す情報、又は、角度εと実過給圧P及び実回転数Nとの関係を表す情報は、予め記憶部に記憶されており、制御装置7はそれを利用して角度εを求めることができる。
 点火タイミングiTをリタードさせた後は、制御装置7は、図9Bに示す空気過剰率第2下限λ2マップを選択する(ステップS9)。空気過剰率第2下限λ2マップでは、実燃料噴射量q及び実回転数Nに応じて空気過剰率の第2下限値λ2l,k(1≦l≦i、1≦k≦j)が定められている。全ての第2下限値λ2l,kは、対応する、すなわち実燃料噴射量q及び実回転数Nが同一の第1下限値λ1l,kよりも小さい。制御装置7は、空気過剰率第2下限λ2マップを使用して、実燃料噴射量qと実回転数Nから第2下限λ2を決定する(ステップS10)。なお、空気過剰率第2下限λ2マップは、実燃料噴射量q及び実回転数Nに加えて過給温を変数とする三次元マップであってもよい。
 その後、制御装置7は、実燃料噴射量q、第1圧力センサ61で検出される実過給圧P及び温度センサ65で検出される過給温から現在の空気過剰率λを算出し、算出した空気過剰率λをステップS10で決定した第2下限λ2にするのに必要な燃料噴射量増加幅Δqを算出する(ステップS11)。
 増加幅Δqを算出した後は、制御装置7は、実燃料噴射量qをΔqだけ増加させ(ステップS12)、実燃料噴射量qが必要燃料噴射量Q以上になったか否かを判定する(ステップS13)。実燃料噴射量qが必要燃料噴射量Q未満であればステップS1に戻り、実燃料噴射量qが必要燃料噴射量Q以上であれば、負荷上昇運転を終了して定常運転に戻る。
(3)負荷上昇準備処理
 旋回式スラスタでは、推進翼83(旋回筒82)の旋回により、推進翼83の水を掻く向きを変化させることができる。しかし、このような推進翼83の旋回は、船速、海流、波向などとの関係によっては、ガスエンジン2の負荷を大幅に上昇させることがある。
 図10は、推進翼83の実旋回角及びガスエンジン2の負荷の経時的変化を表すグラフである。図10の上下のグラフの時間軸は対応している。図10の下のグラフでは、時間T1に制御装置7へ舵角操作情報が入力され、その舵角操作量の変化に基づいて、旋回角がθ1からθ2へ変化する際の実旋回角の経時的変化が示されている。図10の上のグラフでは、上記の通り実旋回角が変化する際のガスエンジン2の負荷の変化が表されている。舵角操作量が変化した時刻T1では定常運転が行われており、実旋回角がθ1からθ2へ変化する途中で、ガスエンジン2の負荷が上昇し始める。つまり、舵角操作量が変化した時刻T1から、これに対応して実際にガスエンジン2の負荷が上昇し始めるまでにはタイムラグがある。また、舵角操作量が変化した時刻T1から、これに対応して実際にガスエンジン2の負荷が上昇し、負荷上昇運転が始まるまでには更に大きなタイムラグがある。
 舵角操作量が変化した時刻T1の時点で、制御装置7は旋回角の変化によるガスエンジン2の将来の負荷の変動を予測することができる。つまり、制御装置7は、推進翼83の旋回角の変化によってガスエンジン2の負荷が変動する前に、ガスエンジン2の負荷の変動を予測することができる。そこで、本実施形態に係るガスエンジンシステム1では、舵角操作量の変化に基づいて推進翼83の旋回角の変化による負荷の変化を予測して、前述のタイムラグを利用して、実際に負荷が上昇する前に給気路41の空気量(即ち、燃焼室20に供給できる空気量)を迅速に増やせるように準備しておき、実際に負荷が上昇したときに迅速に過給量及び燃料ガスを増やすことができるようにしている。以下、図11のフローチャートを参照しながら、制御装置7による負荷上昇準備処理について説明する。
 制御装置7は、定常運転中、舵角操作情報に含まれる舵角操作量の変化を監視している。舵角操作量は、前述の舵角操作具73の操作によって入力されるほか、自動操縦時には図示されない自動操縦装置から入力されてもよい。図11に示すように、制御装置7は、定常運転中に舵角操作量が変化すると(ステップS31でYES)、負荷上昇準備処理を開始する(ステップS32)。
 負荷上昇準備処理を開始した制御装置7は、先ず、予測必要燃料噴射量Qpを算出する(ステップS33)。予測必要燃料噴射量Qpは、負荷の上昇度合いの指標の一例である。具体的に、制御装置7は、例えば、操船操作具74の操作量に基づく目標回転数NT、現在のガスエンジン2の回転数である実回転数N、舵角操作具73の操作量に基づく目標旋回角、現在の推進翼83の旋回角である実旋回角、及び、現在の船速である実船速などの情報を取得し、これらの情報から記憶部に予め記憶された船体性能モデルを利用して、ガスエンジン2の予測要求出力を求め、予測要求出力と実出力との差を求め、予測要求出力と実出力との差から予測必要燃料噴射量Qpを算出する。
 予測必要燃料噴射量Qpは、推進翼83が舵角操作情報に対応して旋回動作を開始してから旋回動作を終了するまでの、必要燃料噴射量Qの経時的変化であってよい。或いは、予測必要燃料噴射量Qpは、推進翼83が舵角操作情報に対応して旋回動作を開始してから旋回動作を終了後所定時間が経過するまでの、必要燃料噴射量Qの経時的変化であってよい。
 次に、制御装置7は、予測必要燃料噴射量Qpの上昇速度Vp(Vp=dQp/dt)を算出する(ステップS34)。
 ついで、制御装置7は、算出した上昇速度Vpを所定の閾値αと比較する(ステップS35)。閾値αは、前述の負荷上昇運転で使用される閾値αと同じ値であってよい。或いは、閾値αは、負荷上昇運転で使用される閾値αよりも小さい又は大きい値であってもよい。
 予測必要燃料噴射量Qpの上昇速度Vpが閾値α以下である場合は(ステップS35でNO)、負荷上昇準備処理を終了する。一方、予測必要燃料噴射量Qpの上昇速度Vpが閾値αよりも大きい場合は(ステップS35でYES)、ステップS36に進んでから、負荷上昇準備処理を終了する。なお、本実施形態では、上昇速度Vpが閾値αと等しい場合は負荷上昇準備処理を終了するようになっているが、上昇速度Vpが閾値αと等しい場合はステップS36に進んでもよい。
 ステップS36では、制御装置7は、過給圧の増加を抑えながら過給機3の回転数を増加させる過給機回転数増加操作を行う。このように実際に負荷が上昇する前に過給機回転数を増加させておくことによって、給気路41の空気量(即ち、燃焼室20に供給できる空気量)を増やしておくことができる。そのため、実際に負荷が上昇して定常運転から負荷上昇運転に移行した際に、空気過剰率λが適切な範囲となるように過給圧を迅速に高めて、実燃料噴射量qをより迅速に増加させることが可能となる。換言すれば、ガスエンジン2の負荷応答性(要求出力に対する実出力の追従性)を向上させることができる。
 上記の過給機回転数増加操作は、次の(a)~(e)のうちいずれか一つ又は2つ以上の組み合わせであってよい。
(a)空気過剰率λを増加させる。
具体的には、制御装置7は、燃焼室20へ送る燃料ガスと空気の混合気の空気過剰率λを第1下限λ1を超えない範囲で増加させるように給気ブローオフ弁48を動作させる。これにより、シリンダ21内の空気が更に濃い状態で燃料が燃焼することにより燃焼温度が上昇し、ガスエンジン2からの排気温度が上昇する、つまり、排気エネルギーが増加するので、過給機3のタービン32の回転数を増加させることができる。
(b)点火タイミングをリタードさせる。
具体的には、制御装置7は、点火又は着火タイミングをリタードさせるように点火装置55を動作させる。これにより、ガスエンジン2からの排気温度が上昇する、つまり、排気エネルギーが増加するので、過給機3のタービン32の回転数を増加させることができる。ガスエンジン2の点火方式としては、点火プラグで生じた火花で混合気に点火する火花点火方方式と、燃焼室20へ噴射されて自己発火したパイロット燃料油で混合気に点火する(着火させる)パイロット油着火方式とがある。火花点火方式の点火装置55は、点火プラグを含み、点火プラグの火花の発生タイミングをリタードさせるように点火装置55が動作することによって、点火タイミングをリタードさせることができる。また、パイロット油着火方式の点火装置55は、パイロット燃料噴射弁を含み、パイロット燃料噴射弁からのパイロット燃料噴射タイミングをリタードさせるように点火装置55が動作することによって、点火タイミングをリタードさせることができる。
(c)過給機3の圧縮機31の回転をジェットアシストする。
この場合、圧縮機31の入口側へ、高圧空気源35から供給される高圧空気を供給するノズル36と、高圧空気源35とノズル36との間に設けられたジェットアシスト弁37とが設けられている(図3、参照)。そして、制御装置7は、圧縮機31の回転がノズル36から噴出する高圧空気によってジェットアシストされるように、ジェットアシスト弁37を切り替える。これにより、吹き付けられた高圧空気の流れで、圧縮機31の回転がアシストされ、その結果、過給機3の圧縮機31の回転数を増加させることができる。
(d)排気路42から系外へ排出されるガスを減らす。
具体的には、制御装置7は、排気ウエストゲート弁49の開度が小さくなる又は閉止されるように、排気ウエストゲート弁49を動作させる。排気ウエストゲート弁49の開度が小さくなれば、排気路42から排出される排ガス量が減少するので、過給機3のタービン32の回転数を増加させることができる。
(e)過給機3が、可変ジオメトリターボである場合には、タービン32のノズルの開口面積を絞る。
過給機3が、タービンインペラに排ガスを吹き付けるノズルの開度が変更可能な可変ジオメトリターボである場合には、制御装置7は、タービン32のノズルの開口面積が小さくなるようにタービン32を動作させる。このように、タービン32のノズルの開口面積を絞ることにより、排気の流速が上昇し、過給効率を高めることができる。
 制御装置7は、過給機回転数増加操作において、上記のように過給機3の回転数を増加させる操作とともに、過給機回転数の増加に伴う過給圧の上昇を抑える操作を行う。具体的には、制御装置7は、過給機回転数の増加に伴う過給圧の増加を抑えるように、給気ブローオフ弁48の開度を増加させる。給気ブローオフ弁48の開度が増加すると、給気路41から排出される空気量が増加するので、過給機回転数が増加しても過給圧の増加を抑えることができる。ここで、制御装置7は、例えば、第1圧力センサ61で検出された圧力の変動が所定幅に抑えられるように、給気ブローオフ弁48の開度を調整する。
 なお、負荷上昇準備処理から負荷上昇運転に移行すると、制御装置7は、必要燃料噴射量Qと対応する空気過剰率λを満足する実過給圧Pとなるように、実過給圧P及び過給温に基づいて、給気ブローオフ弁48の開度を減少又は閉止させる。負荷上昇準備処理によって過給機3の過給機回転数は既に増加しているため、給気ブローオフ弁48の開度を減少又は閉止させることによって、負荷上昇運転を開始してから過給圧を上昇させる場合と比較して、過給圧を迅速に上昇させることができる。
 以上説明した通り、本実施形態に係るガスエンジンの制御方法は、圧縮機31及びタービン32を含む過給機3と接続されたガスエンジン2の制御方法であって、実際にガスエンジン2の負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値αを超えると、過給圧の増加を抑えながら過給機回転数を増加させ、ガスエンジン2の負荷の上昇が検出されると負荷上昇運転に移行して、過給圧及び燃料噴射量を増加させる。なお、負荷の上昇の予測と、過給圧の増加と、ガスエンジン2の負荷の上昇の検出とは、定常運転中に行われる。
 同様に、本実施形態に係るガスエンジンシステム1は、圧縮機31及びタービン32を含む過給機3と、圧縮機31と給気路41を介して接続され、タービン32と排気路42を介して接続されたガスエンジン2と、前記給気路を通じてガスエンジン2に供給される空気中に燃料ガスを噴射する燃料噴射機構(主燃料噴射弁51)と、過給機3、ガスエンジン2、及び、燃料噴射機構を制御する制御装置7と、を備えている。そして、制御装置7が、実際にガスエンジン2の負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値αを超えると、過給圧の増加を抑えながら過給機回転数を増加させる処理を行い、ガスエンジンの負荷の上昇が検出されると(定常運転から負荷上昇運転に移行して)、過給圧及び燃料噴射量を増加させる処理を行う。
 上記ガスエンジンの制御方法及びガスエンジンシステム1によれば、実際にガスエンジン2の負荷が上昇する前に負荷の上昇を予測し、負荷の上昇に先だって過給機回転数を増加させて過給圧を増加させるための準備をすることができる。従って、実際にガスエンジン2の負荷が上昇した際に、適切な空気過剰率の範囲内となるように、速やかに過給圧及び燃料噴射量を増やすことができる。これにより、ガスエンジン2の負荷応答性を向上させることができる。
 なお、本実施形態に係るガスエンジンシステム1では、給気路41に当該給気路41から気体を逃がす給気ブローオフ弁48が設けられており、制御装置7は、過給機回転数を増加させる処理では、過給機回転数の増加に伴う過給圧の増加を抑えるように給気ブローオフ弁48の開度を増加させ、過給圧を増加させる処理では、給気ブローオフ弁48の開度を減少又は閉止させるように、給気ブローオフ弁48を制御する。
 これにより、過給圧の増加を抑えながら過給機回転数を増加させることができ、また、過給圧の増加を抑えながら過給機回転数を増加させた状態(即ち、負荷上昇準備処理を終えた状態)で速やかに過給圧を高めることができる。
 また、上記実施形態に係るガスエンジンの制御方法及びガスエンジンシステム1では、ガスエンジン2が船舶11の主機関であり、予測されるガスエンジン2の負荷の上昇が、船舶11の舵角操作量の変化に応じて舵角が変化する際のガスエンジン2の負荷の上昇である。
 より詳細には、上記実施形態に係るガスエンジンの制御方法及びガスエンジンシステム1では、ガスエンジン2が旋回式スラスタ(舶用推進装置8)を備える船舶11の主機関であり、予測されるガスエンジン2の負荷の上昇が、船舶11の舵角操作量の変化に応じて旋回式スラスタが旋回を開始してからのガスエンジン2の負荷の上昇である。
 一般に、船舶11では、舵角操作量が変化してから、実際に負荷が変化するまでにタイムラグがあるが、負荷は短期に変化しやすい。このような状況において負荷が急上昇しても、予め過給機回転数が高められていることによって、エンジン回転数の低下などにより負荷の上昇が検知されてから直ぐに過給圧及び燃料噴射量を増加させることができるので、負荷の急上昇に応答して直ちに十分なエンジン出力を得ることができる。なお、本実施形態では、舶用推進装置8として旋回式スラスタを採用しているが、船舶11の進行方向を定めるための機構が、油圧又は電動アクチュエータによって駆動される舵板であってもよい。この場合でも、舵角操作量が変化してから、油圧又は電動アクチュエータが動作して舵角が変化し、実際に負荷が上昇するまでにタイムラグが生じることがあり、このタイムラグを利用して過給機回転数を予め高めておくことができる。
 また、上記実施形態に係るガスエンジンの制御方法及びガスエンジンシステム1では、燃焼室20へ送る燃料ガスと空気の混合気の空気過剰率を増加させること、点火装置55が火花点火方式の場合には点火プラグの点火タイミングをリタードさせること、点火装置55がパイロット油着火方式の場合にはパイロット燃料噴射タイミングをリタードさせること、圧縮機31の回転をジェットアシストすること、過給機3が可変ジオメトリターボの場合にはタービン32のノズルの開口面積を小さくすること、及び、燃焼室20の排気路42から系外へ排出されるガスを減少させることの少なくとも1つによって、過給機回転数を増加させる。
 例えば、制御装置7は、過給機回転数を増加させるために、燃焼室20へ送る燃料ガスと空気の混合気の空気過剰率を増加させるように、給気ブローオフ弁48の開度を小さくする処理を行う。また、例えば、制御装置7は、過給機回転数を増加させるために、点火タイミングをリタードさせるように、又は、パイロット燃料噴射タイミングをリタードさせるように点火装置55を動作させる処理を行う。また、例えば、制御装置7は、過給機回転数を増加させるために、圧縮機31の回転がノズル36から噴出する高圧空気によってジェットアシストされるように、ジェットアシスト弁37を切り替える処理を行う。また、例えば、制御装置7は、過給機回転数を増加させるために、タービン32の開口面積を小さくする処理を行う。また、例えば、制御装置7は、過給機回転数を増加させるために、排気ウエストゲート弁49の開度を減少させる処理を行う。
 上記の過給機回転数を増加させる処理のいずれによっても、ガスエンジン2の定常運転に与える影響を抑えつつ、過給機回転数を高めることができる。
 以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
 例えば、上記実施形態の負荷上昇運転において、負荷の上昇度合いが相対的に大きいとき(必要燃料噴射量Qの上昇速度Vが閾値αよりも大きいとき)は、点火タイミングをリタードさせ且つ燃料噴射量を徐々に増加させるが、前述の負荷上昇準備処理によって負荷の上昇が検出されたタイミングで既に十分な量の空気が用意される場合には、燃料噴射量の増加だけが行われてもよい。
 また、例えば、上記実施形態において、ガスエンジン2の負荷の上昇度合いの指標として必要燃料噴射量Q(予測必要燃料噴射量Qp)を利用するが、ガスエンジン2の負荷の
指標として、ガスエンジン2の要求出力(予測要求トルク)と実出力との差、目標回転数と実回転数の差、及び、目標過給圧と実過給圧の差のうち少なくとも1つが用いられてよい。
 負荷が上昇した場合には、ガスエンジン2の実回転数が目標回転数から低下する。しかも、実回転数がどれだけ低下するかは負荷の度合いに依存する。従って、目標回転数と実回転数との差を、負荷の上昇度合いの指標とすることができる。
 また、負荷が上昇した場合には、負荷に応じて目標過給圧が増加し、その目標過給圧の増加に対し実過給圧の増加が遅れるため(いわゆる、ターボラグ)、実過給圧と目標過給圧との差が増大する。しかも、その差の増大の大きさは負荷の度合いに依存する。従って、目標過給圧と実過給圧との差を、負荷の上昇度合いの指標とすることができる。
 本発明のガスエンジンシステムは、必ずしも船舶に用いられる必要はなく、例えば、発電設備、建設機械、鉄道などに用いられてもよい。
1   :ガスエンジンシステム
2   :ガスエンジン
3   :過給機
7   :制御装置
71  :推進装置制御部
72  :エンジン制御部
8   :舶用推進装置
11  :船舶
20  :燃焼室
21  :シリンダ
22  :ピストン
23  :給気弁
24  :排気弁
25  :隔壁
31  :圧縮機
32  :タービン
35  :高圧空気源
36  :ノズル
37  :ジェットアシスト弁
41  :給気路
42  :排気路
43  :放熱器
48  :給気ブローオフ弁
49  :排気ウエストゲート弁
51  :主燃料噴射弁
52  :副燃料噴射弁
55  :点火装置
61  :第1圧力センサ
62  :第2圧力センサ
63  :位相角検出器
65  :温度センサ
66  :旋回角センサ
67  :船速計
73,74  :操作具
80  :プラットホーム
81  :上部ギヤボックス
82  :旋回筒
83  :推進翼
84  :旋回駆動装置
85  :クラッチ
86  :入力軸
87  :水平軸
88,89  :上部ベベルギヤ機構
90  :垂直軸
91,92  :下部ベベルギヤ機構
93  :推進軸
94  :ダクト
95  :旋回ギヤ
96  :旋回モータ
97  :駆動ギヤ

Claims (13)

  1.  圧縮機及びタービンを含む過給機と接続されたガスエンジンの制御方法であって、
     実際に前記ガスエンジンの負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値を超えると、過給圧の増加を抑えながら過給機回転数を増加させ、
     前記ガスエンジンの負荷の上昇が検出されると、前記過給圧及び燃料噴射量を増加させる、
    ガスエンジンの制御方法。
  2.  前記過給機回転数を増加させることが、前記ガスエンジンの燃焼室へ送る燃料ガスと空気の混合気の空気過剰率を増加させること、点火タイミングをリタードさせること、パイロット燃料噴射タイミングをリタードさせること、前記圧縮機の回転をジェットアシストすること、前記タービンのノズルの開口面積を小さくすること、及び、前記燃焼室の排気路から系外へ排出されるガスを減少させることの少なくとも1つを含む、
    請求項1に記載のガスエンジンの制御方法。
  3.  前記ガスエンジンが船舶の主機関であり、
     予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて舵角が変化する際の前記ガスエンジンの負荷の上昇である、
    請求項1又は2に記載のガスエンジンの制御方法。
  4.  前記ガスエンジンが旋回式スラスタを備える船舶の主機関であり、
     予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて前記旋回式スラスタが旋回を開始してからの前記ガスエンジンの負荷の上昇である、
    請求項1又は2に記載のガスエンジンの制御方法。
  5.  圧縮機及びタービンを含む過給機と、
     前記圧縮機と給気路を介して接続され、前記タービンと排気路を介して接続されたガスエンジンと、
     前記給気路を通じて前記ガスエンジンに供給される空気中に燃料ガスを噴射する燃料噴射機構と、
     前記過給機、ガスエンジン、及び、前記燃料噴射機構を制御する制御装置と、を備え、
     前記制御装置は、実際に前記ガスエンジンの負荷が上昇する前に負荷の上昇を予測し、予測される負荷の上昇度合いが所定の閾値を超えると、過給圧の増加を抑えながら過給機回転数を増加させる処理を行い、前記ガスエンジンの負荷の上昇が検出されると、前記過給圧及び燃料噴射量を増加させる処理を行う、
    ガスエンジンシステム。
  6.  前記ガスエンジンが船舶に主機関として搭載されており、
     予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて舵角が変化する際の前記ガスエンジンの負荷の上昇である、
    請求項5に記載のガスエンジンシステム。
  7.  前記ガスエンジンが旋回式スラスタを備える船舶の主機関であり、
     予測される前記ガスエンジンの負荷の上昇が、前記船舶の舵角操作量の変化に応じて前記旋回式スラスタが旋回を開始してからの前記ガスエンジンの負荷の上昇である、
    請求項5に記載のガスエンジンシステム。
  8.  前記給気路に当該給気路から気体を逃がす給気ブローオフ弁が設けられており、
     前記制御装置は、前記過給機回転数を増加させる処理では、前記過給機回転数の増加に伴う前記過給圧の増加を抑えるように前記給気ブローオフ弁の開度を増加させ、前記過給圧を増加させる処理では、前記給気ブローオフ弁の開度を減少又は閉止させるように、前記給気ブローオフ弁を制御する、
    請求項5~7のいずれか一項に記載のガスエンジンシステム。
  9.  前記給気路に当該給気路から気体を逃がす給気ブローオフ弁が設けられており、
     前記過給機回転数を増加させる処理が、前記ガスエンジンの燃焼室へ送る前記燃料ガスと前記空気の混合気の空気過剰率を増加させるように、前記給気ブローオフ弁を動作させる処理である、
    請求項5~8のいずれか一項に記載のガスエンジンシステム。
  10.  前記ガスエンジンは、前記燃料ガスと前記空気の混合気に点火する点火装置を有し、
     前記過給機回転数を増加させる処理が、点火タイミングをリタードさせるように、又は、パイロット燃料噴射タイミングをリタードさせるように、前記点火装置を動作させる処理である、
    請求項5~8のいずれか一項に記載のガスエンジンシステム。
  11.  前記圧縮機に、高圧空気源から供給される高圧空気を供給するノズルと、前記高圧空気源と前記ノズルとの間に設けられたジェットアシスト弁とが設けられており、
     前記過給機回転数を増加させる処理が、前記圧縮機の回転が前記ノズルから噴出する高圧空気によってジェットアシストされるように、前記ジェットアシスト弁を切り替える処理である、
    請求項5~8のいずれか一項に記載のガスエンジンシステム。
  12.  前記過給機は、タービンインペラに排ガスを吹き付けるノズルの開度が可変であり、
     前記過給機回転数を増加させる処理が、前記ノズルの開口面積を小さくする処理である、
    請求項5~8のいずれか一項に記載のガスエンジンシステム。
  13.  前記排気路に当該排気路から気体を逃がす排気ウエストゲート弁が設けられており、
     前記過給機回転数を増加させる処理が、前記排気ウエストゲート弁の開度を減少させる処理である、
    請求項5~8のいずれか一項に記載のガスエンジンシステム。
PCT/JP2018/032551 2017-12-28 2018-09-03 ガスエンジンの制御方法及びガスエンジンシステム WO2019130660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880083294.5A CN111527294A (zh) 2017-12-28 2018-09-03 燃气发动机的控制方法及燃气发动机系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253274 2017-12-28
JP2017253274A JP2019120142A (ja) 2017-12-28 2017-12-28 ガスエンジンの制御方法及びガスエンジンシステム

Publications (1)

Publication Number Publication Date
WO2019130660A1 true WO2019130660A1 (ja) 2019-07-04

Family

ID=67063033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032551 WO2019130660A1 (ja) 2017-12-28 2018-09-03 ガスエンジンの制御方法及びガスエンジンシステム

Country Status (3)

Country Link
JP (1) JP2019120142A (ja)
CN (1) CN111527294A (ja)
WO (1) WO2019130660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247227A (zh) * 2020-01-28 2021-08-13 纳博特斯克有限公司 舵控制装置和船舶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116335859B (zh) * 2023-05-23 2023-09-15 潍柴动力股份有限公司 一种发动机燃料供给系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160150A (ja) * 2012-02-06 2013-08-19 Mitsui Eng & Shipbuild Co Ltd 内燃機関の負荷変動時の過給補助装置
JP2014156857A (ja) * 2013-01-18 2014-08-28 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2014169692A (ja) * 2013-02-08 2014-09-18 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2017133464A (ja) * 2016-01-29 2017-08-03 川崎重工業株式会社 ガスエンジンの制御方法およびガスエンジン駆動システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160150A (ja) * 2012-02-06 2013-08-19 Mitsui Eng & Shipbuild Co Ltd 内燃機関の負荷変動時の過給補助装置
JP2014156857A (ja) * 2013-01-18 2014-08-28 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2014169692A (ja) * 2013-02-08 2014-09-18 Osaka Gas Co Ltd ターボ過給式エンジン及びその負荷投入方法
JP2017133464A (ja) * 2016-01-29 2017-08-03 川崎重工業株式会社 ガスエンジンの制御方法およびガスエンジン駆動システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247227A (zh) * 2020-01-28 2021-08-13 纳博特斯克有限公司 舵控制装置和船舶

Also Published As

Publication number Publication date
JP2019120142A (ja) 2019-07-22
CN111527294A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6049921B1 (ja) ガスエンジンの制御方法およびガスエンジン駆動システム
EP2009264B1 (en) Method and apparatus for controlling an internal combustion engine
JPH10318113A (ja) 船舶用エンジンの運転制御装置
JP6049415B2 (ja) ディーゼルエンジンの制御装置、ディーゼルエンジン、及びディーゼルエンジンの制御方法
WO2019130660A1 (ja) ガスエンジンの制御方法及びガスエンジンシステム
JP7185387B2 (ja) 往復動ピストン内燃エンジンを運転するための低荷重運転方法、コンピュータ・プログラム製品、並びに往復動ピストン内燃エンジン
CA2410076C (en) Ignition control apparatus for engine with turbocharger
JP6394624B2 (ja) ターボ過給機付エンジン
JP6128091B2 (ja) ディーゼルエンジンおよびその製造方法
WO2020179141A1 (ja) ターボ過給機付きガスエンジン及びその燃焼方法
JP6002339B1 (ja) ガスエンジン駆動システムおよびガスエンジン制御方法
JP4518251B2 (ja) 内燃機関の制御装置
JP2007040219A (ja) 内燃機関の制御装置
JP6391253B2 (ja) エンジン装置
JP2004028027A (ja) 筒内噴射型内燃機関とその燃焼方法
JP6404782B2 (ja) エンジン装置
JP2015034500A (ja) 船舶推進機用エンジンシステムおよびそれを備えた船舶
JP6777120B2 (ja) エンジンの制御装置
JP6777119B2 (ja) エンジンの制御装置
JP6173513B1 (ja) 船舶の過回転抑制制御装置
JP2017115758A (ja) エンジンの排気制御装置
JPH07149287A (ja) 可変ピッチ・プロペラ及びディーゼル・エンジンの制御装置並びにその制御方法
JP2017115757A (ja) エンジンの排気制御装置
JPH0196473A (ja) エンジンの燃焼制御装置
KR20160074277A (ko) 터보차저용 웨이스트 게이트 밸브 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894207

Country of ref document: EP

Kind code of ref document: A1