JP6008661B2 - GaN系結晶及び半導体素子の製造方法 - Google Patents

GaN系結晶及び半導体素子の製造方法 Download PDF

Info

Publication number
JP6008661B2
JP6008661B2 JP2012188461A JP2012188461A JP6008661B2 JP 6008661 B2 JP6008661 B2 JP 6008661B2 JP 2012188461 A JP2012188461 A JP 2012188461A JP 2012188461 A JP2012188461 A JP 2012188461A JP 6008661 B2 JP6008661 B2 JP 6008661B2
Authority
JP
Japan
Prior art keywords
gan
layer
crystal
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012188461A
Other languages
English (en)
Other versions
JP2014049461A (ja
Inventor
一高 寺嶋
一高 寺嶋
鈴香 西村
鈴香 西村
宗幸 平井
宗幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLARTES LAB., LTD
Nitto Optical Co Ltd
Original Assignee
SOLARTES LAB., LTD
Nitto Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLARTES LAB., LTD, Nitto Optical Co Ltd filed Critical SOLARTES LAB., LTD
Priority to JP2012188461A priority Critical patent/JP6008661B2/ja
Priority to DE112013004283.5T priority patent/DE112013004283T5/de
Priority to GB1503010.9A priority patent/GB2519895B/en
Priority to PCT/JP2013/072922 priority patent/WO2014034687A1/ja
Publication of JP2014049461A publication Critical patent/JP2014049461A/ja
Priority to US14/629,063 priority patent/US9595632B2/en
Application granted granted Critical
Publication of JP6008661B2 publication Critical patent/JP6008661B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • H01L21/2056
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

GaN系結晶及び半導体素子の製造方法に関する。特に、Si基板上にBP結晶を形成し、この上に、閃亜鉛鉱型結晶であるGaN系結晶を成長させる方法に関する。
GaN系結晶は短波長発光デバイスに用いられている。通常はサファイア基板上にGaN系結晶をエピタキシャル成長するが、Si基板上に転位密度の低いGaN系結晶をエピタキシャル成長することが望まれている。GaN系結晶には結晶構造として圧電特性に優れたウルツ鉱構造と、圧電特性がほとんど無く情報伝達や情報処理に優れた閃亜鉛鉱型結晶の2種類がある。一般的にはウルツ鉱型構造が高温成長では安定型である。しかし、準安定型の閃亜鉛鉱型結晶は良好な再結合を促すので、短波長発光デバイスに用いた場合、そのデバイスの発光効率が著しく高くなることから、閃亜鉛鉱型結晶を低い転位密度で成長する技術が強く望まれている。また、転位密度の低い閃亜鉛鉱構造のGaN系結晶が得られれば、短波長発光デバイスと半導体集積回路との複合デバイスなどが可能となり将来的なデバイスとしての展開が可能となる。
そこで、本願の発明者は、Si基板上に形成したBP結晶膜上にGaN結晶を直接形成する例を報告した(特許文献1)が、実際には、表面の凹凸、部分的な剥離、ひび割れなどが発生するという現象がみられることがあった。また、Si基板上に形成したBP結晶膜上に中間層を介してGaN系結晶を形成する例(特許文献2)があるが、閃亜鉛鉱型のGaN系結晶は形成されていなかった。
特開2000−235956号公報 特開2003−229601号公報
本発明は、Si(100)方位上に閃亜鉛鉱型のBP結晶を中間結晶とし、転位密度の低い閃亜鉛鉱型GaN系結晶を成長する技術を提供することを課題とする。
本発明の実施形態として、本発明においては、Si基板上に、閃亜鉛鉱型のBP結晶層を形成し、BP結晶層上にInを含む層を閃亜鉛鉱型の結晶構造を維持する厚さで形成し、Inを含む層の上に閃亜鉛鉱型のGaN系結晶層を形成することを特徴とするGaN系結晶の製造方法が提供される。
Inを含む層は、4原子層以内の金属In層であることが望ましい。
Inを含む層は、膜厚が2nm以内のInGaN層であることが望ましい。
Inを含む層は、4原子層以内のInAl混合層であり、Alの含有量が10%以下であることが望ましい。
Inを含む層は、膜厚が2nm以内のAlInGaN層であり、Alの含有量が10%以下であることが望ましい。
Inを含む層は、AlInGa1−x−yN層とAlx’Iny’Ga1−x’−y’N層を繰り返し堆積させた超格子構造の層であることが望ましい。
Si基板は、(100)方位からのオフ角が3°以上23°以下であることが望ましい。
本発明の実施形態として、本発明においては、さらに、Si基板上に、Si濃度が1017cm−3以上1021cm−3以下である閃亜鉛鉱型のBP結晶層を形成し、BP結晶層よりも上方に閃亜鉛鉱型のGaN系結晶層を形成することを特徴とするGaN系結晶の製造方法が提供される。
本発明においては、さらに、上記製造方法により製造されたGaN系結晶にダブルヘテロ接合を形成したことを特徴とする発光デバイスが提供される。
本発明においては、さらに、上記製造方法により製造されたGaN系結晶より、BP結晶層をエッチングストッパーとして用い、Si基板を除去することを特徴とする発光デバイスの製造方法が提供される。
本発明によれば、Si(100)方位上にBP結晶を中間結晶とし、転位密度の低い閃亜鉛鉱型GaN系結晶を成長することが可能となる。
本発明の実施例1乃至4の結晶成長後の状態を示した断面図である。 本発明の実施例5の結晶成長後の状態を示した断面図である。 本発明の実施例において、GaN系結晶層の欠陥密度のSi基板のオフ角依存性を示した図である。 本発明により成長させたGaN系結晶を用いた半導体レーザ素子の断面図である。 本発明により成長させたGaN系結晶を用いた高輝度発光ダイオードの製造方法を示す断面図である。 本発明により成長させたGaN系結晶を用いた高輝度発光ダイオードの製造方法を示す断面図である。 本発明により成長させたGaN系結晶を用いた高輝度発光ダイオードの製造方法を示す断面図である。
以下、本発明を実施するためのいくつかの実施例を説明する。なお、本発明は、以下に説明する実施例に何ら限定されることはない。以下に説明する実施例を種々に変形して本発明を実施することが可能である。
以下、図1を参照して本発明の第1の実施例によるGaN系結晶(AlInGa1−x−yN結晶)の成長方法を説明する。
はじめに、Pをドープしたn型のSi基板10を準備する。Si基板10は(100)方位であるが、ここでは<110>方向に6度のオフ基板を用いる。
Si基板10を搭載した反応炉の温度を1000℃まで上昇させ、PH(ホスフィン)とB(ジボラン)を1時間程度流して、500nmの膜厚のBP結晶膜11(中間結晶)を形成する。BP結晶膜11のSi濃度は、反応炉の温度が1000℃のために、Si基板からのSi原子が拡散する結果、1018cm−3程度となる。その後、基板温度を降下させる。
BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移す。基板温度を1100℃まで上昇させて表面を水素で5分間処理する。続いて、基板温度を650℃まで低下させ、(CIn(トリメチルインジウム)を1秒間だけ流し、1原子層程度(0.5nm程度)In膜12を堆積する。
In膜12を堆積した後、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を1500秒程度反応炉に流し、20nmの膜厚のGaN膜13を堆積する。
20nmの膜厚のGaN膜13を堆積した後に、反応炉の温度を730℃まで上昇させ、(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を3600秒程度反応炉に流し、約1μmの膜厚のGaN膜14を堆積する。
以上のとおり堆積させたGaN膜の結晶構造は、良好な閃亜鉛鉱型であり、転位密度は、約10cm-2であった。
以上のGaN膜の成長方法において、閃亜鉛鉱型のGaN膜が形成された理由は、以下のとおりであると考えられる。すなわち、Si基板10上のBP結晶膜11は閃亜鉛鉱型である。In膜の1原子層は膜厚が小さいので閃亜鉛鉱型の結晶構造を維持し、その上に形成するGaN膜も閃亜鉛鉱型になる。実際には、GaN膜が堆積すると、1原子層程度のIn膜は、Inのスポットとして検出される。
以上のGaN膜の成長方法において、転位密度が低い良好なGaN膜が形成された理由は、BP結晶の格子定数は約0.454nmであり、GaN結晶の格子定数は約0.451nmである。InGaN結晶はInの比率が高くなると格子定数が大きくなるので、上記成長方法で挿入したIn膜12が、その上のGaN膜とともに、実効的にはあたかもIn含有量の比較的大きなInGaNが存在するかのごとく格子定数のミスマッチを解消している。このことから、薄いIn含有量の比較的大きなInGaNをBP結晶とGaN結晶に間に挿入する実施態様も考えられ、実施例2で説明する。
以上のGaN膜の成長方法においては、1原子層程度の膜厚のIn膜を形成したが、最厚で5原子層程度の膜厚のIn膜を形成しても同様の結果が得られることが確認された。
以下、実施例2のGaN系結晶の成長方法を図1を参照して説明する。
はじめに、Pをドープしたn型のSi基板10上に500nmの膜厚のBP結晶膜11を形成する点は、実施例1と同様である。
BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移す。基板温度を1100℃まで上昇させて表面を水素で5分間処理する。続いて、基板温度を650℃まで低下させ、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)及び(CIn(トリメチルインジウム)を10秒間流し、1〜数原子層程度(0.5〜2nm程度)のInGaN膜121を堆積する。InGaN膜121は薄いので閃亜鉛鉱型の結晶構造を維持する。
InGaN膜121を堆積した後、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を1500秒程度反応炉に流し、20nmの膜厚のGaN膜13を堆積する。
20nmの膜厚のGaN膜13を堆積した後に、反応炉の温度を730℃まで上昇させ、(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を3600秒程度反応炉に流し、約1μmの膜厚のGaN膜14を堆積する。
以上のとおり堆積させたGaN膜の結晶構造は、良好な閃亜鉛鉱型であり、転位密度は、約10cm-2であった。
以下、実施例3のGaN系結晶の成長方法を図1を参照して説明する。
はじめに、Pをドープしたn型のSi基板10上に500nmの膜厚のBP結晶膜11を形成する点は、実施例1と同様である。
BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移す。基板温度を1100℃まで上昇させて表面を水素で5分間処理する。続いて、基板温度を650℃まで低下させ、(CIn(トリメチルインジウム)と(CAl(トリメチルアルミニウム)を1秒間だけ流し、1原子層程度(0.5nm程度)InAl混合膜122を堆積する。InAl混合膜122は膜厚が小さいので閃亜鉛鉱型を維持する。ここで、Alの量はInの量よりもはるかに少なくなるようにガスの流量を調整している。
InAl混合膜122を堆積した後、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を1500秒程度反応炉に流し、20nmの膜厚のGaN膜13を堆積する。
20nmの膜厚のGaN膜13を堆積した後に、反応炉の温度を730℃まで上昇させ、(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を3600秒程度反応炉に流し、約1μmの膜厚のGaN膜14を堆積する。
以上のとおり堆積させたGaN膜の結晶構造は、良好な閃亜鉛鉱型であり、転位密度は、約10cm-2より少し大きい程度であった。さらに、GaN膜の表面の平坦性が向上していることも確認された。その理由は、GaN膜を成長させる際に、BP結晶膜との界面にAlがわずかにでも存在すると、GaN結晶のBP結晶膜上の付着率が高くなり、成長がより確実になるからである。実験によると、Alは最大でInの10%程度であることが望ましく、これを超えると、転位密度が突然大きくなることが確認された。
以下、実施例4のGaN系結晶の成長方法を図1を参照して説明する。
はじめに、Pをドープしたn型のSi基板10上に500nmの膜厚のBP結晶膜11を形成する点は、実施例1と同様である。
BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移す。基板温度を1100℃まで上昇させて表面を水素で5分間処理する。続いて、基板温度を650℃まで低下させ、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)、(CAl(トリメチルアルミニウム)及び(CIn(トリメチルインジウム)を10秒間流し、1〜数原子層程度(0.5〜2nm程度)のAlInGaN膜123を堆積する。AlInGaN膜123は膜厚が小さいので閃亜鉛鉱型を維持する。
AlInGaN膜123を堆積した後、CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を1500秒程度反応炉に流し、20nmの膜厚のGaN膜13を堆積する。
20nmの膜厚のGaN膜13を堆積した後に、反応炉の温度を730℃まで上昇させ、(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を3600秒程度反応炉に流し、約1μmの膜厚のGaN膜14を堆積する。
以上のとおり堆積させたGaN膜の結晶構造は、良好な閃亜鉛鉱型であり、転位密度は、約10cm-2より少し大きい程度であった。さらに、GaN膜の表面の平坦性が向上していることも確認された。
以下、実施例5のGaN系結晶の成長方法を図2を参照して説明する。
はじめに、Pをドープしたn型のSi基板10上に500nmの膜厚のBP結晶膜11を形成する点は、実施例1と同様である。
BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移す。基板温度を1100℃まで上昇させて表面を水素で5分間処理する。続いて、基板温度を650℃まで低下させ、(1)CH−NH−NH(モノメチルヒドラジン)、(CGa(トリメチルガリウム)及び(CIn(トリメチルインジウム)を10秒間流して1.4nmのInGaN層を形成し、(2)CH−NH−NH(モノメチルヒドラジン)及び(CGa(トリメチルガリウム)を10秒間流して1.4nmのGaN層を形成する。さらに、(1)及び(2)の工程を4回繰り返す。その結果、BP結晶膜11上に、GaInN/GaN/GaInN/GaN/GaInN/GaN/GaInN/GaN/GaInN/GaNの積層構造からなる膜厚合計14nmの閃亜鉛鉱型を維持した超格子層124を形成する。
超格子層124を形成した後に、反応炉の温度を730℃まで上昇させ、(モノメチルヒドラジン)、(CGa(トリメチルガリウム)を3600秒程度反応炉に流し、約1μmの膜厚のGaN膜14を堆積する。
以上のとおり堆積させたGaN膜の結晶構造は、良好な閃亜鉛鉱型であり、転位密度は、約10cm-2程度であった。以上の超格子層124をBP結晶膜とGaN系結晶との間に形成することによって、BP結晶との界面から発生する転位は減少するし、超格子層124によって、新たな歪を吸収する効果が存在するため、新たな転位の増殖を防ぐことが可能である。
以上の例では、超格子層124は、InGaNとGaNの積層膜によって形成したが、AlInGa1−x−yN層とAlx’Iny’Ga1−x’−y’N層を繰り返し堆積させた超格子構造の層であってもよい。
以上の実施例1乃至5のGaN系結晶の成長方法においては、BP膜の形成にPH(ホスフィン)とB(ジボラン)を用いたが、PCl(三塩化リン)BClと(三塩化ホウ素)を用いても構わない。ただし、PH(ホスフィン)とB(ジボラン)を用いたほうが、その上に形成したGaN系結晶の品質がよくなることが確認された。
以上の実施例1乃至5のGaN系結晶の成長方法においては、BP膜の形成にPH(ホスフィン)とB(ジボラン)を用いたが、PCl(三塩化リン)BClと(三塩化ホウ素)を用いても構わない。ただし、PH(ホスフィン)とB(ジボラン)を用いたほうが、その上に形成したGaN系結晶の品質がよくなることが確認された。原料としてTEGa及びDMHyを用いても同様な良好な結果が得られた。
以上の実施例1乃至5のGaN系結晶の成長方法においては、GaN結晶膜13及び14を堆積したが、これは、AlInGa1−x−yN結晶膜であってもよい。但し、Al及びInの組成比であるX及びYは、それぞれ、0〜1の間の値をとりうる。
(基板のオフ角)
以上の実施例1のGaN系結晶の成長方法においては、Pをドープしたn型のSi基板10は(100)方位であり、6度のオフ基板を用いた。ここで、基板の傾斜角(オフ角)を調整することにより、BP結晶膜上にIn含有層を介して成長させたGaN系結晶の転位密度を測定したところ、図3のとおりとなった。図3において、縦軸はGaN系結晶の転位密度であり、横軸はSi基板のオフ角である。図から理解されるとおり、オフ角が0°のSi基板を用いると、転位密度は1010cm-2であったが、オフ角が3°を超えると急激に転位密度が10cm-2程度まで小さくなり、オフ角が23°を超えると再び転位密度が上昇する。なお、オフ角が23°を超えると、成長表面に凸凹が生じる。したがって、基板のオフ角は3°以上23°以下が望ましい。なお、転位密度の観点から最適なオフ角は6°以上10°以下である。
(組成傾斜)
以上の実施例2のGaN系結晶の成長方法においては、InGaN層121の上にGaN層13を形成したが、成長開始時にInGa1−xN層(xを0.15以上とする。)から成長を行い、成長にしたがって、Inの量を減らしてゆくことも可能である。ただし、成長温度は700℃以下、例えば650℃程度で行う必要がある。成長温度が高いと十分な量のInが導入されないからである。
(BP結晶膜のSi濃度)
以上の実施例1乃至5のGaN系結晶の成長方法において、BP結晶膜11は、比較的高濃度のSiを含有することが望ましい。Siとボロンとの原子結合は非常に強固であり、この部分の存在によって、BP結晶膜11内で発生した転位の拡張、増殖が抑えられるからであると考えられる。Si濃度は、1017cm−3以上1021cm−3以下であることが望ましい。Si濃度が1017cm−3以下だと、成長後のGaN系結晶の転位密度が上昇してしまう。Si濃度が1021cm−3以上だと、成長後のGaN系結晶の表面の凹凸が見られる。
さらに、BP結晶膜11内の一部に、ごく薄い高濃度Siドープ層を設けても良い。具体的には、Si基板10から100nmのBP結晶膜を形成し、この上に、1〜3nm(数原子層)の1021cm−3以上の高濃度SiドープBP結晶層を形成し、さらに、その上に400nmのBP結晶膜を形成する。このような高濃度SiドープBP結晶層をBP結晶膜でサンドイッチすることによって、Si基板10とBP結晶膜11との界面やBP結晶膜(下部)で発生した転位の拡張、増殖が抑えられるため、その上層にInを含む層を介して形成したGaN系結晶の転位密度を約一桁低くなることが確認された。
(低温アニール)
以上の実施例1乃至5のGaN系結晶の成長方法においては、BP結晶膜11を形成した状態のSi基板10を大気中に出すことなく、窒素雰囲気中のままで、別の反応炉に移し、その後、基板温度を1100℃まで上昇させて表面を水素で5分間処理した。
ここで、さらに、反応炉を700℃以下の温度、例えば650℃まで低下させて約10分程度保持することによって、第1の低温アニールを施すことが望ましい。また、Inを含む各層12(121、123、124)の形成後にGaN膜13を形成したあとに、800℃以下の温度、例えば750℃で、数10分保持することによって、第2の低温アニールを施すことが望ましい。このような第1及び第2の低温アニールを経ることによって、BP結晶膜11やGaN膜13の結晶性が改善され、表面の欠陥密度が低下する。その結果、GaN層14の転位密度がほぼ一桁程度低下することが確認された。
以上の実施例1乃至5のGaN系結晶の成長方法を用いて得られたGaN系結晶を用いた半導体レーザ素子を図4に示す。
前述のとおり得られたGaN層14はノンドープである。この上に、SiをドープしたGaN層からなるn型コンタクト層20を1μm程度形成する。続いて、n型コンタクト層20の上に、AlGaN層からなりSiをドープしたn型クラッド層21を0.1μm程度形成する。n型クラッド層21の上には、GaN(2nm)/InGaN(2nm)を6サイクル積層させた厚さ24nmの超格子層からなる活性層22を形成する。活性層22はノンドープである。続いて、活性層22の上に、AlGaN層からなりMgをドープしたp型クラッド層23を形成し、この上に、MgをドープしたGaN層からなるp型コンタクト層20を400nm程度形成する。ついで、レーザ発振する領域を5μm幅のストライプ状に残して残部の各層20〜24をエッチング除去し、n型コンタクト層20とp型コンタクト層24に電極を形成する。
このようにして得られた半導体レーザ素子は、閃亜鉛鉱型のGaN結晶を用いていることから、ホールと電子とが効率良く再結合するので、発光効率の高い半導体レーザ素子を得ることができる。なお、閃亜鉛鉱型のGaN結晶を用いて半導体レーザ素子等の光学素子を形成する場合には、ホールの移動度が極めて高いためにホールの滲みだしが発生しないようにするため、n型クラッド層は必須の構成であるといえる。したがって、ダブルヘテロ接合を有する半導体レーザ素子が望ましい。
以上の実施例1乃至5のGaN系結晶の成長方法を用いて得られたGaN系結晶を用いた高輝度発光ダイオードの製造方法を図5〜7に示す。
前述のとおりGaN層14はノンドープである。この上に、SiをドープしたGaN層からなるn型コンタクト層20を1μm程度形成する。続いて、n型コンタクト層20の上に、AlGaN層からなりSiをドープしたn型クラッド層21を0.1μm程度形成する。n型クラッド層21の上には、GaN(2nm)/InGaN(2nm)を6サイクル積層させた厚さ24nmの超格子層からなる活性層22を形成する。活性層22はノンドープである。続いて、活性層22の上に、AlGaN層からなりMgをドープしたp型クラッド層23を形成し、この上に、MgをドープしたGaN層からなるp型コンタクト層20を400nm程度形成する(ここまでは、実施例6のレーザ素子と同一である)。
このようなダブルヘテロ接合構造のLEDを高輝度にするためには、発生した紫外線乃至青色光を吸収するSi基板10を除去するのが望ましい。そこで、BP結晶層11をエッチングストッパーとして用いつつ、Si基板10を除去する。Si基板10とBP結晶層11との選択比をとることのできるエッチング溶液として、500℃のKOH(水酸化カリウム)を用いることが可能である。500℃のKOH(水酸化カリウム)でSi基板10を除去した状態が図5である。またSi基板のエッチング液としてはフッ化水素と硝酸の混合液の希釈液やヒドラジン液等を用いても同様な良好な結果が得られた。
続いて、BP結晶層11を除去する。ここでは、BP結晶層と、GaN層(極薄いInを含む層が挟まれている。)との選択比をとる必要がある。ここでは、エッチング溶液として、KOH(水酸化カリウム)、NaOH(水酸化ナトリウム)及びMgO(酸化マグネシウム)の混合液を500℃に加熱して用いる。このようにして、BP結晶層を除去することができる。
なお、BP結晶層を除去するためには500℃に加熱したリン酸を用いることも可能であるが、エッチング速度及び選択比の関係から、KOH(水酸化カリウム)、NaOH(水酸化ナトリウム)及びMgO(酸化マグネシウム)の混合液がより望ましい。
続いて、ノンドープGaN層14をエッチング除去する。ここでは、エッチング溶液として、500℃のKOH(水酸化カリウム)を用いることが可能である。このようにして、導電率の高いn型コンタクト層20が露出する。図6はこの状態を示している。
さらに、Si基板30表面に紫外線乃至青色光を反射する性質を有するアルミニウム膜31をスパッタリング法によって形成した張り合わせ部材を準備し、これとn型コンタクト層20とを接合する。接は、AuとInの合金を用い、400℃で圧着することによって行う。図7はこの状態を示している。
以上のように形成した高輝度LEDを集積した基板を、ダイソー等で個別に分離し、図示しないパッケージに搭載し、発光面(図7の上面)を蛍光体(紫外線や青色光を白色光に変換する)で包囲して製品として完成させる。
以上説明したとおり、本発明においては、転位密度の低い閃亜鉛鉱型GaN系結晶を得ることができ、これを用いた高効率の発光デバイスを形成することが可能となる。
10 ・・・ Si基板
11 ・・・ BP結晶膜
12 ・・・ In膜
13、14 ・・・ GaN膜

Claims (10)

  1. Si基板上に、閃亜鉛鉱型のBP結晶層を形成し、
    前記BP結晶層上にInを含む層を閃亜鉛鉱型の結晶構造を維持する厚さで形成し、
    前記Inを含む層の上に閃亜鉛鉱型のGaN系結晶層を形成する
    ことを特徴とするGaN系結晶の製造方法。
  2. 前記Inを含む層は、4原子層以内の金属In層であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  3. 前記Inを含む層は、膜厚が2nm以内のInGaN層であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  4. 前記Inを含む層は、4原子層以内のInAl混合層であり、Alの含有量が10%以下であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  5. 前記Inを含む層は、膜厚が2nm以内のAlInGaN層であり、Alの含有量が10%以下であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  6. 前記Inを含む層は、AlxInyGa1-x-yN層とAlx'Iny'Ga1-x'-y'N層を繰り返し堆積させた超格子構造の層であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  7. 前記Si基板は、(100)方位からのオフ角が3°以上23°以下であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  8. 前記BP結晶層のSi濃度は1017cm-3以上1021cm-3以下であることを特徴とする請求項1記載のGaN系結晶の製造方法。
  9. Si基板上に、Si濃度が1017cm-3以上1021cm-3以下である閃亜鉛鉱型のBP結晶層を形成し、
    前記BP結晶層よりも上方に閃亜鉛鉱型のGaN系結晶層を形成する
    ことを特徴とするGaN系結晶の製造方法。
  10. 請求項1又は9のいずれか記載の製造方法により製造されたGaN系結晶より、前記BP結晶層をエッチングストッパーとして用い、前記Si基板を除去することを特徴とする発光デバイスの製造方法。


JP2012188461A 2012-08-29 2012-08-29 GaN系結晶及び半導体素子の製造方法 Active JP6008661B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012188461A JP6008661B2 (ja) 2012-08-29 2012-08-29 GaN系結晶及び半導体素子の製造方法
DE112013004283.5T DE112013004283T5 (de) 2012-08-29 2013-08-27 Verfahren zum Herstellen eines GaN-Kristalls und eines Halbleiterelements
GB1503010.9A GB2519895B (en) 2012-08-29 2013-08-27 Method for producing GaN-based crystal and semiconductor device
PCT/JP2013/072922 WO2014034687A1 (ja) 2012-08-29 2013-08-27 GaN系結晶及び半導体素子の製造方法
US14/629,063 US9595632B2 (en) 2012-08-29 2015-02-23 Method for producing GaN-based crystal and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188461A JP6008661B2 (ja) 2012-08-29 2012-08-29 GaN系結晶及び半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2014049461A JP2014049461A (ja) 2014-03-17
JP6008661B2 true JP6008661B2 (ja) 2016-10-19

Family

ID=50183498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188461A Active JP6008661B2 (ja) 2012-08-29 2012-08-29 GaN系結晶及び半導体素子の製造方法

Country Status (5)

Country Link
US (1) US9595632B2 (ja)
JP (1) JP6008661B2 (ja)
DE (1) DE112013004283T5 (ja)
GB (1) GB2519895B (ja)
WO (1) WO2014034687A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129774B2 (ja) 2017-12-28 2022-09-02 株式会社トクヤマ 気相成長装置の洗浄方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293583B2 (ja) 1999-02-16 2002-06-17 昭和電工株式会社 Iii族窒化物半導体結晶層の成長方法およびiii族窒化物半導体結晶層を具備する半導体装置
JP3141838B2 (ja) * 1998-03-12 2001-03-07 日本電気株式会社 電界効果トランジスタ
JP3748011B2 (ja) * 1999-06-11 2006-02-22 東芝セラミックス株式会社 GaN半導体結晶成長用Siウエーハ、それを用いたGaN発光素子用ウエーハ及びそれらの製造方法
JP3724267B2 (ja) * 1999-08-11 2005-12-07 昭和電工株式会社 Iii族窒化物半導体発光素子
JP3592616B2 (ja) * 2000-06-22 2004-11-24 昭和電工株式会社 Iii族窒化物半導体発光素子
JP2003229601A (ja) 2002-02-05 2003-08-15 Showa Denko Kk リン化硼素系半導体素子、その製造方法、および発光ダイオード
US6831304B2 (en) * 2002-02-25 2004-12-14 Showa Denko Kabushiki Kaisha P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof
JP3700664B2 (ja) * 2002-03-22 2005-09-28 昭和電工株式会社 リン化硼素系半導体層、その製造方法、半導体素子
JP3711966B2 (ja) * 2002-07-25 2005-11-02 昭和電工株式会社 Iii族窒化物半導体層の気相成長方法及びiii族窒化物半導体素子
WO2004051752A2 (en) * 2002-12-02 2004-06-17 Showa Denko K.K. Boron phosphide-based compound semiconductor device, production method thereof and light-emitting diode
JP2004134812A (ja) * 2003-12-26 2004-04-30 Showa Denko Kk 窒化物化合物半導体素子
KR100802451B1 (ko) * 2004-03-05 2008-02-13 쇼와 덴코 가부시키가이샤 인화 붕소계 반도체 발광 소자
WO2007026937A1 (en) * 2005-09-02 2007-03-08 Showa Denko K. K. Method for fabricating semiconductor layer and light-emitting diode
JP4890818B2 (ja) * 2005-09-02 2012-03-07 昭和電工株式会社 半導体層形成方法および発光ダイオード
US7951694B2 (en) * 2008-08-28 2011-05-31 Sharp Kabushiki Kaisha Semiconductor structure and method of manufacture of same

Also Published As

Publication number Publication date
US20150194569A1 (en) 2015-07-09
GB2519895A (en) 2015-05-06
WO2014034687A1 (ja) 2014-03-06
US9595632B2 (en) 2017-03-14
DE112013004283T5 (de) 2015-05-13
GB2519895B (en) 2018-01-17
JP2014049461A (ja) 2014-03-17
GB201503010D0 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
TWI343131B (en) Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
KR101067122B1 (ko) Ⅲ족 질화물 반도체의 제조 방법, ⅲ족 질화물 반도체 발광 소자의 제조 방법 및 ⅲ족 질화물 반도체 발광 소자, 및 램프
TWI381547B (zh) 三族氮化合物半導體發光二極體及其製造方法
CN101834248B (zh) 氮化镓系发光二极管
TW200805711A (en) GaN type semiconductor light emitting element and lamp
WO2011125449A1 (ja) 窒素化合物半導体発光素子およびその製造方法
JP2006114886A (ja) n型III族窒化物半導体積層構造体
WO2007119822A1 (ja) 半導体発光素子の製造方法及び半導体発光素子とそれを備えたランプ
WO2015146069A1 (ja) 発光ダイオード素子
JP2008288397A (ja) 半導体発光装置
WO2015186478A1 (ja) 窒化物半導体発光素子
JP2015149342A (ja) 半導体発光素子及びその製造方法
KR101852519B1 (ko) 광학 소자의 제조 방법
WO2016002684A1 (ja) Led素子
JP5327778B2 (ja) 半導体素子およびその製造方法
WO2014196471A1 (ja) Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1-y-xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD)
JP6008661B2 (ja) GaN系結晶及び半導体素子の製造方法
JP2008118048A (ja) GaN系半導体発光素子
WO2008056632A1 (fr) Élément électroluminescent semi-conducteur gan
JP2007324546A (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、及び窒化ガリウム系化合物半導体発光素子、並びにランプ
JP2015115343A (ja) 窒化物半導体素子の製造方法
JP2013247222A (ja) 窒化物半導体発光素子及びその製造方法
JP2006245555A (ja) 透光性電極
JP2005251922A (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250