JP5993667B2 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP5993667B2
JP5993667B2 JP2012193519A JP2012193519A JP5993667B2 JP 5993667 B2 JP5993667 B2 JP 5993667B2 JP 2012193519 A JP2012193519 A JP 2012193519A JP 2012193519 A JP2012193519 A JP 2012193519A JP 5993667 B2 JP5993667 B2 JP 5993667B2
Authority
JP
Japan
Prior art keywords
group
ring
layer
compound
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012193519A
Other languages
English (en)
Other versions
JP2014049697A (ja
Inventor
弘彦 深川
弘彦 深川
清水 貴央
貴央 清水
洋一 有元
洋一 有元
森井 克行
克行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Japan Broadcasting Corp
Original Assignee
Nippon Shokubai Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Japan Broadcasting Corp filed Critical Nippon Shokubai Co Ltd
Priority to JP2012193519A priority Critical patent/JP5993667B2/ja
Priority to CN201380019561.XA priority patent/CN104247073B/zh
Priority to KR1020147030972A priority patent/KR102171425B1/ko
Priority to PCT/JP2013/060755 priority patent/WO2013157451A1/ja
Priority to TW102113218A priority patent/TWI593695B/zh
Publication of JP2014049697A publication Critical patent/JP2014049697A/ja
Application granted granted Critical
Publication of JP5993667B2 publication Critical patent/JP5993667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機電界発光素子に関する。より詳しくは、電子機器の表示部等の表示装置や照明装置等としての利用可能な有機電界発光素子に関する。
有機電界発光素子は、薄く、柔軟でフレキシブルであるという特徴を有し、また、表示装置として用いた場合には、現在主流となっている液晶やプラズマの表示装置に比べ、高輝度、高精細な表示が可能となり、液晶表示装置に比べて視野角も広い等の優れた特徴を有することから、今後テレビや携帯電話のディスプレイ等としての利用の拡大や、照明装置としての利用が期待されている素子である。
有機電界発光素子は、陰極と陽極との間に、電子輸送層、発光層、正孔輸送層等の複数の層が積層された構造を有しており、各層を構成するのに適した材料について、研究、開発が行われている。例えば、ホウ素原子を有する特定の構造を有する化合物を含む発光材料が開示されている(特許文献1参照。)。また、ホウ素原子を有する特定の構造を有する化合物が有機電界発光素子の正孔阻止層として好適であることが開示されている(特許文献2参照。)。
また、このような有機電界発光素子としては、有機電界発光素子を構成する各層が全て有機物で構成されたものの他、有機電界発光素子を構成する層の一部に無機物で構成された層を有する有機無機ハイブリッド型のものについても研究が行われている。
従来の有機無機ハイブリッド型の有機電界発光素子としては、陽極および陰極と、前記陽極と前記陰極とに挟まれた1層または複数層の有機化合物層と、前記陽極と前記有機化合物層との間及び前記陰極と前記有機化合物層との間に、少なくとも1種類以上の金属酸化物薄膜を有する有機薄膜発光素子が開示されている(特許文献3参照。)。また、陽極、陰極と、陽極と陰極とに挟まれた1層または複数層の有機化合物層と、陽極と有機化合物層との間または陰極と有機化合物層との間に、少なくとも1種類以上の金属酸化物薄膜を有し、それら各層間に1層または複数層の、主たるキャリアにとってエネルギー障壁となり、逆のキャリアにとってエネルギー障壁とならない自己組織化単分子膜を有する有機薄膜電界発光素子が開示されている(特許文献4参照。)。更に、ポリビニルカルバゾールポリマーにドーパントとしてイリジウム化合物を添加したものを金属酸化物層の上に積層した構造を有する有機無機ハイブリッド型の有機電界発光素子(非特許文献1参照。)や、ポリ(9,9−ジオクチルフルオレニル−2,7−ジイル)にイリジウム化合物を添加したものを発光層とする有機無機ハイブリッド型の有機電界発光素子(非特許文献2参照。)が開示されている。
特開2011−184430号公報 国際公開2005/062676号 特開2007−53286号公報 特開2012−4492号公報
ヘンク J.ボリンク(Henk J.Bolink)外3名「アドバンスト マテリアルズ(Advanced Materials)」、2010年、第22巻、p2198−2201 ヘンク J.ボリンク(Henk J.Bolink)外2名「ケミストリー オブ マテリアルズ(Chemistry of Materials)」、2009年、第21巻、p439−441
上記のように、有機電界発光素子を構成する各層が全て有機物で構成された有機電界発光素子とともに有機無機ハイブリッド型の有機電界発光素子についても研究、開発が行われている。
有機無機ハイブリッド型の有機電界発光素子は、有機成分が有する柔軟性や成形性と、無機成分が有する強度や耐久性とを併せ持つことが可能であると考えられ、また、有機化合物のみで各層が構成された有機電界発光素子に比べて酸素や水に対する耐性が高いため素子内部の各層を厳密に密閉する必要性が低減され、製造時の手間も少ない等の利点を有しており、実用化が期待されるものである。一方で、有機無機ハイブリッド型の有機電界発光素子は、有機電界発光素子を構成する各層が全て有機物で構成された有機電界発光素子に比べて発光特性にまだ改善の余地があるため、更に発光特性を向上させた有機無機ハイブリッド型の有機電界発光素子の開発が求められている。
本発明は、上記現状に鑑みてなされたものであり、従来の有機無機ハイブリッド型の有機電界発光素子よりも更に発光特性に優れた有機無機ハイブリッド型の有機電界発光素子を提供することを目的とする。
本発明者は、有機無機ハイブリッド型の有機電界発光素子の発光特性を改善する方法について種々検討したところ、第1の電極と第2の電極との間に、第1の金属酸化物層、バッファ層、該バッファ層上に積層された発光層を含む低分子化合物層、及び、第2の金属酸化物層をこの順に有する構成の有機電界発光素子とし、この有機電界発光素子のバッファ層に還元剤を含ませると、還元剤が電子を供給するn−ドーパントとして働き、従来の有機無機ハイブリッド型の有機電界発光素子に比べて発光特性に優れた有機電界発光素子となることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち本発明は、複数の層が積層された構造を有する有機電界発光素子であって、上記有機電界発光素子は、第1の電極と第2の電極との間に、第1の金属酸化物層、バッファ層、上記バッファ層上に積層された発光層を含む低分子化合物層、及び、第2の金属酸化物層をこの順に有し、上記バッファ層は、還元剤を含むことを特徴とする有機電界発光素子である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
本発明の有機電界発光素子は、第1の電極と第2の電極との間に、第1の金属酸化物層、バッファ層、該バッファ層上に積層された発光層を含む低分子化合物層、及び、第2の金属酸化物層をこの順に有するものである限り、これら以外の他の層を有していてもよい。
なお、本発明において低分子化合物とは、高分子化合物(重合体)ではない化合物を意味し、分子量が低い化合物を必ずしも意味するものではない。
本発明の有機電界発光素子は、バッファ層が還元剤を含むものである。本発明の有機電界発光素子においては、後述するように、第1の電極が陰極、第2の電極が陽極であり、バッファ層は、バッファ層を形成する材料の選択により、電子輸送層としての機能を発揮し得る層である。
有機電界発光素子では、陽極からホールが、陰極から電子が供給され、これらが発光層で再結合して発光することになるが、陽極から供給されるホールの一部は第2の金属酸化物層、発光層、バッファ層、第1の金属酸化物層を通過して陰極にまで達し、これが有機電界発光素子の効率を低下させる一因であると考えられる。所定の厚みのバッファ層を設けることで、ホールが陰極まで達することを抑制できるため、素子の効率を高めることができる。しかし一方で、バッファ層の厚みを厚くすると、陰極から発光層への電子の移動が妨げられ、バッファ層の厚みの影響が比較的少ないエッジ部とエッジ部以外の部分とで発光層にまで達する電子の割合に差が生じ、エッジ部のみが発光する現象がおこる。これに対し、バッファ層に電子を供給する機能を有する還元剤を含ませると、発光層へ充分な電子が供給されて電子とホールとの再結合が有効に行われることになり、発光に必要な駆動電圧も低くなる。これにより、発光効率が飛躍的に優れた有機電界発光素子とすることができる。
本発明の有機電界発光素子において、バッファ層は、有機化合物を含む溶液を塗布することで形成される平均厚さが5〜100nmの層であることが好ましい。
本発明の有機電界発光素子において、第1の金属酸化物層の上に発光層を含む低分子化合物層を積層させる構成とした場合、金属酸化物層に接する低分子化合物層の結晶化が起こることによってリーク電流が増大して電流効率が低下し、顕著な場合では結晶化により均一な面発光が得られないという不具合が発生するおそれがある。有機無機ハイブリッド型の有機電界発光素子において、低分子化合物層が結晶化する原因は以下のように考えられる。
有機無機ハイブリッド型の有機電界発光素子では、ガラス等の基板上に配置された第1の電極と、第1の金属酸化物層が存在し、その上に発光層を含む低分子化合物層を成膜することになる。ここで、従来の方法によれば第1の金属酸化物層はスプレー熱分解法、ゾルゲル法、スパッタ法等の方法で成膜され、表面は平滑ではなく凹凸を持つ。この第1の金属酸化物層の上に、真空蒸着等の方法で発光層を含む低分子化合物層を成膜した場合、第1の金属酸化物層の表面の凹凸が結晶核となり、第1の金属酸化物層に接する低分子化合物層の結晶化が促進される。このため、有機電界発光素子を完成させたとしても、大きなリーク電流が流れ、発光面が不均一化して、実用に耐える素子は得られないことになる。
一方で、第1の電極上に第1の金属酸化物層を有さない、いわゆる通常構造の有機電界発光素子においては、第1の電極表面が十分平滑に研磨されたものが入手可能であり、たとえ第1の電極表面上に発光層を含む低分子化合物層を直接成膜したとしても、結晶化という問題は起こりにくい。したがって、このような結晶化は、有機無機ハイブリッド型の有機電界発光素子に特有の課題であり、発光層のホストとして低分子化合物を用いる場合に新たに生じる課題である。
この課題に対し、第1の金属酸化物層と発光層を含む低分子化合物層との間に有機化合物を含む溶液を塗布することで形成される平均厚さが5〜100nmのバッファ層を設けると、低分子化合物層における低分子化合物の結晶化が抑制され、これによって、有機無機ハイブリッド型の有機電界発光素子が発光層等として低分子化合物から形成される層を有する場合でもリーク電流を抑制することができ、また、リーク電流を原因とする不均一な面発光は抑制することができる。
上述したように、バッファ層の厚みを厚くすると、発光層のエッジ部分のみが他の部分に比べて強く発光する現象が観察されるようになるが、これに対しては、バッファ層に還元剤を含ませることで、このようなエッジ部のみの発光を抑制し、均一な面発光を得ることができるようになる。したがって、本発明を用いれば、バッファ層の平均厚さが5〜100nmであっても良好な素子特性が得られる。
本発明の有機電界発光素子は、このように、電子輸送層として機能しうるバッファ層を塗布により形成し、そのバッファ層にn−ドーパントである還元剤を含ませたものであり、このような構成とすることで、発光層を低分子化合物で形成することも可能となり、また発光効率にも優れたものとなる。
バッファ層の形成方法や材料、好ましい厚み等については、後述する。
上記バッファ層が含む還元剤は、電子供与性の化合物であれば特に制限されないが、ヒドリド還元を行うことができるヒドリド還元剤であることが好ましい。
ヒドリド還元剤としては、1,3−ジメチル−2,3−ジヒドロ−1H−ベンゾ[d]イミダゾール、1,3−ジメチル−2−フェニル−2,3−ジヒドロ−1H−ベンゾ[d]イミダゾール、(4−(1,3−ジメチル−2,3−ジヒドロ−1H−ベンゾイミダゾール−2−イル)フェニル)ジメチルアミン(N−DMBI)、1,3,5−トリメチル−2−フェニル−2,3−ジヒドロ−1H−ベンゾ[d]イミダゾール等の2,3−ジヒドロベンゾ[d]イミダゾール化合物;3−メチル−2−フェニル−2,3−ジヒドロベンゾ[d]チアゾール等の2,3−ジヒドロベンゾ[d]チアゾール化合物;3−メチル−2−フェニル−2,3−ジヒドロベンゾ[d]オキサゾール等の2,3−ジヒドロベンゾ[d]オキサゾール化合物;ロイコクリスタルバイオレット(=トリス(4−ジメチルアミノフェニル)メタン)、ロイコマラカイトグリーン(=ビス(4−ジメチルアミノフェニル)フェニルメタン)、トリフェニルメタン等のトリフェニルメタン化合物;2,6−ジメチル−1,4−ジヒドロピリジン−3,5−ジカルボン酸ジエチル(ハンチュエステル)等のジヒドロピリジン化合物等の1種又は2種以上を用いることができる。
このように、ヒドリド還元剤が、2,3−ジヒドロベンゾ[d]イミダゾール化合物、2,3−ジヒドロベンゾ[d]チアゾール化合物、2,3−ジヒドロベンゾ[d]オキサゾール化合物、トリフェニルメタン化合物、及び、ジヒドロピリジン化合物からなる群より選択される少なくとも1種の化合物であることは本発明の好適な実施形態の1つである。
ヒドリド還元剤としては、この中でも、2,3−ジヒドロベンゾ[d]イミダゾール化合物や、ジヒドロピリジン化合物が好ましい。より好ましくは、(4−(1,3−ジメチル−2,3−ジヒドロ−1H−ベンゾイミダゾール−2−イル)フェニル)ジメチルアミン(N−DMBI)、または2,6−ジメチル−1,4−ジヒドロピリジン−3,5−ジカルボン酸ジエチル(ハンチュエステル)である。
上記バッファ層が含む還元剤の量は、バッファ層を形成する有機化合物100質量%に対して、0.1〜15質量%であることが好ましい。還元剤をこのような割合で含むと、有機電界発光素子の発光効率を充分に高いものとすることができる。より好ましくは、バッファ層を形成する有機化合物100質量%に対して、0.5〜10質量%であり、更に好ましくは、1〜5質量%である。
本発明の有機電界発光素子は、バッファ層上に積層された発光層を含む低分子化合物層を含むが、発光層を含む低分子化合物層とは、低分子化合物によって形成される1つの層又は低分子化合物によって形成される複数の層が積層されたものであって、その中の1つの層が発光層であるものである。すなわち、発光層を含む低分子化合物層とは、低分子化合物によって形成される発光層、又は、低分子化合物によって形成される発光層と低分子化合物によって形成されるその他の層とが積層されたもの、のいずれかである。低分子化合物によって形成されるその他の層は、1層であってもよく2層以上であってもよい。また、発光層とその他の層の積層される順番は特に制限されない。
上記低分子化合物によって形成されるその他の層は、正孔輸送層又は電子輸送層であることが好ましい。すなわち、低分子化合物層が複数の層からなるものである場合、発光層以外のその他の層として、正孔輸送層及び/又は電子輸送層を有することが好ましい。このように、有機電界発光素子が、発光層とは異なる独立した層として正孔輸送層及び/又は電子輸送層を有することは、本発明の有機電界発光素子の好適な実施形態の1つである。
本発明の有機電界発光素子が正孔輸送層を独立した層として有する場合、発光層と第2の金属酸化物層との間に正孔輸送層を有することが好ましい。本発明の有機電界発光素子が電子輸送層を独立した層として有する場合、バッファ層と発光層との間に電子輸送層を有することが好ましい。
本発明の有機電界発光素子が独立した層として正孔輸送層や電子輸送層を有さない場合、本発明の有機電界発光素子の必須の構成として有する層のいずれかが、これらの層の機能を兼ねることになる。
本発明の有機電界発光素子の好ましい形態の1つは、有機電界発光素子が、第1の電極、第1の金属酸化物層、バッファ層、発光層、正孔輸送層、第2の金属酸化物層、第2の電極のみからなり、これらの層のいずれかが電子輸送層の機能を兼ねる形態である。
また、有機電界発光素子が、第1の電極、第1の金属酸化物層、バッファ層、発光層、第2の金属酸化物層、第2の電極のみからなり、これらの層のいずれかが正孔輸送層及び電子輸送層の機能を兼ねる形態もまた、本発明の有機電界発光素子の好ましい形態の1つである。
本発明の有機電界発光素子において、第1の電極は陰極であり、第2の電極は陽極である。第1の電極としては、ITO(インジウム酸化錫)、IZO(インジウム酸化亜鉛)、FTO(フッ素酸化錫)、In、SnO、Sb含有SnO、Al含有ZnO等の酸化物等が挙げられる。この中でも、ITO、IZO、FTOが好ましい。
第2の電極としては、Au、Pt、Ag、Cu、Alまたはこれらを含む合金等が挙げられる。この中でも、Au、Ag、Alが好ましい。
上記第1の電極の平均厚さは、特に制限されないが、10〜500nmであることが好ましい。より好ましくは、100〜200nmである。第1の電極の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
上記第2の電極の平均厚さは、特に限定されないが、10〜1000nmであることが好ましい。より好ましくは、30〜150nmである。また、不透過な材料を用いる場合でも、例えば平均厚さを10〜30nm程度にすることで、トップエミッション型及び透明型の陽極として使用することができる。
第2の電極の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
上記第1の金属酸化物層は、電子注入層として機能し、第2の金属酸化物層は、正孔注入層として機能する層である。
第1の金属酸化物層としては、特に制限されないが、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化二オブ(Nb)、酸化鉄(Fe)、酸化錫(SnO)、酸化マグネシウム(MgO)、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)等の1種又は2種以上を用いることができる。
上記第2の金属酸化物層としては、特に制限されないが、酸化バナジウム(V)、酸化モリブテン(MoO)、酸化ルテニウム(RuO)等の1種又は2種以上を用いることができる。これらの中でも、酸化バナジウム又は酸化モリブテンを主成分とするものが好ましい。第2の金属酸化物層が酸化バナジウム又は酸化モリブテンを主成分とするものにより構成されると、第2の金属酸化物層が第2の電極から正孔を注入して発光層又は正孔輸送層へ輸送するという正孔注入層としての機能により優れたものとなる。また、酸化バナジウム又は酸化モリブテンは、それ自体の正孔輸送性が高いため、第2の電極から発光層又は正孔輸送層への正孔の注入効率が低下するのを好適に防止することもできるという利点がある。より好ましくは、酸化バナジウム及び/又は酸化モリブテンから構成されるものである。
上記第1の金属酸化物層の平均厚さは、特に限定されないが、1〜1000nmであることが好ましい。より好ましくは、2〜100nmである。
上記第2の金属酸化物層の平均厚さは、特に限定されないが、1〜1000nmであることが好ましい。より好ましくは、5〜50nmである。
第1の金属酸化物層の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
第2の金属酸化物層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
発光層の材料としては、発光層の材料として通常用いることができるいずれの低分子化合物も用いることができ、これらを混合して用いてもよい。
低分子系のものとしては、配位子に2,2’−ビピリジン−4,4’−ジカルボン酸を持つ3配位のイリジウム錯体、ファクトリス(2−フェニルピリジン)イリジウム(Ir(ppy))、8−ヒドロキシキノリン アルミニウム(Alq)、トリス(4−メチル−8キノリノレート) アルミニウム(III)(Almq)、8−ヒドロキシキノリン 亜鉛(Znq)、(1,10−フェナントロリン)−トリス−(4,4,4−トリフルオロ−1−(2−チエニル)−ブタン−1,3−ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィン プラチナム(II)のような各種金属錯体;ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物、ナフタレン、ナイルレッドのようなナフタレン系化合物、フェナントレンのようなフェナントレン系化合物、クリセン、6−ニトロクリセンのようなクリセン系化合物、ペリレン、N,N’−ビス(2,5−ジ−t−ブチルフェニル)−3,4,9,10−ペリレン−ジ−カルボキシイミド(BPPC)のようなペリレン系化合物、コロネンのようなコロネン系化合物、アントラセン、ビススチリルアントラセンのようなアントラセン系化合物、ピレンのようなピレン系化合物、4−(ジ−シアノメチレン)−2−メチル−6−(パラ−ジメチルアミノスチリル)−4H−ピラン(DCM)のようなピラン系化合物、アクリジンのようなアクリジン系化合物、スチルベンのようなスチルベン系化合物、4,4’−ビス[9−ジカルバゾリル]−2,2’−ビフェニル(CBP)のようなカルバゾール系化合物、2,5−ジベンゾオキサゾールチオフェンのようなチオフェン系化合物、ベンゾオキサゾールのようなベンゾオキサゾール系化合物、ベンゾイミダゾールのようなベンゾイミダゾール系化合物、2,2’−(パラ−フェニレンジビニレン)−ビスベンゾチアゾールのようなベンゾチアゾール系化合物、ビスチリル(1,4−ジフェニル−1,3−ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物、ナフタルイミドのようなナフタルイミド系化合物、クマリンのようなクマリン系化合物、ペリノンのようなペリノン系化合物、オキサジアゾールのようなオキサジアゾール系化合物、アルダジン系化合物、1,2,3,4,5−ペンタフェニル−1,3−シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物、キナクリドン、キナクリドンレッドのようなキナクリドン系化合物、ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物、2,2’,7,7’−テトラフェニル−9,9’−スピロビフルオレンのようなスピロ化合物、フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物、さらには特開2009−155325号公報および特願2010−28273号に記載のホウ素化合物材料等が挙げられ、これらの1種又は2種以上を用いることができる。
上記発光層は、ドーパントを含んでいてもよい。ドーパントとしては、ドーパントとして通常用いることができるいずれの化合物も用いることができる。ドーパントとして用いることができる化合物の例としては、イリジウム トリス(1−フェニルイソキノリン)(Ir(piq))、イリジウム トリス(2−フェニルピリジン)(Ir(ppy))、イリジウム トリス[2−(トリル)ピリジン](Ir(mppy))、イリジウム ビス(2−メチルジベンゾ−[f,h]キノキサリン)(アセチルアセトナート)(Ir(MDQ)(acac))等のイリジウム化合物;4、4’−ビス(9−エチルー3−カルバゾビニレン)−1,1’−ビフェニル(BCzVBi)等の低分子有機化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
上記発光層がドーパントを含む場合、ドーパントの含有量は、発光層を形成する材料100質量%に対して、0.5〜20質量%であることが好ましい。このような含有量であると、発光特性をより良好なものとすることができる。より好ましくは、0.5〜10質量%であり、更に好ましくは、1〜6質量%である。
本発明の有機電界発光素子の発光層は、上記のものの中でも、リン光発光材料を含むものであることが好ましい。発光層がリン光発光材料を含むことで、有機電界発光素子がより発光効率に優れたものとなる。
発光層がリン光発光材料を含む場合、ホスト材料にゲスト材料(ドーパント)としてリン光発光材料を含ませた材料により発光層が形成されることが好ましい。発光層がこのような材料で形成されるものである場合、発光層を形成する材料に対するリン光発光材料の含有量は、上記発光層がドーパントを含む場合の発光層を形成する材料に対するドーパントの含有量と同様であることが好ましい。
上記リン光発光材料としては、リン光発光材料としては、下記式(1)、(2)のいずれかで表される化合物を好適に用いることができる。
Figure 0005993667
(式(1)中、点線の円弧は、酸素原子と3つの炭素原子とで構成された骨格部分の一部とともに環構造が形成されていることを表し、窒素原子を含んで形成される環構造は、複素環構造である。X、X’’は、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。X、X’’は、結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成してもよい。また、nが2以上である場合には、複数のX同士又はX’’同士が結合して1つの置換基を形成していてもよい。窒素原子と3つの炭素原子とで構成された骨格部分における点線は、点線で結ばれる2つの原子が単結合又は二重結合で結合していることを表す。M’は、金属原子を表す。窒素原子からM’への矢印は、窒素原子がM’原子へ配位していることを表す。nは、金属原子M’の価数を表す。)
Figure 0005993667
(式(2)中、点線の円弧は、酸素原子と3つの炭素原子とで構成された骨格部分の一部とともに環構造が形成されていることを表し、窒素原子を含んで形成される環構造は、複素環構造である。X、X’’は、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。X、X’’は、結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成してもよい。窒素原子と3つの炭素原子とで構成された骨格部分における点線は、点線で結ばれる2つの原子が単結合又は二重結合で結合していることを表す。M’は、金属原子を表す。窒素原子からM’への矢印は、窒素原子がM’原子へ配位していることを表す。nは、金属原子M’の価数を表す。XとXとを結ぶ実線の円弧は、XとXとが少なくとも1つの他の原子を介して結合していることを表し、XとXとともに環構造を形成していてもよい。X、Xは、同一又は異なって、酸素原子、窒素原子、炭素原子のいずれかを表す。XからM’への矢印は、XがM’原子へ配位していることを表す。m’は、1〜3の数である。)
上記式(1)及び式(2)における点線の円弧で表される環構造としては、炭素数2〜20の芳香環や複素環が挙げられ、ベンゼン環、ナフタレン環、アントラセン環等の芳香族炭化水素環;ピリジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾチアゾール環、ベンゾチオール環、ベンゾオキサゾール環、ベンゾオキソール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、およびフェナントリジン環、チオフェン環、フラン環、ベンゾチオフェン環、ベンゾフラン環等の複素環が挙げられる。
上記式(1)及び式(2)においてX、X’’で表される環構造が有する置換基としては、ハロゲン原子、炭素数1〜20、好ましくは炭素数1〜10のアルキル基、炭素数1〜20、好ましくは炭素数1〜10のアラルキル基、炭素数1〜20、好ましくは炭素数1〜10のアルケニル基、炭素数1〜20、好ましくは炭素数1〜10のアリール基、アリールアミノ基、シアノ基、アミノ基、アシル基、炭素数1〜20、好ましくは炭素数1〜10のアルコキシカルボニル基、カルボキシル基、炭素数1〜20、好ましくは炭素数1〜10のアルコキシ基、炭素数1〜20、好ましくは炭素数1〜10のアルキルアミノ基、炭素数1〜20、好ましくは炭素数1〜10のジアルキルアミノ基、炭素数1〜20、好ましくは炭素数1〜10のアラルキルアミノ基、炭素数1〜20、好ましくは炭素数1〜10のハロアルキル基、水酸基、アリールオキシ基、カルバゾール基等が挙げられる。
なお、X、X’’で表される環構造が有する置換基がアリール基、アリールアミノ基である場合、アリール基、アリールアミノ基に含まれる芳香環が更に置換基を有していてもよく、その場合の置換基としては、上記X、X’’で表される置換基の具体例と同じものが挙げられる。
上記式(1)及び式(2)において、X、X’’で表される置換基同士が結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成している場合、点線の円弧で表される2つの環構造と新たな環構造を合わせた環構造としては、例えば、下記(3−1)、(3−2)のような構造が挙げられる。
Figure 0005993667
上記式(1)及び式(2)において、M’で表される金属原子としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金が挙げられる。
上記式(2)で表される構造としては、下記式(4−1)、(4−2)の構造等が挙げられる。
Figure 0005993667
(式(4−1)、(4−2)中、R〜Rは、同一又は異なって、水素原子又は1価の置換基を表す。式(4−2)において、R〜Rが1価の置換基の場合、環構造が複数の1価の置換基を有していてもよい。窒素原子からM’への矢印及び酸素原子からM’への矢印は、窒素原子、酸素原子がM’原子へ配位していることを表す。点線の円弧、窒素原子と3つの炭素原子とで構成された骨格部分における点線、X、X’’、M’、n、m’は、式(2)と同様である。)
〜Rの1価の置換基としては、上記式(1)、(2)においてX、X’’で表される環構造が有する置換基と同様のものが挙げられる。
上記式(1)や式(2)で表される化合物の具体例としては、下記式(5−1)〜(5−30)で表される化合物等が挙げられる。
Figure 0005993667
Figure 0005993667
Figure 0005993667
Figure 0005993667
本発明におけるリン光発光材料としては、上述のものの1種又は2種以上を用いることができるが、これらの中でも、上記式(5−1)で表されるイリジウム トリス(2−フェニルピリジン)(Ir(ppy))、上記式(5−19)で表されるイリジウム トリス(1−フェニルイソキノリン)(Ir(piq))、上記式(5−27)で表されるイリジウム ビス(2−メチルジベンゾ−[f,h]キノキサリン)(アセチルアセトナート)(Ir(MDQ)(acac))、上記式(5−28)で表されるイリジウム トリス[3−メチル−2−フェニルピリジン](Ir(mpy))等が好ましい。
上記ホスト材料としては、下記式(6);
Figure 0005993667
(式(6)中、点線の円弧は、酸素原子と窒素原子とを繋ぐ骨格部分の一部とともに環構造が形成されていることを表し、Zと窒素原子とを含んで形成される環構造は、複素環構造である。X、X’’は、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。X、X’’は、結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成してもよい。酸素原子と窒素原子とを繋ぐ骨格部分における点線は、点線で結ばれる2つの原子が単結合又は二重結合で結合していることを表す。Mは、金属原子を表す。Zは、炭素原子又は窒素原子を表す。窒素原子からMへの矢印は、窒素原子がM原子へ配位していることを表す。Rは、1価の置換基又は2価の連結基を表す。mはRの数を表し、0又は1の数である。nは、金属原子Mの価数を表す。rは、1又は2の数である。)で表される金属錯体、
下記式(7);
Figure 0005993667
(式中、X、X’’は、同一又は異なって、水素原子、又は、キノリン環構造の置換基となる1価の置換基を表し、キノリン環構造に複数個結合していてもよい。Mは、金属原子を表す。窒素原子からMへの矢印は、窒素原子がM原子へ配位していることを表す。Rは、1価の置換基又は2価の連結基を表す。mはRの数を表し、0又は1の数である。nは、金属原子Mの価数を表す。rは、1又は2の数である。)で表される金属錯体、
下記式(8);
Figure 0005993667
(式中、点線の円弧は、酸素原子と窒素原子とを繋ぐ骨格部分の一部とともに環構造が形成されていることを表し、Zと窒素原子とを含んで形成される環構造は、複素環構造である。X、X’’は、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。X、X’’は、結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成してもよい。酸素原子と窒素原子とを繋ぐ骨格部分における点線は、点線で結ばれる2つの原子が単結合又は二重結合で結合していることを表す。Mは、金属原子を表す。Zは、炭素原子又は窒素原子を表す。窒素原子からMへの矢印は、窒素原子がM原子へ配位していることを表す。nは、金属原子Mの価数を表す。XとXとを結ぶ実線の円弧は、XとXとが少なくとも1つの他の原子を介して結合していることを表し、XとXとともに環構造を形成していてもよい。また少なくとも1つの他の原子を介したXとXとの結合の中に配位結合を含んでいてもよい。X、Xは、同一又は異なって、酸素原子、窒素原子、炭素原子のいずれかを表す。XからMへの矢印は、XがM原子へ配位していることを表す。m’は、1〜3の数である。)で表される金属錯体が挙げられ、これらの1種又は2種以上を用いることができる。
上記式(6)において、rが1である場合、M原子を構造中に1つ有する下記式(9−1)で表される金属錯体となり、rが2である場合、M原子を構造中に2つ有する下記式(9−2)で表される金属錯体となる。
Figure 0005993667
上記式(6)、式(8)において点線の円弧で表される環構造としては、1つの環からなる環構造であってもよく、2つ以上の環からなる環構造であってもよい。このような環構造としては、炭素数2〜20の芳香環や複素環が挙げられ、ベンゼン環、ナフタレン環、アントラセン環等の芳香環;ジアゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、チアジアゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、イミダゾリン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、ジアジン環、トリアジン環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環等の複素環が挙げられる。
これらの中でも、ベンゼン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、チアジアゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、イミダゾリン環、ピリジン環、ピリダジン環、ピリミジン環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環が好ましい。
上記式(6)〜(8)においてX、X’’で表される環構造が有する置換基としては、上記式(1)、式(2)においてX、X’’で表される環構造が有する置換基と同様のものが挙げられる。
上記式(6)、式(8)において、X、X’’で表される環構造が有する置換基同士が結合して点線の円弧で表される2つの環構造の一部とともに新たな環構造を形成している場合、点線の円弧で表される2つの環構造と新たな環構造を合わせた環構造としては、例えば、上記(3−1)、(3−2)のような構造が挙げられる。
上記式(6)〜(8)において、Mで表される金属原子としては、周期表の第1〜3族、9族、10族、12族又は13族の金属原子が好ましく、亜鉛、アルミニウム、ガリウム、白金、ロジウム、イリジウム、ベリリウム、マグネシウムのいずれかが好ましい。
上記式(6)、式(7)においてRが1価の置換基である場合、1価の置換基は、下記式(10−1)〜(10−3)のいずれかであることが好ましい。
Figure 0005993667
(式中、Ar〜Arは、置換基を有していてもよい芳香環、複素環、若しくは、芳香環又は複素環が2つ以上直接に結合した構造を表し、Ar〜Arは、同一の構造であっても異なる構造であっていてもよい。Qは、ケイ素原子又はゲルマニウム原子を表す。)
Ar〜Arの芳香環又は複素環の具体例としては、上記式(6)において点線の円弧で表される環構造の芳香環又は複素環の具体例と同様のものを挙げることができ、芳香環又は複素環が2つ以上直接に結合した構造としては、これら芳香環又は複素環の具体例として挙げられた環構造が2つ以上直接に結合した構造が挙げられる。なおこの場合、直接に結合する2つ以上の芳香環や複素環は同一の環構造であってもよく、異なる環構造であってもよい。
芳香環又は複素環の置換基の具体例としては、上記式(6)において点線の円弧で表される環構造の芳香環又は複素環の置換基の具体例と同様のものを挙げることができる。
上記式(6)、式(7)においてRが2価の連結基である場合、Rは−O−、−CO−いずれかであることが好ましい。
上記式(8)において、X、Xと、XとXとを結ぶ実線の円弧とで形成される構造は、環構造を1つ又は複数含んでいてもよい。環構造は、X、Xを含んで形成されていてもよく、その場合の環構造としては、上記式(6)、式(8)において点線の円弧で表される環構造と同様のものや、ピラゾール環が挙げられる。好ましくは、X、Xを含んでピラゾール環が形成された構造である。
上記式(8)において、XとXとを結ぶ実線の円弧は、炭素原子のみからなるものであってもよく、他の原子を含んでいてもよい。他の原子としては、ホウ素原子、窒素原子、硫黄原子等が挙げられる。
またXとXとを結ぶ実線の円弧は、X、Xを含んで形成される環構造以外の環構造を1つ又は2つ以上含んでいてもよく、その場合の環構造としては、上記式(6)、式(8)において点線の円弧で表される環構造と同様のものや、ピラゾール環が挙げられる。
上記式(8)で表される構造としては、下記式(11)の構造等が挙げられる。
Figure 0005993667
(式(11)中、R〜Rは、同一又は異なって、水素原子又は1価の置換基を表す。窒素原子からMへの矢印及び酸素原子からMへの矢印は、窒素原子、酸素原子がM原子へ配位していることを表す。点線の円弧、酸素原子と窒素原子とを繋ぐ骨格部分における点線、X、X’’、M、Z、n、m’は、式(8)と同様である。)
式(11)のR〜Rの1価の置換基としては、上記式(1)、(2)においてX、X’’で表される環構造が有する置換基と同様のものが挙げられる。
上記式(6)で表される化合物の具体例としては、下記式(12−1)〜(12−40)で表される構造の化合物等が挙げられる。
Figure 0005993667
Figure 0005993667
Figure 0005993667
Figure 0005993667
上記式(7)で表される化合物の具体例としては、下記式(13−1)〜(13−3)で表される構造の化合物等が挙げられる。
Figure 0005993667
上記式(8)で表される化合物の具体例としては、下記式(14−1)〜(14−8)で表される構造の化合物等が挙げられる。
Figure 0005993667
本発明におけるホスト材料としては、上述のものの1種又は2種以上を用いることができるが、これらの中でも、上記式(12−11)で表されるビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛、上記式(12−34)で表されるビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム(Bebq)、上記式(12−35)で表されるビス[2−(2−ヒドロキシフェニル)−ピリジン]ベリリウム(Bepp)が好ましい。
上記発光層の平均厚さは、特に限定されないが、10〜150nmであることが好ましい。より好ましくは、20〜100nmである。
発光層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
上記正孔輸送層の材料としては、正孔輸送層の材料として通常用いることができるいずれの低分子化合物も用いることができ、これらを混合して用いてもよい。
低分子化合物としては、1,1−ビス(4−ジ−パラ−トリアミノフェニル)シクロへキサン、1,1’−ビス(4−ジ−パラ−トリルアミノフェニル)−4−フェニル−シクロヘキサンのようなアリールシクロアルカン系化合物、4,4’,4’’−トリメチルトリフェニルアミン、N,N,N’,N’−テトラフェニル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD1)、N,N’−ジフェニル−N,N’−ビス(4−メトキシフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD2)、N,N,N’,N’−テトラキス(4−メトキシフェニル)−1,1’−ビフェニル−4,4’−ジアミン(TPD3)、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン(α−NPD)、TPTEのようなアリールアミン系化合物、N,N,N’,N’−テトラフェニル−パラ−フェニレンジアミン、N,N,N’,N’−テトラ(パラ−トリル)−パラ−フェニレンジアミン、N,N,N’,N’−テトラ(メタ−トリル)−メタ−フェニレンジアミン(PDA)のようなフェニレンジアミン系化合物、カルバゾール、N−イソプロピルカルバゾール、N−フェニルカルバゾールのようなカルバゾール系化合物、スチルベン、4−ジ−パラ−トリルアミノスチルベンのようなスチルベン系化合物、OxZのようなオキサゾール系化合物、トリフェニルメタン、m−MTDATAのようなトリフェニルメタン系化合物、1−フェニル−3−(パラ−ジメチルアミノフェニル)ピラゾリンのようなピラゾリン系化合物、ベンジン(シクロヘキサジエン)系化合物、トリアゾールのようなトリアゾール系化合物、イミダゾールのようなイミダゾール系化合物、1,3,4−オキサジアゾール、2,5−ジ(4−ジメチルアミノフェニル)−1,3,4,−オキサジアゾールのようなオキサジアゾール系化合物、アントラセン、9−(4−ジエチルアミノスチリル)アントラセンのようなアントラセン系化合物、フルオレノン、2,4,7,−トリニトロ−9−フルオレノン、2,7−ビス(2−ヒドロキシ−3−(2−クロロフェニルカルバモイル)−1−ナフチルアゾ)フルオレノンのようなフルオレノン系化合物、ポリアニリンのようなアニリン系化合物、シラン系化合物、1,4−ジチオケト−3,6−ジフェニル−ピロロ−(3,4−c)ピロロピロールのようなピロール系化合物、フルオレンのようなフルオレン系化合物、ポルフィリン、金属テトラフェニルポルフィリンのようなポルフィリン系化合物、キナクリドンのようなキナクリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、銅ナフタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのような金属または無金属のナフタロシアニン系化合物、N,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニル−ベンジジン、N,N,N’,N’−テトラフェニルベンジジンのようなベンジジン系化合物等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、α−NPD、TPTEのようなアリールアミン系化合物が好ましい。
本発明の有機電界発光素子が独立した層として正孔輸送層を有する場合、正孔輸送層の平均厚さは、特に限定されないが、10〜150nmであることが好ましい。より好ましくは、40〜100nmである。
正孔輸送層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
上記電子輸送層の材料としては、電子輸送層の材料として通常用いることができるいずれの低分子化合物も用いることができ、これらを混合して用いてもよい。
電子輸送層の材料として用いることができる低分子化合物の例としては、後述する式(15)で表されるホウ素含有化合物の他、トリス−1,3,5−(3’−(ピリジン−3’’−イル)フェニル)ベンゼン(TmPyPhB)のようなピリジン誘導体、(2−(3−(9−カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2−フェニル−4,6−ビス(3,5−ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4−ビス(4−ビフェニル)−6−(4’−(2−ピリジニル)−4−ビフェニル)−[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3−フェニル−4−(1’−ナフチル)−5−フェニル−1,2,4−トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル−1,3,4−オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’−(1,3,5−ベントリイル)−トリス(1−フェニル−1−H−ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8−ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5−ビス(6’−(2’,2’’−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、Alqのような金属錯体、TmPyPhBのようなピリジン誘導体が好ましい。
本発明の有機電界発光素子が独立した層として電子輸送層を有する場合、電子輸送層の平均厚さは、特に限定されないが、10〜150nmであることが好ましい。より好ましくは、40〜100nmである。
電子輸送層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
本発明の有機電界発光素子において、第1、第2の金属酸化物層、第2の電極、発光層、正孔輸送層、電子輸送層を形成する方法は特に制限されず、気相成膜法であるプラズマCVD、熱CVD、レーザーCVD等の化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メッキ法、溶射法、そして液相成膜法である電解メッキ、浸漬メッキ、無電解メッキ等の湿式メッキ法、ゾル・ゲル法、MOD法、スプレー熱分解法、微粒子分散液を用いたドクターブレード法、スピンコート法、インクジェット法、スクリーンプリンティング法等の印刷技術等を用いることができ、材料に応じた適切な方法を選択して用いることができる。
本発明の有機電界発光素子が含むバッファ層は、上述のとおり、有機化合物を含む溶液を塗布することで形成される層であることが好ましい。塗布により所定の厚みのバッファ層を形成することでバッファ層上に成膜する低分子化合物の結晶化を効果的に抑制することが可能となる。
上記有機化合物を含む溶液を塗布する方法は特に制限されず、スピンコート法、キャスティング法、グラビアコート法、バーコート法、ロールコート法、ディップコート法、スプレーコート法、スクリーン印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布方法を用いることができる。この中でも、スピンコート法が好ましい。
バッファ層を塗布成膜することで、第1の金属酸化物層表面に存在する凹凸が平滑化されるため、次にバッファ層上に成膜する低分子化合物の結晶化が抑制される。
上記有機化合物を含む溶液を調製するために使用する溶媒としては、有機化合物を溶解することができるものである限り特に制限されないが、テトラヒドロフラン(THF)、トルエン、キシレン、クロロホルム、ジクロロメタン、ジクロロエタン、クロロベンゼン等の1種又は2種以上を用いることができる。これらの中でも、THF、トルエン、クロロホルム、ジクロロエタンが好ましい。
上記有機化合物を含む溶液は、溶媒中の有機化合物の濃度が0.05〜10質量%であることが好ましい。このような濃度であると、塗布した時の塗りムラや凹凸の発生を抑えることができる。溶媒中の有機化合物の濃度はより好ましくは、0.1〜5質量%であり、更に好ましくは0.1〜3質量%である。
上記バッファ層は、平均厚さが5〜100nmであることが好ましい。平均厚さがこのような範囲であることで、発光層を含む低分子化合物層の結晶化を抑制する効果を充分に発揮することができる。バッファ層の平均厚さが5nmより薄いと、第1の金属酸化物表面に存在する凹凸を十分に平滑化できず、リーク電流が大きくなってバッファ層を形成することの効果を充分に発揮することができないおそれがある。また、バッファ層の平均厚さが100nmより厚いと、駆動電圧が上昇し実用上好ましくない。また、有機化合物として、後述する本発明における好ましい構造の化合物を用いた場合には、バッファ層は電子輸送層としての機能も充分に発揮することができる。上記バッファ層の平均厚さは、より好ましくは、10〜60nmである。
バッファ層の平均厚さは触針式段差計、分光エリプソメトリーにより測定することができる。
ところで、上述した特開2012−4492号公報(特許文献4)には、陽極、陰極と、陽極と陰極とに挟まれた1層または複数層の有機化合物層と、陽極と有機化合物層との間または陰極と有機化合物層との間に、少なくとも1種類以上の金属酸化物薄膜を有し、それら各層間に1層または複数層の、主たるキャリアにとってエネルギー障壁となり、逆のキャリアにとってエネルギー障壁とならない自己組織化単分子膜を有する有機薄膜電界発光素子が開示されている。該特許文献は有機無機ハイブリッド型電界発光素子において、特定のエネルギー準位を持った自己組織化単分子膜を酸化物基板上に(塗布を含む成膜方法によって)成膜することで主たるキャリアとは逆のキャリアがトンネリングによってキャリア注入されるという素子構成について記載されている。さらに、トンネリングによるキャリア注入は該自己組織化単分子膜が2nm以下の薄膜である場合に好ましく機能すると記載されている(特許文献4の記載から、有機化合物層の平均厚さは2nm以下であると推定される)。一方、上述した低分子化合物層における低分子化合物の結晶化を抑制して、リーク電流を抑制し、均一な面発光を得るという点からは、有機化合物層の平均厚さが5nm以上であることが必要である。
このように、本発明の有機電界発光素子におけるバッファ層と特許文献4に開示されている発明における有機化合物層とは解決すべき課題、解決の手段が本質的に異なるものであり、明確に区別されるべきものである。
本発明の有機電界発光素子は、基板上に有機電界発光素子を構成する各層が積層されたものであってもよい。基板上に各層が積層されたものである場合、基板上に形成された第1の電極上に、各層が形成されたものであることが好ましい。この場合、本発明の有機電界発光素子は、基板がある側とは反対側に光を取り出すトップエミッション型のものであってもよく、基板がある側に光を取り出すボトムエミッション型のものであってもよい。
上記基板の材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらの1種又は2種以上を用いることができる。
また、トップエミッション型の場合には、不透明基板も用いることができ、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等も用いることができる。
上記基板の平均厚さは、0.1〜30mmであることが好ましい。より好ましくは、0.1〜10mmである。
基板の平均厚さはデジタルマルチメーター、ノギスにより測定することができる。
本発明の有機電界発光素子において、バッファ層を形成する有機化合物は、塗布により有機化合物の層の形成が可能なものであれば特に制限されないが、有機化合物の例としては、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ−フェニルアセチレン)(PDPA)、ポリ(アルキル,フェニルアセチレン)(PAPA)のようなポリアセチレン系化合物;ポリ(パラ−フェンビニレン)(PPV)、ポリ(2,5−ジアルコキシ−パラ−フェニレンビニレン)(RO−PPV)、シアノ−置換−ポリ(パラ−フェンビニレン)(CN−PPV)、ポリ(2−ジメチルオクチルシリル−パラ−フェニレンビニレン)(DMOS−PPV)、ポリ(2−メトキシ,5−(2’−エチルヘキソキシ)−パラ−フェニレンビニレン)(MEH−PPV)のようなポリパラフェニレンビニレン系化合物;ポリ(3−アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物;ポリ(9,9−ジオクチルフルオレンのようなポリ(9,9−ジアルキルフルオレン)(PDAF)、ポリ(ジオクチルフルオレン−アルト−ベンゾチアジアゾール)(F8BT)、α,ω−ビス[N,N’−ジ(メチルフェニル)アミノフェニル]−ポリ[9,9−ビス(2−エチルヘキシル)フルオレン−2,7−ジル](PF2/6am4)、ポリ(9,9−ジオクチル−2,7−ジビニレンフルオレニル−オルト−コ(アントラセン−9,10−ジイル)のようなポリフルオレン系化合物;ポリ(パラ−フェニレン)(PPP)、ポリ(1,5−ジアルコキシ−パラ−フェニレン)(RO−PPP)のようなポリパラフェニレン系化合物;ポリ(N−ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物;ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物や、下記の式(15)で表されるホウ素含有化合物等が挙げられる。これらは1種を用いてもよく、2種以上を用いてもよい。
本発明の有機電界発光素子において、バッファ層を形成する有機化合物は、ホウ素原子を有する有機化合物であることが好ましい。より好ましくは、ホウ素原子を有する有機化合物が下記式(15)で表される構造の化合物である。
すなわち、本発明の有機電界発光素子において、バッファ層を形成するホウ素原子を有する有機化合物は、下記式(15);
Figure 0005993667
(式中、点線の円弧は、実線で表される骨格部分と共に環構造が形成されていることを表す。実線で表される骨格部分における点線部分は、点線で結ばれる1対の原子が二重結合で結ばれていてもよいことを表す。窒素原子からホウ素原子への矢印は、窒素原子がホウ素原子へ配位していることを表す。Q及びQは、同一又は異なって、実線で表される骨格部分における連結基であり、少なくとも一部が点線の円弧部分と共に環構造を形成しており、置換基を有していてもよい。X、X、X及びXは、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。nは2〜10の整数を表す。Yは直接結合又はn価の連結基であり、n個存在するY以外の構造部分とそれぞれ独立に、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所で結合していることを表す。)で表されるホウ素含有化合物であることが好ましい。
有機無機ハイブリッド型電界発光素子は、陽極からのホール注入が陰極からの電子注入よりも効率よく起こり、発光位置は陰極側酸化物(本発明における第1の金属酸化物に相当)界面近傍に存在することが知られている。第1の金属酸化物層に接するバッファ層からの発光を避けるため、バッファ層を形成する有機化合物としては、発光層に含まれる発光性化合物のHOMO準位よりも深いHOMO準位を持つ化合物を選択することが好ましい。さらに、発光層で生成したエキシトンのエネルギーがバッファ層の化合物に移動して発光することを避けるため、発光層に含まれる発光性化合物のHOMO−LUMOエネルギーギャップよりも広いHOMO−LUMOエネルギーギャップを持つ化合物を選択することがより好ましい。上記式(15)で表されるホウ素含有化合物は非常に深いHOMOと、広いHOMO−LUMOエネルギーギャップを併せ持ち、塗布可能な化合物であるため様々な種類の発光層に対して有効に機能することができる。
また、ホウ素原子を有する有機化合物がこのような構造を有する化合物であると、有機化合物から形成されるバッファ層が電子輸送層としての機能にも優れたものとなり、バッファ層と別に電子輸送層を設ける必要がなくなる。
上記式(15)で表されるホウ素含有化合物は、(i)熱的に安定な化合物である、(ii)HOMO、LUMOのエネルギー準位が低い、(iii)良好な塗布膜を作製することが可能である等の種々の特性を有するものであり、本発明の有機電界発光素子の材料として好適に用いることができるものである。
上記式(15)において、点線の円弧は、実線で表される骨格部分、すなわちホウ素原子とQと窒素原子とを繋ぐ骨格部分の一部又はホウ素原子とQとを繋ぐ骨格部分の一部、と共に環構造が形成されていることを表している。これは、上記式(15)で表される化合物が構造中に少なくとも4つ環構造を有し、上記式(15)において、ホウ素原子とQと窒素原子とを繋ぐ骨格部分及びホウ素原子とQとを繋ぐ骨格部分が、該環構造の一部として含まれていることを表している。なお、Xの結合する環構造は、その環構造骨格が炭素原子以外の原子を含まず、炭素原子からなるものである。
上記式(15)において、実線で表される骨格部分、すなわちホウ素原子とQと窒素原子とを繋ぐ骨格部分及びホウ素原子とQとを繋ぐ骨格部分、における点線部分は、それぞれの骨格部分において点線で結ばれる1対の原子が二重結合で結ばれていてもよいことを表す。
上記式(15)において、窒素原子からホウ素原子への矢印は、窒素原子がホウ素原子へ配位していることを表す。ここで、配位しているとは、窒素原子がホウ素原子に対して配位子と同様に作用して化学的に影響していることを意味し、配位結合(共有結合)となっていてもよく、配位結合を形成していなくてもよい。好ましくは、配位結合となっていることである。
上記式(15)において、Q及びQは、同一又は異なって、実線で表される骨格部分における連結基であり、少なくとも一部が点線の円弧部分と共に環構造を形成しているものであって、置換基を有していてもよい。これは、Q及びQがそれぞれ、該環構造の一部として組み込まれていることを表している。
上記式(15)において、X、X、X及びXは、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表し、点線の円弧部分を形成する環構造に複数個結合していてもよい。すなわち、X、X、X及びXが水素原子である場合には、上記式(15)で表される化合物の構造中、X、X、X及びXを有する4つの環構造は置換基を有していないことを示し、X、X、X及びXのいずれか、又は、全てが、1価の置換基である場合には、該4つの環構造のいずれか、又は、いずれもが置換基を有することとなる。その場合には、1つの環構造の有する置換基の数は1つであってもよいし、2つ以上であってもよい。
なお、本明細書中において置換基とは、炭素を含む有機基と、ハロゲン原子、ヒドロキシ基等の炭素を含まない基とを含めた基を意味している。
上記式(15)において、nは2〜10の整数を表し、Yは、直接結合又はn価の連結基である。すなわち、上記式(15)で表される化合物においては、Yが、直接結合であり、2個存在するY以外の構造部分どうしがそれぞれ独立に、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所で結合しているか、又は、Yがn価の連結基であり、上記式(15)におけるY以外の構造部分が複数存在し、それらが連結基であるYを介して結合することとなる。
上記式(15)において、Yが、直接結合である場合、上記式(15)は、2個存在するY以外の構造部分の一方の、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所と、もう一方の、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所とが直接結合していることを表す。当該結合位置は特に制限されないが、Y以外の構造部分の一方のXが結合している環又はXが結合している環と、もう一方のXが結合している環又はXが結合している環とが直接結合していることが好ましい。より好ましくは、Y以外の構造部分の一方のXが結合している環と、もう一方のXが結合している環とが直接結合していることである。
この場合、2個存在するY以外の構造部分の構造は、同一であってもよいし、異なっていてもよい。
上記式(15)において、Yが、n価の連結基であり、上記式(15)におけるY以外の構造部分が複数存在し、それらが連結基であるYを介して結合している場合、このように複数存在する上記式(15)におけるY以外の構造部分が連結基であるYを介して結合する構造は、Y以外の構造部分が直接結合している構造よりも、更に酸化に強くなり製膜性も向上することから、より好ましい。
なお、Yが、n価の連結基である場合、Yは、n個存在するY以外の構造部分とそれぞれ独立に、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所で結合しているものであるが、これは、Y以外の構造部分が、点線の円弧部分を形成する環構造、Q、Q、X、X、X、Xにおけるいずれか1箇所でYと結合していればよく、Y以外の構造部分のYとの結合部位は、n個存在するY以外の構造部分それぞれに独立であって、全て同一部位であってもよいし、一部が同一部位であってもよいし、全て異なる部位であってもよい、ということを意味している。当該結合位置は特に制限されないが、n個存在するY以外の構造部分の全てが、Xが結合している環又はXが結合している環でYと結合していることが好ましい。より好ましくは、n個存在するY以外の構造部分の全てが、Xが結合している環でYと結合していることである。
また、n個存在するY以外の構造部分の構造は、全て同一であってもよいし、一部が同一であってもよいし、全て異なっていてもよい。
上記式(15)におけるYがn価の連結基である場合、該連結基としては、例えば、置換基を有していてもよい鎖状、分岐鎖状又は環状の炭化水素基、置換基を有していてもよいヘテロ元素を含む基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基が挙げられる。これらの中でも、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基といった芳香環を有する基であることが好ましい。すなわち、上記式(15)におけるYは、芳香環を有する基であることもまた、本発明の好適な実施形態の1つである。
更に、Yは、上述した連結基が複数組み合わさった構造を有する連結基であってもよい。
上記鎖状、分岐鎖状又は環状の炭化水素基としては、下記式(16−1)〜(16−8)のいずれかで表される基であることが好ましい。これらの中でも、下記式(16−1)、(16−7)がより好ましい。
上記へテロ元素を含む基としては、下記式(16−9)〜(16−13)のいずれかで表される基であることが好ましい。これらの中でも、下記式(16−12)、(16−13)がより好ましい。
上記アリール基としては、下記式(16−14)〜(16−20)のいずれかで表される基であることが好ましい。これらの中でも、下記式(16−14)、(16−20)がより好ましい。
上記複素環基としては、下記式(16−21)〜(16−27)のいずれかで表される基であることが好ましい。これらの中でも、下記式(16−23)、(16−24)がより好ましい。
Figure 0005993667
上記鎖状、分岐鎖状又は環状の炭化水素基、ヘテロ元素を含む基、アリール基、複素環基が有する置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子のハロゲン原子;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等のハロアルキル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜20の直鎖状又は分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5〜7の環状アルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等の炭素数1〜20の直鎖状又は分岐鎖状アルコキシ基;ニトロ基;シアノ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の炭素数1〜10のアルキル基を有するジアルキルアミノ基;ジフェニルアミノ基、カルバゾリル基等のジアリールアミノ基;アセチル基、プロピオニル基、ブチリル基等のアシル基;ビニル基、1−プロペニル基、アリル基、スチリル基等の炭素数2〜30のアルケニル基;エチニル基、1−プロピニル基、プロパルギル基等の炭素数2〜30のアルキニル基;ハロゲン原子やアルキル基、アルコキシ基、アルケニル基、アルキニル基等で置換されていてもよいアリール基;ハロゲン原子やアルキル基、アルコキシ基、アルケニル基、アルキニル基で置換されていてもよい複素環基;N,N−ジメチルカルバモイル基、N,N−ジエチルカルバモイル基等のN,N−ジアルキルカルバモイル基;ジオキサボロラニル基、スタニル基、シリル基、エステル基、ホルミル基、チオエーテル基、エポキシ基、イソシアネート基等が挙げられる。なお、これらの基は、ハロゲン原子やヘテロ元素、アルキル基、芳香環等で置換されていてもよい。
これらの中でも、Yにおける鎖状、分岐鎖状又は環状の炭化水素基、ヘテロ元素を含む基、アリール基、複素環基が有する置換基としては、ハロゲン原子、炭素数1〜20の直鎖状又は分岐鎖状アルキル基、炭素数1〜20の直鎖状又は分岐鎖状アルコキシ基、アリール基、複素環基、ジアリールアミノ基が好ましい。より好ましくは、アルキル基、アリール基、アルコキシ基、ジアリールアミノ基である。
上記Yにおける鎖状、分岐鎖状又は環状の炭化水素基、ヘテロ元素を含む基、アリール基、複素環基が置換基を有する場合、置換基が結合する位置や数は特に制限されない。
上記式(15)におけるnは、2〜10の整数を表すが、好ましくは、2〜6の整数である。より好ましくは、2〜5の整数であり、更に好ましくは、2〜4の整数であり、特に好ましくは、溶媒への溶解性の観点から、2又は3である。最も好ましくは2である。すなわち、上記式(10)で表されるホウ素含有化合物は、二量体であることが最も好ましい。
上記式(15)におけるQ及びQとしては、下記式(17−1)〜(17−8);
Figure 0005993667
で表される構造が挙げられる。なお、上記式(17−2)は、炭素原子に水素原子が2つ結合し、更に3つの原子が結合する構造であるが、当該水素原子以外の、炭素原子に結合する3つの原子は、いずれも水素原子以外の原子である。上記式(17−1)〜(17−8)の中でも、(17−1)、(17−7)、(17−8)のいずれかが好ましい。より好ましくは、(17−1)である。すなわち、Q及びQが、同一又は異なって、炭素数1の連結基を表すこともまた、本発明の好適な実施形態の1つである。
上記式(15)において、点線の円弧と、実線で表される骨格部分の一部とによって形成される環構造は、Xの結合する環構造の骨格が炭素原子からなる限り、環状構造であれば特に制限されない。
上記式(15)において、Yが直接結合であって、nが2である場合、Xが結合している環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、トリフェニレン環、ピレン環、フルオレン環、インデン環、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、インドール環、ジベンゾチオフェン環、ジベンゾフラン環、カルバゾール環、チアゾール環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、イミダゾール環、ピラゾール環、ベンゾイミダゾール環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、キノリン環、イソキノリン環、キノキサリン環、ベンゾチアジアゾール環が挙げられ、これらはそれぞれ、下記式(18−1)〜(18−33)で表される。
これらの中でも、環構造骨格が炭素原子のみからなるものが好ましく、ベンゼン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、トリフェニレン環、ピレン環、フルオレン環、インデン環が好ましい。より好ましくは、ベンゼン環、ナフタレン環、フルオレン環であり、更に好ましくは、ベンゼン環である。
Figure 0005993667
上記式(15)において、Yが直接結合であって、nが2である場合、Xが結合している環としては、例えば、イミダゾール環、ベンゾイミダゾール環、ピリジン環、ピリダジン環、ピラジン環、ピリミジン環、キノリン環、イソキノリン環、フェナントリジン環、キノキサリン環、ベンゾチアジアゾール環、チアゾール環、ベンゾチアゾール環、オキサゾール環、ベンゾオキサゾール環、オキサジアゾール環、チアジアゾール環が挙げられる。これらはそれぞれ、下記式(19−1)〜(19−17)で表される。なお、下記式(19−1)〜(19−17)中の*印は、Xが結合している環を構成し、かつ、上記式(15)におけるホウ素原子とQと窒素原子とを繋ぐ骨格部分を構成する炭素原子が、*印の付された炭素原子のいずれか1つと結合することを表している。また、*印の付された炭素原子を除く位置で他の環構造と縮環していてもよい。これらの中でも、ピリジン環、ピリミジン環、キノリン環、フェナントリジン環が好ましい。より好ましくは、ピリジン環、ピリミジン環、キノリン環である。更に好ましくは、ピリジン環である。
Figure 0005993667
また、上記式(15)において、Yが直接結合であって、nが2である場合、Xが結合している環及びXが結合している環としては、上記式(18−1)〜(18−33)で表される環が挙げられる。これらの中でも、ベンゼン環、ナフタレン環、ベンゾチオフェン環が好ましい。より好ましくは、ベンゼン環である。
上記式(15)において、X、X、X及びXは、同一又は異なって、水素原子、又は、環構造の置換基となる1価の置換基を表す。該1価の置換基としては特に制限されないが、X、X、X及びXとしては、例えば、水素原子、置換基を有していてもよいアリール基、複素環基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アリールアルコキシ基、シリル基、ヒドロキシ基、アミノ基、ハロゲン原子、カルボキシル基、チオール基、エポキシ基、アシル基、置換基を有していてもよいオリゴアリール基、1価のオリゴ複素環基、アルキルチオ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アゾ基、スタニル基、ホスフィノ基、シリルオキシ基、置換基を有していてもよいアリールオキシカルボニル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいアリールカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアリールスルホニル基、置換基を有していてもよいアルキルスルホニル基、置換基を有していてもよいアリールスルフィニル基、置換基を有していてもよいアルキルスルフィニル基、ホルミル基、シアノ基、ニトロ基、アリールスルホニルオキシ基、アルキルスルホニルオキシ基;メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基等のアルキルスルホネート基;ベンゼンスルホネート基、p−トルエンスルホネート基等のアリールスルホネート基;ベンジルスルホネート基等のアリールアルキルスルホネート基、ボリル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、アリールスルホネート基、アルデヒド基、アセトニトリル基等が挙げられる。
上記X、X、X及びXにおける置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子のハロゲン原子;塩化メチル基、臭化メチル基、ヨウ化メチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等のハロアルキル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等の炭素数1〜20の直鎖状又は分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5〜7の環状アルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等の炭素数1〜20の直鎖状又は分岐鎖状アルコキシ基;ヒドロキシ基;チオール基;ニトロ基;シアノ基;アミノ基;アゾ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の炭素数1〜40のアルキル基を有するモノ又はジアルキルアミノ基;ジフェニルアミノ基、カルバゾリル基などのアミノ基;アセチル基、プロピオニル基、ブチリル基等のアシル基;ビニル基、1−プロペニル基、アリル基、ブテニル基、スチリル基等の炭素数2〜20のアルケニル基;エチニル基、1−プロピニル基、プロパルギル基、フェニルアセチニル等の炭素数2〜20のアルキニル基;ビニルオキシ基、アリルオキシ基等のアルケニルオキシ基;エチニルオキシ基、フェニルアセチルオキシ基等のアルキニルオキシ基;フェノキシ基、ナフトキシ基、ビフェニルオキシ基、ピレニルオキシ基等のアリールオキシ基;トリフルオロメチル基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロフェニル基等のパーフルオロ基及び更に長鎖のパーフルオロ基;ジフェニルボリル基、ジメシチルボリル基、ビス(パーフルオロフェニル)ボリル基等のボリル基;アセチル基、ベンゾイル基等のカルボニル基;アセトキシ基、ベンゾイルオキシ基等のカルボニルオキシ基;メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル基等のアルコキシカルボニル基;メチルスルフィニル基、フェニルスルフィニル基等のスルフィニル基;アルキルスルホニルオキシ基;アリールスルホニルオキシ基;ホスフィノ基;トリメチルシリル基、トリイソプロピルシリル基、ジメチル−tert−ブチルシリル基、トリメトキシシリル基、トリフェニルシリル基等のシリル基;シリルオキシ基;スタニル基;ハロゲン原子やアルキル基、アルコキシ基等で置換されていてもよいフェニル基、2,6−キシリル基、メシチル基、デュリル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、ピレニル基、トルイル基、アニシル基、フルオロフェニル基、ジフェニルアミノフェニル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基、フェナンスレニル基等のアリール基;チエニル基、フリル基、シラシクロペンタジエニル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、アクリジニル基、キノリル基、キノキサロイル基、フェナンスロリル基、ベンゾチエニル基、ベンゾチアゾリル基、インドリル基、カルバゾリル基、ピリジル基、ピロリル基、ベンゾオキサゾリル基、ピリミジル基、イミダゾリル基等のヘテロ環基;カルボキシル基;カルボン酸エステル;エポキシ基;イソシアノ基;シアネート基;イソシアネート基;チオシアネート基;イソチオシアネート基;カルバモイル基;N,N−ジメチルカルバモイル基、N,N−ジエチルカルバモイル基等のN,N−ジアルキルカルバモイル基;ホルミル基;ニトロソ基;ホルミルオキシ基;等が挙げられる。なお、これらの基は、ハロゲン原子やアルキル基、アリール基等で置換されていてもよく、更に、これらの基がお互いに任意の場所で結合して環を形成していてもよい。
これらの中でも、X、X、X及びXとしては、水素原子;ハロゲン原子、カルボキシル基、ヒドロキシ基、チオール基、エポキシ基、アミノ基、アゾ基、アシル基、アリル基、ニトロ基、アルコキシカルボニル基、ホルミル基、シアノ基、シリル基、スタニル基、ボリル基、ホスフィノ基、シリルオキシ基、アリールスルホニルオキシ基、アルキルスルホニルオキシ基等の反応性基;炭素数1〜20の直鎖状若しくは分岐鎖状アルキル基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、炭素数1〜20の直鎖状若しくは分岐鎖状アルキル基;炭素数1〜20の直鎖状若しくは分岐鎖状アルコキシ基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、炭素数1〜20の直鎖状若しくは分岐鎖状アルコキシ基;アリール基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、アリール基;オリゴアリール基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、オリゴアリール基;1価の複素環基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、1価の複素環基;1価のオリゴ複素環基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、1価のオリゴ複素環基;アルキルチオ基;アリールオキシ基;アリールチオ基;アリールアルキル基;アリールアルコキシ基;アリールアルキルチオ基;アルケニル基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、アルケニル基;アルキニル基;炭素数1〜8の直鎖状若しくは分岐鎖状アルキル基、炭素数1〜8の直鎖状若しくは分岐鎖状アルコキシ基、アリール基、炭素数2〜8のアルケニル基、炭素数2〜8のアルキニル基又は該反応性基で置換された、アルキニル基が好ましい。
より好ましくは、水素原子、臭素原子、ヨウ素原子、アミノ基、ボリル基、アルキニル基、アルケニル基、ホルミル基、シリル基、スタニル基、ホスフィノ基、該反応性基で置換されたアリール基、該反応性基で置換されたオリゴアリール基、1価の複素環基又は該反応性基で置換された1価の複素環基、該反応性基で置換された1価のオリゴ複素環基、アルケニル基又は該反応性基で置換されたアルケニル基、アルキニル基又は該反応性基で置換されたアルキニル基である。中でも、X及びXとして更に好ましくは、水素原子、アルキル基、アリール基、含窒素複素芳香族基、アルケニル基、アルコキシ基、アリールオキシ基、シリル基等の還元に強い官能基である。特に好ましくは、水素原子、アリール基、含窒素複素芳香族基である。また、X及びXとして更に好ましくは、水素原子、カルバゾリル基、トリフェニルアミノ基、チエニル基、フラニル基、アルキル基、アリール基、インドリル基等の酸化に強い官能基である。特に好ましくは、水素原子、カルバゾリル基、トリフェニルアミノ基、チエニル基である。このように、X及びXとして還元に強い官能基を有し、X及びXとして酸化に強い官能基を有するものとすると、ホウ素含有化合物全体として更に還元にも酸化にも強い化合物となるものと考えられる。
なお、上記式(15)において、X、X、X及びXが1価の置換基である場合、環構造に対するX、X、X及びXの結合位置や結合する数は、特に制限されない。
上記式(15)において、Yがn価の連結基であり、nが2〜10である場合、Xが結合している環としては、上記式(15)において、Yが直接結合であり、nが2である場合にXが結合している環と同様である。それらの環の中でも、ベンゼン環、ナフタレン環、ベンゾチオフェン環が好ましい。より好ましくは、ベンゼン環である。
上記式(15)において、Yがn価の連結基であり、nが2〜10である場合、Xが結合している環、Xが結合している環、及び、Xが結合している環としては、それぞれ、上記式(15)においてYが直接結合であり、nが2である場合にXが結合している環、Xが結合している環、及びXが結合している環として挙げられた環と同様であり、好ましい構造も同様である。
すなわち、上記式(15)におけるYが直接結合であって、nが2である場合、及び、Yがn価の連結基であり、nが2〜10である場合のいずれの場合においても、上記式(15)で表されるホウ素含有化合物が、下記式(20);
Figure 0005993667
(式中、窒素原子からホウ素原子への矢印、X、X、X、X、n及びYは式(15)と同様である。)で表されるホウ素含有化合物であることもまた、本発明の好適な実施形態の1つである。
上記式(15)で表されるホウ素含有化合物は、Suzukiカップリング反応等の通常用いられる種々の反応を用いることにより合成することができる。また、ジャーナル・オブ・ザ・アメリカン・ケミカル・ソサイエティー(Journal of the American Chemical Society)、2009年、第131巻、第40号、14549−14559頁に記載の手法によっても合成可能である。
上記式(15)で表されるホウ素含有化合物の合成スキームの一例を挙げると下記反応式のように表される。下記反応式(I)は、上記式(15)で表されるホウ素含有化合物であって、Yが直接結合であり、nが2であるものの合成スキームの一例を表し、下記反応式(II)は、上記式(15)で表されるホウ素含有化合物であって、Yがn価の連結基であり、nが2〜10であるものの合成スキームの一例を表している。ただし、上記式(15)で表されるホウ素含有化合物の製造方法は、これに制限されない。
なお、下記スキームにおいて、原料となる(a)の化合物は、例えば、ジャーナル・オブ・オーガニック・ケミストリー(Journal of Organic Chemistry)、2010年、第75巻、第24号、8709−8712頁に記載の手法により合成可能である。また、原料となる(b)の化合物は、(a)の化合物に対して下記反応式(III)で表されるホウ素化反応により合成することができる。
Figure 0005993667
Figure 0005993667
Figure 0005993667
上記式(15)で表されるホウ素含有化合物は、塗布による均一な成膜が可能であり、低いHOMO、LUMO準位を持つため、本発明の有機電界発光素子の材料として好適に用いることができるものである。
本発明の有機電界発光素子は、有機無機ハイブリッド型の素子でありながら、有機無機ハイブリッド型の素子に特有の低分子化合物の結晶化が抑制され、リーク電流の抑制と、均一な面発光を達成することができるものであって、表示装置や照明装置の材料として好適に用いることができるものである。
このような、本発明の有機電界発光素子を用いて形成される表示装置もまた、本発明の1つである。更に本発明の有機電界発光素子を用いて形成される照明装置もまた、本発明の1つである。
本発明の有機電界発光素子は、上述の構成よりなり、バッファ層を有することで、従来の有機無機ハイブリッド型有機電界発光素子に比べて発光寿命が長く、また、バッファ層が還元剤を含むことで発光効率に優れるものである。有機無機ハイブリッド型有機電界発光素子は、有機電界発光素子を構成する各層が全て有機物で構成された有機電界発光素子のように各層を厳密に密閉する必要性が低減されたものである等の製造上の利点を有しており、このような利点と、優れた発光寿命、発光効率等の発光特性とを有する本発明の有機電界発光素子は、表示装置や照明装置の材料等に好適に用いることができる。
実施例1及び比較例1で作製した有機電界発光素子の、電圧−輝度特性を示すグラフである。 実施例1及び比較例1で作製した有機電界発光素子の、電流密度−電流効率特性を示すグラフである。 実施例2及び比較例2で作製した有機電界発光素子の、電圧−輝度特性を示すグラフである。 実施例2及び比較例2で作製した有機電界発光素子の、電流密度−電流効率特性を示すグラフである。 実施例3、4及び比較例3で作製した有機電界発光素子の、電圧−輝度特性を示すグラフである。 実施例3、4及び比較例3で作製した有機電界発光素子の、電流密度−電流効率特性を示すグラフである。 実施例5及び比較例4で作製した有機電界発光素子の、電圧−輝度特性を示すグラフである。 実施例5及び比較例4で作製した有機電界発光素子の、電流密度−電流効率特性を示すグラフである。 実施例6及び比較例5で作製した有機電界発光素子の、電圧−輝度特性を示すグラフである。 実施例6、7及び比較例5で作製した有機電界発光素子の、電流密度−電流効率特性を示すグラフである。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
以下の実施例において、有機電界発光素子を構成する各層の平均厚さは触針式段差計(製品名「アルファステップIQ」、KLAテンコール社製)を用いて測定した。
(合成例1)
(2,7−ビス(3−ジベンゾボロリル−4−ピリジルフェニル)−9,9’−スピロフルオレンの合成)
100mL二口ナスフラスコに、2−(ジベンゾボロリルフェニル)−5−ブロモピリジン(2.6g、6.5mmol)、2,7−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラニル)−9,9’−スピロフルオレン(1.5g、2.7mmol)、Pd(PBu(170mg、0.32mmol)を入れた。フラスコ内を窒素雰囲気下にし、THF(65mL)を加え、攪拌した。
これに、2M リン酸三カリウム水溶液(11mL、22mmol)を加え、70℃で還流させながら加熱攪拌した。12時間後、室温まで冷却し、反応溶液を分液ロートに移して水を加え、酢酸エチルで抽出した。有機層を3N塩酸、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。濾過した濾液を濃縮して、得られた固体をメタノールで洗浄し、2,7−ビス(3−ジベンゾボロリル−4−ピリジルフェニル)−9,9’−スピロフルオレン(ホウ素含有化合物1)を収率47%で得た(1.2g、1.3mmol)。
その物性値は以下の通りであった。
H−NMR(CDCl) : δ6.67(d,J=7.6Hz,2H),6.75(d,J=1.2Hz,2H),6.82(d,J=7.2Hz,4H),6.97(dt,J=7.2,1.2Hz,4H),7.09(dt,J=7.2,0.8Hz,2H),7.24−7.40(m,14H),7.74−7.77(m,6H),7.84−7.95(m,10H)
また、合成例1の反応は、下記反応式のように表される。
Figure 0005993667
(有機電界発光素子の作製)
(実施例1)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板を用意した。この時、基板のITO電極(第1の電極)は幅2mmにパターニングされているものを用いた。この基板をアセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに固定した。約1×10−4Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、膜厚約2nmの酸化亜鉛層を作成した。この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。これを大気中、400℃にセットしたホットプレートで1時間焼成することにより、酸化亜鉛層(第1の金属酸化物層)を形成した。
[3]ホウ素含有化合物1の0.2%、(4−(1,3−ジメチル−2,3−ジヒドロ−1H−ベンゾイミダゾール−2−イル)フェニル)ジメチルアミン(N−DMBI)の0.002%の1,2−ジクロロエタン混合溶液を作成した。工程[2]で作成した酸化亜鉛薄膜付き基板をスピンコーターにセットした。この基板上にホウ素含有化合物1、N−DMBI混合溶液を滴下し、毎分2000回転で30秒間回転させ、ホウ素含有有機化合物を含むバッファ層を形成した。さらに、これを窒素雰囲気下100℃にセットしたホットプレートで1時間アニール処理を施した。バッファ層の平均厚さは10nmであった。
[4]ホウ素含有有機化合物の層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(Bebq)、イリジウムトリス(1−フェニルイソキノリン)(Ir(piq))、N,N'−ジ(1−ナフチル)−N,N'−ジフェニル−1,1'−ビフェニル−4,4'−ジアミン(α−NPD)をそれぞれアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10−5Paまで減圧し、Bebqをホスト、Ir(piq)をドーパントとして35nm共蒸着し、発光層を成膜した。この時、ドープ濃度はIr(piq)が発光層全体に対して6重量%となるようにした。次に、α−NPDを60nm蒸着し、正孔輸送層を成膜した。
[5]次に、一度窒素パージした後、三酸化モリブデン、金をアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10−5Paまで減圧し、三酸化モリブデン(第2の金属酸化物層)を膜厚10nmになるように蒸着した。次に、金(第2の電極)を膜厚50nmになるように蒸着し、有機電界発光素子1を作製した。第2の電極を蒸着する時、ステンレス製の蒸着マスクを用いて蒸着面が幅2mmの帯状になるようにした。すなわち、作製した有機電界発光素子の発光面積は4mmとした。
(比較例1)
工程[3]において、ホウ素含有化合物1の0.2%、N−DMBIの0.002%の1,2−ジクロロエタン混合溶液に代えて、ホウ素含有化合物1の0.2%の1,2−ジクロロエタン溶液を用いた以外は実施例1と同様にして、有機電界発光素子2を作製した。
(実施例2)
工程[3]において、ホウ素含有化合物1の0.2%、N−DMBIの0.002%の1,2−ジクロロエタン混合溶液に代えて、ホウ素含有化合物1の1%、N−DMBIの0.01%の1,2−ジクロロエタン混合溶液を用いた以外は実施例1と同様にして、有機電界発光素子3を作製した。バッファ層の平均厚さは60nmであった。
(比較例2)
工程[3]において、ホウ素含有化合物1の1%、N−DMBIの0.01%の1,2−ジクロロエタン混合溶液に代えて、ホウ素含有化合物1の1%、1,2−ジクロロエタン溶液を用いた以外は実施例2と同様にして、有機電界発光素子4を作製した。
(実施例3)
工程[4]に代えて工程[4b]を行った以外は実施例2と同様にして、有機電界発光素子5を作製した。
[4b]ホウ素含有有機化合物の層まで形成した基板を真空蒸着装置の基板ホルダーに固定した。トリス(8−ヒドロキシキノリナト)アルミニウム(Alq)、N,N'−ジ(1−ナフチル)−N,N'−ジフェニル−1,1'−ビフェニル−4,4'−ジアミン(α−NPD)をそれぞれアルミナルツボに入れて蒸着源にセットした。真空蒸着装置内を約1×10−4Paまで減圧し、Alqを35nm蒸着し、発光層を成膜した。次に、α−NPDを60nm蒸着し、正孔輸送層を成膜した。
(実施例4)
工程[3]において、ホウ素含有化合物1の1%、N−DMBIの0.01%の1,2−ジクロロエタン混合溶液に代えて、ホウ素含有化合物1の1%、N−DMBIの0.05%の1,2−ジクロロエタン混合溶液を用いた以外は実施例1と同様にして、有機電界発光素子6を作製した。バッファ層の平均厚さは60nmであった。
(比較例3)
工程[4]に代えて工程[4b]を行った以外は比較例2と同様にして、有機電界発光素子7を作製した。
(実施例5)
工程[3]において、ホウ素含有化合物1の1%、N−DMBIの0.01%の1,2−ジクロロエタン混合溶液に代えて、市販されているポリ(ジオクチルフルオレン−アルト−ベンゾチアジアゾール)(F8BT)の1%、N−DMBIの0.01%テトラヒドロフラン混合溶液を用いた以外は実施例3と同様にして、有機電界発光素子8を作製した。
(比較例4)
工程[3]において、F8BTの1%、N−DMBIの0.01%のテトラヒドロフラン混合溶液に代えて、F8BTの1%のテトラヒドロフラン溶液を用いた以外は実施例4と同様にして、有機電界発光素子9を作製した。
(実施例6)
工程[3]に代えて工程[3b]を行った以外は実施例3と同様にして、有機電界発光素子10を作製した。
[3b]ホウ素含有化合物1の1%、ロイコクリスタルバイオレットの0.01%の1,2−ジクロロエタン混合溶液を作成した。工程[2]で作成した酸化亜鉛薄膜付き基板をスピンコーターにセットした。この基板上にホウ素含有化合物1、ロイコクリスタルバイオレット混合溶液を滴下し、毎分2000回転で30秒間回転させ、ホウ素含有有機化合物を含むバッファ層を形成した。さらに、これを窒素雰囲気下200℃にセットしたホットプレートで1時間アニール処理を施した。バッファ層の平均厚さは60nmであった。
(比較例5)
工程[3b]において、ホウ素含有化合物1の1%、ロイコクリスタルバイオレットの0.01%の1,2−ジクロロエタン混合溶液に代えて、ホウ素含有化合物1の1%の1,2−ジクロロエタン溶液を用いた以外は実施例5と同様にして、有機電界発光素子11を作製した。
(実施例7)
工程[3b]において、ロイコクリスタルバイオレットに代えて、ハンチュエステル(=2,6−ジメチル−1,4−ジヒドロピリジン−3,5−ジカルボン酸ジエチル)を用いた以外は実施例6と同様にして、有機電界発光素子12を作製した。
実施例1〜7、比較例1〜5で作製した有機電界発光素子のまとめを表1に示す。還元剤のwt%は、バッファ層に用いた有機化合物の量に対する割合である。
Figure 0005993667
(有機電界発光素子の発光特性測定)
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。コニカミノルタ社製の「LS−100」により、発光輝度を測定した。
実施例1〜7および比較例1〜5で作製した有機電界発光素子を、アルゴン雰囲気下直流電圧を印加した時の電圧−輝度特性、電流密度−電流効率特性を図1〜10に示す。いずれの場合においても、実施例で作製したドーピングされた素子は比較例で作製したドーピングされていない素子に比べて輝度、電流効率が共に高く優れた特性であることが分かった。

Claims (6)

  1. 複数の層が積層された構造を有する有機電界発光素子であって、
    該有機電界発光素子は、第1の電極と第2の電極との間に、第1の金属酸化物層、第1の金属酸化物層表面に存在する凹凸を平滑化するバッファ層、該バッファ層上に積層された発光層を含む低分子化合物層、及び、第2の金属酸化物層をこの順に有し、
    該バッファ層は、還元剤を含むことを特徴とする有機電界発光素子。
  2. 前記バッファ層は、平均厚さが5〜100nmの有機化合物を含む溶液の塗膜の層であることを特徴とする請求項1に記載の有機電界発光素子。
  3. 前記還元剤は、ヒドリド還元剤であることを特徴とする請求項1又は2に記載の有機電界発光素子。
  4. 前記ヒドリド還元剤は、2,3−ジヒドロベンゾ[d]イミダゾール化合物、2,3−ジヒドロベンゾ[d]チアゾール化合物、2,3−ジヒドロベンゾ[d]オキサゾール化合物、トリフェニルメタン化合物、及び、ジヒドロピリジン化合物からなる群より選択される少なくとも1種の化合物であることを特徴とする請求項3に記載の有機電界発光素子。
  5. 請求項1〜4のいずれかに記載の有機電界発光素子を用いた表示装置。
  6. 請求項1〜4のいずれかに記載の有機電界発光素子を用いた照明装置。
JP2012193519A 2012-04-16 2012-09-03 有機電界発光素子 Active JP5993667B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012193519A JP5993667B2 (ja) 2012-09-03 2012-09-03 有機電界発光素子
CN201380019561.XA CN104247073B (zh) 2012-04-16 2013-04-09 有机电致发光元件及其制造方法
KR1020147030972A KR102171425B1 (ko) 2012-04-16 2013-04-09 유기 전계 발광 소자 및 그 제조 방법
PCT/JP2013/060755 WO2013157451A1 (ja) 2012-04-16 2013-04-09 有機電界発光素子及びその製造方法
TW102113218A TWI593695B (zh) 2012-04-16 2013-04-15 Organic electroluminescent device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193519A JP5993667B2 (ja) 2012-09-03 2012-09-03 有機電界発光素子

Publications (2)

Publication Number Publication Date
JP2014049697A JP2014049697A (ja) 2014-03-17
JP5993667B2 true JP5993667B2 (ja) 2016-09-14

Family

ID=50609038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193519A Active JP5993667B2 (ja) 2012-04-16 2012-09-03 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP5993667B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181705A1 (ja) * 2015-05-11 2018-04-05 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054027A (ja) * 2014-09-02 2016-04-14 日本放送協会 有機電界発光素子
JP6496183B2 (ja) * 2015-05-12 2019-04-03 日本放送協会 有機電界発光素子、表示装置、照明装置および有機電界発光素子の製造方法
GB2540969B (en) * 2015-07-31 2017-12-27 Cambridge Display Tech Ltd Method of doping an organic semiconductor and doping composition
JP7049888B2 (ja) * 2018-03-29 2022-04-07 日本放送協会 有機エレクトロルミネッセンス素子、表示装置、照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114759A (ja) * 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP5086184B2 (ja) * 2007-06-14 2012-11-28 株式会社半導体エネルギー研究所 発光素子、発光装置および照明装置
JP2009060012A (ja) * 2007-09-03 2009-03-19 Canon Inc 有機電界発光素子及びその製造方法、並びに表示装置
JP2009070954A (ja) * 2007-09-12 2009-04-02 Seiko Epson Corp 有機薄膜発光素子、表示装置、電子機器、及び有機薄膜発光素子の製造方法
JP5028366B2 (ja) * 2008-09-11 2012-09-19 株式会社ジャパンディスプレイイースト 有機発光素子
JP2011086796A (ja) * 2009-10-16 2011-04-28 Panasonic Corp 有機エレクトロルミネッセント素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016181705A1 (ja) * 2015-05-11 2018-04-05 日本放送協会 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物

Also Published As

Publication number Publication date
JP2014049697A (ja) 2014-03-17

Similar Documents

Publication Publication Date Title
JP6952087B2 (ja) 有機電界発光素子
JP6548725B2 (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
KR101516062B1 (ko) 방향족 아민 유도체 및 그것을 이용한 유기 전기 발광 소자
JP5993667B2 (ja) 有機電界発光素子
WO2013157451A1 (ja) 有機電界発光素子及びその製造方法
JP6226671B2 (ja) 有機電界発光素子
JP6110099B2 (ja) 有機電界発光素子及びその製造方法
WO2017153731A1 (en) Dibenzofuran and dibenzothiophene derivatives and organic light-emitting devices containing them
KR20190114793A (ko) 유기 전계 발광 소자
JP2016054027A (ja) 有機電界発光素子
JP2016174100A (ja) 有機電界発光素子
JP2021042138A (ja) 縮合環化合物、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP2014049696A (ja) 有機電界発光素子
JP7465119B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP2019175996A (ja) 有機電界発光素子の製造方法
JP7232016B2 (ja) 有機薄膜および有機薄膜の製造方法、有機エレクトロルミネッセンス素子、表示装置、照明装置、有機薄膜太陽電池、薄膜トランジスタ、塗料組成物
JP6997678B2 (ja) 有機電界発光素子用材料及び有機電界発光素子
JP7049888B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP6604713B2 (ja) 有機電界発光素子
JP6578122B2 (ja) 有機電界発光素子
TW202240950A (zh) 有機電激發光元件、顯示裝置、照明裝置、有機電激發光元件之製造方法
JP2019179871A (ja) 有機電界発光素子
JP2017034062A (ja) 有機電界発光素子、表示装置、照明装置および有機電界発光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5993667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250