JP5943333B1 - 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法 - Google Patents

円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法 Download PDF

Info

Publication number
JP5943333B1
JP5943333B1 JP2015551643A JP2015551643A JP5943333B1 JP 5943333 B1 JP5943333 B1 JP 5943333B1 JP 2015551643 A JP2015551643 A JP 2015551643A JP 2015551643 A JP2015551643 A JP 2015551643A JP 5943333 B1 JP5943333 B1 JP 5943333B1
Authority
JP
Japan
Prior art keywords
gap
air
cylindrical
cylindrical coil
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015551643A
Other languages
English (en)
Other versions
JPWO2016035358A1 (ja
Inventor
学 白木
白木  学
努 白木
努 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M-LINK CO., LTD.
Original Assignee
M-LINK CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M-LINK CO., LTD. filed Critical M-LINK CO., LTD.
Application granted granted Critical
Publication of JP5943333B1 publication Critical patent/JP5943333B1/ja
Publication of JPWO2016035358A1 publication Critical patent/JPWO2016035358A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

小型化を目的とした高機能の回転電気機械に関し、銅損および磁性体に生じる渦電流に起因する発熱による回転電気機械内部の温度上昇によって効率ηが劣化するなどの避け難い技術的課題に挑戦する。こうした技術的課題は、導電性金属シートの積層体構造によって円筒形に成形された通電可能な無鉄心の円筒コイルの一方の端面が固定された、駆動シャフトに回転自在に連結された蓋型マウントの固定子2に対して、円筒コイルの一方の端面が配置されるエアギャップを形成する外側円筒空路形成体および内側円筒空路形成体に配備されたマグネット4と共に一体化された、蓋型マウントを貫通した駆動シャフトに連結固定されたコップ型マウントの回転子3を対置させ、円筒コイルの内周面に形成された空隙に冷媒または冷却用空気を送り込みまたは引き込み、エアギャップに配置される円筒コイルの内周面および外周面を直接冷却するように構成することによって、解決することができる。

Description

本発明は、円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法に関する。
本発明は、より具体的には、長手方向に離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルと、該円筒コイルの一方の端面が固定されて中心部に駆動シャフトが回転自在に連結されている蓋型マウントとを有する固定子と、その蓋型マウントに回転自在に連結されている駆動シャフトが中心部に連結固定されて蓋型マウントの対極に配置されている、底部と内側円筒空路形成体および外側円筒空路形成体とを有するカップ型マウントと、外側円筒空路形成体の内周面および/または内側円筒空路形成体の外周面に円筒コイルの円周方向に互いに間隔を空けて配備されている複数のマグネットとを有する回転子とを含み、
カップ型マウントは、該カップ型マウントの底部と内側円筒空路形成体および外側円筒空路形成体とで第1空隙のエアギャップが形成されており、エアギャップには、配備されている露出した複数のマグネットと共に、円筒コイルが該円筒コイルの他方の端面がカップ型マウントの底部との間で隙間を残して浮かせた状態で配置されており、カップ型マウントの一方の端面と蓋型マウントとの間には、円筒コイルの内周側に位置する第2空隙と円筒コイルの外周側に位置する第3空隙とを有する無鉄心回転電気機械であって、
蓋型マウントは第2空隙に外部から冷媒または冷却用空気を送り込む手段を有し、カップ型マウントは底部に第2空隙に外気を引き込む通気孔を有しており、第2空隙に送り込まれた冷媒または冷却用空気および第2空隙に引き込まれた外気は、回転子の回転および複数のマグネットの回転により発生する回転子周囲の圧力差によって、第1空隙を流通して第1空隙に露出した加熱している複数のマグネットおよび第1空隙に浮かせた状態で配置されている円筒コイルの両面を直接冷却し、第3空隙を経由して外部に排出されるようにしたことを特徴とする無鉄心回転電気機械およびその冷却方法に関するものである。
電動モータは、電気エネルギーを運動エネルギーに変換する装置である。それは、大きくはDCモータとACモータに区分され、固定子(ステータ)と回転子(ロータ)の配置関係からインナーロータ型とアウターロータ型とに区分され、さらに巻線界磁型と永久磁石型にも区分されるが、いずれの場合にも、固定子が磁界の向きを回転させることによって回転子に影響を与えて回転させる、いわゆる回転磁界を利用するものが含まれる。
巻線で円筒状に形成された円筒コイルを含む固定子と該円筒コイルを挟みエアギャップを形成する回転子とによって構成された回転磁界形モータにおいて、通電により、巻線からなる円筒コイルの抵抗(銅損)による発熱、さらには巻線からなる円筒コイルやエアギャップを形成する導体のインナーヨークとアウターヨークなどに生じる渦電流による発熱および鉄心のヒステリシス現象による発熱が起こることは、よく知られていることである。この磁気エネルギーを熱エネルギーに変換させる銅損やヒステリシス損失は避け難い技術的課題であることも周知である。
こうした技術的課題に伴う電動モータの出力や効率への影響に対し、また回転子を構成するインナーヨークの外周面および/またはアウターヨークの内周面に配備される永久磁石が加熱されることによるその保磁力を劣化させるといった技術的課題に対しては、これまでの電動モータの内部に冷却用空気を送り込むことや外気を取り入れるなど、巻線からなるコイル表面を冷却する試み等がなされているが、抜本的な課題解決には至っていない。それは、何層にも巻回された巻線からなるコイルまたは円筒コイルを用いることに限界があるためである。例えば、外気を取り入れて巻線を何層にも巻回したコイルの表面上を流通させたとしても、蓄熱された巻線コイルの内部にまで冷却用空気等を送り込むことは技術的に不可能だからである。
本発明は、こうした技術的課題に挑戦し開発された無鉄心回転電気機械に関する。より具体的には、それは、長手方向に離間された複数の線状部を有する導電性金属シートからなる積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルを用いた無鉄心回転電気機械であることを特徴とする。実際に2層または4層の導電性金属シートからなる積層体構造の厚みは5mm程度に過ぎず、このような円筒コイルの両面を直接冷却できれば、コイルの発熱制御は可能である。本発明は、この点に着目して開発されたものである。
それはまた、このような円筒コイルと該円筒コイルの一方の端面が固定されている蓋型マウントとを含む固定子に対して底部と内側円筒空路形成体および外側円筒空路形成体とで円筒コイルが配置されるエアギャップを有するカップ型マウントと外側円筒空路形成体および/または内側円筒空路形成体に円筒コイルの円周方向に互いに間隔を空けて配備されている複数のマグネットとを有する回転子が固定子の蓋型マウントの対極に配置されている無鉄心回転電気機械において、蓋型マウントには円筒コイルの内側空間に外部から冷媒または冷却用空気を送り込む手段およびカップ型マウントにはその内側空間に外気を引き込む通気孔を設け、回転子の回転に加えて円筒コイルの円周方向に互いに間隔を空けて複数配備されたマグネットの回転により発生する回転子周囲の圧力差によって、円筒コイルの内側空間に取り込まれた冷媒または冷却用空気および外気は、エアギャップ内を流通し、エアギャップに浮かせた状態で配備されている2層または4層の導電性金属シートからなる積層体構造の円筒コイルの両面を直接冷却し、外部に排出されるようにした特徴を有する無鉄心回転電気機械およびその冷却方法である。
特開2012−16218号公報(特許文献1)または特開2012−30786公報(特許文献2)には、通電可能な無鉄心の円筒コイルを用いたホイールインモータが記載されている。具体的には、この電動モータは、ホイールと一体化された円筒形のアウターヨークおよび該アウターヨークとの間にエアギャップを形成する円筒形のインナーヨークが固定シャフトに回転自在に取り付けられた回転子を構成し、該エアギャップに配置される円筒コイルが固定シャフトに連結固定された固定子を構成し、回転子を構成するアウターヨークの内周面に複数配備された永久磁石のマグネットが固定子を構成する円筒コイルの外周面に対向配置されるモータである。
まず、特許文献1には電動モータを作動させるときに発生する熱を冷却することについての記載は全くない。またそれを想定したものでもない。一方、特許文献2には、回転子のインナーヨークの内周面に形成される空間にインナーヨークに固定するブレーキ手段をさらに含み、アウターヨークに固定されたホイールの端面を固定子に対して開放し、インナーヨークの内周面に形成された空間を外気と連通させる構成が示されているが、これについての記載はないが、これはブレーキ手段による摩擦熱を外部に逃がすためのものと考えられる。いずれも本発明の無鉄心回転電気機械およびその冷却方法とは関係のないホイールインモータに関するものである。
特許2657192号明細書(特許文献3)には、リニア直流ブラシレスモータが記載されており、固定電機子にエアー供給通路が穿設され「エアー供給通路から電機子コイルにエアーを直接吹き付け、電機子コイルを冷却すると共にマグネットヨークに対するステータヨーク自体も冷却するようにした構成」を有する。だたし、上述されているように導線を何層にも巻回形成された空心型コイルを用いた固定電機子がプリント配線基板に移動子の移動方向に合せて多数並列に貼り付けたステータヨークで構成されてものであり、電機子コイルにエアーを直接吹き付けたとしても、何層にも巻回形成されたコイル内部にまで冷却空気を吹き付けることはできない。これは、いうまでもなく本発明の対象である回転磁界形モータでもない。
特開2006−246678号公報(特許文献4)には、アウターロータ型のホイールインモータが記載されている。この電動モータは中空車軸にステータ側6極、ロータ側4極の突極コアで構成されたSRモータにおいて、ステータ側6極に装着された導線が何層にも巻回形成されたコイルの冷却方法が記載されている。冷却方法は、中空車軸に流入通路と排気通路とを隔壁を介して設けてコイル表面上に空気を流通させた後に、該空気をステータ外に排気するものであり、空気は何層にも巻回形成された導線の露出面をなぞるだけであり、導線が巻回形成されたコイル内部の蓄熱を冷却することはできない。
特許第3494056号公報(特許文献5)には、環状のステータコアに何層にも巻回形成された導線からなるコイルを巻装した固定子と、該固定子の外周を覆う筒部の内周面に永久磁石を支持させたアウターヨークからなる回転子とから構成されたアウターロータ型磁石発電機が記載されている。この電動モータは、回転軸に回転自在に連結された固定子を支持するプレートに通風口を設け、ステータコアに導線が何層にも巻回されたコイルの表面および永久磁石を冷却するため、回転子の底部に設けた通風口と連通させ、該回転子を回転させてプレートの通風口から空気を吸入させ、回転子の通風口から吸出し、これをさらに回転子の筒部に吹き付けて冷却する方法が記載されている。さらに
ロータヨークに外部から冷却風を吸出し、該冷却風をロータヨークの外周に吹き付けロータヨークの内部に配置されたマグネットへの冷却効果を高めることができるとしている。しかしながら、このようなアウターロータ型磁石発電機も導線が何層にも巻回されたコイル内部の蓄熱まで冷却することはできない。
実開平5−22133号公報(特許文献6)には、電気自動車用のアウターロータ型ホイールインモータの内部を強制的に冷却する方法が記載されているが、この電動モータに用いられるコイルは、特許文献3から5に記載されたコイルと同様に、導線が何層にも巻回されたコイルであり、冷却用ファンで冷却空気を送り込んでもコイル内部の蓄熱まで冷却できるものではない。
米国特許6,873,085号明細書(特許文献7)および特許第3704044号公報(特許文献8)には、長手方向に離間された複数の線状部を有する導電性金属シートからなる積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルを用いたブラッシレスモータが記載されているが、エアギャップに浮かせた状態で配置される円筒コイルや露出した複数のマグネットを冷却する方法も冷却手段についても全く想定されておらず、それについての記載は一切ない。いずれも無鉄心回転電気機械の構成を有するが、本発明の無鉄心回転電気機械およびその冷却方法とは全く関係がないブラッシレスモータに関するものである。
特開2012−16218号公報 特開2012−30786公報 特許2657192号明細書 特開2006−246678号公報 特許第3494056号公報 実開平5−22133号公報 米国特許US6,873,085 B2 明細書 特許第3704044号公報
『史上最強カラー図解 最新モータ技術のすべてがわかる本』赤津 観監修 ナツメ出版企画株式会社 (2013年7月20日発行)
円筒コイルを含む固定子と円筒コイルが配置されるエアギャップを形成する回転子とによって構成された無鉄心回転電気機械において、円筒コイルの銅損および導体に生じる渦電流に起因する発熱によるモータ内部の温度上昇は、無鉄心回転電気機械の効率ηを劣化させるなど、無鉄心回転電気機械に内在する避け難い技術的課題として認識されており、そのためにも、これまで様々な提案がなされてきたが、抜本的な課題解決には至っていない。本発明者らはこれらの技術的課題に果敢に挑戦し、本発明の円筒コイルを含む固定子を備えた無鉄心回転電気機械を開発するに至った。
本発明の技術的課題は、2層または4層の導電性金属シートからなる積層体構造の円筒コイルと該円筒コイルの一方の端面が固定されている蓋型マウントとを含む固定子に対して、底部と内側円筒空路形成体および外側円筒空路形成体とで円筒コイルが配置されるエアギャップを有するカップ型マウントと外側円筒空路形成体および/または内側円筒空路形成体に円筒コイルの円周方向に互いに間隔を空けて配備されている複数のマグネットとを有する回転子が蓋型マウントの対極に配置されている無鉄心回転電気機械において、蓋型マウントには円筒コイルの内側空間に外部から冷媒または冷却用空気を送り込む手段およびカップ型マウントにはその内側空間に外気を引き込む通気孔が設けられており、回転子の回転およびマグネットの回転により発生する回転子周囲の圧力差によって、円筒コイルの内側空間に送り込まれた冷媒または冷却用空気および取り込まれた外気は、エアギャップ内を流通し、エアギャップに浮かせた状態で配備されている円筒コイルの両面を直接冷却し、外部に排出されるように構成された無鉄心回転電気機械にすることによって解決することができた。
本発明の第1の態様は、図1から図4および図8に示されるように、長手方向に離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイル200と、円筒コイル200の一方の端面201が固定されて中心部310に駆動シャフト100が回転自在に連結されている蓋型マウント300とを有する固定子2と、蓋型マウント300に回転自在に連結されている駆動シャフト100が中心部410に連結固定されて蓋型マウント300の対極に配置されている、底部420と内側円筒空路形成体500および外側円筒空路形成体600とを有するカップ型マウント400と、外側円筒空路形成体600の内周面610および/または内側円筒空路形成体500の外周面520に円筒コイル200の円周方向に互いに隙間401を空けて配備されている複数のマグネット4とを有する回転子3と、を含み、カップ型マウント400は、底部420と内側円筒空路形成体500および外側円筒空路形成体600とで第1空隙のエアギャップ40が形成されており、エアギャップ40には、配備されている露出した複数のマグネット4と共に、円筒コイル200が該円筒コイル200の他方の端面202が底部420との間で隙間42を残して浮かせた状態で配置されており、カップ型マウント400の一方の端面530,630と蓋型マウント300との間に円筒コイル200の内周側210に位置する第2空隙20と円筒コイル200の外周側220に位置する第3空隙30とを有する無鉄心回転電気機械10であって、蓋型マウント300は第2空隙20に外部から冷媒または冷却用空気80を送り込む手段800を有し、カップ型マウント400は第2空隙20に外気70を引き込む通気孔430を有しており、第2空隙20に送り込まれた冷媒または冷却用空気80および第2空隙20に引き込まれた外気70は、回転子3の回転および複数のマグネット4の回転により発生する回転子周囲の圧力差によって、第1空隙40を流通し、第1空隙40に露出した加熱している複数のマグネット4および第1空隙40に配置されている円筒コイル200の両面210,220を直接冷却し、第3空隙30を経由して外部に排出されるようにしたことを特徴とする無鉄心回転電気機械10に関するものである。
本発明の第1の態様から明らかなように、無鉄心回転電気機械10は、第2空隙20に冷媒または冷却用空気80を送り込む手段800および第2空隙20に外気70を引き込む通気孔430により、第2空隙20に取り込まれた冷媒または冷却用空気80および外気70は、回転子3の回転および複数のマグネット4の回転により発生する回転子周囲の圧力差によって、第1空隙40に配置される円筒コイル200の内側および外側を通り、第3空隙30から排出されるように構成されたことを特徴とする。
本発明の一つの実施形態として、蓋型マウント300は、外部から冷媒または冷却用空気80を第2空隙20に送り込むための経路3200を有しており、カップ型マウント400は、回転子3の回転および複数のマグネット4の回転により発生する回転子周囲の圧力差によって、第2空隙20に外部から外気70を引き込むための複数の通気孔430を底部420に有する構成にすることができる。
本発明のもう一つ実施形態として、複数のマグネット4の各々は、長辺は第1空隙40に配置されている円筒コイル200の長さLに対応し、短辺は円筒コイル200の円周方向に互いに隙間401を空けて、外側円筒空路形成体600の内周面610および/または内側円筒空路形成体500の外周面520に円筒コイル200の長手方向に沿って配備されている直方体とすることができる。円筒コイル200の円周方向に互いに隙間401を空けて配備されている複数のマグネット4は、回転子3の回転と共に配備された複数のマグネット4の回転によって、第2空隙20に引き込まれる外気70の流量を増加させ、第1空隙40に流通する冷媒または冷却用空気80および外気70による冷却効果をさらに高めることになる。
本発明のさらにもう一つの実施形態として、カップ型マウント400は、外側円筒空路形成体600の第3空隙30に対応する位置に2枚の円板2100と該円板2100の軸心に向い円板2100に懸架された複数の羽根板2200とを有する多翼遠心送風回転体が嵌装固定されている構成にすることができる。
本発明の他の一つの実施形態として、固定子2は、蓋型マウント300に一方の端面901が支持された外側円筒空路形成体600より内径が大きい保護外套9を有する外装体をさらに含み、外装体9は第3空隙30から排出される冷媒または冷却用空気80および外気70を外部に逃がす排出孔90を有する構成にすることができる。
本発明の第2の態様は、図1から図4および図8に示されるように、長手方向に離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイル200と、円筒コイル200の一方の端面201が固定されて中心部310に駆動シャフト100が回転自在に連結されている蓋型マウント300とを有する固定子2と、蓋型マウント300に回転自在に連結されている駆動シャフト100が中心部410に連結固定されて蓋型マウント300の対極に配置されている、底部420と内側円筒空路形成体500および外側円筒空路形成体600とを有するカップ型マウント400と、外側円筒空路形成体600の内周面610および/または内側円筒空路形成体500の外周面520に円筒コイル200の円周方向に互いに隙間401を空けて配備されている複数のマグネット4とを有する回転子3と、を含み、
カップ型マウント400は、底部420と内側円筒空路形成体500および外側円筒空路形成体600とで第1空隙のエアギャップ40が形成されており、エアギャップ40には、配備されている露出した複数のマグネット4と共に、円筒コイル200が該円筒コイル200の他方の端面202が底部420との間で隙間42を残して浮かせた状態で配置されており、カップ型マウント400の一方の端面530,630と蓋型マウント300との間に円筒コイル200の内周側210に位置する第2空隙20と円筒コイル200の外周側220に位置する第3空隙30とを有しており、蓋型マウント300は第2空隙20に外部から冷媒または冷却用空気80を送り込む手段800を有し、カップ型マウント400は第2空隙20に外気70を引き込む通気孔430を有する無鉄心回転電気機械10の冷却方法であって、
円筒コイル200に通電し、回転子3を作動させるステップと、蓋型マウント300の送り込む手段800によって、第2空隙20に冷媒または冷却用空気80を送り込むステップと、回転子3の回転および複数のマグネットの回転により発生する回転子3の周囲の圧力差によって、カップ型マウント400の引き込む通気孔430を介して第2空隙20に外気70を引き込むステップと、第2空隙20に送り込まれた冷媒または冷却用空気80および第2空隙20に引き込まれた外気70は、回転子3の回転および複数のマグネット4の回転により発生する回転子3の周囲の圧力差によって、第1空隙40を流通して第1空隙40に露出した加熱している複数のマグネット4および第1空隙40に配置されている円筒コイル200の両面210,220を直接冷却するステップと、回転子3の回転および複数のマグネット4の回転により発生する回転子3の周囲の圧力差によって、第1空隙40を流通させた冷媒または冷却用空気80および外気70を、第3空隙30を経由させ、無鉄心回転電気機械10から排出させるステップと、を含むことを特徴とする方法に関するものである。
本発明の第2の態様から明らかなように、無鉄心回転電気機械10の冷却方法は、第2空隙20に冷媒または冷却用空気80を送り込む手段800および第2空隙20に外気70を引き込む通気孔430によって、第2空隙20に冷媒または冷却用空気80および外気70を取り込み、次に回転子3の回転および複数のマグネット4の回転により発生する回転子周囲の圧力差によって、第2空隙20から冷媒または冷却用空気80および外気70を、第1空隙40に流通させ、第1空隙40に露出した加熱している複数のマグネット4および第1空隙40に配置されている円筒コイル200の両面210,220を直接冷却させ、第3空隙30から排出させるように構成されたことを特徴とする。
本発明の一つの実施形態として、蓋型マウント300は、外部から冷媒または冷却用空気80を第2空隙20に送り込むための経路3200を有しており、カップ型マウント400は、回転子3の回転および複数のマグネット4の回転により発生する回転子3の周囲の圧力差によって、第2空隙20に外部から外気70を引き込むための複数の通気孔430を底部420に有する構成にすることができる。それにより、外部から冷媒または冷却用空気80を第2空隙20に送り込むステップは、経路3200を経由させて行うことができる。また第2空隙20に外気70を引き込むステップは、複数の通気孔430を介して行うことができる。
本発明のもう一つ実施形態として、複数のマグネット4の各々は、長辺は第1空隙40に配置されている円筒コイル200の長さLに対応し、短辺は円筒コイル200の円周方向に互いに隙間401を空けて、外側円筒空路形成体600の内周面610および/または内側円筒空路形成体500の外周面520に円筒コイル200の長手方向に沿って配備されている直方体とすることができる。それにより、本方法は、回転子3の回転および配備された複数のマグネット4の回転により発生する回転子3周囲の圧力差をさらに高め、第2空隙20に引き込まれる外気70の流量を増加させ、第1空隙40に流通する冷媒または冷却用空気80および外気70の冷却効果を高めることができるようにした方法である。
本発明のさらにもう一つの実施形態として、カップ型マウント300は、外側円筒空路形成体600の第3空隙30に対応する位置に2数の円板2100と該円板2100の軸心に向い円板2100に懸架された複数の羽根板2200とを有する多翼遠心送風回転体2000が外側円筒空路形成体600に嵌装固定されており、本方法は、多翼遠心送風回転体2000によって、回転子3の回転および複数のマグネット4の回転により発生する回転子3周囲の圧力差をさらに高め、第2空隙20に引き込まれた外気70の流量をさらに増加させ、外気70および第2空隙20に送り込まれた冷媒または冷却用空気80の冷却効果をより高め、それにより、冷媒または冷却用空気80および外気70を、第1空隙40を流通させ、第3空隙30を経由させ、第1空隙40に露出した加熱している複数のマグネット4および第1空隙40に配置されている円筒コイル200の両面210,220を直接冷却し、無鉄心回転電気機械10から排出させるようにした方法である。
本発明の他のもう一つの実施形態として、図5に示されるように、固定子2は、蓋型マウント300に一方の端面201が支持された外側円筒空路形成体600より内径が大きい保護外套900を有する外装体9をさらに含み、外装体9は、外装体9の一部に排出孔90が設けられており、本方法は、それにより、第1空隙40から排出された冷媒または冷却用空気80を排出孔90より逃がすステップをさらに含むことができる。
本方法は、回転子3の回転に加えて円筒コイル200の円周方向に互いに隙間401を空けて配備されている複数のマグネット4の回転により回転子3の周囲に発生する圧力差はさらに高まり、それにより、第2空隙20に外気70を取り入れると同時に、第2空隙20に送り込まれた冷媒または冷却用空気80を第2空隙20に吸引させて無鉄心回転電気機械10の内部冷却をさらに高めることができる特徴を有するものである。
本発明の一実施形態である円筒コイルを含む固定子を備えた無鉄心回転電気機械を断面図として表す模式図である。 図1に示す無鉄心回転電気機械の一部を切欠いた斜視図である。 図1に示す蓋型マウントおよびカップ型マウントを構成する部材の解体斜視図を表す模式図である。 円周方向に隙間を空けて複数のマグネットが配備された内側円筒空路形成体の斜視図を表す模式図である。 図1に示す無鉄心回転電気機械に保護外套を有する外装体を装着した断面図(a)および斜視図(b)として表す模式図である。 図1に示す外側円筒空路形成体に多翼遠心送風回転体を嵌装固定した無鉄心回転電気機械の断面図(a)および斜視図(b)(c)を表す模式図である。 無鉄心回転電気機械の一実施形態に基づく駆動試験の概要図である。 図7に示す被測定回転電気機械の断面図(a)および斜視図(b)を表す。 駆動電圧を24Vおよび48Vに設定し、負荷トルク(N・m)を変化させ、それによる回転数(rpm)および電流量(A)の変化について、被測定回転電気機械の円筒コイルの内側に形成された第2空隙に、第1に冷却用空気を供給しない場合、第2に1気圧・20℃の冷却用空気を30リッター(stp)/分の冷却用空気を供給する場合、および、第3に144リッター(stp)/分の冷却用空気を供給する場合をそれぞれ計測した比較図である。 駆動電圧を24Vおよび48Vに設定し、負荷トルク(N・m)を変化させ、それによる出力(W)および温度(℃)の変化について、被測定電動モータの円筒コイルの内側に形成された第2空隙に、第1に冷却用空気を供給することのない場合、第2に1気圧・20℃の冷却用空気を30リッター(stp)/分の冷却用空気を供給する場合、および、第3に144リッター(stp)/分の冷却用空気を供給する場合をそれぞれ計測した比較図である。 駆動電圧を24Vおよび48Vに設定し、負荷トルク(N・m)を変化させ、それによる効率η(%)の変化について、被測定電動モータの円筒コイルの内側に形成された第2空隙に、第1に冷却用空気を供給することのない場合、第2に1気圧・20℃の冷却用空気を30リッター(stp)/分の冷却用空気を供給する場合、および、第3に144リッター(stp)/分の冷却用空気を供給する場合をそれぞれ計測した比較図である。 駆動電圧を24Vに設定し、負荷トルク(N・m)を0.10〜0.95(N・m)に変化させ、給気圧力を50kPa、265kPaとしたときのそれぞれの給気流量を30リッター(stp)/min、144リッター(stp)/minとして、回転数(rpm)、電流(A)、入出力(W)、円筒コイルの内側および外側の平均温度、および、効率(%)の実測値を表した表である。 駆動電圧を48Vに設定し、負荷トルク(N・m)を0.10〜1.05(N・m)に変化させ、給気圧力を50kPa、265kPaとしたときのそれぞれの給気流量を30リッター(stp)/min、144リッター(stp)/minとして、回転数(rpm)、電流(A)、入出力(W)、円筒コイルの内側および外側の平均温度、および、効率(%)の実測値を表した表である。
回転電気機械の性能の一つである発生トルクT(N・m)は、電機子コイルに流れる電流の強さI(A)に比例し、出力P(W)はトルクT(N・m)と回転角速度ω(rad/s)の積で表される。一方電圧降下で見ると、電源電圧V(V)は電機子コイルに流れる電流I(A)と、電機子コイルの抵抗R(Ω)との積に誘導起電力である逆起電力E(V)を合算した式とつりあう。
T=Kt×I・・・(1)
P=T×ω・・・(2)
V=IR+E・・・(3)
上記の式より、トルクおよび出力を上げるためには、コイル抵抗値を下げることが重要であることがわかる。
そこで本発明を特徴づける図1〜図4に示される円筒コイル200を含む固定子2を備えた無鉄心回転電気機械10(以下、「本発明の電動モータ10」と称する。)の基本構造について概観すると、基本構造の特徴は、第1に、固定電機子2を構成する通電可能なコイル体として、導電性金属シートの積層体構造によって成形された円筒コイル200を用いたことにある。それは、円筒コイル200およびその製造方法として、例えば特許文献7および特許文献8に記載されているように、長手方向に直交する離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって導電性金属シートの各々の線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルであって、好ましくは、2層または4層からなる厚さが5mm以下の一定の剛性を有するものである。
基本構造の特徴の第2には、それは、円筒コイル200の一方の端面201を、固定子2を構成する蓋型マウント300の内周面によって閉鎖し、円筒コイル200の開放された他方の端面202を、回転子3を構成する、例えば、カップ型マウント400の底部420と複数のマグネット(永久磁石)4が配備された磁性体からなる外側円筒空路形成体600および内側円筒空路形成体500(これらの一実施形態として、以下外側円筒空路形成体を「アウターヨーク600」といい、内側円筒空路形成体を「インナーヨーク500」と称することとする。)とによって断面ドーナツ状の磁界が形成される、第1空隙すなわちエアギャップ40に浮かせた状態で挿入配置する構造を有する。
さらに詳細には、エアギャップ40に挿入配置された円筒コイル200は、その内周面210および外周面220を回転子3のアウターヨーク600の内周面610およびインナーヨーク500の外周面520に接しないように、かつ、その開放端面202を、回転子3を構成するキャップ型マウント400の底部420に接しないように、エアギャップ40内に僅かの隙間を空け浮かせた状態になる。それは、円筒コイル200がこのように配置されるように固定子2および回転子3を駆動シャフト100に配置する構造を有するものである。
基本構造の特徴の第3には、それは、固定子2と円筒コイル200と回転子3とによって、第2空隙20および第3空隙30を形成する構造を有するものである。より詳細には、第2空隙20は、回転子3に一体化されたアウターヨークおよびインナーヨークの開放された端面と該端面に対置する固定子2の内面との間に、固定子2の内面によって閉鎖された円筒コイルの内周面210に形成され、その空隙はエアギャップ40に通じる。また第3空隙30は、固定子2の内面によって閉鎖された円筒コイルの外周面220にエアギャップ40と外気との間に形成される。
そうなると、円筒コイル200の内周面210と固定子2の内面とで形成される閉鎖空間となる第2空隙20は、エアギャップ40に連通し、回転子3の内面を経て円筒コイル200の外周面220と固定子2の内面とアウターヨーク600の開放端とで形成される開放空間となる第3空隙30とのみ連通させることができる。
本発明の電動モータ10は、少なくとも第2空隙20が第3空隙30を経由してアウターヨーク600の開放端によって外気に通じる構造を有するものである。したがって、回転子3の回転により発生する回転子3の周囲の圧力差によって、第2空隙20は負圧状態が生成される。ここに外気70を取り入れると共に冷媒または冷却用空気80を送り込むことによって、第2空隙20に取り込まれた外気70および冷媒または冷却用空気80は、磁界が形成されたエアギャップ40を通るときに円筒コイル200の内周面を経て外周面に至り厚みが5mm以下の導電性金属シートの複数で構成された積層体構造の円筒コイル200の両面210,220を直接冷却し、第3空隙30を経由してアウターヨーク600の開放端の第3空隙30から排出されることになる。
明らかなことは、本発明の電動モータ10は、回転子3の回転数が高まるほど、すなわち出力Wが大きくなればなるほど、回転子3の周囲の圧力差も大きくなるため、冷却効果も増すという画期的な技術的特徴を有する。それは、上記した本発明の電動モータ10の基本構造に由来するものである。すなわち、磁束密度が大きい狭隘のエアギャップ40に回転数が高まると増大する鉄損が存在しない無鉄心の円筒コイル200であって厚みが5mm以下の極薄厚の導電性金属シートの積層体構造に成形された剛性を有する円筒コイル200を浮かせた状態で挿入配置し、閉鎖空間の第2空隙20がアウターヨーク600の開放端30にのみ連通させた基本構造からなる電動モータという特徴に由来する。
こうした本発明の電動モータ10について、その性能を評価するための駆動実験を行った。図7は、図8に示される円筒コイル200を含む固定子2を備えた無鉄心回転電気機械10の一実施形態に基づく駆動実験の概要図である。
本駆動実験は、被測定電動モータの断面図(a)および斜視図(b)から明らかなように、当該電動モータの出力軸にトルク計(UNIPULSE TM301)介して発電機(m−link CP8048)を結合し、発電機が発電する電力(三相PWM方式駆動電源:ICAN・TEC BLD750)を外部可変抵抗器等で消費させることで生じる負荷トルクおよび回転数から導かれる出力動力と当該モータへの入力電力とを測定することにより、当該電動モータの効率を求めるものである。
当該電動モータへの入力電力は、駆動電源から供給される電圧と電流と駆動状態の力率とによるために、モータ駆動電源と当該電動モータの間に電力計(HIOKI PW33369)を入れて測定した。測定手順は、発電機負荷をほぼゼロにした近似無負荷状態から、当該電動モータを一定電圧V(V)で駆動させるところから開始した。発電機外部抵抗を逐次変化させて当該電動モータの負荷トルクを増やし、適宜、電流I(A)、入力電力Pi(W)、出力動力Po(W)、トルクT(N・m)、回転数N(rpm)を記録し、入力電力に対する出力動力の比(Po/Pi)すなわち効率ηを求めた。
図8に示される被測定電動モータの断面図(a)および斜視図(b)について概説すると、第1に、厚みは1.35mmで外径は51mmの円筒コイル200は、幅11mmで長手方向の長さが37.75mmの第1空隙のエアギャップ40に挿入配置される。ところで複数のマグネット4は、図8の斜視図(b)に示されるように、厚さ3.85mmの直方体からなる8極のネオジム磁石を長手方向に1.19mmの間隔401を空けてインナーヨーク500の外周面520に配備される。なお間隔401を空けた複数のマグネット4の回転によるマグネット羽根機能については後述される。
第2に、回転子3に一体化されたアウターヨーク600およびインナーヨーク500の開放された端面と該端面に対置する固定子2の内面との間には、2.33mm幅の第2空隙20および第3空隙30が形成されており、閉鎖空間の第2空隙20には、冷却用空気を送り込むために外部と連通する内径3mmの経路3200が設けられる。
第3に、図8の断面図(a)に示されるように、円筒コイル200の内周面210とネオジム磁石の複数のマグネット4の外周面との間隙は僅か0.3mmであり、円筒コイル200の外周面220とアウターヨーク600の内周面610との間隙は、0.4mmに過ぎない。いずれの間隙も狭隘であり、その技術的特徴は後述される。
本駆動実験においては、駆動電源によって駆動電圧を24Vおよび48Vに設定した上、発電機の可変負荷によって負荷トルク(N・m)を発電機の近似無負荷状態の0.1(N・m)から順次増加させ、それによる駆動回転数(rpm)および電流(A)の変化について、被測定電動モータの円筒コイル200の内側に形成された第2空隙20に、〈1〉外部と連通する内径3mmの経路3200を閉鎖して冷却用空気を供給しない場合、〈2〉該経路3200を開放して1気圧・20℃の冷却用空気を30リッター(stp)/分の冷却用空気80を供給する場合、および、〈3〉同様に該経路3200を開放して144リッター(stp)/分の冷却用空気80を供給する場合をそれぞれ計測した。
図12および図13は、その計測値に基づいた比較図である。なお、ここに示された第2空隙20に供給される空気量は、コンプレッサーで強制的に送り込まれた空気量、すなわち〈2〉の場合50kPaにより送り込まれた空気量20リッター(op)/分、〈3〉の場合265kPaにより送り込まれた空気量40リッター(op)/分のそれぞれを1気圧・20℃に換算した数値である。
図9(a)および(b)から明らかなように、駆動電圧を48Vに設定された〈1〉〜〈3〉の場合に、負荷トルクを0.1N・mから順次0.65N・mまで増加させても電流および回転数に大きな差異は生じていない。より詳細には、駆動電圧が24Vに設定された〈1〉〜〈3〉の場合に、同じく負荷トルクを0.1N・mから順次0.65N・mまで増加させても、電流は9.8A〜10.2Aであり、回転数でみると、2700〜2800rpmである。
駆動電圧の設定を48Vに切り替えても、電流は〈1〉〜〈3〉の場合に10.2A〜10.7Aであり、24Vに設定したときに比較しても大差ない。また回転数についてみると、24Vに設定したときには2700〜2800rpmであるのに対し、48Vの設定に切り替えたときには、いずれの場合も6900rpm弱であり、24Vに設定したときの2.5倍前後であるが、〈1〉〜〈3〉の場合に大きな差異はない。上記した(1)式すなわち、
T=Kt×I・・・(1)
において、負荷トルク(N・m)の増加にともない電流(A)は直線的に増加しており、駆動電圧を変化させ、かつ〈1〉から〈3〉に条件を変えた場合でも上記した(1)式が成り立つことが確認された。
本駆動実験において、負荷トルク(N・m)を変化させ、それによる出力動力(W)および温度(℃)の変化、および、入力電力に対する出力動力でみる効率η(%)の変化については、駆動電圧を24Vおよび48Vに設定した上で、〈1〉から〈3〉の場合のそれぞれを計測し、その計測値を比較したのが図10および図11である。
電動機は電力を動力に変換する装置、つまり電気的エネルギーを機械的エネルギーに変換するためのものである。一方、発電機は動力を電力に変換するものであり、両者に構造的な違いは無いため、本発明は電動機および発電機が対象となる。エネルギー変換するプロセスにおいて、各種の損失が発生し熱に変わってしまう。一般的な回転電気機械の損失は、(i)銅損、(ii)鉄損(ヒステリシス損失+渦電流損失)、(iii)機械損に分類される。この中で(i)銅損、(ii)鉄損が損失に占める割合が大きい。厚みが5mm以下の導電性金属シートの複数で構成された積層体構造の円筒コイル200を含む固定子2および円筒コイル200を浮かせた状態で挿入配置するエアギャップ40を含む回転子3によって構成された本発明の電動モータにおいては、無鉄心であるため(ii)鉄損が生じることはないが、円筒コイル200に渦電流損が発生し、これも(i)銅損とともに円筒コイル200の発熱要因となる。したがって、本発明の技術的課題の第1は、円筒コイル200の発熱を制御することであり、技術的課題の第2は、エアギャップ40の長手方向にインナーヨーク500の外周面520に配備される直方体の複数のマグネット4が加熱により保磁力を劣化させないように、複数のマグネット4の加熱を抑制することである。
複数のマグネットの加熱による保磁力の劣化について付言すると、電動モータの多くの用途で小型化が求められているものの、同じ素材のマグネットで磁束密度を高めることは難しい。ところが従来型のフェライト磁石を希土類磁石、例えばネオジム磁石に変更するだけで、同じ大きさの電動モータのトルクを高めることができる(非特許文献1の53ページを参照されたい。)。また希土類のネオジムと鉄とホウ素を主成分とするネオジム磁石についてさらに付言すると、それは、非常に磁力は強いけれども熱による減磁作用が大きく、80℃程度が使用限度であるという(非特許文献1の27ページを参照されたい。)。ちなみに本駆動実験に用いた永久磁石のマグネット4はネオジム磁石であるが耐熱タイプを使用しており120℃まで使用可能である。なお、本発明の電動モータに用いるマグネット4は、耐熱タイプのネオジム磁石であることがより好ましい。
図10は、横軸の負荷トルクを増加させると出力P(W)および温度(℃)がどのように変化するかを表したものである。図10から明らかなことは、〈1〉の外部と連通する経路を閉じて冷却用空気を供給しないで負荷トルクを0.65N・mまで高めると、駆動電圧を24Vに設定したときには、円筒コイル200の平均表面温度は80℃に達し、駆動電圧を48Vに切り替えたときには、円筒コイル200の平均表面温度は100℃に達する。駆動電圧を同じ条件に設定したまま、負荷トルクをこれ以上高めても、マグネット4の保持力を劣化させるのみならず、円筒コイル200の発熱によってその抵抗値Rは増し、回転数の低下が大きくなり、それに見合う出力は得られないことになる。
ところが〈2〉の冷却用空気80を毎分30リッター供給すると、駆動電圧を24Vにしたときの負荷トルクは、円筒コイル200の平均表面温度が80℃を越える0.85N・mまで高めることができ、203Wの出力Pを得た。また〈3〉の冷却用空気80を毎分144リッター供給すると、負荷トルクが0.95N・mを越えても円筒コイル200の平均表面温度が80℃に達することはない。
同様に駆動電圧を48Vに切り替えて〈2〉の冷却用空気80を毎分30リッター供給すると、円筒コイル200の平均表面温度が80℃を越える負荷トルクは、0.75N・mであり、そのときの出力Pは519Wである。〈3〉の冷却用空気80を毎分144リッター供給すると、円筒コイル200の平均表面温度が80℃を越える負荷トルク1.0N・mであり、その時点で621Wの出力Pを得た。
駆動電圧を高く設定すれば、当然、回転数(rpm)は増大する。それにともなって、出力(W)も高くなる。出力(W)が高くなればなるほど、円筒コイル200の発熱量(J/m)も増大する。そのことにより、円筒コイル200の抵抗値Rは必然的に高まる。図9および図10から明らかなことは、〈2〉の冷却用空気80を毎分30リッター供給する場合および〈3〉の冷却用空気80を毎分144リッター供給する場合には、〈1〉の冷却用空気80を供給しない場合に比べると、円筒コイル200の表面発熱量(J/m)が冷却用空気によって奪われるため円筒コイル200の温度上昇が抑制され、出力(W)への影響が少なくなるということであった。〈3〉の場合の影響は、〈2〉の場合に比べて、より顕著であった。
電力モータの性能を見る尺度の一つとして、出力(W)の大きさによって評価することが出来る。因みに駆動電圧を48Vに設定した場合でみると、〈1〉冷却用空気80を給しないで円筒コイル200の温度が80℃のときの負荷トルクは0.55N・mであり、出力Pは410Wである。これに対し、〈2〉の冷却用空気80の給気30リッター(stp)/minで円筒コイル200の温度が80℃のときの負荷トルクは0.75N・mであり、〈1〉の場合の1.36倍である。さらに出力Pは519Wである〈1〉の場合の1.27倍になる。また冷却用空気80の給気144リッター(stp)/minでみると、円筒コイル200の温度が80℃のときの負荷トルクは0.95N・mであり〈1〉の場合の1.73倍になり、出力Pは604Wであり、〈1〉の場合の1.43倍になる。
電力モータの性能を見る上記とは別の尺度として、入力電力に対する出力動力の比(Po/Pi)すなわち効率ηによって評価することができる。さらに駆動電圧を高く設定すればするほど、その性能において差が歴然となる。図11は、駆動電圧を24Vに設定したときと駆動電圧を48Vに切り替えたときのそれぞれの〈1〉〜〈3〉の場合の効率ηの変化を表したものである。
電動モータとしては、望ましい効率ηは80%以上であるとすると、駆動電圧を24Vに設定したときは、〈1〉〜〈3〉の場合に大きな差はない。より詳細には、〈1〉から〈3〉の場合には効率ηが80%を越えるときの負荷トルクは0.40〜0.50N・m程度であり、出力Pは137〜153W程度である。いずれも電動モータとしての性能に大差は生じていない。図12に示す表からも明らかなように、電動モータとしての効率ηは、〈2〉および〈3〉の場合のように、冷却用空気80を供給して円筒コイル200を冷却したとしても、上記された0.40〜0.50N・m以上の負荷トルクにおいて、80%を下回る。
しかしながら、駆動電圧を倍の48Vに設定したときは、〈1〉〜〈3〉の場合に大きな差が生じる。〈1〉の場合、円筒コイル200の平均温度は100℃と限界に近いが、電動モータとしての効率ηは80%を維持している。このときの負荷トルクは0.65N・mであり、出力Pは470Wである。本発明の電動モータとしての基本構造に基づく性能の確かさを示しているものと評価されるところである。
図13に示された表からも明らかなように、〈2〉の場合に効率ηが80%を切るのは、負荷トルクが0.80N・mであり、出力Pが537Wに達したときである。また〈3〉の場合には負荷トルクが0.90N・mであり、出力Pが592Wに達したときに効率ηが80%を下回る。そのときの円筒コイルの表面平均温度は、〈2〉の場合で88℃であるが、〈3〉の場合では71℃に維持されており80℃には達していない。〈1〉の場合の100℃と比較すれば、その差は歴然である。
駆動電圧を例えば24V、36V、48V、60Vのように順次高めながら今回と同様の性能試験を行うことによって、本発明の電動モータの特徴がより鮮明にすることができるであろう。それは、今回の駆動実験結果からも容易に推定されることである。上記した技術的課題に対しては、例えば、特許文献5および6に記載されている電動モータの内部に外気を取り入れ、マグネットの表面を冷却し何層にも巻線されたコイル表面を冷却する試み等がなされているが、抜本的な課題解決には至っていない。本発明は、こうした技術的課題に挑戦し開発された電動モータである。
本発明においてさらに重要なことは、図1に示された固定子2を構成する蓋型マウント300に経路3200を設けて第2空隙20に冷媒または冷却用空気80を送り込むだけなく、回転子3を構成するカップ型マウント400の底部420に複数の通気口430を設けて回転子3の回転により発生する回転子3の周囲の圧力差によって、外気70を取り入れるようにしたことにある。ところが電動モータ内に外気を取り入れて電動モータのコイルやマグネットの冷却することは周知である。しかしながら、本発明の電動モータの基本構造である図4に示された外側円筒空路形成体600の内周面610および/または内側円筒空路形成体500の外周面520に円筒コイル200の円周方向に互いに隙間401を空けて配備されている複数のマグネット4に着目し、以下のようなマグネットの羽根効果が生じることを明らかにした。
今回の駆動実験に用いられた被電動モータを表す図8(b)の模式図に示されているインナーヨーク500の表面に駆動シャフト100の長手方向に沿って接着固定された直方体の複数のマグネット4は、インナーヨーク500の表面の形状に合わせエボキシ系の接着剤等を用い、ポリアミド樹脂等で固めた8極のマグネット4に相当する。1.19mmの間隔は、各々のマグネット4の間隔401に相当する。第2空隙20に送り込まれた冷媒または冷却用空気80および第2空隙に引き込まれた外気70は、回転子3の回転に加えて複数のマグネット4の回転により発生する回転子3の周囲の圧力差によって、第1空隙40を流通し、第1空隙に露出した加熱している複数のマグネット4および第1空隙40に配置されている円筒コイル200の両面を直接冷却し、第3空隙30を経由して本発明の電動モータ10の外部に排出される。
図7は、図1および図4に示された無鉄心回転電気機械10のインナーヨーク500およびアウターヨーク600に設けられた複数のマグネット4の各々の間隔401に対応する位置に、円筒コイル200およびインナーヨーク500およびアウターヨーク600に配備されている複数のマグネット4の各々に対する冷却効果を高めるための多翼遠心送風回転体2000が回転子3を構成するカップ型マウント400に嵌装固定されるようにしたものである。
そのカップ型マウント400は、第3空隙30に対応する位置に2枚の円板2100と円板2100の軸心に向い2枚の円板2100に懸架された複数の羽根板2200で構成された水車型のアウターヨーク600に嵌装固定される多翼遠心送風回転体2000を有し、それにより、第3空隙30から冷媒または冷却用空気80を排出させる回転子3の回転および複数のマグネットの回転により発生する回転子3の周囲の圧力差を増幅させることができる。すなわち、吸引される外気70の流量を増やし、外気70と共に冷媒または冷却用空気80を第1空隙40内の流通を高速化して冷却効果を高めることができる。
本電動モータ内部に冷媒または冷却用空気80を送り込み、さらに外気70を引き込むことができる閉鎖空間の第2空隙20が形成され、そこから、円筒コイル200の内周面210および外周面220をなぞり、開放空間の第3空隙30から熱せられた冷媒または冷却用空気および外気70を外部に排出できるようにした。これは、駆動電圧を高く設定するほど、冷却効果が大きいという実現不能と思われていた技術的課題を解決させた。
本発明は、好ましい実施形態に関連して記載されたが、当業者であれば、本発明の範囲から逸脱することなく、様々な変更がなされ、均等物がそれについての要素に代替され得ることが理解されるであろう。したがって、本発明を実施するために考慮された最良の実施態様として開示された特定の実施態様に限定されるものではなく、特許請求の範囲に属する全ての実施形態を含むものであることがいとされる。
1 電機子を含む無鉄心回転電気機械の構造
2 固定子
3 回転子
4 マグネット
9 外装体

10 電機子を含む無鉄心回転電気機械
20 第2空隙
30 第3空隙
40 第1空隙またはエアギャップ
41 内側間隙
42 中間間隙
43 外側間隙
70 第2空隙に引き込まれた外気
80 第2空隙に送り込まれた冷媒または冷却用空気
90 排出孔

100 駆動シャフト
110 駆動シャフトの中間部
120 駆動シャフトの終端部

200 円筒コイル
201 円筒コイルの(固定)端面
202 円筒コイルの(開放)端面
210 円筒コイルの内周面
220 円筒コイルの外周面

300 蓋型マウント
310 蓋型マウントの中心部

400 カップ型マウント
401 隣接するマグネットの間の隙間
410 カップ型マウントの中心部
420 カップ型マウントの底部
430 通気孔
431 通気孔用フィルター

500 内側円筒空路形成体またはインナーヨーク
510 内側円筒空路形成体またはインナーヨークの内周側
520 内側円筒空路形成体またはインナーヨークの外周面
530 内側円筒空路形成体またはインナーヨークの端面
540 内側円筒空路形成体またはインナーヨークの内周側空間

600 外側円筒空路形成体またはアウターヨーク
610 外側円筒空路形成体またはアウターヨークの内周面
620 外側円筒空路形成体またはアウターヨークの外周面
630 外側円筒空路形成体またはアウターヨークの端面

800 冷却装置
900 保護外套
901 保護外套の端面
910 通気孔

2000 多翼遠心送風回転体
2100 多翼遠心送風回転体の円板
2200 多翼遠心送風回転体の羽根板

3200 蓋型マウントの経路

Claims (10)

  1. 長手方向に離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって前記導電性金属シートの各々の前記線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルと、該円筒コイルの一方の端面が固定されて中心部に駆動シャフトが回転自在に連結されている蓋型マウントとを有する固定子と、
    前記蓋型マウントに回転自在に連結されている前記駆動シャフトが中心部に連結固定されて前記蓋型マウントの対極に配置されている、底部と内側円筒空路形成体および外側円筒空路形成体とを有するカップ型マウントと、前記外側円筒空路形成体の内周面および/または前記内側円筒空路形成体の外周面に前記円筒コイルの円周方向に互いに間隙を空けて配備されている複数のマグネットとを有する回転子と、
    を含み、
    前記カップ型マウントは、前記底部と前記内側円筒空路形成体および前記外側円筒空路形成体とで第1空隙のエアギャップが形成されており、前記エアギャップには、配備されている露出した前記複数のマグネットと共に、前記円筒コイルが該円筒コイルの他方の端面が前記底部との間で隙間を残して浮かせた状態で配置されており、前記カップ型マウントの一方の端面と前記蓋型マウントとの間に前記円筒コイルの内周側に位置する第2空隙と前記円筒コイルの外周側に位置する第3空隙とを有する無鉄心回転電気機械であって、
    前記蓋型マウントは前記第2空隙に外部から冷媒または冷却用空気を送り込む手段を有し、前記カップ型マウントは前記底部に前記第2空隙に外気を引き込む通気孔を有しており、前記第2空隙に送り込まれた前記冷媒または冷却用空気および前記第2空隙に引き込まれた前記外気は、前記回転子の回転および前記複数のマグネットの回転により発生する前記回転子周囲の圧力差によって、前記第1空隙を流通し、前記第1空隙に露出した加熱している前記複数のマグネットおよび前記第1空隙に配置されている前記円筒コイルの両面を直接冷却し、前記第3空隙を経由して外部に排出されるようにしたことを特徴とする無鉄心回転電気機械。
  2. 前記蓋型マウントは、外部から前記冷媒または冷却用空気を前記第2空隙に送り込むための経路を有することを特徴とする請求項1に記載の無鉄心回転電気機械。
  3. 前記複数のマグネットの各々は、長辺は前記第1空隙に配置されている前記円筒コイルの長さに対応し、短辺は前記円筒コイルの円周方向に互いに隙間を空けて、前記外側円筒空路形成体の内周面および/または前記内側円筒空路形成体の外周面に前記円筒コイルの長手方向に沿って配備されている直方体であることを特徴とする請求項1または2のいずれかに記載の無鉄心回転電気機械。
  4. 前記カップ型マウントは、前記外側円筒空路形成体の前記第3空隙に対応する位置に2枚の円板と該円板の軸心に向い前記円板に懸架された複数の羽根板とを有する多翼遠心送風回転体が嵌装固定されていることを特徴とする請求項1から3のいずれかに記載の無鉄心回転電気機械。
  5. 前記固定子は、前記蓋型マウントに一方の端面が支持された前記外側円筒空路形成体より内径が大きい保護外套を有する外装体をさらに含み、前記外装体は前記第3空隙から排出される前記冷媒または冷却用空気および前記外気を外部に逃がす排出孔を有することを特徴とする請求項1から3のいずれかに記載の無鉄心回転電気機械。
  6. 長手方向に離間された複数の線状部を有する導電性金属シートの複数で構成された積層体構造を有する円筒形であって前記導電性金属シートの各々の前記線状部が絶縁層で覆われている通電可能な無鉄心の円筒コイルと、該円筒コイルの一方の端面が固定されて中心部に駆動シャフトが回転自在に連結されている蓋型マウントとを有する固定子と、
    前記蓋型マウントに回転自在に連結されている前記駆動シャフトが中心部に連結固定されて前記蓋型マウントの対極に配置されている、底部と内側円筒空路形成体および外側円筒空路形成体とを有するカップ型マウントと、前記外側円筒空路形成体の内周面および/または前記内側円筒空路形成体の外周面に前記円筒コイルの円周方向に互いに間隙を空けて配備されている複数のマグネットとを有する回転子と、
    を含み、
    前記カップ型マウントは、前記底部と前記内側円筒空路形成体および前記外側円筒空路形成体とで第1空隙のエアギャップが形成されており、前記エアギャップには、配備されている露出した前記複数のマグネットと共に、前記円筒コイルが該円筒コイルの他方の端面が前記底部との間で隙間を残して浮かせた状態で配置されており、前記カップ型マウントの一方の端面と前記蓋型マウントとの間には、前記円筒コイルの内周側に位置する第2空隙と前記円筒コイルの外周側に位置する第3空隙とを有しており、前記蓋型マウントは前記第2空隙に外部から冷媒または冷却用空気を送り込む手段を有し、前記カップ型マウントは前記底部に前記第2空隙に外気を引き込む通気孔を有する無鉄心回転電気機械の冷却方法であって、
    前記円筒コイルに通電し、前記回転子を作動させるステップと、
    前記蓋型マウントの前記送り込む手段によって、前記第2空隙に前記冷媒または冷却用空気を送り込むステップと、
    前記回転子の回転および前記複数のマグネットの回転により発生する前記回転子周囲の圧力差によって、前記カップ型マウントの前記通気孔を介して前記第2空隙に前記外気を引き込むステップと、
    前記第2空隙に送り込まれた前記冷媒または冷却用空気および前記第2空隙に引き込まれた前記外気は、前記回転子の回転および前記複数のマグネットの回転により発生する前記回転子周囲の圧力差によって、前記第1空隙を流通して前記第1空隙に露出した加熱している前記複数のマグネットおよび前記第1空隙に配置されている前記円筒コイルを直接冷却するステップと、
    前記回転子の回転および前記複数のマグネットの回転により発生する前記回転子周囲の圧力差によって、前記第1空隙を流通させた前記冷媒または冷却用空気および前記外気を、前記第3空隙を経由させ、前記無鉄心回転電気機械から排出させるステップと、
    を含むことを特徴とする方法。
  7. 外部から前記冷媒または冷却用空気を前記第2空隙に送り込むステップは、前記蓋型マウントが有する前記冷媒または冷却用空気を送り込むための経路を経由するようにしたことを特徴とする請求項6に記載の方法。
  8. 前記複数のマグネットの各々は、長辺は前記第1空隙に配置されている前記円筒コイルの長さに対応し、短辺は前記円筒コイルの円周方向に互いに隙間を空けて、前記外側円筒空路形成体の内周面および/または前記内側円筒空路形成体の外周面に前記円筒コイルの長手方向に沿って配備されている直方体であることを特徴とする請求項6または7のいずれかに記載の方法。
  9. 前記カップ型マウントは、前記外側円筒空路形成体の前記第3空隙に対応する位置に2枚の円板と該円板の軸心に向い前記円板に懸架された複数の羽根板とを有する多翼遠心送風回転体が前記外側円筒空路形成体に嵌装固定されており、前記多翼遠心送風回転体によって前記回転子の回転および前記複数のマグネットの回転により発生する前記回転子周囲の圧力差をさらに高め、前記第2空隙に引き込まれた前記外気の流量を増加させ、それにより、前記外気および前記第2空隙に送り込まれた前記冷媒または冷却用空気は、前記第1空隙を流通させて前記第3空隙を経由して前記無鉄心回転電気機械から排出されるようにしたことを特徴とする請求項請求項6から8のいずれかに記載の方法。
  10. 前記固定子は、前記蓋型マウントに一方の端面が支持された前記外側円筒空路形成体より内径が大きい保護外套を有する外装体をさらに含み、前記外装体は前記外装体の一部に排出孔が設けられ、前記第3空隙から排出された前記冷媒または冷却用空気および前記外気を前記排出孔から逃がすステップをさらに含むことを特徴とする請求項6から8のいずれかに記載の方法。
JP2015551643A 2014-09-04 2015-03-04 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法 Active JP5943333B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014180294 2014-09-04
JP2014180294 2014-09-04
PCT/JP2015/056310 WO2016035358A1 (ja) 2014-09-04 2015-03-04 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016061769A Division JP6198085B2 (ja) 2014-09-04 2016-03-25 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Publications (2)

Publication Number Publication Date
JP5943333B1 true JP5943333B1 (ja) 2016-07-05
JPWO2016035358A1 JPWO2016035358A1 (ja) 2017-04-27

Family

ID=55439433

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015551643A Active JP5943333B1 (ja) 2014-09-04 2015-03-04 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法
JP2016061769A Active JP6198085B2 (ja) 2014-09-04 2016-03-25 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016061769A Active JP6198085B2 (ja) 2014-09-04 2016-03-25 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Country Status (6)

Country Link
US (2) US10651702B2 (ja)
JP (2) JP5943333B1 (ja)
KR (1) KR101996320B1 (ja)
CN (1) CN106716793B (ja)
DE (1) DE112015004041T5 (ja)
WO (1) WO2016035358A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154440A (ja) * 2014-09-04 2016-08-25 株式会社エムリンク 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法
JP6005886B1 (ja) * 2016-03-03 2016-10-12 株式会社エムリンク 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180048195A1 (en) * 2016-08-10 2018-02-15 Chin-Hsing Feng Electric motor
KR102349298B1 (ko) 2016-11-24 2022-01-10 가부시키가이샤 앰링크 무철심 회전 전기 기계
JP6925825B2 (ja) * 2017-03-01 2021-08-25 ミネベアミツミ株式会社 モータ
JP6579522B2 (ja) * 2017-03-27 2019-09-25 株式会社エムリンク 無鉄心の円筒コイルを備えた固定子を含むブラシレス回転電気機械の冷却補助具および冷却補助具が装着された無鉄心の円筒コイルを備えた固定子を含むブラシレス回転電気機械
CN106877539B (zh) * 2017-04-16 2018-10-26 朱幕松 无铁芯无刷无齿大轮毂电机
FR3066968B1 (fr) * 2017-06-02 2021-01-01 Valeo Systemes Dessuyage Moto-reducteur pour systeme d'essuyage de vehicule automobile
DE102017006194A1 (de) * 2017-06-30 2019-01-03 Wilo Se Drehfeldmaschine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP6922863B2 (ja) * 2017-07-21 2021-08-18 株式会社デンソー 回転電機
WO2019017496A1 (ja) * 2017-07-21 2019-01-24 株式会社デンソー 回転電機
JP6885328B2 (ja) 2017-07-21 2021-06-16 株式会社デンソー 回転電機
CN113991958A (zh) 2017-07-21 2022-01-28 株式会社电装 旋转电机
JP6501427B2 (ja) * 2017-11-14 2019-04-17 株式会社エムリンク 定格を超える負荷で稼働するための無鉄心回転電気機械、その駆動方法、および、それを含む駆動システム
DE112018006699T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
DE112018006651T5 (de) 2017-12-28 2020-10-08 Denso Corporation Radantriebsvorrichtung
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7006541B2 (ja) * 2017-12-28 2022-01-24 株式会社デンソー 回転電機
JP6927186B2 (ja) 2017-12-28 2021-08-25 株式会社デンソー 回転電機
JP6922868B2 (ja) 2017-12-28 2021-08-18 株式会社デンソー 回転電機システム
JP6939750B2 (ja) 2017-12-28 2021-09-22 株式会社デンソー 回転電機
DE112018006717T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
WO2019131911A1 (ja) * 2017-12-28 2019-07-04 株式会社デンソー 回転電機
CN110048566B (zh) 2018-01-12 2024-09-10 开利公司 双转子式无芯电磁电机
JP7183968B2 (ja) 2018-07-25 2022-12-06 株式会社デンソー 回転電機
WO2020022366A1 (ja) * 2018-07-25 2020-01-30 株式会社デンソー 回転電機、及びその回転電機を用いた車輪
JP7172589B2 (ja) * 2018-12-27 2022-11-16 株式会社デンソー 回転電機
DE102019200098A1 (de) 2019-01-07 2020-07-09 Audi Ag Fluidgekühlter Rotor für eine elektrische Maschine
US11128197B2 (en) 2019-09-20 2021-09-21 Hts Llc Linear electric device having reciprocating movement linked to rotational movement of a shaped cam
DE102019126980B4 (de) 2019-10-08 2022-10-20 Hirschvogel Umformtechnik Gmbh Elektrische Maschine
CN110649731A (zh) * 2019-10-26 2020-01-03 山东华盛农业药械有限责任公司 柱式无铁芯电机
US11757330B2 (en) 2019-12-19 2023-09-12 Black & Decker, Inc. Canned outer-rotor brushless motor for a power tool
US11437900B2 (en) 2019-12-19 2022-09-06 Black & Decker Inc. Modular outer-rotor brushless motor for a power tool
CN113692690B (zh) 2020-03-05 2024-08-23 株式会社电装 旋转电机
KR20210149580A (ko) * 2020-06-01 2021-12-09 오원섭 코깅리스 코어리스 bldc 모터
EP3993228A1 (en) * 2020-10-27 2022-05-04 BSH Hausgeräte GmbH Rotor core, permanent magnet rotor, electric motor and electric pump for a household appliance
DE102022209762A1 (de) 2022-09-16 2024-03-21 Rolls-Royce Deutschland Ltd & Co Kg Elektrische Maschine mit offener Spulenwicklung zur Direktkühlung
CN116505686B (zh) * 2023-06-26 2023-09-26 中山格智美电器有限公司 一种提升外转子无刷电机散热性能的转子结构及电机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189954A (ja) * 1985-12-23 1987-08-19 ユニ−ク、モビリテイ−、インコ−ポレ−テツド 電磁変換器
JPS62268335A (ja) * 1986-05-14 1987-11-20 Toshiba Corp 車輌用回転電機
JPH0580159U (ja) * 1992-03-31 1993-10-29 神鋼電機株式会社 アウターロータ形高速回転電機における冷却構造
JPH05344680A (ja) * 1992-06-05 1993-12-24 Toshiba Toransupooto Eng Kk 車両用アウターロータ電動機
JPH0837769A (ja) * 1994-04-26 1996-02-06 Orto Holding Ag 電気的整流が施された直流機
JPH09168246A (ja) * 1995-12-13 1997-06-24 Fuji Electric Co Ltd 永久磁石同期機の冷却装置
JP2004538744A (ja) * 2001-05-16 2004-12-24 ジー アンド ジー テクノロジー,インコーポレイティド ブラシレス・モータ
JP2010166717A (ja) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd 多層モータの冷却構造
JP2012016218A (ja) * 2010-07-02 2012-01-19 Shicoh Engineering Co Ltd ホイールインモータ及び電動車両

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494056A (ja) 1972-05-03 1974-01-14
US4562367A (en) * 1982-06-30 1985-12-31 Mitsubishi Denki Kabushiki Kaisha Low inertia, speed variable induction motor
US5319844A (en) 1985-12-23 1994-06-14 Unique Mobility, Inc. Method of making an electromagnetic transducer
JPH0522133A (ja) 1991-07-17 1993-01-29 Hitachi Ltd Ad変換器およびアナログ・デイジタル混在ic
JP2517970Y2 (ja) 1991-09-06 1996-11-20 株式会社四国総合研究所 電気自動車用電動機の冷却構造
JP2571302Y2 (ja) * 1992-07-20 1998-05-18 株式会社安川電機 高速回転電機の冷却装置
JP2657192B2 (ja) 1992-11-17 1997-09-24 セイコープレシジョン株式会社 リニア直流ブラシレスモータ
JP3494056B2 (ja) 1999-01-25 2004-02-03 国産電機株式会社 アウターロータ型磁石発電機
US6111329A (en) 1999-03-29 2000-08-29 Graham; Gregory S. Armature for an electromotive device
JP4728639B2 (ja) * 2004-12-27 2011-07-20 株式会社デンソー 電動車輪
JP2006246678A (ja) 2005-03-07 2006-09-14 Toyota Motor Corp アウターロータ型のホイールインモータおよび電気自動車およびハイブリット自動車
KR100677281B1 (ko) * 2005-06-16 2007-02-02 엘지전자 주식회사 토로이달 권선 방식을 적용한 하이브리드 유도전동기
JP5798815B2 (ja) 2010-07-02 2015-10-21 株式会社エムリンク ホイールインモータ及び電動車両
US9150093B2 (en) * 2010-07-02 2015-10-06 M-Link Co., Ltd. In-wheel motor and electrically driven vehicle
CN202167957U (zh) * 2011-03-25 2012-03-14 安鲁荣 低转速多转子发电机
JP5702748B2 (ja) * 2012-03-07 2015-04-15 本田技研工業株式会社 電動車両高電圧機器冷却システムおよび電動車両高電圧機器の冷却方法
CN102946181A (zh) * 2012-11-26 2013-02-27 王九龙 一种新型电机
CN106716793B (zh) * 2014-09-04 2019-06-25 M-链接株式会社 具备包含圆筒线圈的定子的无铁心旋转电力机构及其冷却方法
JP6005886B1 (ja) * 2016-03-03 2016-10-12 株式会社エムリンク 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189954A (ja) * 1985-12-23 1987-08-19 ユニ−ク、モビリテイ−、インコ−ポレ−テツド 電磁変換器
JPS62268335A (ja) * 1986-05-14 1987-11-20 Toshiba Corp 車輌用回転電機
JPH0580159U (ja) * 1992-03-31 1993-10-29 神鋼電機株式会社 アウターロータ形高速回転電機における冷却構造
JPH05344680A (ja) * 1992-06-05 1993-12-24 Toshiba Toransupooto Eng Kk 車両用アウターロータ電動機
JPH0837769A (ja) * 1994-04-26 1996-02-06 Orto Holding Ag 電気的整流が施された直流機
JPH09168246A (ja) * 1995-12-13 1997-06-24 Fuji Electric Co Ltd 永久磁石同期機の冷却装置
JP2004538744A (ja) * 2001-05-16 2004-12-24 ジー アンド ジー テクノロジー,インコーポレイティド ブラシレス・モータ
JP2010166717A (ja) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd 多層モータの冷却構造
JP2012016218A (ja) * 2010-07-02 2012-01-19 Shicoh Engineering Co Ltd ホイールインモータ及び電動車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154440A (ja) * 2014-09-04 2016-08-25 株式会社エムリンク 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法
JP6005886B1 (ja) * 2016-03-03 2016-10-12 株式会社エムリンク 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法
WO2017130580A1 (ja) * 2016-03-03 2017-08-03 株式会社エムリンク 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法

Also Published As

Publication number Publication date
KR20170048414A (ko) 2017-05-08
CN106716793A (zh) 2017-05-24
US20170288489A1 (en) 2017-10-05
JP6198085B2 (ja) 2017-09-20
KR101996320B1 (ko) 2019-07-04
US10651702B2 (en) 2020-05-12
DE112015004041T5 (de) 2017-07-13
JP2016154440A (ja) 2016-08-25
US10637319B2 (en) 2020-04-28
JPWO2016035358A1 (ja) 2017-04-27
CN106716793B (zh) 2019-06-25
WO2016035358A1 (ja) 2016-03-10
US20180323673A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP5943333B1 (ja) 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法
JP2016154440A5 (ja)
JP6005886B1 (ja) 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法
JP4999990B2 (ja) 回転電動機およびそれを用いた送風機
US8760016B2 (en) Electric machine with enhanced cooling
US9570952B2 (en) Disk motor, electric working machine including disk motor and method for manufacturing disk motor
CA2944536A1 (en) Stator portion for an electric machine comprising an permanent magnet rotor
WO2010127469A1 (zh) 交流爪极电机
US20110227442A1 (en) Electric machine
JP6469964B2 (ja) 永久磁石式回転電機
JP2009033886A (ja) 回転電機
JP6579522B2 (ja) 無鉄心の円筒コイルを備えた固定子を含むブラシレス回転電気機械の冷却補助具および冷却補助具が装着された無鉄心の円筒コイルを備えた固定子を含むブラシレス回転電気機械
JP2009142024A (ja) リラクタンスモータ
JP2006280022A (ja) 永久磁石同期モータを用いた電動送風機
JP2017118648A (ja) 掃除機用電動機
EP3648304B1 (en) Stator core comprising cobalt carbide and method of making the same
KR101903169B1 (ko) 중공식 비엘디씨 모터
JP2023072105A (ja) 回転子及び電動機
JP2010136460A (ja) 回転電機
JP2005304137A (ja) 回転電機

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160516

R150 Certificate of patent or registration of utility model

Ref document number: 5943333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250