JP5935425B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5935425B2
JP5935425B2 JP2012062902A JP2012062902A JP5935425B2 JP 5935425 B2 JP5935425 B2 JP 5935425B2 JP 2012062902 A JP2012062902 A JP 2012062902A JP 2012062902 A JP2012062902 A JP 2012062902A JP 5935425 B2 JP5935425 B2 JP 5935425B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
layer
surge
countermeasure element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012062902A
Other languages
English (en)
Other versions
JP2013197316A (ja
Inventor
忠紘 今田
忠紘 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012062902A priority Critical patent/JP5935425B2/ja
Priority to US13/780,011 priority patent/US9240472B2/en
Priority to TW102108000A priority patent/TWI527184B/zh
Priority to CN201310073039.1A priority patent/CN103325781B/zh
Priority to KR1020130024977A priority patent/KR101418211B1/ko
Publication of JP2013197316A publication Critical patent/JP2013197316A/ja
Application granted granted Critical
Publication of JP5935425B2 publication Critical patent/JP5935425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明は、半導体装置に関する。
窒化物半導体であるGaN、AlN、InNまたは、これらの混晶からなる材料等は、広いバンドギャップを有しており、高出力電子デバイスまたは短波長発光デバイス等として用いられている。例えば、窒化物半導体であるGaNは、バンドギャップが3.4eVであり、Siのバンドギャップ1.1eV、GaAsのバンドギャップ1.4eVよりも大きい。
このような高出力電子デバイスとしては、電界効果型トランジスタ(FET:Field effect transistor)、特に、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)がある。このような窒化物半導体を用いたHEMTは、高出力・高効率増幅器、大電力スイッチングデバイス等に用いられる。具体的には、AlGaNを電子供給層、GaNを走行層に用いたHEMTでは、AlGaNとGaNとの格子定数差による歪みによりAlGaNにピエゾ分極及び自発分極が生じ、高濃度の2DEG(Two-Dimensional Electron Gas:2次元電子ガス)が発生する。このため、高電圧における動作が可能であり、高効率スイッチング素子、電気自動車用等における高耐圧電力デバイスに用いることができる。
特開2002−359256号公報 特開2011−030396号公報
ところで、半導体材料としてシリコンが用いられている電界効果型トランジスタにおいては、必然的にボディダイオードが存在しており、このボディダイオードは逆並列となるようにトランジスタに接続されている。このため、高いサージ電圧が発生した場合においても、アバランシェ崩壊を起こすことによって、十分なサージ耐性を有している。しかしながら、GaN系のHEMTにおいては、このようなボディダイオードが必然的には存在していないため、高いサージ電圧が発生した場合には、HEMTが破壊され、故障等が生じる場合がある。このため、バリスタやRCサージ吸収回路等のサージ対策素子を別途設ける必要があった。
通常、このようなサージ対策素子は、大きな寄生容量を有しているため、HEMT等を動作させた際の発熱により温度が高くなり動作効率の低下を招き、また、動作が遅くなるため、スイッチング素子に用いた場合にスイッチングロスを招く。また、このようなサージ対策素子は、HEMTを通常動作させている場合においても、貫通電流が流れやすいため、消費電力が大きくなる傾向にある。更には、HEMTにおける動作速度が、サージ対策素子における動作速度よりも速いため、サージ対策素子を設けても、サージ対策素子に電流が流れる前に、HEMTに電流が流れてしまい、HEMTが破壊等されてしまうといった問題がある。
よって、窒化物半導体を用いた半導体装置において、寄生容量が小さく、動作速度の速いサージ対策機能を有する半導体装置が求められている。
本実施の形態の一観点によれば、トランジスタ領域とサージ対策素子領域とを有する半導体装置であって、基板の上に形成された第1の半導体層と、前記第1の半導体層の上に形成された第2の半導体層と、を有し、前記第2の半導体層の上には、第3の半導体層が形成されており、前記トランジスタ領域には、前記第2の半導体層の上にソース電極及びドレイン電極が形成され、前記第3の半導体層の上にゲート電極が形成されており、前記サージ対策素子領域には、前記第2の半導体層の上にサージ対策素子第2電極及びサージ対策素子第3電極が形成され、前記第3の半導体層の上にサージ対策素子第1電極が形成されており、前記ソース電極と前記サージ対策素子第2電極とは接続されて一体化されており、前記ドレイン電極と前記サージ対策素子第3電極とは接続されて一体化されており、前記サージ対策素子第1電極は、前記サージ対策素子第2電極と前記サージ対策素子第3電極との間に形成されており、前記ソース電極と前記ドレイン電極との間には、前記サージ対策素子第1電極が形成されていないものであって、前記サージ対策素子第1電極と前記サージ対策素子第3電極との間隔は、前記ゲート電極と前記ドレイン電極との間隔よりも狭前記第3の半導体層は、前記第1の半導体層において生じたキャリアの極性とは反対の極性の導電型の半導体層であって、前記第1の半導体層において、前記第1の半導体層と前記第2の半導体層との界面近傍には電子が生成されており、前記第3の半導体層は、p型であることを特徴とする。
開示の半導体装置によれば、寄生容量が小さく、動作速度の速いサージ対策機能を有しているため、半導体装置における特性を低下させることなく、サージ電圧による破壊等を抑制することができる。
第1の実施の形態における半導体装置の上面図 第1の実施の形態における半導体装置の断面図 第1の実施の形態における半導体装置の説明図 第1の実施の形態における半導体装置の製造方法の工程図(1) 第1の実施の形態における半導体装置の製造方法の工程図(2) 第1の実施の形態における半導体装置の製造方法の工程図(3) 第1の実施の形態における半導体装置の製造方法の工程図(4) 第2の実施の形態における半導体装置の上面図 第2の実施の形態における半導体装置の断面図 第2の実施の形態における半導体装置の説明図 第2の実施の形態における半導体装置の製造方法の工程図(1) 第2の実施の形態における半導体装置の製造方法の工程図(2) 第2の実施の形態における半導体装置の製造方法の工程図(3) 第2の実施の形態における半導体装置の製造方法の工程図(4) 第2の実施の形態における半導体装置のドレイン−ソース電圧とドレイン電流との相関図(1) 従来の構造の半導体装置のドレイン−ソース電圧とドレイン電流との相関図(1) 第2の実施の形態における半導体装置のドレイン−ソース電圧とドレイン電流との相関図(2) 従来の構造の半導体装置のドレイン−ソース電圧とドレイン電流との相関図(2) 第3の実施の形態における半導体装置の上面図 第3の実施の形態における半導体装置の断面図 第4の実施の形態における半導体デバイスの説明図(1) 第4の実施の形態における半導体デバイスの説明図(2) 第4の実施の形態におけるPFC回路の回路図 半導体装置におけるドレイン−ソース電圧の時間的変化の特性図 半導体装置におけるドレイン−ソース電圧の時間的変化の特性の拡大図 第4の実施の形態における電源装置の回路図 第4の実施の形態における高出力増幅器の構造図
発明を実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。
〔第1の実施の形態〕
(半導体装置)
第1の実施の形態における半導体装置について、図1及び図2に基づき説明する。尚、図1は、本実施の形態における半導体装置の上面図であり、図2(a)は、図1における一点鎖線1A−1Bにおいて切断した断面図であり、図2(b)は、図1における一点鎖線1C−1Dにおいて切断した断面図である。本実施の形態における半導体装置は、HEMTと呼ばれるトランジスタが形成されているものであり、トランジスタとして機能するトランジスタ領域11と、サージ対策用素子として機能するサージ対策素子領域12とを有している。
本実施の形態における半導体装置は、基板10の上に、窒化物半導体によりバッファ層21、電子走行層22、電子供給層24が積層形成されており、電子供給層24の上には、p型層25が形成されている。バッファ層21はAlN等により形成されており、電子走行層22はi−GaN等により形成されており、電子供給層24はn−AlGaN等により形成されている。これにより、電子走行層22において、電子走行層22と電子供給層24との界面近傍には2DEG22aが形成される。このように形成される2DEG22aは、GaNにより形成される電子走行層22とAlGaNにより形成される電子供給層24との格子定数の相違に基づいて生成されるものである。尚、本実施の形態における半導体装置においては、電子供給層24の上に、不図示のキャップ層を形成した構造のものであってもよく、また、電子走行層22と電子供給層24との間に、i−AlGaN等により中間層を設けたものであってもよい。この場合、2DEG22aは中間層に形成される場合がある。
基板10としては、シリコン、サファイア、GaAs、SiC、GaN等により形成された基板を用いることができるが、本実施の形態においては、シリコンにより形成された基板を用いている。また、基板10を形成している材料は、半絶縁性であってもよく、導電性を有するものであってもよい。
p型層25は、トランジスタ領域11及びサージ対策素子領域12において形成されているが、便宜上、トランジスタ領域11に形成されているものをp型層25aと記載し、サージ対策素子領域12に形成されているものをp型層25bと記載する。尚、p型層25aとp型層25bとは接続されており、一体となっている。
トランジスタ領域11においては、ゲート電極31が形成される領域に、p型層25aが形成されており、ゲート電極31は、p型層25aの上に形成されている。また、トランジスタ領域11における原子供給層24の上には、ソース電極32及びドレイン電極33が形成されている。
また、サージ対策素子領域12においては、サージ対策素子第1電極41が形成される領域に、p型領域25bが形成されており、サージ対策素子第1電極41は、p型領域25bの上に形成されている。尚、前述したように、p型領域25aとp型領域25bとは接続されており、これらが一体となってp型領域25が形成しているが、サージ対策素子第1電極41とゲート電極31とは直接電気的には接続されていない。また、サージ対策素子領域12における電子供給層24の上には、ソース電極32と電気的に接続されているサージ対策素子第2電極42が形成されており、ドレイン電極33と電気的に接続されているサージ対策素子第3電極43が形成されている。
本実施の形態は、サージ対策素子第1電極41の幅W2は、ゲート電極31の幅W1よりも狭く形成されており、これに対応して、サージ対策素子領域12におけるp型層25bの幅は、トランジスタ領域11におけるp型層25aの幅よりも狭く形成されている。このように、サージ対策素子第1電極41の幅W2をゲート電極31の幅W1よりも狭く形成することにより、ショートチャネル効果により、サージ対策素子領域12における閾値電圧を低くすることができる。尚、本実施の形態においては、便宜上、幅W2をサージ対策素子第1電極41のゲート長と記載し、幅W1をゲート電極31のゲート長と記載する場合がある。
また、サージ対策素子領域12におけるサージ対策素子第1電極41とサージ対策素子第3電極43との間の間隔D2は、トランジスタ領域11におけるゲート電極31とドレイン電極33との間の間隔D1よりも狭くなるように形成されている。このように、間隔D2が間隔D1よりも狭くなるように形成することにより、サージ電圧が発生した場合に、トランジスタ領域11よりも先に、サージ対策素子領域12に電流が流れるようにすることができる。
尚、本実施の形態においては、電子走行層22を第1の半導体層と、電子供給層24を第2の半導体層と、p型層25を第3の半導体層と記載する場合がある。
図3は、本実施の形態における半導体装置が複数形成されているものを示す。具体的には、ソース電極32はソース電極パッド62に接続されており、ドレイン電極33はドレイン電極パッド63に接続されており、ゲート電極31は、不図示の配線等によりゲート電極パッド61に接続されている。また、サージ対策素子第1電極41は、不図示の配線等によりサージ対策素子電極パッド64に接続されている。
(半導体装置の製造方法)
次に、本実施の形態における半導体装置の製造方法について図4から図7に基づき説明する。尚、以下の半導体装置の製造方法において説明する半導体装置は、電子走行層22と電子供給層24との間に中間層23が設けられている構造のものである。
最初に、図4に示すように、基板10上に、バッファ層21、電子走行層22、中間層23、電子供給層24、p型膜25tf等からなる窒化物半導体層を有機金属気相成長(MOVPE:Metal-Organic Vapor Phase Epitaxy)法により形成する。尚、これらの窒化物半導体層は、MOVPEによるエピタキシャル成長により形成されているが、MOVPE以外の方法、例えば、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法により形成してもよい。基板10には、シリコン基板が用いられており、バッファ層21は、厚さが0.1μmのAlNにより形成されており、電子走行層22は、厚さが3μmのi−Ganにより形成されており、中間層23は、厚さが5nmのi−AlGaNにより形成されている。また、電子供給層24は、厚さが30nmのn−AlGaNにより形成されており、p型膜25tfは、厚さが100nmのp−GaNにより形成されている。尚、p型膜25tfは後述するp型層25を形成するためのものである。また、電子供給層24の上には、不図示のキャップ層を形成した構造のものであってもよい。
本実施の形態においては、MOVPEによりAlN、GaN、AlGaNを形成する際には、原料ガスとして、Al源となるトリメチルアルミニウム(TMA)、Ga源となるトリメチルガリウム(TMG)、N源となるアンモニア(NH)等のガスが用いられる。窒化物半導体層であるAlN、GaN、AlGaNの層は、上述した原料ガスを成膜される窒化物半導体層の組成に応じて所定の割合で混合させて供給することにより成膜することができる。尚、本実施の形態における半導体装置において、MOVPEにより窒化物半導体層を形成する際には、アンモニアガスの流量は100ccm〜10LMであり、成膜する際の装置内部の圧力は50Torr〜300Torr、成長温度は1000℃〜1200℃である。
また、電子供給層24となるn−AlGaNには、n型となる不純物元素としてSiがドープされている。具体的には、電子供給層24の成膜の際に、SiHガスを所定の流量で原料ガスに添加することにより、電子供給層24にSiをドーピングすることができる。このように形成されたn−AlGaNにドーピングされているSiの濃度は、1×1018cm−3〜1×1020cm−3、例えば、約5×1018cm−3である。尚、不図示のキャップ層としてn−GaN等を形成する場合においても、同様の方法により形成することができる。
また、p型膜25tfを形成しているp−GaNには、p型となる不純物元素としてMgがドープされており、ドーピングされているMgの濃度は、1×1020cm−3〜1×1022cm−3、例えば、約1×1021cm−3である。更に、p型膜25tfを成膜した後、活性化のため、700℃の温度で30分間アニールを行なう。尚、図4(a)は、この工程における上面図であり、図4(b)は、図4(a)における一点鎖線4A−4Bにおいて切断した断面図であり、図4(c)は、図4(a)における一点鎖線4C−4Dにおいて切断した断面図である。
次に、図5に示すように、p型膜25tfを加工することによりp型層25を形成する。具体的には、p型膜25tfの上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、p型層25が形成される領域に不図示のレジストパターンを形成する。この後、RIE(Reactive Ion Etching)等のドライエッチングを行なうことにより、レジストパターンが形成されていない領域のp型膜25tfを除去し、電子供給層24の表面を露出させて、p−GaNによりp型層25を形成する。更に、この後、不図示のレジストパターンは、有機溶剤等により除去する。これにより、p型層25が、トランジスタ領域11及びサージ対策素子領域12に形成される。前述したように、このように形成されたp型層25は、トランジスタ領域11に形成されるp型層25aの幅よりも、サージ対策素子領域12に形成されるp型層25bの幅の方が狭くなるように形成されている。尚、図5(a)は、この工程における上面図であり、図5(b)は、図5(a)における一点鎖線5A−5Bにおいて切断した断面図であり、図5(c)は、図5(a)における一点鎖線5C−5Dにおいて切断した断面図である。
次に、図6に示すように、電子走行層24の上において、トランジスタ領域11に、ソース電極32及びドレイン電極33を形成し、サージ対策素子領域12に、サージ対策素子第2電極42及びサージ対策素子第3電極43を形成する。具体的には、電子走行層24及びp型層25の上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、不図示のレジストパターンを形成する。この不図示のレジストパターンは、ソース電極32、ドレイン電極33、サージ対策素子第2電極42及びサージ対策素子第3電極43が形成される領域に開口部を有するものである。この後、ソース電極32、ドレイン電極33等を形成するための金属膜を真空蒸着により成膜し、有機溶剤等に浸漬させることにより、レジストパターンの上に成膜された金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存した金属膜によりソース電極32、ドレイン電極33、サージ対策素子第2電極42及びサージ対策素子第3電極43が形成される。具体的には、ソース電極32とサージ対策素子第2電極42とは接続されており、同一の金属材料により一体なものとして形成され、ドレイン電極33とサージ対策素子第3電極43とは接続されており、同一の金属材料により一体なものとして形成される。本実施の形態においては、サージ対策素子第3電極43は、p型領域25bが設けられている側に出っ張った形状となっている。尚、図6(a)は、この工程における上面図であり、図6(b)は、図6(a)における一点鎖線6A−6Bにおいて切断した断面図であり、図6(c)は、図6(a)における一点鎖線6C−6Dにおいて切断した断面図である。
次に、図7に示すように、p型層25の上のトランジスタ領域11に、ゲート電極31を形成し、サージ対策素子領域12に、サージ対策素子第1電極41を形成する。具体的には、電子走行層24及びp型層25の上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、ゲート電極31及びサージ対策素子第1電極41が形成される領域に開口部を有する不図示のレジストパターンを形成する。この後、ゲート電極31及びサージ対策素子第1電極41を形成するための金属膜を真空蒸着により成膜し、有機溶剤等に浸漬させることにより、レジストパターンの上に成膜された金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存した金属膜によりゲート電極31及びサージ対策素子第1電極41が形成される。このように形成されたゲート電極31とサージ対策素子第1電極41は、直接接続されているものではなく、分離して形成されており、サージ対策素子第1電極41の幅W2が、ゲート電極31の幅W1よりも狭くなるように形成されている。また、サージ対策素子第1電極41とサージ対策素子第3電極43との間の間隔D2は、ゲート電極31とドレイン電極33との間の間隔D1よりも狭くなるように形成されている。尚、図7(a)は、この工程における上面図であり、図7(b)は、図7(a)における一点鎖線7A−7Bにおいて切断した断面図であり、図7(c)は、図7(a)における一点鎖線7C−7Dにおいて切断した断面図である。
本実施の形態における半導体装置は、上述した製造方法により作製されるが、更に、ゲート電極31、ソース電極32、ドレイン電極33等の上に、不図示の絶縁膜を形成してもよい。この絶縁膜は、パッシベーション膜となるものであり、SiO、SiN等の絶縁材料をプラズマCVD(Chemical Vapor Deposition)等により成膜することにより形成することができる。
以上により、本実施の形態における半導体装置の製造方法により半導体装置を製造することができる。
〔第2の実施の形態〕
(半導体装置)
次に、第2の実施の形態における半導体装置について、図8及び図9に基づき説明する。尚、図8は、本実施の形態における半導体装置の上面図であり、図9(a)は、図8における一点鎖線8A−8Bにおいて切断した断面図であり、図9(b)は、図8における一点鎖線8C−8Dにおいて切断した断面図である。本実施の形態における半導体装置は、HEMTと呼ばれるトランジスタが形成されているものであり、トランジスタとして機能するトランジスタ領域11と、サージ対策用素子として機能するサージ対策素子領域112とを有している。
本実施の形態における半導体装置は、基板10の上に、窒化物半導体によりバッファ層21、電子走行層22、電子供給層24が積層形成されており、電子供給層24の上には、p型層25が形成されている。バッファ層21はAlN等により形成されており、電子走行層22はi−GaN等により形成されており、電子供給層24はn−AlGaN等により形成されている。これにより、電子走行層22において、電子走行層22と電子供給層24との界面近傍には2DEG22aが形成される。このように形成される2DEG22aは、GaNにより形成される電子走行層22とAlGaNにより形成される電子供給層24との格子定数の相違に基づいて生成されるものである。尚、本実施の形態における半導体装置においては、電子供給層24の上に、不図示のキャップ層を形成した構造のものであってもよく、また、電子走行層22と電子供給層24との間に、i−AlGaN等により中間層を設けたものであってもよい。この場合、2DEG22aは中間層に形成される場合がある。
基板10としては、シリコン、サファイア、GaAs、SiC、GaN等により形成された基板を用いることができるが、本実施の形態においては、シリコンにより形成された基板を用いている。また、基板10を形成している材料は、半絶縁性であってもよく、導電性を有するものであってもよい。
p型層25は、トランジスタ領域11及びサージ対策素子領域112において形成されているが、便宜上、トランジスタ領域11に形成されているものをp型層25aと記載し、サージ対策素子領域112に形成されているものをp型層25bと記載する。尚、p型層25aとp型層25bとは接続されており、一体となっている。
トランジスタ領域11においては、ゲート電極31が形成される領域に、p型層25aが形成されており、ゲート電極31は、p型層25aの上に形成されている。また、トランジスタ領域11における原子供給層24の上には、ソース電極32及びドレイン電極33が形成されている。
また、サージ対策素子領域112においては、サージ対策素子第1電極41が形成される領域に、p型領域25bが形成されており、サージ対策素子第1電極41は、p型領域25bの上に形成されている。尚、前述したように、p型領域25aとp型領域25bとは接続されており、これらが一体となってp型領域25が形成しているが、サージ対策素子第1電極41とゲート電極31とは直接電気的には接続されていない。また、サージ対策素子領域112における電子供給層24の上には、ソース電極32と電気的に接続されているサージ対策素子第2電極42が形成されており、ドレイン電極33と電気的に接続されているサージ対策素子第3電極43が形成されている。
本実施の形態においては、サージ対策素子第1電極41とサージ対策素子第2電極42とが、導電性を有する金属材料により形成された配線層140により接続されている。これにより、サージ対策素子第1電極41と、サージ対策素子第2電極42及びトランジスタ領域11におけるソース電極31とが電気的に接続され、サージ対策素子第1電極41はサージ対策素子第2電極42と同電位となる。尚、電子供給層24と配線140との間には、絶縁膜141が形成されている。
また、サージ対策素子第1電極41の幅W2は、ゲート電極31の幅W1よりも狭く形成されており、これに対応して、サージ対策素子領域112におけるp型層25bの幅は、トランジスタ領域11におけるp型層25aの幅よりも狭く形成されている。
また、サージ対策素子領域112におけるサージ対策素子第1電極41とサージ対策素子第3電極43との間の間隔D2は、トランジスタ領域11におけるゲート電極31とドレイン電極33との間の間隔D1よりも狭くなるように形成されている。このように、間隔D2が間隔D1よりも狭くなるように形成することにより、サージ電圧が発生した場合に、トランジスタ領域11よりも先に、サージ対策素子領域112に電流が流れるようにすることができる。
尚、本実施の形態においては、電子走行層22を第1の半導体層と、電子供給層24を第2の半導体層と、p型層25を第3の半導体層と記載する場合がある。
図10は、本実施の形態における半導体装置が複数形成されているものを示す。具体的には、ソース電極32はソース電極パッド62に接続されており、ドレイン電極33はドレイン電極パッド63に接続されており、ゲート電極31は、不図示の配線等によりゲート電極パッド61に接続されている。
(半導体装置の製造方法)
次に、本実施の形態における半導体装置の製造方法について図11から図14に基づき説明する。尚、以下の半導体装置の製造方法において説明する半導体装置は、電子走行層22と電子供給層24との間に中間層23が設けられている構造のものである。
最初に、図11に示すように、基板10上に、バッファ層21、電子走行層22、中間層23、電子供給層24、p型膜25tf等からなる窒化物半導体層をMOVPE法により形成する。尚、これらの窒化物半導体層は、MOVPEによるエピタキシャル成長により形成されているが、MOVPE以外の方法、例えば、MBE法により形成してもよい。基板10には、シリコン基板が用いられており、バッファ層21は、厚さが0.1μmのAlNにより形成されており、電子走行層22は、厚さが3μmのi−Ganにより形成されており、中間層23は、厚さが5nmのi−AlGaNにより形成されている。また、電子供給層24は、厚さが30nmのn−AlGaNにより形成されており、p型膜25tfは、厚さが100nmのp−GaNにより形成されている。尚、p型膜25tfは後述するp型層25を形成するためのものである。また、電子供給層24の上には、不図示のキャップ層を形成した構造のものであってもよい。
本実施の形態においては、MOVPEによりAlN、GaN、AlGaNを形成する際には、原料ガスとして、Al源となるトリメチルアルミニウム(TMA)、Ga源となるトリメチルガリウム(TMG)、N源となるアンモニア(NH)等のガスが用いられる。窒化物半導体層であるAlN、GaN、AlGaNの層は、上述した原料ガスを成膜される窒化物半導体層の組成に応じて所定の割合で混合させて供給することにより成膜することができる。尚、本実施の形態における半導体装置において、MOVPEにより窒化物半導体層を形成する際には、アンモニアガスの流量は100ccm〜10LMであり、成膜する際の装置内部の圧力は50Torr〜300Torr、成長温度は1000℃〜1200℃である。
また、電子供給層24となるn−AlGaNには、n型となる不純物元素としてSiがドープされている。具体的には、電子供給層24の成膜の際に、SiHガスを所定の流量で原料ガスに添加することにより、電子供給層24にSiをドーピングすることができる。このように形成されたn−AlGaNにドーピングされているSiの濃度は、1×1018cm−3〜1×1020cm−3、例えば、約5×1018cm−3である。尚、不図示のキャップ層としてn−GaN等を形成する場合においても、同様の方法により形成することができる。
また、p型膜25tfを形成しているp−GaNには、p型となる不純物元素としてMgがドープされており、ドーピングされているMgの濃度は、1×1020cm−3〜1×1022cm−3、例えば、約1×1021cm−3である。更に、p型膜25tfを成膜した後、活性化のため、700℃の温度で30分間アニールを行なう。尚、図11(a)は、この工程における上面図であり、図11(b)は、図11(a)における一点鎖線11A−11Bにおいて切断した断面図であり、図11(c)は、図11(a)における一点鎖線11C−11Dにおいて切断した断面図である。
次に、図12に示すように、p型膜25tfを加工することによりp型層25を形成する。具体的には、p型膜25tfの上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、p型層25が形成される領域に不図示のレジストパターンを形成する。この後、RIE等のドライエッチングを行なうことにより、レジストパターンが形成されていない領域のp型膜25tfを除去し、電子走行層24の表面を露出させて、p−GaNによりp型層25を形成する。更に、この後、不図示のレジストパターンは、有機溶剤等により除去する。これにより、p型層25が、トランジスタ領域11及びサージ対策素子領域112に形成される。前述したように、このように形成されたp型層25は、トランジスタ領域11に形成されるp型層25aの幅よりも、サージ対策素子領域112に形成されるp型層25bの幅の方が狭くなるように形成されている。尚、図12(a)は、この工程における上面図であり、図12(b)は、図12(a)における一点鎖線12A−12Bにおいて切断した断面図であり、図12(c)は、図12(a)における一点鎖線12C−12Dにおいて切断した断面図である。
次に、図13に示すように、電子走行層24の上において、トランジスタ領域11に、ソース電極32及びドレイン電極33を形成し、サージ対策素子領域112に、サージ対策素子第2電極42及びサージ対策素子第3電極43を形成する。具体的には、電子走行層24の上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、不図示のレジストパターンを形成する。この不図示のレジストパターンは、ソース電極32、ドレイン電極33、サージ対策素子第2電極42及びサージ対策素子第3電極43が形成される領域に開口部を有するものである。この後、ソース電極32、ドレイン電極33等を形成するための金属膜を真空蒸着により成膜し、有機溶剤等に浸漬させることにより、レジストパターンの上に成膜された金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存した金属膜によりソース電極32、ドレイン電極33、サージ対策素子第2電極42及びサージ対策素子第3電極43が形成される。これにより、ソース電極32とサージ対策素子第2電極42とは接続されており、同一の金属材料により一体なものとして形成され、ドレイン電極33とサージ対策素子第3電極43とは接続されており、同一の金属材料により一体なものとして形成される。本実施の形態においては、サージ対策素子第3電極43は、p型領域25bが設けられている側に出っ張った形状となっている。尚、図13(a)は、この工程における上面図であり、図13(b)は、図13(a)における一点鎖線13A−13Bにおいて切断した断面図であり、図13(c)は、図13(a)における一点鎖線13C−13Dにおいて切断した断面図である。
次に、図14に示すように、p型層25の上のトランジスタ領域11に、ゲート電極31を形成し、サージ対策素子領域112に、サージ対策素子第1電極41を形成する。更に、サージ対策素子第1電極41とサージ対策素子第2電極42とを接続する配線層140を形成する。具体的には、電子走行層24及びp型層25の上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、ゲート電極31及びサージ対策素子第1電極41が形成される領域に開口部を有する不図示のレジストパターンを形成する。この後、ゲート電極31及びサージ対策素子第1電極41を形成するための金属膜を真空蒸着により成膜し、有機溶剤等に浸漬させることにより、レジストパターンの上に成膜された金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存した金属膜によりゲート電極31及びサージ対策素子第1電極41が形成される。このように形成されたゲート電極31とサージ対策素子第1電極41は、直接接続されているものではなく、分離して形成されており、サージ対策素子第1電極41の幅W2が、ゲート電極31の幅W1よりも狭くなるように形成されている。また、サージ対策素子第1電極41とサージ対策素子第3電極43との間の間隔D2は、ゲート電極31とドレイン電極33との間の間隔D1よりも狭くなるように形成されている。
次に、電子供給層24の上の配線層140が形成される領域上に、絶縁膜141を形成する。この後、更に、サージ対策素子第1電極41及びサージ対策素子第2電極42等の上に、フォトレジストを塗布し、露光装置による露光、現像を行なうことにより、配線層140が形成される領域に開口部を有する不図示のレジストパターンを形成する。この後、配線層140を形成するための金属膜を真空蒸着により成膜し、有機溶剤等に浸漬させることにより、レジストパターンの上に成膜された金属膜をレジストパターンとともにリフトオフにより除去する。これにより、残存した金属膜により配線層140が形成される。このように形成された配線層140により、サージ対策素子第1電極41とサージ対策素子第2電極42とが電気的に接続される。上記においては、サージ対策素子第1電極41等と配線層140を別の工程で形成する場合について説明したが、同一の工程で同時に形成することも可能である。尚、図14(a)は、この工程における上面図であり、図14(b)は、図14(a)における一点鎖線14A−14Bにおいて切断した断面図であり、図14(c)は、図14(a)における一点鎖線14C−14Dにおいて切断した断面図である。
本実施の形態における半導体装置は、上述した製造方法により作製されるが、更に、ゲート電極31、ソース電極32、ドレイン電極33等の上に、不図示の絶縁膜を形成してもよい。この絶縁膜は、パッシベーション膜となるものであり、SiO、SiN等の絶縁材料をプラズマCVD等により成膜することにより形成することができる。
以上により、本実施の形態における半導体装置の製造方法により半導体装置を製造することができる。
(実験結果)
次に、本実施の形態における半導体装置と従来の構造の半導体装置について、電気的特性の評価を行なった結果について説明する。尚、従来の構造の半導体装置は、図8及び図9に示される半導体装置において、サージ対策素子領域112が形成されていない構造のもの、即ち、トランジスタ領域11のみ形成されている構造のものである。
最初に、本実施の形態における半導体装置と従来の構造の半導体装置において、ゲート−ソース電圧Vgsを変化させた場合におけるドレイン−ソース電圧Vdsとドレイン電流Idとの関係について説明する。図15は、本実施の形態における半導体装置のドレイン−ソース電圧とドレイン電流との関係を示すものであり、図16は、従来の構造の半導体装置のドレイン−ソース電圧とドレイン電流との関係を示すものである。これらの図に示されるように、ドレイン−ソース電圧Vdsが正の場合では、本実施の形態における半導体装置と従来の構造の半導体装置に流れるドレイン電流Idは略同じである。しかしながら、ドレイン−ソース電圧Vdsが負の場合では、ドレイン−ソース電圧Vdsが−3.5V以下においては、本実施の形態における半導体装置が従来の構造の半導体装置よりもドレイン電流Idが多く流れている。尚、図15において、ドレイン−ソース電圧Vdsが−4V等においてプロットされていないのは、図に示される範囲を超えてドレイン電流Idが流れたためである。このように、本実施の形態における半導体装置においては、ドレイン−ソース電圧Vdsが所定の値よりも低くなった場合に、ゲート電極31における電位に依存することなくダイオード的な動作がなされる。即ち、ドレイン−ソース電圧Vdsの絶対値が所定の値の絶対値よりも大きくなった場合において、ダイオード的な動作がなされる。
次に、本実施の形態における半導体装置と従来の構造の半導体装置において、ゲートーソース電圧Vgsを0Vとした場合におけるドレイン−ソース電圧Vdsとドレイン電流Idとの関係について説明する。図17は、本実施の形態における半導体装置のドレイン−ソース電圧とドレイン電流との関係を示すものであり、図18は、従来の構造の半導体装置のドレイン−ソース電圧とドレイン電流との関係を示すものである。図17に示されるように、本実施の形態における半導体装置においては、ドレイン−ソース電圧Vdsが500Vにおいて、大きなドレイン電流Idが流れているが、破壊等はなかった。このように、本実施の形態における半導体装置において、ドレイン−ソース電圧Vdsが約500Vでリーク電流が急激に増加しているのは、サージ対策素子領域112において電流が流れているものと考えられる。これにより、本実施の形態における半導体装置のトランジスタ領域11は保護されるものと考えられる。即ち、本実施の形態における半導体装置においては、ドレイン−ソース電圧Vdsが約500V以上となった場合には、サージ対策素子領域112においてリーク電流が流れるため、トランジスタ領域11が破壊されることはない。
一方、従来の構造の半導体装置においては、ドレイン−ソース電圧Vdsが500Vとなっても、ドレイン電流Idは殆ど増加していない。これは、従来の構造の半導体装置においては、本実施の形態におけるサージ対策素子領域112が形成されていないため、ドレイン−ソース電圧Vdsが500V程度では、ドレイン電流Idが流れないからである。このため、従来の構造の半導体装置においては、高いドレイン−ソース電圧Vdsが印加された場合には、その電圧により半導体装置が破壊される可能性がある。
以上により、本実施の形態における半導体装置は、従来の構造の半導体装置と比べて、急にドレイン−ソース間に高い電圧が加わった場合であっても破壊されにくく、信頼性が向上している。
〔第3の実施の形態〕
次に、第3の実施の形態について説明する。本実施の形態は、第1の実施の形態における半導体装置において、p型層25を形成しない構造のものである。第1の実施の形態における半導体装置では、p型層25が形成されているため、ノーマリーオフとなっているが、本実施の形態における半導体装置においては、オフにするためにゲート電極31に所定の負の電圧を印加する必要がある。
本実施の形態における半導体装置について、図19及び図20に基づき説明する。尚、図19は、本実施の形態における半導体装置の上面図である。図20(a)は、図19における一点鎖線19A−19Bにおいて切断した断面図であり、図20(b)は、図19における一点鎖線19C−19Dにおいて切断した断面図であり、図20(c)は、図19における一点鎖線19E−19Fにおいて切断した断面図である。本実施の形態における半導体装置は、トランジスタとして機能するトランジスタ領域11と、サージ対策用素子として機能するサージ対策素子領域12とを有している。
尚、本実施の形態における半導体装置は、ゲート電極31が形成される領域とサージ対策素子第1電極41との間における電子供給層24及び電子走行層22の一部がエッチング等により除去されており、凹部220が形成されている。これにより、負電圧を印加しなくとも電流が流れない構造となっている。
本実施の形態における半導体装置は、基板10の上に、窒化物半導体によりバッファ層21、電子走行層22、電子供給層24が形成されている。バッファ層21はAlN等により形成されており、電子走行層22はi−GaN等により形成されており、電子供給層24はn−AlGaN等により形成されている。これにより、電子走行層22において、電子走行層22と電子供給層24との界面近傍には、2DEG22aが形成される。このように形成される2DEG22aは、GaNにより形成される電子走行層22とAlGaNにより形成される電子供給層24との格子定数の相違に基づいて生成されるものである。尚、本実施の形態における半導体装置においては、電子供給層24の上に、不図示のキャップ層を形成した構造のものであってもよく、また、電子走行層22と電子供給層24との間に、i−AlGaN等により中間層を設けたものであってもよい。この場合、2DEG22aは中間層に形成される場合がある。
本実施の形態における半導体装置は、トランジスタ領域11における原子供給層24の上には、ゲート電極31、ソース電極32及びドレイン電極33が形成されている。また、サージ対策素子領域12における原子供給層24の上には、サージ対策素子第1電極41、サージ対策素子第2電極42、サージ対策素子第3電極43が形成されている。尚、サージ対策素子第1電極41とゲート電極31とは直接電気的には接続されていないが、サージ対策素子第2電極42とソース電極32とは直接電気的に接続されており、サージ対策素子第3電極43とドレイン電極33とは直接電気的に接続されている。
また、本実施の形態における半導体装置は、第1の実施の形態における半導体装置の製造方法において、p型膜25tf及びp型層25を形成する工程を除いた製造方法により製造することができる。
尚、上記以外の内容については、第1の実施の形態と同様である。
〔第4の実施の形態〕
次に、第4の実施の形態について説明する。本実施の形態は、半導体デバイス、電源装置及び高周波増幅器である。
本実施の形態における半導体デバイスは、第1から第3の実施の形態におけるいずれかの半導体装置をディスクリートパッケージしたものであり、このようにディスクリートパッケージされた半導体デバイスについて、図21及び図22に基づき説明する。尚、図21及び図22は、ディスクリートパッケージされた半導体装置の内部を模式的に示すものであり、電極の配置等については、第1から第3の実施の形態に示されているものとは、異なっている。
(半導体デバイス1)
図21に示されるものは、第1または第3の実施の形態における半導体装置をディスクリートパッケージしたものである。
最初に、第1または第3の実施の形態において製造された半導体装置をダイシング等により切断することにより、GaN系の半導体材料のHEMTの半導体チップ410を形成する。この半導体チップ410をリードフレーム420上に、ハンダ等のダイアタッチ剤430により固定する。尚、この半導体チップ410は、第1または第3の形態における半導体装置に相当するものである。
次に、ゲート電極411をゲートリード421にボンディングワイヤ431により接続し、ソース電極412をソースリード422にボンディングワイヤ432により接続し、ドレイン電極413をドレインリード423にボンディングワイヤ433により接続する。また、サージ対策素子第1電極414をサージ素子リード424にボンディングワイヤ434により接続する。尚、ボンディングワイヤ431、432、433、434は、Al等の金属材料により形成されている。また、本実施の形態においては、ゲート電極411はゲート電極パッドの一種であり、第1または第3の実施の形態における半導体装置のゲート電極31と接続されている。また、ソース電極412はソース電極パッドの一種であり、第1または第3の実施の形態における半導体装置のソース電極32と接続されている。また、ドレイン電極413はドレイン電極パッドの一種であり、第1または第3の実施の形態における半導体装置のドレイン電極33と接続されている。また、サージ対策素子第1電極414はサージ対策素子電極パッドの一種であり、第1または第3の実施の形態における半導体装置のサージ対策素子第1電極41と接続されている。
次に、トランスファーモールド法によりモールド樹脂440による樹脂封止を行なう。このようにして、GaN系の半導体材料を用いたHEMTのディスクリートパッケージされている半導体デバイスを作製することができる。
(半導体デバイス2)
図22に示されるものは、第2の実施の形態における半導体装置をディスクリートパッケージしたものである。
最初に、第2の実施の形態において製造された半導体装置をダイシング等により切断することにより、GaN系の半導体材料のHEMTの半導体チップ410を形成する。この半導体チップ410をリードフレーム420上に、ハンダ等のダイアタッチ剤430により固定する。尚、この半導体チップ410は、第2の実施の形態における半導体装置に相当するものである。
次に、ゲート電極411をゲートリード421にボンディングワイヤ431により接続し、ソース電極412をソースリード422にボンディングワイヤ432により接続し、ドレイン電極413をドレインリード423にボンディングワイヤ433により接続する。尚、ボンディングワイヤ431、432、433は、Al等の金属材料により形成されている。また、本実施の形態においては、ゲート電極411はゲート電極パッドの一種であり、第2の実施の形態における半導体装置のゲート電極31と接続されている。また、ソース電極412はソース電極パッドの一種であり、第2の実施の形態における半導体装置のソース電極32と接続されている。また、ドレイン電極413はドレイン電極パッドの一種であり、第2の実施の形態における半導体装置のドレイン電極33と接続されている。
次に、トランスファーモールド法によりモールド樹脂440による樹脂封止を行なう。このようにして、GaN系の半導体材料を用いたHEMTのディスクリートパッケージされている半導体デバイスを作製することができる。
(PFC回路、電源装置及び高周波増幅器)
次に、本実施の形態におけるPFC回路、電源装置及び高周波増幅器について説明する。本実施の形態におけるPFC回路、電源装置及び高周波増幅器は、第1または第2の実施の形態におけるいずれかの半導体装置を用いた電源装置及び高周波増幅器である。
(PFC回路)
次に、本実施の形態におけるPFC(Power Factor Correction)回路について説明する。本実施の形態におけるPFC回路は、第1または第2の実施の形態における半導体装置を有するものである。
図23に基づき、本実施の形態におけるPFC回路について説明する。本実施の形態におけるPFC回路450は、スイッチ素子(トランジスタ)451と、ダイオード452と、チョークコイル453と、コンデンサ454、455と、ダイオードブリッジ456と、不図示の交流電源とを有している。スイッチ素子451には、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTが用いられている。
PFC回路450では、スイッチ素子451のドレイン電極とダイオード452のアノード端子及びチョークコイル453の一方の端子とが接続されている。また、スイッチ素子451のソース電極とコンデンサ454の一方の端子及びコンデンサ455の一方の端子とが接続されおり、コンデンサ454の他方の端子とチョークコイル453の他方の端子とが接続されている。コンデンサ455の他方の端子とダイオード452のカソード端子とが接続されており、コンデンサ454の双方の端子間にはダイオードブリッジ456を介して不図示の交流電源が接続されている。このようなPFC回路450においては、コンデンサ455の双方端子間より、直流(DC)が出力される。
本実施の形態におけるPFC回路では、サージ電圧等が発生しても破壊等がされにくい第1または第2の実施の形態における半導体装置を用いているため、PFC回路の信頼性を向上させることができる。
(実験結果)
次に、PFC回路等において、第2の実施の形態における半導体装置と従来の構造の半導体装置において、サージ電圧が加わった場合について、図24及び図25に基づき説明する。尚、第2の実施の形態における半導体装置は、図8及び図9に示される半導体装置であって、従来の構造の半導体装置は、図8及び図9に示される半導体装置において、サージ対策素子領域112が形成されていない構造のものである。また、図24及び図25は、サージ電圧が加わった場合において、半導体装置におけるドレイン−ソース電圧Vdsの時間的変化を示すものであり、図25は、図24の一部を拡大した図である。図24及び図25において、第2の実施の形態における半導体装置の特性を24Aに示し、従来の構造の半導体装置の特性を24Bに示す。第2の実施の形態における半導体装置は24Aに示されるように、Vdsが約400Vにおいてサージ対策素子領域112において電流が流れるため、サージが抑えられトランジスタ領域11におけるHEMTは保護されている。これに対し、従来の構造の半導体装置は24Bに示されるように、サージ対策素子に相当するものが形成されていないため、サージが抑えきれず、HEMTの耐圧を超えるサージ電圧がかかり、これによりHEMTが破壊されてしまう。このように、第2の実施の形態における半導体装置はサージ電圧等による破壊を抑制することができる。尚、上記においては、第2の実施の形態における半導体装置について説明したが、第1の実施の形態における半導体装置についても同様である。
(電源装置)
次に、本実施の形態における電源装置について説明する。本実施の形態における電源装置は、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTを有する電源装置である。
図26に基づき本実施の形態における電源装置について説明する。本実施の形態における電源装置は、前述した本実施の形態におけるPFC回路450を含んだ構造のものである。
本実施の形態における電源装置は、高圧の一次側回路461及び低圧の二次側回路462と、一次側回路461と二次側回路462との間に配設されるトランス463とを有している。
一次側回路461は、前述した本実施の形態におけるPFC回路450と、PFC回路450のコンデンサ455の双方の端子間に接続されたインバータ回路、例えばフルブリッジインバータ回路460とを有している。フルブリッジインバータ回路460は、複数(ここでは4つ)のスイッチ素子464a、464b、464c、464dを有している。また、二次側回路462は、複数(ここでは3つ)のスイッチ素子465a、465b、465cを有している。尚、ダイオードブリッジ456には、交流電源457が接続されている。
本実施の形態においては、一次側回路461におけるPFC回路450のスイッチ素子451において、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTが用いられている。更に、フルブリッジインバータ回路460におけるスイッチ素子464a、464b、464c、464dにおいて、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTが用いられている。一方、二次側回路462のスイッチ素子465a、465b、465cは、シリコンを用いた通常のMIS構造のFETが用いられている。
このように、本実施の形態においては、第1または第2の実施の形態における半導体装置を用いて形成されている。従って、一次側回路461において、スイッチ素子451、464a、464b、464c、464dにサージ電圧が生じても、保護ダイオードの整流作用により、スイッチ素子451、464a、464b、464c、464dの破壊が抑止される。このように、大きなアバランシェ耐量が確保されるため、デバイス動作の安定化に寄与する。
以上より、本実施の形態における電源装置は、デバイス速度が高く、アバランシェ耐量が大きく、サージに対して強く、信頼性の高い第1または第2の実施の形態における半導体装置を用いているため、電源装置の信頼性等を向上させることができる。また、第1または第2の実施の形態における半導体装置は。外部回路等を必要としないため、本実施の形態における電源装置を小型化にすることもできる。
(高周波増幅器)
次に、本実施の形態における高周波増幅器について説明する。本実施の形態における高周波増幅器は、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTが用いられている構造のものである。
図27に基づき、本実施の形態における高周波増幅器について説明する。本実施の形態における高周波増幅器は、ディジタル・プレディストーション回路471、ミキサー472a、472b、パワーアンプ473及び方向性結合器474を備えている。
ディジタル・プレディストーション回路471は、入力信号の非線形歪みを補償するものである。ミキサー472aは、非線形歪みが補償された入力信号と交流信号をミキシングするものである。パワーアンプ473は、交流信号とミキシングされた入力信号を増幅するものであり、第1または第2の実施の形態における半導体装置であるAlGaN/GaNにより形成されたHEMTを有している。方向性結合器474は、入力信号や出力信号のモニタリング等を行なう。尚、図27では、例えばスイッチの切り替えにより、出力側の信号をミキサー472bで交流信号とミキシングしてディジタル・プレディストーション回路471に送出することができる。
本実施の形態における高周波増幅器では、デバイス速度を向上させ、アバランシェ耐量が大きく、サージに対して強く、信頼性の高い第1または第2の実施の形態における半導体装置を用いているため、高周波増幅器の信頼性を向上させることができる。また、第1または第2の実施の形態における半導体装置は、外部回路等を必要としないため、本実施の形態における高周波増幅器を小型化にすることもできる。
以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
上記の説明に関し、更に以下の付記を開示する。
(付記1)
トランジスタ領域とサージ対策素子領域とを有する半導体装置であって、
基板の上に形成された第1の半導体層と、
前記第1の半導体層の上に形成された第2の半導体層と、
を有し、
前記トランジスタ領域には、前記第2の半導体層の上に、ゲート電極、ソース電極及びドレイン電極が形成されており、
前記サージ素子領域には、前記第2の半導体層の上に、サージ対策素子第1電極、サージ対策素子第2電極及びサージ対策素子第3電極が形成されており、
前記ソース電極と前記サージ対策素子第2電極とは接続されており、
前記ドレイン電極と前記サージ対策素子第3電極とは接続されており、
前記サージ対策素子第1電極は、前記サージ対策素子第2電極と前記サージ対策素子第3電極との間に形成されており、
前記サージ対策素子第1電極と前記サージ対策素子第3電極との間隔は、前記ゲート電極と前記ドレイン電極との間隔よりも狭いことを特徴とする半導体装置。
(付記2)
前記第1の半導体層、前記第2の半導体層は、窒化物半導体であることを特徴とする付記1に記載の半導体装置。
(付記3)
前記第1の半導体層において、前記第1の半導体層と前記第2の半導体層との界面近傍には電子が生成されていることを特徴とする付記1または2に記載の半導体装置。
(付記4)
前記第2の半導体層の上には第3の半導体層が形成されており、
前記トランジスタ領域には、前記第2の半導体層の上にソース電極及びドレイン電極が形成され、前記第3の半導体層の上にゲート電極が形成されており、
前記サージ素子領域には、前記第2の半導体層の上にサージ対策素子第2電極及びサージ対策素子第3電極が形成され、前記第3の半導体層の上にサージ対策素子第1電極が形成されており、
前記第3の半導体層は、前記第1の半導体層において生じたキャリアの極性とは反対の極性の導電型の半導体層であることを特徴とする付記1から3のいずれかに記載の半導体装置。
(付記5)
前記第3の半導体層は、窒化物半導体であることを特徴とする付記4に記載の半導体装置。
(付記6)
前記第1の半導体層において、前記第1の半導体層と前記第2の半導体層との界面近傍には電子が生成されており、
前記第3の半導体層は、p型であることを特徴とする付記4または5に記載の半導体装置。
(付記7)
前記第3の半導体層は、GaNを含む材料により形成されているものであることを特徴とする付記4から6のいずれかに記載の半導体装置。
(付記8)
前記第1の半導体層、前記第2の半導体層、前記第3の半導体層は、エピタキシャル成長により形成されているものであることを特徴とする付記4から7のいずれかに記載の半導体装置。
(付記9)
前記サージ対策素子第1電極におけるゲート長は、前記ゲート電極におけるゲート長よりも短いことを特徴とする付記1から8のいずれかに記載の半導体装置。
(付記10)
前記サージ対策素子第1電極と前記サージ対策素子第2電極とは接続されているものであることを特徴とする付記1から9のいずれかに記載の半導体装置。
(付記11)
前記第1の半導体層は、GaNを含む材料により形成されているものであることを特徴とする付記1から10のいずれかに記載の半導体装置。
(付記12)
前記第2の半導体層は、AlGaNを含む材料により形成されているものであることを特徴とする付記1から11のいずれかに記載の半導体装置。
(付記13)
前記第2の半導体層は、n型であることを特徴とする付記1から12のいずれかに記載の半導体装置。
(付記14)
前記第1の半導体層と前記第2の半導体層との間には、中間層が形成されており、
前記中間層は、AlGaNを含む材料により形成されているものであることを特徴とする付記1から13のいずれかに記載の半導体装置。
(付記15)
前記基板は、シリコン、サファイア、SiCのいずれかにより形成されており、
前記基板と前記第1の半導体層との間には、バッファ層が形成されているものであって、
前記バッファ層はAlNを含む材料により形成されているものであることを特徴とする付記1から14のいずれかに記載の半導体装置。
(付記16)
前記半導体装置はHEMTを含むものであることを特徴とする付記1から15のいずれかに記載の半導体装置。
(付記17)
付記1から16のいずれかに記載の半導体装置を有することを特徴とするPFC回路。
(付記18)
付記1から16のいずれかに記載の半導体装置を有することを特徴とする電源装置。
(付記19)
付記1から16のいずれかに記載の半導体装置を有することを特徴とする増幅器。
10 基板
11 トランジスタ領域
12 サージ対策素子領域
21 バッファ層
22 電子走行層(第1の半導体層)
22a 2DEG
23 中間層
24 電子供給層(第2の半導体層)
25 p型層(第3の半導体層)
25a p型層(トランジスタ領域における)
25b p型層(サージ対策素子領域における)
31 ゲート電極
32 ソース電極
33 ドレイン電極
41 サージ対策素子第1電極
42 サージ対策素子第2電極
43 サージ対策素子第3電極

Claims (8)

  1. トランジスタ領域とサージ対策素子領域とを有する半導体装置であって、
    基板の上に形成された第1の半導体層と、
    前記第1の半導体層の上に形成された第2の半導体層と、
    を有し、
    前記第2の半導体層の上には、第3の半導体層が形成されており、
    前記トランジスタ領域には、前記第2の半導体層の上にソース電極及びドレイン電極が形成され、前記第3の半導体層の上にゲート電極が形成されており、
    前記サージ対策素子領域には、前記第2の半導体層の上にサージ対策素子第2電極及びサージ対策素子第3電極が形成され、前記第3の半導体層の上にサージ対策素子第1電極が形成されており、
    前記ソース電極と前記サージ対策素子第2電極とは接続されて一体化されており、
    前記ドレイン電極と前記サージ対策素子第3電極とは接続されて一体化されており、
    前記サージ対策素子第1電極は、前記サージ対策素子第2電極と前記サージ対策素子第3電極との間に形成されており、
    前記ソース電極と前記ドレイン電極との間には、前記サージ対策素子第1電極が形成されていないものであって、
    前記サージ対策素子第1電極と前記サージ対策素子第3電極との間隔は、前記ゲート電極と前記ドレイン電極との間隔よりも狭
    前記第3の半導体層は、前記第1の半導体層において生じたキャリアの極性とは反対の極性の導電型の半導体層であって、
    前記第1の半導体層において、前記第1の半導体層と前記第2の半導体層との界面近傍には電子が生成されており、
    前記第3の半導体層は、p型であることを特徴とする半導体装置。
  2. 前記第1の半導体層、前記第2の半導体層は、窒化物半導体であることを特徴とする請求項1に記載の半導体装置。
  3. 前記第3の半導体層は、窒化物半導体であることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記第3の半導体層は、GaNを含む材料により形成されているものであることを特徴とする請求項からのいずれかに記載の半導体装置。
  5. 前記サージ対策素子第1電極におけるゲート長は、前記ゲート電極におけるゲート長よりも短いことを特徴とする請求項1からのいずれかに記載の半導体装置。
  6. 前記サージ対策素子第1電極と前記サージ対策素子第2電極とは接続されているものであることを特徴とする請求項1からのいずれかに記載の半導体装置。
  7. 前記第1の半導体層は、GaNを含む材料により形成されているものであることを特徴とする請求項1からのいずれかに記載の半導体装置。
  8. 前記第2の半導体層は、AlGaNを含む材料により形成されているものであることを特徴とする請求項1からのいずれかに記載の半導体装置。
JP2012062902A 2012-03-19 2012-03-19 半導体装置 Active JP5935425B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012062902A JP5935425B2 (ja) 2012-03-19 2012-03-19 半導体装置
US13/780,011 US9240472B2 (en) 2012-03-19 2013-02-28 Semiconductor device, PFC circuit, power supply device, and amplifier
TW102108000A TWI527184B (zh) 2012-03-19 2013-03-07 半導體裝置、pfc電路、電源供應裝置及放大器
CN201310073039.1A CN103325781B (zh) 2012-03-19 2013-03-07 半导体器件、pfc电路、电源装置和放大器
KR1020130024977A KR101418211B1 (ko) 2012-03-19 2013-03-08 반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062902A JP5935425B2 (ja) 2012-03-19 2012-03-19 半導体装置

Publications (2)

Publication Number Publication Date
JP2013197316A JP2013197316A (ja) 2013-09-30
JP5935425B2 true JP5935425B2 (ja) 2016-06-15

Family

ID=49156855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062902A Active JP5935425B2 (ja) 2012-03-19 2012-03-19 半導体装置

Country Status (5)

Country Link
US (1) US9240472B2 (ja)
JP (1) JP5935425B2 (ja)
KR (1) KR101418211B1 (ja)
CN (1) CN103325781B (ja)
TW (1) TWI527184B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917244B2 (en) * 2014-06-17 2018-03-13 The Regents Of The University Of Michigan Resonant body high electron mobility transistor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912187B2 (ja) 1995-04-24 1999-06-28 日本電気株式会社 電界効果型トランジスタ
JP4648533B2 (ja) * 2000-10-30 2011-03-09 Okiセミコンダクタ株式会社 半導体装置
JP4663156B2 (ja) 2001-05-31 2011-03-30 富士通株式会社 化合物半導体装置
JP4748498B2 (ja) 2002-12-05 2011-08-17 古河電気工業株式会社 電流遮断器付きGaN系半導体装置
JP2006066843A (ja) 2004-08-30 2006-03-09 Sony Corp 静電保護素子及び半導体装置及び同半導体装置の製造方法
JP4002918B2 (ja) 2004-09-02 2007-11-07 株式会社東芝 窒化物含有半導体装置
JP2006310769A (ja) * 2005-02-02 2006-11-09 Internatl Rectifier Corp Iii族窒化物一体化ショットキおよび電力素子
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP4695622B2 (ja) 2007-05-02 2011-06-08 株式会社東芝 半導体装置
JP2009049121A (ja) * 2007-08-17 2009-03-05 Oki Electric Ind Co Ltd ヘテロ接合型電界効果トランジスタ及びその製造方法
JP2009164158A (ja) 2007-12-28 2009-07-23 Panasonic Corp 半導体装置及びその製造方法
JP5346515B2 (ja) * 2008-07-24 2013-11-20 シャープ株式会社 ヘテロ接合電界効果トランジスタ
JP5597921B2 (ja) * 2008-12-22 2014-10-01 サンケン電気株式会社 半導体装置
JP2011030396A (ja) 2009-07-29 2011-02-10 Toyota Central R&D Labs Inc 並列接続型dc−dcコンバータ
JP2011165749A (ja) 2010-02-05 2011-08-25 Panasonic Corp 半導体装置
JP5672756B2 (ja) 2010-04-16 2015-02-18 サンケン電気株式会社 半導体装置
JP5548906B2 (ja) * 2010-09-14 2014-07-16 古河電気工業株式会社 窒化物系半導体装置
JP5117609B1 (ja) * 2011-10-11 2013-01-16 株式会社東芝 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法

Also Published As

Publication number Publication date
CN103325781B (zh) 2016-01-13
KR20130106297A (ko) 2013-09-27
US20130240953A1 (en) 2013-09-19
CN103325781A (zh) 2013-09-25
TW201405760A (zh) 2014-02-01
JP2013197316A (ja) 2013-09-30
US9240472B2 (en) 2016-01-19
KR101418211B1 (ko) 2014-07-09
TWI527184B (zh) 2016-03-21

Similar Documents

Publication Publication Date Title
US9818840B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9054170B2 (en) Semiconductor device, method for manufacturing the same, power supply, and high-frequency amplifier
JP6017248B2 (ja) 半導体装置の製造方法及び半導体装置
JP5990976B2 (ja) 半導体装置及び半導体装置の製造方法
KR101458292B1 (ko) 화합물 반도체 장치 및 그의 제조 방법
JP2013074069A (ja) 半導体装置及び半導体装置の製造方法
JP2013197315A (ja) 半導体装置及び半導体装置の製造方法
JP6540461B2 (ja) 半導体装置及び半導体装置の製造方法
JP6291997B2 (ja) 半導体装置の製造方法
KR101437274B1 (ko) 화합물 반도체 장치 및 그 제조 방법
JP6398678B2 (ja) 半導体装置及び半導体装置の製造方法
JP6703269B2 (ja) 化合物半導体装置及びその製造方法
JP6231730B2 (ja) 化合物半導体装置及びその製造方法
JP6649586B2 (ja) 化合物半導体装置及びその製造方法
US9647105B2 (en) Semiconductor device and method of manufacturing the same
JP5935425B2 (ja) 半導体装置
JP7099255B2 (ja) 化合物半導体装置、高周波増幅器及び電源装置
JP6769322B2 (ja) 半導体装置、電源装置及び増幅器
JP2022016952A (ja) 半導体装置
US8941093B2 (en) Compound semiconductor device and manufacturing method thereof
JP6187167B2 (ja) 化合物半導体装置及びその製造方法
JP2016178325A (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150