JP4002918B2 - 窒化物含有半導体装置 - Google Patents

窒化物含有半導体装置 Download PDF

Info

Publication number
JP4002918B2
JP4002918B2 JP2004255467A JP2004255467A JP4002918B2 JP 4002918 B2 JP4002918 B2 JP 4002918B2 JP 2004255467 A JP2004255467 A JP 2004255467A JP 2004255467 A JP2004255467 A JP 2004255467A JP 4002918 B2 JP4002918 B2 JP 4002918B2
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
nitride
gan
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004255467A
Other languages
English (en)
Other versions
JP2006073802A (ja
Inventor
藤 渉 齋
村 一 郎 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004255467A priority Critical patent/JP4002918B2/ja
Priority to US11/109,858 priority patent/US7271429B2/en
Publication of JP2006073802A publication Critical patent/JP2006073802A/ja
Priority to US11/766,484 priority patent/US7732837B2/en
Application granted granted Critical
Publication of JP4002918B2 publication Critical patent/JP4002918B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Description

本発明は、電力制御に用いられる窒化物含有半導体装置に係り、特に、窒化物を含有する横型電力用FETに関する。
スイッチング電源やインバータ等の回路には、スイッチング素子やダイオード等、電力制御に用いられる電力用半導体素子(パワー半導体素子)が用いられ、このパワー半導体素子には、高耐圧及び低オン抵抗が求められる。
そして、半導体素子の耐圧とオン抵抗との間には、素子材料によって決まるトレードオフの関係がある。
主な素子材料であるシリコンを用いた場合のパワー半導体素子においては、これまでの技術開発の進展により、既に限界近くまで低オン抵抗が実現されている。
従って、パワー半導体素子のオン抵抗をさらに低減するには、素子材料の変更が必要である。窒化ガリウム(GaN)や窒化アルミニウムガリウム(AlGaN)等の窒化物含有半導体や炭化珪素(シリコンカーバイド:SiC)等のワイドバンドギャップ半導体をスイッチング素子材料として用いることにより、材料によって決まる上記トレードオフの関係を改善することができ、素子の飛躍的な低オン抵抗化を図ることが可能である。
現在、ワイドバンドギャップ半導体を用いたパワー半導体素子の研究が盛んに行われているが、窒化ガリウム(GaN)等の窒化物含有半導体素子は、低オン抵抗化は実現されてはいるが、アバランシェ耐量等、パワー半導体素子の特性を考慮した設計は行われていない。これは、窒化ガリウム(GaN)系素子は、通信用素子を基礎として設計が行われているためである。
尚、窒化ガリウム(GaN)を素子材料として用いたいくつかの半導体素子がこれまでに提案され、公知となっている(例えば、特許文献1参照)。
特開2001−168111号公報
本発明の目的は、高アバランシェ耐量を有する、高耐圧且つ超低オン抵抗の窒化物含有電力用半導体装置を提供することである。
本発明の実施の一形態に係る窒化物含有半導体装置によれば、
チャネル層として形成されたノンドープの第1の窒化アルミニウムガリウム(AlGa1−xN(0≦x≦1))層と、
上記第1の窒化アルミニウムガリウム層上にバリア層として形成されたノンドープ又はn型の第2の窒化アルミニウムガリウム(AlGa1−yN(0≦y≦1,x<y))層と、
上記第2の窒化アルミニウムガリウム層上の所定領域に所定間隔ごとに形成されたストライプ状の部分を有するp型の第3の窒化アルミニウムガリウム(AlGa1−zN(0≦z≦1))層と、
上記第3の窒化アルミニウムガリウム層の一端に電気的に接続されるように上記第2の窒化アルミニウムガリウム層上に形成されたソース電極と、
上記第3の窒化アルミニウムガリウム層の他端から離隔して上記第2の窒化アルミニウムガリウム層上に形成されたドレイン電極と、
上記ソース電極と上記ドレイン電極との間であって上記第3の窒化アルミニウムガリウム層の他端よりも上記ソース電極寄りに上記第2の窒化アルミニウムガリウム層上に形成されたゲート電極と、
を備えていることを特徴とする。
本発明の実施の一形態に係る窒化物含有半導体装置は、上記構成により、高アバランシェ耐量を有する、超低オン抵抗の窒化物含有電力用半導体装置を提供することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。尚、図面中の同一部分には同一符号を付している。
図1は、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第1の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたゲート電極6と、を備えている。
窒化ガリウム(GaN)層1は、第1の窒化アルミニウムガリウム(AlGa1−xN(0≦x≦1))層として形成されたものであり、n型窒化アルミニウムガリウム(AlGaN)層2は、第2の窒化アルミニウムガリウム(AlGa1−yN(0≦y≦1,x<y))層として形成されたものである。
また、n型窒化アルミニウムガリウム(AlGaN)層2上に形成されたゲート電極6は、n型窒化アルミニウムガリウム(AlGaN)層2との間にショットキー接合を形成している。
上記構造にも表れているように、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置は、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含む横型窒化ガリウム系高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)である。
また、p型窒化ガリウム(GaN)層3は、第3の窒化アルミニウムガリウム(AlGa1−zN(0≦z≦1))層として形成されたものであり、従来のHEMT構造には存在しなかった構成要素である。
従来のHEMT構造においては、p型窒化ガリウム(GaN)層3が形成されていないため、ドレイン電極5に高電圧が印加されると、ゲート電極6端部やドレイン電極5端部でアバランシェ降伏が起こる。このときに発生したホールは、n型窒化アルミニウムガリウム(AlGaN)層2の存在によってゲート電極6から速やかに排出されず、チャネル層としての窒化ガリウム(GaN)層1に蓄積されてしまう。そのため、窒化ガリウム(GaN)層1内の電界がさらに大きくなって、アバランシェ降伏電流が増大し、素子の破壊に至る。即ち、従来のHEMT構造は、アバランシェ降伏に対する耐量が小さかった。
一方、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置においては、ソース電極4に電気的に接続され、ゲート電極6よりもドレイン電極5側に突出して延在するp型窒化ガリウム(GaN)層3をn型窒化アルミニウムガリウム(AlGaN)層2上に形成しているので、ドレイン電極5に高電圧が印加されると、アバランシェ降伏は、p型窒化ガリウム(GaN)層3とn型窒化アルミニウムガリウム(AlGaN)層2との間に形成されるpn接合で起こる。従って、発生したホールは、p型窒化ガリウム(GaN)層3を介して速やかにソース電極4に排出される。即ち、p型窒化ガリウム(GaN)層3は、ホールの抜け道となる避雷針的機能を果たすことになる。そのため、チャネル層としての窒化ガリウム(GaN)層1にホールが蓄積されることがなくなり、高いアバランシェ耐量を実現することができる。
尚、窒化アルミニウムガリウム(AlGaN)層2は、n型層ではなくノンドープ層として形成しても実施可能である。
p型窒化ガリウム(GaN)層3は、上述のように、第3の窒化アルミニウムガリウム(AlGa1−zN(0≦z≦1))層として形成されたものであるから、p型窒化ガリウム(GaN)層ではなくp型窒化アルミニウムガリウム(AlGaN)層として形成しても実施可能である。
また、p型窒化ガリウム(GaN)層3は、本実施の形態においては、所定領域に所定間隔ごとに略平行に形成するものとしているが、「所定間隔ごと」とは一定間隔ごとでなくてもよく、必ずしも相互に略平行でなくてもよい。
さらに、p型窒化ガリウム(GaN)層3の水平断面形状は任意であるが、本実施の形態及び後述する他の実施の形態のように、ストライプ状の部分を有する形状であると、所期の効果を容易に得ることができる。
図2は、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第2の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、p型窒化ガリウム(GaN)層7上に形成されたゲート電極6と、を備えている。
即ち、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置に対して、ゲート電極6直下のn型窒化アルミニウムガリウム(AlGaN)層2上にp型窒化ガリウム(GaN)層7を追加して形成したものである。換言すると、p型窒化ガリウム(GaN)層7は、n型窒化アルミニウムガリウム(AlGaN)層2とゲート電極6との間に挟み込まれるように形成されている。
このp型窒化ガリウム(GaN)層7を形成したことにより、ゲート電極6に電圧を印加していない状態でp型窒化ガリウム(GaN)層7直下のチャネルは空乏化され、ノーマリオフを実現することができる。
p型窒化ガリウム(GaN)層3が形成されていない従来のノーマリオフ型HEMT構造においては、アバランシェ降伏が起きると、ホールがp型窒化ガリウム(GaN)層7を介してゲート電極6に流れ込むため、アバランシェ降伏時に素子が破壊に至らなくてもゲート駆動回路が破壊されてしまうという問題点があった。
一方、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置のように、ゲート電極6直下にp型窒化ガリウム(GaN)層7が形成されているノーマリオフ型HEMT構造においても、ソース電極4に電気的に接続され、ゲート電極6よりもドレイン電極5側に突出して延在するp型窒化ガリウム(GaN)層3をn型窒化アルミニウムガリウム(AlGaN)層2上に形成することにより、アバランシェ降伏時にゲート駆動回路に負担をかけることを回避し、高いアバランシェ耐量を実現することができる。
尚、p型窒化ガリウム(GaN)層3とp型窒化ガリウム(GaN)層7とは、n型窒化アルミニウムガリウム(AlGaN)層2上にp型窒化ガリウム(GaN)層を結晶成長させた後、エッチングによりパターニングすることによって同時に形成することが可能である。
図3は、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3とp型窒化ガリウム層7との間隔d、及び、p型窒化ガリウム層7の長さ(チャネル長)Lを示す平面図である。
図3に示すように、p型窒化ガリウム(GaN)層3とp型窒化ガリウム(GaN)層7との間隔dとは、両者間の距離のことであり、p型窒化ガリウム(GaN)層7の長さ、即ち、チャネル長Lとは、ソース電極4からドレイン電極に向かう方向におけるp型窒化ガリウム(GaN)層7の寸法のことである。
本発明の第2の実施の形態に係る窒化物含有電力用半導体装置においては、p型窒化ガリウム(GaN)層3とp型窒化ガリウム(GaN)層7との間隔dを、p型窒化ガリウム(GaN)層7の長さ、即ち、チャネル長Lよりも短くすることによって、換言すると、上記間隔dとチャネル長Lとの関係を不等式L>dが成立するように設定することによって、ゲート電極6直下のチャネルを確実に空乏化してノーマリオフを実現し、ドレイン電圧に対するゲート閾値電圧の変動を小さくすることができる。
図4は、本発明の第3の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第3の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、p型窒化ガリウム(GaN)層7上に形成されたゲート電極6と、ゲート電極6及びp型窒化ガリウム(GaN)層7並びにp型窒化ガリウム(GaN)層3を被覆して形成された絶縁膜8と、ゲート電極6及びp型窒化ガリウム(GaN)層7並びにp型窒化ガリウム(GaN)層3を被覆するように絶縁膜8上に形成され、ソース電極4に電気的に接続されたフィールドプレート電極9と、を備えている。
即ち、本発明の第3の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置に対して、絶縁膜8を介してゲート電極6及びp型窒化ガリウム(GaN)層7並びにp型窒化ガリウム(GaN)層3を被覆するように形成され、ソース電極4に電気的に接続されたフィールドプレート電極9を追加して形成したものである。
このフィールドプレート電極9を形成したことにより、p型窒化ガリウム(GaN)層3端部の電界を緩和して、高耐圧を実現することができる。
尚、フィールドプレート電極9は、本実施の形態に限らず、他の実施の形態において形成してもよい。
図5は、本発明の第4の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第4の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、p型窒化ガリウム(GaN)層7上に形成されたゲート電極6と、ゲート電極6及びp型窒化ガリウム(GaN)層7並びにp型窒化ガリウム(GaN)層3を被覆して形成された絶縁膜8と、ゲート電極6及びp型窒化ガリウム(GaN)層7並びにp型窒化ガリウム(GaN)層3を被覆するように絶縁膜8上に形成され、ソース電極4に電気的に接続されたフィールドプレート電極9と、ドレイン電極5近傍領域を被覆するように絶縁膜8上に形成され、ドレイン電極5に電気的に接続された第2のフィールドプレート電極10と、を備えている。
即ち、本発明の第4の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第3の実施の形態に係る窒化物含有電力用半導体装置に対して、さらに、絶縁膜8を介してドレイン電極5近傍領域を被覆するように形成され、ドレイン電極5に電気的に接続された第2のフィールドプレート電極10を追加して形成したものである。
この第2のフィールドプレート電極10を形成したことにより、ドレイン電極5端部の電界も緩和して、さらに高耐圧を実現することができる。
また、本発明の第4の実施の形態に係る窒化物含有電力用半導体装置の構造において、ドレイン電極5に高電圧が印加されたときに、アバランシェ降伏が起こるとすれば、ドレイン電極5端部ではなく、確実にp型窒化ガリウム(GaN)層3端部で起こるようにすることにより、ホールが確実に排出されるようにして高いアバランシェ耐量を確保することが可能である。
そのためには、ゲート電極6端部からフィールドプレート電極9端部までの距離を、ドレイン電極5端部から第2のフィールドプレート電極10端部までの距離よりも短くするとよい。
尚、フィールドプレート電極9及び第2のフィールドプレート電極10は、本実施の形態に限らず、他の実施の形態において形成してもよい。
図6は、本発明の第5の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第5の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2及びp型窒化ガリウム(GaN)層3を被覆して形成されたゲート絶縁膜11と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにゲート絶縁膜11上に形成されたゲート電極6と、を備えている。
本発明の第5の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置と異なり、ゲート電極6とn型窒化アルミニウムガリウム(AlGaN)層2との間にゲート絶縁膜11が形成されている。
従って、ゲート電極6は、n型窒化アルミニウムガリウム(AlGaN)層2との間にショットキー接合を形成せず、本発明の第5の実施の形態に係る窒化物含有電力用半導体装置は、MISゲート構造となる。
上記構造にも表れているように、本発明の第5の実施の形態に係る窒化物含有電力用半導体装置は、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含むMISゲート構造の横型窒化ガリウム系電界効果トランジスタ(MIS−HFET)である。
本発明の第5の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置と同様の効果が得られる他、ゲート絶縁膜11を形成したことにより、ゲートリーク電流を劇的に小さくすることができ、ゲート駆動回路の負荷を軽減することができる。
図7は、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第6の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状のp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2並びにp型窒化ガリウム(GaN)層3及びp型窒化ガリウム(GaN)層7を被覆して形成されたゲート絶縁膜11と、ゲート絶縁膜11上のp型窒化ガリウム(GaN)層7上の領域に形成されたゲート電極6と、を備えている。
即ち、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第5の実施の形態に係る窒化物含有電力用半導体装置に対して、ゲート電極6直下のn型窒化アルミニウムガリウム(AlGaN)層2とゲート絶縁膜11との間にp型窒化ガリウム(GaN)層7を追加して形成したものである。換言すると、p型窒化ガリウム(GaN)層7は、ゲート絶縁膜11を介してゲート電極6とn型窒化アルミニウムガリウム(AlGaN)層2との間に挟み込まれるように形成されている。
このp型窒化ガリウム(GaN)層7を形成したことにより、MISゲート構造の横型窒化ガリウム系電界効果トランジスタ(MIS−HFET)においても、ゲート電極6に電圧を印加していない状態でp型窒化ガリウム(GaN)層7直下のチャネルは空乏化され、ノーマリオフを実現することができる。
従来のノーマリオフ型電界効果トランジスタでは、MISゲート構造を採用すると、p型窒化ガリウム(GaN)層7がいずれの電極にも接続されない状態となるため、アバランシェ降伏時に発生するホールの排出が不可能となり、アバランシェ耐量は非常に小さかった。
一方、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置においては、ソース電極4に電気的に接続され、ゲート電極6よりもドレイン電極5側に突出して延在するp型窒化ガリウム(GaN)層3がn型窒化アルミニウムガリウム(AlGaN)層2上に形成されているので、アバランシェ耐量を確保したまま、ゲート構造をMISゲート化することができる。
ところで、ゲート絶縁膜と半導体層との界面には、界面準位が存在する。高温状態でゲート/ドレイン間に電圧が印加されると、上記界面準位にキャリアがトラップされて、固定電荷が発生したような状態になる。
そして、従来のMISゲート構造電界効果トランジスタでは、ゲート絶縁膜に阻まれて電流は流れることができないため、上記固定電荷を除去することができない。その結果、素子内の電界分布が変化してしまう。また、固定電荷の量が大きくなり過ぎると、素子耐圧を低下させる結果にもなる。
一方、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置においては、界面準位にキャリアがトラップされたとしても、p型窒化ガリウム(GaN)層3とドレイン電極5との間で電流を流すことができるため、固定電荷とはならない。
このように、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置の構造は、高温状態での信頼性の向上にも有効である。
図8は、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。
本発明の第7の実施の形態に係る窒化物含有電力用半導体装置は、上述した本発明の各実施の形態に係る窒化物含有電力用半導体装置に適用可能な素子ブロック全体の平面構成に関するものである。
図8に示すように、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置の素子ブロックは、素子ブロックの素子領域に延在する素子領域ソース電極配線、素子ブロックの周縁部近傍を周回して形成された周縁部ソース電極配線、並びに、素子領域ソース電極配線及び周縁部ソース電極配線と外部との接続に用いられる引出部ソース電極配線を有するソース電極4と、素子ブロックの素子領域に延在する素子領域ドレイン電極配線、及び、素子領域ドレイン電極配線と外部との接続に用いられる引出部ドレイン電極配線を有するドレイン電極5と、一端が素子領域ソース電極配線に電気的に接続され、他端が素子領域ドレイン電極配線から離隔するように、素子領域ソース電極配線から素子領域ドレイン電極配線に向かってストライプ状に且つ所定間隔ごとに略平行に形成された素子領域p型窒化ガリウム(GaN)層、周縁部ソース電極配線に電気的に接続され、引出部ドレイン電極配線から離隔するように、周縁部ソース電極配線と引出部ドレイン電極配線との間に形成された素子領域外p型窒化ガリウム(GaN)層、及び、周縁部ソース電極配線を包囲して素子分離領域に形成され、素子ブロックと周囲とを絶縁分離する素子分離領域p型窒化ガリウム(GaN)層を有するp型窒化ガリウム(GaN)層3と、素子領域ソース電極配線と素子領域ドレイン電極配線との間であって素子領域p型窒化ガリウム(GaN)層の素子領域ドレイン電極配線側端部よりも素子領域ソース電極配線よりに形成されたゲート電極6と、ゲート電極と外部との接続に用いられるゲート引出電極12と、を備えている。
即ち、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置は、素子ブロック周縁部を包囲し、素子ブロックと周囲とを絶縁分離する素子分離領域をp型窒化ガリウム(GaN)層3によって形成している点が、従来の素子構造と異なっている。
従来の素子構造では、エッチングやイオン注入により素子分離領域を形成していた。
これに対して、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置においては、素子分離領域p型窒化ガリウム(GaN)層3によって素子ブロック周縁部を包囲することによってpn分離を行うのと同様な効果が得られるため、p型窒化ガリウム(GaN)層3のパターン形成と素子分離プロセスとを同時に行うことができる。
尚、素子ブロックの素子領域においては、ソース電極4及びドレイン電極5と平行な方向に沿って見ると、所定間隔ごとに形成されているゲート電極6と交互に配置された状態で所定間隔ごとにストライプ状の素子領域p型窒化ガリウム(GaN)層3が形成されているので、ゲート電極6を引き出すためのゲート引出電極12が多層配線技術により形成されている。
また、ストライプ状の素子領域p型窒化ガリウム(GaN)層3は、必ずしも素子領域に一様に形成する必要はなく、一部領域にのみ形成してもよい。その場合には、当該領域において上述の効果を得ることができる。
図9は、本発明の第8の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。
本発明の第8の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置と同様に、上述した本発明の各実施の形態に係る窒化物含有電力用半導体装置に適用可能な素子ブロック全体の平面構成に関するものである。また、本発明の第8の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置の一部構成を変更した変形例である。
本発明の第8の実施の形態に係る窒化物含有電力用半導体装置においては、図9に示すように、素子領域外におけるドレイン電極5の引出部ドレイン電極配線と素子領域外p型窒化ガリウム(GaN)層3との距離L1が、素子領域におけるドレイン電極5の素子領域ドレイン電極配線と素子領域外p型窒化ガリウム(GaN)層3との距離L2よりも小さく設定されている。
このようにp型窒化ガリウム(GaN)層3とドレイン電極5との距離を素子ブロック内の領域ごとに変化させることによって、アバランシェ降伏の起こる箇所を所定領域に誘導することが可能である。
例えば、図9の例のように、上記距離L1,L2の関係を不等式L1<L2が成立するように設定することによって、アバランシェ降伏が起こるとすれば、素子領域ではなく素子領域外で起こるようになる。
従って、アバランシェ降伏による素子領域の破壊を確実に防止することができ、仮にアバランシェ降伏が起こってもゲート駆動回路へのアバランシェ電流の流入を回避することができる。
尚、図8,図9に示した本発明の第7,第8の実施の形態に係る窒化物含有電力用半導体装置の平面構成に完全に対応しているのは、図1に示した本発明の第1の実施の形態に係る窒化物含有電力用半導体装置であるが、上述のように、本発明の第7,第8の実施の形態に係る窒化物含有電力用半導体装置の平面構成は、図2乃至図7に示した本発明の第2乃至第6の実施の形態に係る窒化物含有電力用半導体装置、即ち、ノーマリオフ型構造素子やMISゲート構造素子にも適用可能である。
図10は、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第9の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2上の所定領域に所定間隔ごとに略平行に形成されたストライプ状の形状を有し、かつ、所定位置において長手方向と交差する方向に突出する突出部を有するp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の長手方向の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の長手方向の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2及びp型窒化ガリウム(GaN)層3を被覆して形成されたゲート絶縁膜11と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の長手方向の他端よりもソース電極4寄りに、かつ、p型窒化ガリウム(GaN)層3の突出部にゲート絶縁膜11を介して一部が重なり合うように、ゲート絶縁膜11上に形成されたゲート電極6と、を備えている。
本発明の第9の実施の形態に係る窒化物含有電力用半導体装置は、図6に示した本発明の第5の実施の形態に係る窒化物含有電力用半導体装置と同様に、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含み、かつ、ゲート電極6とn型窒化アルミニウムガリウム(AlGaN)層2との間にゲート絶縁膜11が形成されているMISゲート構造の横型窒化ガリウム系電界効果トランジスタ(MIS−HFET)である。
但し、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置は、p型窒化ガリウム(GaN)層3が単純なストライプ状の形状ではなく、所定位置において長手方向と交差する方向に突出する突出部を有している。そして、ゲート電極6が、p型窒化ガリウム(GaN)層3の突出部にゲート絶縁膜11を介して一部が重なり合うように形成されている。
換言すると、ゲート電極6をゲート絶縁膜11上に形成したときに、ゲート電極6の一部がゲート絶縁膜11を介してp型窒化ガリウム(GaN)層3の突出部と重なり合うように、予め設計された突出部を有するp型窒化ガリウム(GaN)層3を形成しておく。
斯かる構造を採用することによって、ゲート電極6直下のチャネル部分の電位分布は、p型窒化ガリウム(GaN)層3に依存することとなる。
そして、ゲート絶縁膜11を介してゲート電極6の一端と重なり合う一のp型窒化ガリウム(GaN)層3とゲート電極6の他端と重なり合う他のp型窒化ガリウム(GaN)層3との間隔を変化させることにより、素子のゲート閾値電圧を調整することができる。例えば、上記二つのp型窒化ガリウム(GaN)層3の間隔を狭小化することにより、素子のゲート閾値電圧をプラス側に遷移させることができる。
本発明の第5の実施の形態に係る窒化物含有電力用半導体装置の変形例として図7に示した本発明の第6の実施の形態に係る窒化物含有電力用半導体装置の構造では、ゲート電極6直下のp型窒化ガリウム(GaN)層7の不純物濃度に依存して素子のゲート閾値電圧が変動するのに対して、図10に示す本発明の第9の実施の形態に係る窒化物含有電力用半導体装置では、ゲート絶縁膜11を介してゲート電極6の両端とそれぞれ重なり合う二つのp型窒化ガリウム(GaN)層3の間隔に依存して素子のゲート閾値電圧が変動する。
通常、p型窒化ガリウム(GaN)層の不純物活性化率は低く、活性化した不純物濃度はばらつき易い。このため、素子のゲート閾値電圧をゲート電極6直下のp型窒化ガリウム(GaN)層7の不純物濃度によって調整する場合、素子のゲート閾値電圧もばらつき易くなる。
しかし、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置の構造においては、素子のゲート閾値電圧がp型窒化ガリウム(GaN)層3の寸法によって決まるので、p型窒化ガリウム(GaN)層3の不純物濃度のばらつきは素子のゲート閾値電圧には影響せず、エッチング等の加工精度に依存する加工寸法のばらつきによって素子のゲート閾値電圧のばらつきが決まることになる。
そして、エッチング等の加工精度に依存する加工寸法のばらつきは、結晶成長における不純物濃度のばらつきに比較して小さい。
従って、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第5の実施の形態に係る窒化物含有電力用半導体装置と同様の効果が得られる他、素子のゲート閾値電圧のばらつきを小さく抑制することができる。
図11は、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3の突出部の長さLと突出部同士の間隔Wとを示す平面図である。
p型窒化ガリウム層3の突出部の長さLは、ソース電極4からドレイン電極5へ向かう方向、即ち、ストライプ状のp型窒化ガリウム層3の長手方向におけるp型窒化ガリウム層3の突出部の寸法である。
また、p型窒化ガリウム層3の突出部同士の間隔Wは、ゲート絶縁膜11を介してゲート電極6の一端と重なり合う一のp型窒化ガリウム(GaN)層3とゲート電極6の他端と重なり合う他のp型窒化ガリウム(GaN)層3との間隔である。
ここでは、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3の突出部同士の間隔Wを、突出部の長さLよりも小さく、即ち、間隔Wと長さLとの関係を不等式W<Lが成立するように設定している。
ドレイン電極5に高電圧が印加されると、ゲート/ドレイン電極間の電位分布だけでなく、ゲート電極6直下のチャネル部分の電位分布にも影響が及ぶ。
このとき、ゲート電圧が閾値電圧より小さい値であっても、チャネル部分の電位障壁がドレイン電圧により押し下げられると、ソース/ドレイン間に電流が流れるようになってオフリーク電流が増大し、ソフトブレークダウンを起こすことがある。
しかし、図11に示すような寸法の設定を行うことによって、ドレインからの電界がp型窒化ガリウム(GaN)層3に遮蔽され、チャネル部分の電位分布の変化を防止することができ、結果として、ソフトブレークダウンの発生を抑制することができる。
図12は、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3同士の間隔Wbと、ゲート電極6のドレイン電極5側端部からp型窒化ガリウム層3のドレイン電極5側端部までの距離Lbとを示す平面図である。
ここでは、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3同士の間隔Wbを、ゲート電極6のドレイン電極5側端部からp型窒化ガリウム層3のドレイン電極5側端部までの距離Lbよりも小さく、即ち、間隔Wbと距離Lbとの関係を不等式Wb<Lbが成立するように設定している。
このような寸法の設定を行うことによって、ドレイン電極5にさらに高電圧が印加された場合においても、チャネル部分の電位分布は影響を受けにくくなり、ドレイン電圧の上昇に伴うオフリーク電流の増加を抑制することができる。
図13は、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第10の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2の所定領域にn型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さに所定間隔ごとに略平行に形成されたストライプ状の凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されたp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたゲート電極6と、を備えている。
図1に示した本発明の第1の実施の形態に係る窒化物含有電力用半導体装置においては、p型窒化ガリウム(GaN)層3がn型窒化アルミニウムガリウム(AlGaN)層2上に形成されていたのに対し、図10に示す本発明の第10の実施の形態に係る窒化物含有電力用半導体装置においては、p型窒化ガリウム(GaN)層3は、n型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さの凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されている。即ち、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム(GaN)層3は、窒化ガリウム(GaN)層1内部にまで埋め込まれて形成されている点が、本発明の第1の実施の形態に係る窒化物含有電力用半導体装置と異なっている。
p型窒化ガリウム(GaN)層3がn型窒化アルミニウムガリウム(AlGaN)層2上に形成されている本発明の第1の実施の形態に係る窒化物含有電力用半導体装置では、ドレイン電極5に高電圧が印加されてアバランシェ降伏が起きた際に窒化ガリウム(GaN)層1内部で発生したホールは、n型窒化アルミニウムガリウム(AlGaN)層2/窒化ガリウム(GaN)層1のヘテロ界面におけるバンド不連続が障壁となって、p型窒化ガリウム(GaN)層3に流れ込み難い。
しかし、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置では、窒化ガリウム(GaN)層1とp型窒化ガリウム(GaN)層3との間に、上記バンド不連続が存在しないので、窒化ガリウム(GaN)層1内部で発生したホールは、p型窒化ガリウム(GaN)層3を介して速やかに排出される。
また、n型窒化アルミニウムガリウム(AlGaN)層2とp型窒化ガリウム(GaN)層3との接合においてアバランシェ降伏が起きても、n型窒化アルミニウムガリウム(AlGaN)層2とp型窒化ガリウム(GaN)層3とが接しているので、ホールは、p型窒化ガリウム(GaN)層3を介して速やかに排出される。
以上のような構造により、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置は、高いアバランシェ耐量を確保することができる。
図14は、本発明の第11の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第11の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2の所定領域にn型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さに所定間隔ごとに略平行に形成されたストライプ状の凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されたp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2及びp型窒化ガリウム(GaN)層3を被覆して形成されたゲート絶縁膜11と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにゲート絶縁膜11上に形成されたゲート電極6と、を備えている。
本発明の第11の実施の形態に係る窒化物含有電力用半導体装置は、図6に示した本発明の第5の実施の形態に係る窒化物含有電力用半導体装置と同様に、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含み、かつ、ゲート電極6とn型窒化アルミニウムガリウム(AlGaN)層2との間にゲート絶縁膜11が形成されているMISゲート構造の横型窒化ガリウム系電界効果トランジスタ(MIS−HFET)である。
但し、p型窒化ガリウム(GaN)層3及びその周辺の構造については、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の構造となっている。
MISゲート構造の本発明の第11の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の上記効果を得ることができる。
図15は、本発明の第12の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第12の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2の所定領域にn型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さに所定間隔ごとに略平行に形成されたストライプ状の形状を有し、かつ、所定位置において長手方向と交差する方向に突出する突出部を有する凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されたp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の長手方向の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の長手方向の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2及びp型窒化ガリウム(GaN)層3を被覆して形成されたゲート絶縁膜11と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の長手方向の他端よりもソース電極4寄りに、かつ、p型窒化ガリウム(GaN)層3の突出部にゲート絶縁膜11を介して一部が重なり合うように、ゲート絶縁膜11上に形成されたゲート電極6と、を備えている。
本発明の第12の実施の形態に係る窒化物含有電力用半導体装置は、図10に示した本発明の第9の実施の形態に係る窒化物含有電力用半導体装置と同様に、p型窒化ガリウム(GaN)層3が、単純なストライプ状の形状ではなく、所定位置において長手方向と交差する方向に突出する突出部を有しており、かつ、ゲート電極6が、p型窒化ガリウム(GaN)層3の突出部にゲート絶縁膜11を介して一部が重なり合うように形成されている。
p型窒化ガリウム(GaN)層3の水平断面形状は上述の通りであるが、p型窒化ガリウム(GaN)層3及びその周辺の垂直断面構造については、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の構造となっている。
p型窒化ガリウム(GaN)層3の形状が変更されている本発明の第12の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第9の実施の形態に係る窒化物含有電力用半導体装置と同様の効果が得られる他、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の効果を得ることができる。
図16は、本発明の第13の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第13の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2の所定領域にn型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さに所定間隔ごとに略平行に形成されたストライプ状の凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されたp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、p型窒化ガリウム(GaN)層7上に形成されたゲート電極6と、を備えている。
本発明の第13の実施の形態に係る窒化物含有電力用半導体装置は、図2に示した本発明の第2の実施の形態に係る窒化物含有電力用半導体装置と同様に、ゲート電極6直下にp型窒化ガリウム(GaN)層7が形成されているノーマリオフ型HEMT構造を有している。
但し、p型窒化ガリウム(GaN)層3及びその周辺の構造については、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の構造となっている。
ノーマリオフ型HEMT構造を有する本発明の第13の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第2の実施の形態に係る窒化物含有電力用半導体装置と同様の効果が得られる他、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の効果を得ることができる。
図17は、本発明の第14の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第14の実施の形態に係る窒化物含有電力用半導体装置は、チャネル層として形成されたノンドープの窒化ガリウム(GaN)層1と、窒化ガリウム(GaN)層1上にバリア層として形成されたn型窒化アルミニウムガリウム(AlGaN)層2と、n型窒化アルミニウムガリウム(AlGaN)層2の所定領域にn型窒化アルミニウムガリウム(AlGaN)層2の表面から窒化ガリウム(GaN)層1の表面部に至る深さに所定間隔ごとに略平行に形成されたストライプ状の凹陥部にn型窒化アルミニウムガリウム(AlGaN)層2上まで突出して形成されたp型窒化ガリウム(GaN)層3と、p型窒化ガリウム(GaN)層3の一端に電気的に接続されるようにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたソース電極4と、p型窒化ガリウム(GaN)層3の他端から離隔してn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたドレイン電極5と、ソース電極4とドレイン電極5との間であってp型窒化ガリウム(GaN)層3の他端よりもソース電極4寄りにn型窒化アルミニウムガリウム(AlGaN)層2上に形成されたp型窒化ガリウム(GaN)層7と、ソース電極4とドレイン電極5との間のn型窒化アルミニウムガリウム(AlGaN)層2並びにp型窒化ガリウム(GaN)層3及びp型窒化ガリウム(GaN)層7を被覆して形成されたゲート絶縁膜11と、ゲート絶縁膜11上のp型窒化ガリウム(GaN)層7上の領域に形成されたゲート電極6と、を備えている。
本発明の第14の実施の形態に係る窒化物含有電力用半導体装置は、図7に示した本発明の第6の実施の形態に係る窒化物含有電力用半導体装置と同様に、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含み、ゲート電極6とn型窒化アルミニウムガリウム(AlGaN)層2との間にゲート絶縁膜11が形成されており、さらに、ゲート電極6直下のゲート絶縁膜11とn型窒化アルミニウムガリウム(AlGaN)層2との間にp型窒化ガリウム(GaN)層7が形成されているノーマリオフ型であってMISゲート構造の横型窒化ガリウム系電界効果トランジスタ(MIS−HFET)である。
但し、p型窒化ガリウム(GaN)層3及びその周辺の構造については、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の構造となっている。
ノーマリオフ型であってMISゲート構造の本発明の第14の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第6の実施の形態に係る窒化物含有電力用半導体装置と同様の効果が得られる他、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の効果を得ることができる。
図18は、本発明の第15の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。尚、断面図(b)及び(c)は、それぞれ、平面図(a)に示されている線分AA’及びBB’における断面構造を示している。
本発明の第15の実施の形態に係る窒化物含有電力用半導体装置は、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置に適用可能な素子ブロック全体の平面構成に関するものである。
図18(a)に示すように、本発明の第15の実施の形態に係る窒化物含有電力用半導体装置の素子ブロックの平面構成は、図8に示した本発明の第7の実施の形態に係る窒化物含有電力用半導体装置の素子ブロックの平面構成と同様である。
一方、本発明の第15の実施の形態に係る窒化物含有電力用半導体装置の素子ブロックの断面構造は、図18(b)及び図18(c)に示すように、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置の断面構造と同様であり、従って、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置に対応する本発明の第1乃至第6の実施の形態に係る窒化物含有電力用半導体装置の断面構造とは異なっている。
本発明の第15の実施の形態に係る窒化物含有電力用半導体装置も、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置と同様に、素子ブロック周縁部を包囲し、素子ブロックと周囲とを絶縁分離する素子分離領域をp型窒化ガリウム(GaN)層3によって形成している。
p型窒化ガリウム(GaN)層3によって素子ブロック周縁部を包囲することによってpn分離を行うのと同様な効果が得られるため、p型窒化ガリウム(GaN)層3のパターン形成と素子分離プロセスとを同時に行うことができる。
即ち、本発明の第10の実施の形態に係る窒化物含有電力用半導体装置と同様の断面構造を有する本発明の第15の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置と同様の効果を得ることができる。
図19は、本発明の第16の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。
本発明の第16の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第15の実施の形態に係る窒化物含有電力用半導体装置と同様に、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置に適用可能な素子ブロック全体の平面構成に関するものである。また、本発明の第16の実施の形態に係る窒化物含有電力用半導体装置は、本発明の第15の実施の形態に係る窒化物含有電力用半導体装置の一部構成を変更した変形例である。
尚、本発明の第16の実施の形態に係る窒化物含有電力用半導体装置と本発明の第15の実施の形態に係る窒化物含有電力用半導体装置との関係は、本発明の第7の実施の形態に係る窒化物含有電力用半導体装置と本発明の第8の実施の形態に係る窒化物含有電力用半導体装置との関係に相当する。
本発明の第16の実施の形態に係る窒化物含有電力用半導体装置においては、図19に示すように、素子領域外におけるドレイン電極5の引出部ドレイン電極配線と素子領域外p型窒化ガリウム(GaN)層3との距離L1が、素子領域におけるドレイン電極5の素子領域ドレイン電極配線と素子領域外p型窒化ガリウム(GaN)層3との距離L2よりも小さく設定されている。
このようにp型窒化ガリウム(GaN)層3とドレイン電極5との距離を素子ブロック内の領域ごとに変化させることによって、例えば、図19の例のように、上記距離L1,L2の関係を不等式L1<L2が成立するように設定することによって、アバランシェ降伏の起こる箇所を所定領域に誘導し、アバランシェ降伏が起こるとすれば、素子領域ではなく素子領域外で起こるようにすることが可能である。
従って、本発明の第16の実施の形態に係る窒化物含有電力用半導体装置においても、本発明の第8の実施の形態に係る窒化物含有電力用半導体装置と同様に、アバランシェ降伏による素子領域の破壊を確実に防止することができ、仮にアバランシェ降伏が起こってもゲート駆動回路へのアバランシェ電流の流入を回避することができる。
尚、図18,図19に示した本発明の第15,第16の実施の形態に係る窒化物含有電力用半導体装置の平面構成に完全に対応しているのは、図13に示した本発明の第10の実施の形態に係る窒化物含有電力用半導体装置であるが、本発明の第15,第16の実施の形態に係る窒化物含有電力用半導体装置の平面構成は、図14乃至図17に示した本発明の第11乃至第14の実施の形態に係る窒化物含有電力用半導体装置、即ち、ノーマリオフ型構造素子やMISゲート構造素子にも適用可能である。
以上に説明したように、本発明の各実施の形態に係る窒化物含有電力用半導体装置によれば、ソース電極4に電気的に接続され、ゲート電極6よりもドレイン電極5側に突出して延在するp型窒化ガリウム(GaN)層3を形成しているので、アバランシェ降伏が起こったとしても、発生したホールは、p型窒化ガリウム(GaN)層3を介して速やかにソース電極4に排出されるので、チャネル層としての窒化ガリウム(GaN)層1にホールが蓄積されることがなくなり、高いアバランシェ耐量を実現することができる。
従って、高アバランシェ耐量を有する、高耐圧且つ超低オン抵抗の窒化物含有電力用半導体装置を提供することができる。
尚、上記説明においては、本発明を第1乃至第16の実施の形態を例に説明したが、本発明は、それらの実施の形態に限定されるものではなく、それら以外にも当業者が容易に想到し得る変形例の総てに適用可能である。
例えば、ホール排出に用いるp型窒化ガリウム(GaN)層3は、ホール排出の観点から、n型窒化アルミニウムガリウム(AlGaN)層2よりもバンドギャップが狭いこと、即ち、アルミニウム(Al)の組成比が小さいことが望ましい。
n型窒化アルミニウムガリウム(AlGaN)層2は、n型ではなくp型窒化アルミニウムガリウム(AlGaN)層としても実施可能である。また、コンタクト抵抗を下げるために、窒化インジウムガリウム(InGaN)層等のバンドギャップの狭い半導体層を用いてもよく、窒化インジウムガリウム(InGaN)層をコンタクト層として挿入することも可能である。
さらに、図5及び図6に示したフィールドプレート構造は、図7乃至図19に示した構造に適用しても、高耐圧化に有効である。
尚、上記本発明の各実施の形態に係る窒化物含有電力用半導体装置においては、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を含む半導体装置について説明したが、窒化ガリウム/窒化インジウムガリウム(GaN/InGaN)構造や窒化アルミニウム/窒化アルミニウムガリウム(AlN/AlGaN)構造を含む半導体装置にも、本発明の構成は適用可能である。
また、窒化アルミニウムガリウム/窒化ガリウム(AlGaN/GaN)ヘテロ構造を形成する基板材料に関しては特に記述していないが、本発明は、サファイア基板、シリコンカーバイド(SiC)基板、シリコン(Si)基板等の基板材料には依存せず、基板の導電性又は絶縁性といった特性にも関係なく実施可能である。
本発明の第1の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第2の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第2の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3とp型窒化ガリウム層7との間隔d、及び、p型窒化ガリウム層7の長さ(チャネル長)Lを示す平面図である。 本発明の第3の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第4の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第5の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第6の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第7の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。 本発明の第8の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。 本発明の第9の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3の突出部の長さLと突出部同士の間隔Wとを示す平面図である。 本発明の第9の実施の形態に係る窒化物含有電力用半導体装置におけるp型窒化ガリウム層3同士の間隔Wbと、ゲート電極6のドレイン電極5側端部からp型窒化ガリウム層3のドレイン電極5側端部までの距離Lbとを示す平面図である。 本発明の第10の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第11の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第12の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第13の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第14の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第15の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図(a)並びに断面図(b)及び(c)である。 本発明の第16の実施の形態に係る窒化物含有電力用半導体装置の構成を模式的に示す平面図である。
符号の説明
1 窒化ガリウム(GaN)層
2 n型窒化アルミニウムガリウム(AlGaN)層
3 p型窒化ガリウム(GaN)層
4 ソース電極
5 ドレイン電極
6 ゲート電極
7 p型窒化ガリウム(GaN)層
8 絶縁膜
9 フィールドプレート電極
10 第2のフィールドプレート電極
11 ゲート絶縁膜
12 ゲート引出電極

Claims (5)

  1. チャネル層として形成されたノンドープの第1の窒化アルミニウムガリウム(AlGa1−xN(0≦x≦1))層と、
    前記第1の窒化アルミニウムガリウム層上にバリア層として形成されたノンドープ又はn型の第2の窒化アルミニウムガリウム(AlGa1−yN(0≦y≦1,x<y))層と、
    前記第2の窒化アルミニウムガリウム層上の所定領域に所定間隔ごとに形成されたストライプ状の部分を有するp型の第3の窒化アルミニウムガリウム(AlGa1−zN(0≦z≦1))層と、
    前記第3の窒化アルミニウムガリウム層の一端に電気的に接続されるように前記第2の窒化アルミニウムガリウム層上に形成されたソース電極と、
    前記第3の窒化アルミニウムガリウム層の他端から離隔して前記第2の窒化アルミニウムガリウム層上に形成されたドレイン電極と、
    前記ソース電極と前記ドレイン電極との間であって前記第3の窒化アルミニウムガリウム層の他端よりも前記ソース電極寄りに前記第2の窒化アルミニウムガリウム層上に形成されたゲート電極と、
    を備えていることを特徴とする窒化物含有半導体装置。
  2. 前記第2の窒化アルミニウムガリウム層と前記ゲート電極との間に形成されたp型の第4の窒化アルミニウムガリウム(AlGa1−zN(0≦z≦1))層をさらに備えていることを特徴とする請求項1に記載の窒化物含有半導体装置。
  3. 前記第3の窒化アルミニウムガリウム層と前記第4の窒化アルミニウムガリウム層との間隔dが、前記ソース電極から前記ドレイン電極に向かう方向における前記第4の窒化アルミニウムガリウム層の長さLよりも短い(d<L)ことを特徴とする請求項2に記載の窒化物含有半導体装置。
  4. 前記ゲート電極並びに前記第3及び第4の窒化アルミニウムガリウム層を被覆して形成された絶縁膜と、
    前記ゲート電極並びに前記第3及び第4の窒化アルミニウムガリウム層を被覆するように前記絶縁膜上に形成され、前記ソース電極に電気的に接続されたフィールドプレート電極と、
    さらに備えていることを特徴とする請求項1乃至3のいずれかに記載の窒化物含有半導体装置。
  5. 前記第2の窒化アルミニウムガリウム層と前記ゲート電極との間に形成されたゲート絶縁膜をさらに備えていることを特徴とする請求項1に記載の窒化物含有半導体装置。
JP2004255467A 2004-09-02 2004-09-02 窒化物含有半導体装置 Expired - Fee Related JP4002918B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004255467A JP4002918B2 (ja) 2004-09-02 2004-09-02 窒化物含有半導体装置
US11/109,858 US7271429B2 (en) 2004-09-02 2005-04-20 Nitride semiconductor device
US11/766,484 US7732837B2 (en) 2004-09-02 2007-06-21 Nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255467A JP4002918B2 (ja) 2004-09-02 2004-09-02 窒化物含有半導体装置

Publications (2)

Publication Number Publication Date
JP2006073802A JP2006073802A (ja) 2006-03-16
JP4002918B2 true JP4002918B2 (ja) 2007-11-07

Family

ID=35941871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255467A Expired - Fee Related JP4002918B2 (ja) 2004-09-02 2004-09-02 窒化物含有半導体装置

Country Status (2)

Country Link
US (2) US7271429B2 (ja)
JP (1) JP4002918B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843192B1 (ko) 2011-09-30 2018-03-29 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542912B2 (ja) * 2005-02-02 2010-09-15 株式会社東芝 窒素化合物半導体素子
JP5025108B2 (ja) * 2005-08-24 2012-09-12 株式会社東芝 窒化物半導体素子
JP2007220895A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 窒化物半導体装置およびその製造方法
JP2007294769A (ja) 2006-04-26 2007-11-08 Toshiba Corp 窒化物半導体素子
US20090166674A1 (en) * 2006-05-24 2009-07-02 Meijo University Ultraviolet light receiving element
KR100857683B1 (ko) 2007-03-07 2008-09-08 페어차일드코리아반도체 주식회사 질화물 반도체 소자 및 그 제조방법
JP4695622B2 (ja) 2007-05-02 2011-06-08 株式会社東芝 半導体装置
JP2010530619A (ja) * 2007-06-18 2010-09-09 ミクロガン ゲーエムベーハー 垂直コンタクト部を備える電気回路
US8174051B2 (en) * 2007-06-26 2012-05-08 International Rectifier Corporation III-nitride power device
JP4478175B2 (ja) * 2007-06-26 2010-06-09 株式会社東芝 半導体装置
US20090050939A1 (en) * 2007-07-17 2009-02-26 Briere Michael A Iii-nitride device
JP5032965B2 (ja) * 2007-12-10 2012-09-26 パナソニック株式会社 窒化物半導体トランジスタ及びその製造方法
JPWO2010016564A1 (ja) * 2008-08-07 2012-01-26 日本電気株式会社 半導体装置
US7999287B2 (en) 2009-10-26 2011-08-16 Infineon Technologies Austria Ag Lateral HEMT and method for the production of a lateral HEMT
US20110210377A1 (en) * 2010-02-26 2011-09-01 Infineon Technologies Austria Ag Nitride semiconductor device
KR101774933B1 (ko) * 2010-03-02 2017-09-06 삼성전자 주식회사 듀얼 디플리션을 나타내는 고 전자 이동도 트랜지스터 및 그 제조방법
WO2011135862A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 窒化物系半導体素子およびその製造方法
JP2011249728A (ja) * 2010-05-31 2011-12-08 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2012156332A (ja) 2011-01-26 2012-08-16 Toshiba Corp 半導体素子
US8772833B2 (en) * 2011-09-21 2014-07-08 Electronics And Telecommunications Research Institute Power semiconductor device and fabrication method thereof
JP5935425B2 (ja) * 2012-03-19 2016-06-15 富士通株式会社 半導体装置
JP2013197315A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
US9917080B2 (en) * 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
JP6083548B2 (ja) * 2013-04-23 2017-02-22 パナソニックIpマネジメント株式会社 窒化物半導体装置
US9111750B2 (en) 2013-06-28 2015-08-18 General Electric Company Over-voltage protection of gallium nitride semiconductor devices
US9997507B2 (en) 2013-07-25 2018-06-12 General Electric Company Semiconductor assembly and method of manufacture
JP2015056637A (ja) * 2013-09-13 2015-03-23 株式会社東芝 半導体装置
US9048303B1 (en) 2014-01-30 2015-06-02 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
JP5841624B2 (ja) * 2014-02-12 2016-01-13 株式会社東芝 窒化物半導体素子
US9337279B2 (en) 2014-03-03 2016-05-10 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
JP2015173151A (ja) 2014-03-11 2015-10-01 株式会社東芝 半導体装置
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
JP2016131207A (ja) * 2015-01-14 2016-07-21 株式会社豊田中央研究所 集積した半導体装置
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
JP6478395B2 (ja) * 2015-03-06 2019-03-06 住友電工デバイス・イノベーション株式会社 半導体装置
JP6503202B2 (ja) * 2015-03-12 2019-04-17 エイブリック株式会社 半導体装置
JP2016171197A (ja) * 2015-03-12 2016-09-23 株式会社東芝 半導体装置
JP6311668B2 (ja) * 2015-07-10 2018-04-18 株式会社デンソー 半導体装置
US10332976B2 (en) * 2015-08-28 2019-06-25 Sharp Kabushiki Kaisha Nitride semiconductor device
JP6544196B2 (ja) * 2015-10-23 2019-07-17 株式会社豊田中央研究所 窒化物半導体装置
DE102015118440A1 (de) 2015-10-28 2017-05-04 Infineon Technologies Austria Ag Halbleiterbauelement
US10516023B2 (en) 2018-03-06 2019-12-24 Infineon Technologies Austria Ag High electron mobility transistor with deep charge carrier gas contact structure
US10541313B2 (en) 2018-03-06 2020-01-21 Infineon Technologies Austria Ag High Electron Mobility Transistor with dual thickness barrier layer
US11658236B2 (en) * 2019-05-07 2023-05-23 Cambridge Gan Devices Limited III-V semiconductor device with integrated power transistor and start-up circuit
US11955488B2 (en) 2019-05-07 2024-04-09 Cambridge Gan Devices Limited III-V semiconductor device with integrated power transistor and start-up circuit
US20230078017A1 (en) * 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284576A (ja) 2000-03-30 2001-10-12 Toshiba Corp 高電子移動度トランジスタ及びその製造方法
US6933544B2 (en) 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
WO2004068590A1 (en) * 2003-01-29 2004-08-12 Kabushiki Kaisha Toshiba Power semiconductor device
JP4041075B2 (ja) * 2004-02-27 2008-01-30 株式会社東芝 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843192B1 (ko) 2011-09-30 2018-03-29 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법

Also Published As

Publication number Publication date
JP2006073802A (ja) 2006-03-16
US20070241337A1 (en) 2007-10-18
US7271429B2 (en) 2007-09-18
US7732837B2 (en) 2010-06-08
US20060043501A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4002918B2 (ja) 窒化物含有半導体装置
JP4041075B2 (ja) 半導体装置
US9853108B2 (en) Nitride semiconductor device using insulating films having different bandgaps to enhance performance
JP4417677B2 (ja) 電力用半導体装置
JP5025108B2 (ja) 窒化物半導体素子
KR101922122B1 (ko) 노멀리 오프 고전자이동도 트랜지스터
EP3252825B1 (en) Double-channel hemt device and manufacturing method thereof
US8723234B2 (en) Semiconductor device having a diode forming area formed between a field-effect transistor forming area and a source electrode bus wiring or pad
JP2006269586A (ja) 半導体素子
KR101927408B1 (ko) 고전자 이동도 트랜지스터 및 그 제조방법
JP5691267B2 (ja) 半導体装置
CN110785836B (zh) 半导体装置
US10833185B2 (en) Heterojunction semiconductor device having source and drain pads with improved current crowding
JP2008258419A (ja) 窒化物半導体素子
US20160240614A1 (en) Semiconductor device and semiconductor package
KR101636134B1 (ko) 반도체 장치
JP2007180143A (ja) 窒化物半導体素子
JP2006086354A (ja) 窒化物系半導体装置
TW201421648A (zh) 半導體裝置
KR20140011791A (ko) 고전자이동도 트랜지스터 및 그 제조방법
JP2008263140A (ja) 窒化物半導体素子
US9450071B2 (en) Field effect semiconductor devices and methods of manufacturing field effect semiconductor devices
CN108417626B (zh) 半导体装置
JP2009044035A (ja) 電界効果半導体装置
JP2014045154A (ja) 半導体装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees