JP5889971B2 - 安定した先駆物質供給のための泡供給システム - Google Patents

安定した先駆物質供給のための泡供給システム Download PDF

Info

Publication number
JP5889971B2
JP5889971B2 JP2014148227A JP2014148227A JP5889971B2 JP 5889971 B2 JP5889971 B2 JP 5889971B2 JP 2014148227 A JP2014148227 A JP 2014148227A JP 2014148227 A JP2014148227 A JP 2014148227A JP 5889971 B2 JP5889971 B2 JP 5889971B2
Authority
JP
Japan
Prior art keywords
precursor
liquid
liquid precursor
bubble
nozzle structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014148227A
Other languages
English (en)
Other versions
JP2015007286A (ja
Inventor
洋一 坂田
洋一 坂田
和孝 柳田
和孝 柳田
利幸 中川
利幸 中川
直之 中本
直之 中本
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2015007286A publication Critical patent/JP2015007286A/ja
Application granted granted Critical
Publication of JP5889971B2 publication Critical patent/JP5889971B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Nozzles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

従来技術
発明の分野
本発明の実施例は、一般に、液体先駆物質を泡立たせるための装置および方法に関する。特に、この液体先駆物質を泡立たせるための装置および方法は、実用されるバブラーノズル構造および方法に利用される。
従来技術の説明
半導体プロセスにおける新たな進歩は、材料堆積プロセスを含む多くのプロセスで使用する液体先駆物質のプロセスチャンバーへの改良された運搬を要求する。この液体先駆物質は、この先駆物質の効果的な使用のため、およびプロセスチャンバー内における基体上に堆積された材料の形成の効果的なコントロールのため、好ましくは、蒸気の状態で与えられる。
液体先駆物質を蒸気の状態でプロセスチャンバーへ供給する5つの受け入れられた技術がある。1つのプロセスは、液体流量コントローラー(LMFC)によってコントロールされた流量を伴う液体の状態でプロセスチャンバーへ液体先駆物質を供給し、そして、この先駆物質が使用の際に気化器によって気化される。第2のプロセスは、加熱によって気化される液体先駆物質を必要とし、結果的に生じる蒸気が、流量コントローラー(MFC)によってコントロールされた流量を伴ってチャンバーへ供給される。第3のプロセスは、キャリアガスをキャニスターに収容された先駆物質の表面を介して流すことによって先駆物質の蒸気を供給し、結果物としての先駆物質蒸気をキャニスターから出してその後にプロセスツールへ搬送する工程を含む。このプロセスにおいて、上記キャリアガスの流れは、先駆物質の液体の中で決して沈降されない。第4のプロセスは、真空吸引システムによってキャニスターからチャンバーへ液体先駆物質の蒸気を供給する。最後に、泡立て方法が、液体先駆物質の気化に使用され、結果物としての蒸気をプロセスチャンバーへ運ぶ。
この泡立て方法は、キャリアガスを先駆物質の液体内へ導入し、多くのキャリアガスの泡が先駆物質の液体の中へ導入される。キャリアガスの泡は、先駆物質の表面へ上昇し、キャニスターの温度で先駆物質の蒸気圧と平衡に近付くように飽和状態になる。泡立てプロセスの有効性が、泡の導入ポイントより上の先駆物質液体の高さと同じく、先駆物質液体の中へ導入された泡のサイズや量によって効果を奏することは当業者によって正しく認識されるであろう。
加熱によって簡単に分解される先駆物質は、上述した初めの2つの方法によって与えられることはできない。その後の2つの方法は、加熱を伴わない多くの量の先駆物質の供給には使用できない。そして、加熱された液体先駆物質蒸気の結果的な流量を効果的にコントロールすることは難しい。泡立て方法と言われる第5のプロセスは、初めの4つのプロセスにおける困難性を解消する;しかしながら、この泡立て方法は、気化された先駆物質の供給の間、一定の集中および一定の温度の維持の困難さを有することが認められる。
加えて、従来の泡立てシステムは、十分満足な泡立て結果より少なく十分満足な流量より少ないものと認められる。例えば、従来の泡立てシステムは、太陽電池製造分野で使用する先駆物質の一定且つ十分な流量の提供の難しさを有する。
公知の泡立てシステムの1つの実施例において、バブラーにおけるディップチューブを通して液体先駆物質内へキャリアガスが導入され、バブラーから先駆物質の蒸発された蒸気ガスを除去する。キャリアガスと先駆物質の混合物は、化学的蒸着(CVD)チャンバーのようなプロセスチャンバーへ供給される。このような泡立てシステムにおいて、高く十分な流量でプロセスチャンバーへ先駆物質を安定して供給することが重要であり、供給パイプラインで液化することなく先駆物質を供給することも重要であり、キャニスターにある全ての先駆物質がキャリアガス内において全て気化されて液滴の形で存在しないことが重要である。先駆物質の濃度および液化の変化或いは先駆物質の液滴の存在は、極小成分のフィルム均一性および/或いは堆積されたフィルムの厚さにおける欠点を含むフィルム形成プロセスにおける再生可能性や繰り返し可能性に影響する。特に、供給パイプにおける先駆物質のキャニスター出口での液化或いは液滴の形成は、注目すべき濃度の変化を有するように観測される。
図1は、一定の液温を維持するための湯槽を有する従来の泡立てシステム100を示す。図1において、バブラーノズル102がDIPチューブ104の端部に接続され、容器120内の液体先駆物質108の容積の中へのガスの流れによって泡106を発生する。入口バルブ110(ヘッドバルブ)を用いてDIPチューブ内へ不活性ガスが導入され、泡から形成された蒸発された先駆物質が出口バルブ112(DIPバルブ)を介して容器120から出る。この従来の泡立てシステム100は、それぞれガス入口210、230およびノズル出口212、232を有する図2Aおよび2Bに示された実施例200、220の従来のバブラーノズル102を使用する。
上述した従来の泡立てシステム100において、湯槽130が液体先駆物質132を一定温度で維持するため広く使用される。容器120(バブラー)内の液体先駆物質108は蒸発を通して熱を失い、湯槽130が、先駆物質液体108の泡立てによって失われた熱をバランスするために必要な熱を供給する。この湯槽130は、タンク134、熱電対136、熱電対136のセンサーケーブル138、および熱電対136からの温度信号を用いることによって液体温度をコントロールできるコントローラー140からなる。この湯槽130は、ライン116および118を通して、バブラー、すなわち容器120を包むウォータージャケットヒーターへ接続され、これらラインは、タンク134からウォータージャケットヒーター114へお湯を循環するためにつながれている。
上述した従来の液体コントロールシステムは以下の問題を有する。水槽タンクによって加熱されたお湯がパイプラインを通してウォータージャケットヒーター内を循環されることから、一定の液体温度を維持することが難しい。バブラーの底を加熱することが難しく、バブラー内の液体を効率良く加熱することが難しい。加熱槽タンクから加熱されなければならない液体先駆物質までの距離があるため、液体先駆物質の蒸発によって液体温度の減少があるとき、システムは、ゆっくりとした熱調節反応時間を有する。この従来の加熱システムは、さらなる費用を必要とし、水槽やお湯のパイプラインを含む追加の装備を必要とする。このようなシステムは、水槽タンク内の水の交換および水槽タンクの清掃のための追加のメンテナンスの必要がある。水槽タンク内の水は、先駆物質が水と激しく反応する場合、非常に危険な液体である。さらに、同じケースで、水槽を使う加熱システムは、半導体の製造工場におけるクリーンルームで使用できない。さらに、高い流量のキャリアガスの使用および/或いは高い液体温度の維持を伴うことなく、先駆物質を高い流量で安定して供給することは難しい。
さらに、従来技術では泡立て供給について3つの問題がある。第1の問題は、供給の初めで液体蒸気の安定した濃度を得るために必要とされる不所望な時間である。この問題は、先駆物質の不安定な濃度が半導体装置の特性に影響しこの不安定な濃度が堆積の目的で使用できないため、先駆物質の無駄の増加を引き起こす。蒸発熱による液体温度の突然の減少が、泡立て供給がスタートされたときにも起き、もしヒーターがこの変化に反応できない場合、温度が予定値より高く増大されなければならず、ヒーターを過熱する。
第2の問題は、泡立ての間の先駆物質の変動濃度である。この問題は、半導体装置や光電池のような製品の特性を、基体の厚さや均一性に影響する不安定な化学蒸着として、所望するより少なくさせる。この問題は、霧の発生および/或いは不所望な泡サイズによっても生じる。霧の発生は、液体先駆物質表面での振動(波やはねかけによって引き起こされる液体先駆物質の表面の不安定性)によって引き起こされる。上述した蒸気の濃度は、霧状の先駆物質材料が出る先駆物質の流れに同伴され霧が不規則且つ予測不能に形成するように、発生された霧によって簡単に変動される。
振動の2つの可能な理由がある。第1の理由は、液体先駆物質の表面での大きなサイズを有する泡の破裂が、振動を増大し、表面への液体先駆物質の流れを増大する。第2の理由は、発生された泡が液体中で十分に均一に広がらず、液体表面における集中された消散ポイントを生じ、液体の表面の一部分で破裂することである。図6Aは、チューブのエッジからの泡の発生を示す。このノズルから発生された泡は、明らかに大きく、液体表面の振動は、激しくなるものと認められる。図6Bは、1つの共通の溶液からの泡の発生を示す。図2Bのノズルは、図2Aのノズルと比較して、泡のサイズをよく減少できる。しかし、上昇する泡により形成される泡の道(液体表面の同じ位置で泡が破裂する)が発生するため、表面の振動は減少されない。
第3の問題は、低い液体レベルで発生する。液体レベルがバブラー内で空に近い場合、先駆物質の濃度がすばやく上昇/落下する。それゆえに、バブラー内の液体は、効果的に使用できない。液体レベルがバブラーノズルに近い場合、発生された霧は、ときどき濃度を増大し、或いは蒸発の欠如により濃度が減少される。
それゆえに、液体先駆物質を効果的に泡立ててこの先駆物質をプロセスチャンバーへ効果的に運ぶための方法および装置が必要である。
要約
本発明の実施例は、液体先駆物質を気化するための装置および方法をあまねく供給する。1つの実施例において、第1の端部および第2の端部を有するガス流導管と、このガス流導管の上記第2の端部に接続され、上記ガス流導管の上記第2の端部へ流体を流通可能に接続された1つあるいはそれ以上の孔の開いた導管を有するノズル構造と、上記ガス流導管の周りで且つ上記ノズル構造から離間した関係で配置されたプレートと、を有し、上記1つあるいはそれ以上の孔の開いた導管および上記プレートは、両方とも、上記ガス流導管の軸から放射状に延びている、液体先駆物質の蒸気を供給するための泡立てシステムが供給される。
他の実施例において、流体容器を有する泡立てシステムを供給する工程と、第1の端部および第2の端部を有し流体容器内に配置されたガス流導管と、このガス流導管の上記第2の端部に接続され、上記ガス流導管の上記第2の端部へ流体を流通可能に接続された1つあるいはそれ以上の孔の開いた導管を有するノズル構造と、上記ガス流導管の周りで且つ上記ノズル構造から離間した関係で配置されたプレートと、を有し、上記1つあるいはそれ以上の孔の開いた導管および上記プレートが、両方とも、上記ガス流導管の軸から放射状に延びており、液体先駆物質を上記液体容器へ供給し、上記プレートの高さより大きい初めの容積を形成する工程と、上記ガス導管を通してキャリアガスを供給し、上記ノズル構造の上記1つ或いはそれ以上の孔の開いた導管から出す工程と、を有し、上記キャリアガスを出す工程は、上記液体先駆物質内で第1のサイズを有する第1の泡を形成し、上記第1の泡は、上記プレートに接触して、上記第1のサイズより小さな第2のサイズを有する第2の泡を形成し、上記第2の泡は、上記液体先駆物質の表面へ流れ、上記液体先駆物質の表面で気化された先駆物質を製造する、液体先駆物質を気化するための方法が供給される。
本願発明の性質および目的さらなる理解のため、同じ構成要素に同じ或いは類似している参照番号が与えられた添付図面とともに、以下の詳細な説明が参照される。
図1は、液体温度を一定温度に維持する湯槽を有する従来の泡立てシステムを示す。 図2Aは、図1の従来の泡立てシステムで使用するノズル形状の実施例を示す。 図2Bは、図1の従来の泡立てシステムで使用するノズル形状の実施例を示す。 図3は、本発明によるところの液体先駆物質の蒸気を供給するための泡立てシステムの1つの実施例を示す。 図4は、本発明によるところの液体先駆物質の蒸気を供給するための泡立てシステムの1つの実施例を示す。 図5は、本発明によるところのノズル構造の1つの実施例を示す。 図6Aは、図2Aのノズル構造の実施例からの泡の発生形態を示す。 図6Bは、図2Bのノズル構造の実施例からの泡の発生形態を示す。 図6Cは、図5のノズル構造の実施例からの泡の発生形態を示す。 図7は、液体先駆物質の蒸気を供給するための試験的な泡立てシステムの1つの実施例を示す。 図8は、図2Aのノズルの1つの実施例から泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図9は、図2Bの他のノズルの1つの実施例から泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図10は、図5の他のノズルの1つの実施例から泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図11は、図2Bの従来技術のノズル構造から泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図12は、図5のノズル構造から泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図13は、泡立てコアユニットの1つの実施例を示す。 図14は、この発明によるところのノズルおよび泡立てシステムから泡立った先駆物質の時間に対する濃度および温度を示すチャートである。 図15は、吸引プロセスによって与える液体を引くための装置の1つの実施例を示す。 図16は、従来技術のノズルおよび泡立てシステムから泡立った先駆物質の液体先駆物質温度および先駆物質濃度に対する蒸発の効果を示すチャートである。
好適な実施例の説明
ここに開示されたものは、方法、装置、およびその複合の限定されない実施例であり、これらは、半導体、光電池、LCD−TFT、或いはフラットパネルタイプの装置に使用される。背景技術で明らかにされた問題は、革新的なノズル構造、温度制御装置、供給の初めで先駆物質を供給する方法、および供給ラインの温度制御の方法を含むこの発明の種々の実施例によって解決されるであろう。
この発明の実施例は、液体先駆物質の蒸気を供給するための泡立てシステム、および液体先駆物質の蒸発のための方法を提供する。この発明のさらなる実施例は、ガス流導管および加熱システムに接続されたバブラーノズル構造に関する。最小の或いは減少された先駆物質の濃度を伴うプロセスチャンバーへの供給の始めから先駆物質の蒸気を効果的に供給できる新規の泡立てシステムが提供される。ここで開示されたバブラーノズル構造が、バブラー内で良い泡の拡散を伴う小さな泡を発生し、先駆物質の液化を伴うことなく液体先駆物質を半導体チャンバーへ安定して供給できることが信じられている。
このバブラーノズル技術は、従来のノズル技術より小さな泡を発生することが認められており、このより小さな泡は、液体表面の減少された或いは最小の振動を伴って、液体先駆物質内における改良された拡散を有する。このバブラーノズル技術は、バブラー内の液体先駆物質の量が減少するとき、液体先駆物質の最小或いは減少された霧が観測される。泡立て方法は、供給の始まりの突然の蒸発がシステムのエネルギーを使って液体先駆物質の温度を減少するように、供給プロセスの初めで先駆物質蒸発から温度が最小の或いは減少された先駆物質を供給するよう認められる。液体温度制御技術は、高温測定精度を供給するよう認められ、従来技術のシステムよりすばやく液体先駆物質の熱を調節できる。この発明のデザインは、先駆物質の供給の間、供給ラインにおける再液化を防止するよう認められる。
図3は、液体先駆物質の蒸気を供給するためのこの発明の1つの実施例によるところの泡立てシステム300を示す。この泡立てシステム300に置かれた液体先駆物質312は、バルブ316を介してDIPチューブライン320を通して液体先駆物質312内へ導入された、流量コントローラー322によってコントロールされた流量を有するキャリアガスとともに、供給される。このキャリアガスはノズル構造310を通して流れ、泡を発生し、これらの泡は液体先駆物質312の表面へ液体を通って拡散して蒸発し、そして、ヘッドバルブ318を介して供給ライン328によってチャンバーへ搬送される。この液体先駆物質蒸気の流量は、モニター326によって量られる。いくらかの場合において、液体先駆物質を含むキャリアガスは、追加の不活性ガスによってさらに希釈される。この不活性ガスの流量は、反応炉の前に、流量コントローラー324によってコントロールされる。窒素、アルゴン、ヘリウム、およびそれらの混合物を含む不活性ガスが、キャリアガス(或いは希釈ガス)として使用される。キャリアガス中における先駆物質の濃度は、バブラー内における先駆物質の部分的な圧力の範囲によって表現される。この液体先駆物質は、ジエチル亜鉛、ジメチル亜鉛、トリメチルアルミニウム、およびそれらの混合物のグループから選択される有機金属の先駆物質である。
理論上は、先駆物質の流量は、湯槽314のようなヒーターによってコントロールされる液体温度、流量コントローラー322によって調節されるキャリアガスの流量、およびバブラー内の背圧コントローラー(図示せず)或いはポンプ(図示せず)によってコントロールされる圧力、によってコントロールされる。しかしながら、バブラーのデザイン、液体温度のコントロール、および供給パイプラインの加熱制御が、先駆物質の液化がなく高い効率で半導体反応炉へ供給し始めから安定した液体先駆物質の供給するために重要であることが認められている。
図5は、バブラーのための1つの実施例のノズル構造500を開示している。このバブラーノズル構造は、ガス源(図示せず)に接続された第1の端部504、およびノズル構造501に接続された第2の端部503を有するガス導管508、すなわちチューブを備えている。環状板状のようなプレート506がガス導管508の周りに配置されている。このガス導管508は、ガス流量およびバブラーのサイズに従って必要な直径にされる。1つの例では、ガス導管508は、1/8インチと1インチとの間の直径、例えば1/4インチの直径を有する円筒構造である。
ノズル構造501は、上記ガス導管508に流体を流通可能に接続された1つ或いはそれ以上の孔の開けられた導管502を有する。これら導管502は、ガス導管508の上記第2の端部からいかなる角度で配置されても良く、例えば、図5に示すように、ガス導管508に関して直角に配置される。1つ或いはそれ以上の孔の開けられた導管502のそれぞれは、さらに、1つ或いはそれ以上のアーム522を含む。各アーム522は、閉じた端部510を伴う、円筒形を含むいかなる形状であっても良い。各アームは、ガス導管508の軸から、1cmから10cmの間の長さを有し、例えば、約2cmから約6.4cmの長さを有する。上述した円筒形は、1/8インチと1インチの間の直径516、例えば直径1/4インチを有する。また、上記円筒形は、約0.5cmから約1.5cmの直径516を有しても良い。1つの実施例において、各アームは、上記ガス導管508と同じ直径を有する。1つ或いはそれ以上の孔の開いた導管502を有する1つの実施例において、これら導管は、互いに15°から90°で離されており、例えば、2つの導管は、互いに90°で離間されている。
1つ或いはそれ以上のアーム522のそれぞれは、ガスを通して流すための複数の孔520を有する。これら複数の孔は、好ましくは、アーム522に沿って直線的に且つ互いに等しい間隔514で、例えば、各孔520の中心間の距離が5mmで配置される。これら複数の孔520は、いかなる形であっても良く、例えば、円形であっても良く、約0.1mmから約3mmの幅或いは直径を有し、例えば、約0.2mmの直径を有する。
上記プレート506は、ガス導管508の周りに配置されている。プレート506は、いかなる形状であっても良く、例えば、環状ディスク状或いは多角形状である。このプレートは、例えば、約0.1mmから約3mmの厚さ518を有し、例えば、約1.5mmの厚さである。また、このプレートは、ステンレススチール合金、SS316L EP、SS304、インコネル(登録商標)、モネルメタル(登録商標)、ハステロイ(登録商標)、或いはそれらの混合物のようなステンレススチールから形成されている。この合金の選択は、製作コストや化学的な融和性の最適化に基づいてなされる。
このプレートは、上記ノズル構造501から実質的に平行に離間した関係で配置される。この発明は、プレート506がノズル構造501と平行ではない角度で配置されることを熟慮する。ノズル構造501のプレート506および1つ或いはそれ以上の孔の開けられた導管は、両方ともガス流れ導管の軸から放射状に延びている。
プレート506は、ノズル構造からの距離と環状ディスクの直径が約1:12から1:1の割合で、ガス流れ導管508に沿ってノズル構造501から離れて配置されている。例えば、プレートは、ガス流れ導管508に沿ってノズル構造から約0.5cmから約6cm離れて配置され、孔の開けられた導管を有するノズルは6cmの長さを有する。ノズル構造501とプレート506の間の位置関係は、泡蒸発プロセスのコントロールのため調節される。例えば、上記位置関係は、孔から吐出されるノズル構造501を通るキャリアガスの泡の流れの制御が必要なように調節され、そして、小さな泡を形成するようにディスクに接触し、液体表面での振動を減少させる。
プレート506は、1つ或いはそれ以上の孔の開けられた導管の長さと等しく或いはそれ以上の幅或いは直径を有する。例えば、もし、1つ或いはそれ以上の導管が約64mmの長さ(2つのアームそれぞれで約32mmの長さ512)を有する場合、プレート506は、約64mm或いはそれ以上の幅或いは直径を有する。1つの実施例において、プレート506は、幅或いは直径(環状ディスク)と孔の開けられた導管の長さが1:1より大きい約1:2の割合を有する。1つの実施例において、プレート506は、約4cmから約8cmのディスク径を有する環状ディスクであり、ガス流れ導管に沿ってノズル構造から約3cmから約4cm離れて配置されている。
代りに、プレート506は、下面に接触する泡の流れを指向させる複数の溝或いはパターンが刻まれた下面を有しても良い。プレートは、直交面の上或いは下に例えば上方に向けて先細にされた角度が付けられた面を有しても良い。プレート506は、小さな泡の形成を助長し、泡の拡散を助長し、またはそれらの組合せの材料でコートされても良い。
ここに開示されたバブラーノズルが良く拡散された小さな泡を形成できることが信じられている。泡は、一般に、上記複数の孔520のサイズと一致するサイズを有し、例えば、1mmの孔は、一般に、直径1mmの泡を形成する。プレート506との接触は、泡の表面張力の破裂や再形成を許容し、それにより、オリジナルサイズより小さなサイズを有する泡を生出する。その上、プレート506が泡の流れを妨害するため、ディスクから上の泡の上昇スピードは、接触する前の泡の上昇スピードより遅い。小さな泡のサイズ、改良された泡の拡散、および減少された上昇スピードの組合せは、液体先駆物質表面の振動を減少し、より均一な蒸気先駆物質蒸発を提供することが信じられている。その上、容器の液体レベルがプレート506のレベル(浸らない)より低くなった場合、および/或いは低くなったとき、プレートが、跳ねない面および液体先駆物質が形成される面を供給することによる跳ね或いは霧によって引き起こされる液体先駆物質の蒸発を減少することが観測される。さらに、プレート506は、遮蔽物として霧の流れを阻止でき、液体レベルがディスクの下に減少された後、液体表面上の水平方向の流れによって液体の蒸発を助けることができる。
図4は、この発明の泡供給ユニットの1つの実施例を図示する。この泡供給ユニット400は、容器の中に配置され、キャリアガス入口バルブ418および容器412の頂部に形成された先駆物質供給バルブ458と接続されたガス導管410を有するバブラーボディー、すなわち容器412を有する。この容器は、0.1リッターから10リッターのサイズ、例えば、約0.5リッターから約5リッターの容積を有しても良い。上述したように、液体先駆物質408内で泡406を形成するガス導管410の端部へ接続されたバブラーノズル404が図4に示されている。液体先駆物質は、約0℃から約200℃、例えば、約20℃から約60℃のプロセス温度で維持される。キャニスターは、流量が約100sccmから10slm、例えば約1slmから5slmで、約50トルから約760トルの圧力を伴って供給されても良い。液体先駆物質は、容器のサイズに応じた約0.4リットルと約8リットルの間の容積で容器内に配置され、好ましくは、容積でプレート508より十分に高く、すなわちプレート508が液体先駆物質内に埋まるように加えられる。
容器412は、容器412内の液体先駆物質408の温度をモニターできる熱電対430を中に入れたステンレススチール製のポート434を有する。液体から熱電対への熱の伝達を改良する熱拡散ジェル432は、ポート434と熱電対430との間の空間内へ導入される。
アルミニウムで形成されたジャケットヒーター402は、容器412の側部および底部を囲み、容器412内の液体先駆物質408へ熱を効率良く伝えることができるヒーター420、442のような1つ或いはそれ以上のヒーターを有する。ジャケットヒーター402は、熱電対436のためのポート440を有し、ポート440と熱電対436との間の空間内へ配置された熱拡散ジェル438を有する。随意に、ジャケットヒーターから液体先駆物質408への熱伝導を改良することができる熱拡散シート446が、ヒータージャケット402と容器412との間に配置されても良い。ジャケットヒーターは、バブラーを底部から加熱することができる。それゆえに、この加熱システムの構造的な特徴は、この加熱システムが、高い熱伝導性を有するアルミニウム製のジャケットヒーター、底部および側部の両側からバブラーを加熱できる革新的なジャケットヒーター構造、ポートと熱電対との間の熱拡散ジェル、およびバブラーとジャケットヒーターとの間の熱拡散シートを有することにある。
液体温度制御システムの1つの特徴は、コントローラー428が、熱電対430、436のような複数の熱電対による正確な段階的制御プロセスによって液体の温度をコントロールできることである。第1の熱電対430は、液体先駆物質408の温度を測り、第2の熱電対436は、ジャケットヒーター402の温度を測り、これら両方の熱電対は、信号線424、426によってコントローラーへ接続されている。また、コントローラーは、信号線422、444を介してヒーティングジャケットのヒーターを計測および制御する。上記段階的制御は、熱電対430によってモニターされた液体の温度が受け入れ可能なレベルを超えて減少する前に、熱をすばやく液体に与えることができる。ジャケットヒーターの温度が熱電対436によってモニターされることから、コントローラー428は、先駆物質の蒸発によるジャケットヒーターの小さな温度変化に従って、液体へ熱を与えることができる。
コントローラー454は、供給パイプライン416の温度を一定に維持するため、容器412に近接して配置され、先駆物質の蒸気が、供給パイプライン416内で減少された或いは最小の液化を伴い、プロセスチャンバーへ供給されることができる。このコントローラーは、ラインヒーター414、パイプラインの温度をモニターするための熱電対448、この熱電対のためのセンサーケーブル450、および電流供給ケーブル452からなる。
気化された先駆物質を供給するとき、気化プロセスの開始は、蒸発プロセスが液体先駆物質内の熱を除去するにつれ先駆物質の進化の均一性に不利益に作用することができ、それにより、先駆物質の液体温度および進化の一貫性を不利益に作用する。液体の温度が急激に低下すると、ヒーターは、制御された温度を維持するように、液体先駆物質へ追加の熱を与えなければならない。結果として、液体温度が制御された値を下回って下がった場合、制御された値を超えて増大されることが示される。この濃度変化は、泡立てテストの結果を示す図16に示されている。この温度変化および濃度変化は、ここに開示されたノズル構造501を使用する図4に示すようなシステムでは観測されない。
図16のデータは、図7に開示された泡立てシステム700を用いて得られる。液体先駆物質710は、ジャケットヒーター712の制御によって30℃の温度にコントロールされたオクタンであり、流量コントローラー(MFC)702によってコントロールされた3slm(スタンダードリッターパーミニッツ)の流速のアルゴンのキャリアガス、および真空ポンプ716によってコントロールされた170トルの泡立て圧力を利用する。このアルゴンキャリアガスは、キャリアガスライン718、ガス導管ライン(DIPチューブ)708、およびキャリアガスバルブ704、705を通して液体先駆物質710内へ導入される。容器(バブラー)711内において、液体は、アルゴンにさらされて、そして、混合ガスが、供給バルブ706、および供給ライン714、720を通してガス濃度モニターへ供給される。真空ポンプ716は、上記混合ガスを上記ガス濃度モニター715へ供給するために用いられる。
実例
図5のバブラーノズル構造、液体温度コントロールシステム、および、供給およびライン加熱システムへの処置を含む、この発明の形態は、以下の実験において比較される。実験では、液体中における泡の動きをチェックし、図5のノズル構造を使用したときの蒸気の濃度の安定性をチェックし、液体の与えられた量のどれだけを使用可能であるかをチェックし、液体先駆物質を供給する革新的な処置の有効性をチェックする。
実験1:ノズルからの泡の発生
図5に示されたようなノズル構造を伴うここに開示された泡立てシステムは、泡の発生および泡の動きに関して、図2Aおよび2Bに示されたような従来技術のノズル構造と比較され、図6A、6B、および6Cに示されているような泡立て供給プロセスの間中、観測される。全ての3つのノズル構造のための泡立てプロセスは、アルゴンガス(Ar)を約3slm(スタンダードリッターパーミニッツ)の流量で、大気圧で容器を伴う水の液体先駆物質を通して流す工程を含む。
図6Cに示されるように図5のノズル構造600から発生された泡は、改良された拡散を有するように観測され、液体先駆物質内でより均一に拡散され、そして、さらに、この泡は、図6Aおよび6Bに示されているような図2Aおよび2Bにおけるノズル構造のそれぞれによって発生された泡より、液体の表面で少ない振動およびより均一な方法で振動される。
図6Cにおいて、泡は、ノズルから放出(排出)された直ぐ後にディスクに接触してより小さな泡を形成し、上昇速度を減少する。そして、この泡は、ディスクの周囲で発生された渦巻流を有し、この渦巻流がディスク上方の液体先駆物質表面へのより均一な拡散を許容する。それに対し、図2Aのノズルから発生された泡は、液体先駆物質内で均一ではなく、液体先駆物質表面での泡のサイズは、図5のノズル構造の液体先駆物質の表面で発生された泡より大きい。その上、図2Aのノズルから発生された泡は、図5のノズルから排出された後の泡より大きい。さらに、図2Aのノズルからの泡は、液体先駆物質の表面に向けて上昇する泡のサイズの増大が観測される。液体の表面の振動は、図5のノズル構造を使用したときの振動として観測される振動と比較して、大きく(大きく振動する)なるように観測される。
図5のノズル構造との比較において、図2Bのノズルから発生された泡は、液体の表面に向けて妨げられていない上昇、および結果としての泡の不均一な拡散、泡の集中および液体先駆物質表面の中央における振動、および図5で観測される振動と比較して大きな振動を有するように観測される。
実験2:本ノズルを用いた泡立て供給の間の濃度の安定性
ここに図4に示すような液体コントロールシステムを伴うここに開示された図7に示すような装置を用いて実験2−4が実施される。動作において、オクタンの蒸気を伴うアルゴンガスは、キャリアガスバルブ(DIPチューブバルブ)704を介してキャリアガスライン718を通してバブラー711内へのアルゴンキャリアの導入によって、ガス濃度モニター715へ供給される。アルゴンガスは、オクタン液先駆物質710内に配置されたDIPチューブ708の端部にそれぞれ接続された図2A、2B、および図5に示されたようなそれぞれのノズル構造から導入される。ガスの流量は、流量コントローラー702によってコントロールされ、3slmの流量に維持される。液体先駆物質は、ジャケットヒーター712によって30℃の温度に維持される。バブラー711内の液体の上方のガス相において、オクタン蒸気がアルゴンガスと混合され、そして、引き出されたガス混合物が、ガス供給バルブ(ヘッドバルブ)706を介してガス濃度モニター715へ運ばれて供給ライン720を通る。液体先駆物質、すなわちオクタンの濃度は、電圧としてガス濃度モニター715によって計測される。真空ポンプ716は、実験の継続のため一定の泡立て圧力(170トル)を維持するために用いられる。ガス濃度モニター715の前の供給ライン714は、40℃に加熱される。液体先駆物質蒸気の濃度安定性は、ガス濃度モニター715の値をモニターすることによって観測されることができる。このガス濃度モニター715は、通過する液体先駆物質蒸気の赤外線吸収分光測定法による計測に基づいて、電圧信号を供給する。液体先駆物質蒸気の正確な量は、泡立てプロセスの間中、バブラー711内に初めにある液体先駆物質の重さから、泡立て後に残っている液体先駆物質の重さを引くことによって測定される。
図8−10を参照して、図8−10は、図2A、2B、および図5のノズル構造のそれぞれでした泡立てテストの結果を示す。図8において、図2Aのノズル構造がオクタン液先駆物質の泡立てに使用され、摂氏温度における検出温度(ラインA)、および電圧で測定されたオクタン先駆物質の濃度(ラインB)が時間軸に沿ってプロットされている。図8に示すように、最初のオクタン濃度は、3.7Vまで急激に増大し、そして、時間が経つにつれて、約2.8Vの基準濃度へ減少する。しかしながら、約3.3Vに達する測定された濃度における連続した変動および鋭い尖り(スパイク)が、次の60分の間に観測され、先駆物質濃度の安定性の欠如を指し示す。その上、先駆物質の温度が鋭く尖ったように観測され、システムが、50分の評価によって、30℃のターゲット温度で首尾一貫した温度を供給できない。
図9において、図2Bのノズル構造がオクタン液先駆物質の泡立てに使用され、摂氏温度における検出温度(ラインA)、および電圧で測定されたオクタン先駆物質の濃度(ラインB)が時間軸に沿ってプロットされている。図9に示すように、最初のオクタン濃度は、3.7Vまで急激に増大し、そして、時間が経つにつれて、20分後に、約3.0Vの基準濃度へ減少し、次の40分の間に濃度スパイクがなくだいたい首尾一貫した僅かに増大する濃度を供給する。その上、先駆物質の温度が鋭く尖ったように観測され、システムが、40分の評価によって、計測時間の間を通して温度の僅かな上昇傾向を伴って、30℃のターゲット温度で首尾一貫した温度を供給できない。
図10において、図5のノズル構造がオクタン液先駆物質の泡立てに使用され、摂氏温度における検出温度(ラインA)、および電圧で測定されたオクタン先駆物質の濃度(ラインB)が時間軸に沿ってプロットされている。図10に示すように、最初のオクタン濃度は、図2Aおよび2Bにおけるノズル構造で観測されたような鋭い増加は見られない。この先駆物質濃度は、10分の間に約2.8Vの一定値に達し、その後ほぼ一定の濃度で保持されている。蒸気の流量は、約2.46g/minで計測され、この効率は2.56g/minの理論値の96%である。その上、先駆物質の温度は、初めのころ僅かな温度変動を有するように観測され、システムが、観測された実験の残りのための10分の後、30℃のターゲット温度で首尾一貫した温度を供給できる。
その上、図7の装置および図5のノズル構造を用いて実施されたプロセスは、約1.5グラム/分から11.8グラム/分の量で気化された先駆物質を供給するよう観測される。20℃の温度で、3slmのアルゴン流量で、100トルの泡立て圧力で、オクタン液先駆物質を用いて実施されたプロセスは、約1.51g/minの量の気化された先駆物質を有するように観測される。30℃の温度で、3slmのアルゴン流量で、125トルの泡立て圧力で、オクタン液先駆物質を用いて実施されたプロセスは、約2.46g/minの量の気化された先駆物質を有するように観測される。40℃の温度で、3slmのアルゴン流量で、147トルの泡立て圧力で、オクタン液先駆物質を用いて実施されたプロセスは、約4.43g/minの量の気化された先駆物質を有するように観測される。50℃の温度で、3slmのアルゴン流量で、160トルの泡立て圧力で、オクタン液先駆物質を用いて実施されたプロセスは、約6.84g/minの量の気化された先駆物質を有するように観測される。60℃の温度で、3slmのアルゴン流量で、177トルの泡立て圧力で、オクタン液先駆物質を用いて実施されたプロセスは、約11.8g/minの量の気化された先駆物質を有するように観測される。
実験3:バブラー内でどのくらいの液体が使用できるかのチェック
実験3は、図7の装置によっておよび実験2で説明されたプロセスによって、図2Bのノズル構造および図5のノズル構造を用いた場合、どのくらいの液体先駆物質がバブラー内で使用されたかを比較することでなされる。図2Bのノズル構造のデータを図にした図11は、時間軸に沿った液体温度(ラインA)および蒸気濃度(ラインB)を図示する。図11において、図2Bのノズル構造のため、一定温度での先駆物質の濃度は、劇的に増大され、ポイントCで液体表面レベルがノズル構造から約2cmの距離まで減少したとき不安定になり、そして液体先駆物質の表面のレベルのさらなる減少を伴ってより不安定になる。これに対し、図5のノズル構造のデータを図にした図12は、ノズル構造から約0.5cm離れた驚くほどおよび意外な液体表面レベルでCの位置での僅かな増大のみ示す。このように、取り付けられたプレート506が、蒸発のため液体先駆物質を伴ってキャリアガスが長くとどまることを許容し、それにより、図2Aおよび2Bの従来のノズル構造よりバブラー内における液体先駆物質の使用効率の増大を許容することが観測される。この効果は、バブラーの直径が大きくなるにつれて、より宣言されるようになることが信じられている。
従って、図5のバブラーノズル構造が、実験2に示されたような供給の間、蒸気先駆物質濃度の改良された安定性を提供することが観測される。その上、図8−9に示されるように15−20分必要とされる図2Aおよび2Bの従来のノズル構造と比較して非常に減少された約10分より少ない時間での温度および濃度における首尾一貫性および安定性を達成するための時間長さの減少があることが観測される。先駆物質濃度および温度安定性におけるこのような改良は、気化された液体先駆物質濃度が安定するまでこの気化された液体先駆物質をプロセスで使用できないため、液体先駆物質の無駄を減少することができる。
ここに開示されたノズル構造が、図10に示すような初めの液体先駆物質蒸気濃度の急な安定のため提供されること、および図12に示されるように0.5cmの液体表面レベルへ下がる安定した運搬を続けることの可能性と結合されることが、驚くべき意外な発見であり、同じサイズの容器の従来技術に開示されたより実質的に高い流量を許容する。このように、ここに開示されたバブラーシステムは、例えば、従来技術の泡立てシステムと比較して毎分1リッターより大きい高い流量で効果的な量を供給するよう観測される。従来技術の泡立てシステムが、一般に、300−400sccmの液体先駆物質蒸気の流量を有し、ここに開示された泡立てシステムが、約1から約10slm(スタンダードリッターパーミニッツ)の液体先駆物質蒸気流量を提供する。
図5のノズル構造の形状を用いた泡立てプロセスの効果的な濃度運搬および温度安定性は、バブラーキャニスターの与えられたサイズのためのキーとなる利益を与え、より高いキャリアガスの流量が効果的に利用されることができる。結果として、図5のノズル構造デザインは、従来の泡立て技術で使用する同じサイズのキャニスターにおいて期待されたより高い流量の気化された先駆物質を供給する。
ここで開示された発明によって与えられたようなプロセスにおけるこのような改良を伴って、この発明は、プロセスチャンバーおよび/或いはツールで必要とされるより小さなキャニスターの使用を許容し、それにより、ツール空間および装備コストの節約を与える。また、図5のノズル構造から改良されたプロセスは、プロセスの改良された能率を伴ってユーザーの施設内で貯蔵される必要がある材料の量を減少し、ここに開示されたジエチルジンクのような高い水反応性の自然性の化学物質のための10kgs安全制限を推薦するようないくらかのタイプの材料のための現場での材料制限をユーザーがよりたやすくハンドリングすることを許容する。その上、効果的なキャリアガス流量および先駆物質供与量の増大によって、この発明は、工場内にあってツール自体の空間および空間をセーブし、ツールのためのプロセス化学物質の貯蔵の安全制限のための貯蔵コストをセーブする、堆積ツールの数を顧客が効果的に増加できるようにする。
さらに、実験3で示されたようにすることから、液体先駆物質蒸気濃度の安定性を維持する一方で先駆物質が低い液体レベルで使用でき、それにより、顧客が多くの量の先駆物質をバブラー内で使用することを許容し長い動作期間を有する。
図5のノズル構造から発生された泡がバブラー内でより均一に拡散可能であることがさらに観測され、その結果、改良された濃度を伴って液体先駆物質の表面で振動が減少され或いは最小にされる。
実験4:泡供給のスタートのときの濃度安定性
先駆物質供給の初めで減少する温度を減少する処置は、図13の泡立てコアユニット1300を参照して以下に説明される。初めに、レギュレーター1326は、流量コントローラー1324によってモニターされ且つコントロールされた約3slmのアルゴンガス流量を許容する最小の圧力を供給するように調節される。メイクバルブ1312は、液体先駆物質1306の蒸気がポンプ1322によって与えられた真空によってバブラー1304から出て供給ライン1308およびモニター1320を通してプロセスチャンバーへ出ることを許容するため開かれ、そして、キャリアガスバルブ1314は、ガス導管1310によってバブラー1304内へキャリアガスが入ることを許容するため開かれる。そして、次のバルブ1316がゆっくり開かれる。この実験において、図5のノズル構造および供給ライン1308を用いるバブラーが40℃に保持される。液体先駆物質1306は、オクタンであり、上述した液体温度コントロールシステムによって約30℃に維持される。泡立て圧力は、ポンプ1322によって約170トルに維持される。
図14に示すように、蒸気濃度は、供給の初めで濃度の減少或いは増加することなく、10分より少ない時間の間に所望する最大の濃度にすばやく達する。蒸気濃度および液体先駆物質の温度は、首尾一貫して安定するよう観測される。
その上、バブラーシステムは、キャリアガス内で蒸気或いは酸素のため形成され、液体先駆物質と反応して粉(固体)を発生するように分解する粒子を除去するため定期的に停止される。バブラーのクリーニングのためのこのような停止において、汚いバブラーが取り除かれて他の場所で綺麗にされ、そして、バブラーシステムが長い時間停止されなければならない。
このような動作停止クリーニングプロセスおよび装備の取り外しは、キャリアガスとともに供給可能な粒子を効果的に取り除く溶剤パージシステムを与えることによって避けられる。この溶剤パージは、液体先駆物質を取り除いた後で実行されるべきであり、先駆物質がバブラーの乾燥の後に再充填される。
図15は、バキュームによっていかにして液体供給をコントロールできるかを図示してある。装置1500において、ポンプ1516は、ライン1508およびバルブ1510および1514を介してバブラー1504へ接続されている。このポンプは、制御された加熱システム1502で気化されてバキュームによってバルブ1510および1514およびライン1508を通して引かれた、バブラー1504およびバブラー1504内の先駆物質1506にバキュームをはたらかせる。キャリアガスは、バキュームによって、気化プロセスにおけるアシストのため、バルブ1512を通して導入される。
本発明を実践している好適なプロセスおよび装置は説明された。多くの変形および変更が本発明の主旨および範囲から離れることなく上述した実施例になされることは当業者によって理解されすぐに明らかにされるであろう。上述したものは図示したに過ぎず、一体にされたプロセスおよび装置の他の実施例が、以下の特許請求の範囲で規定された発明の確かな範囲から外れることなく与えられる。
以下、本願の出願当初の特許請求の範囲に記載された発明を付記する。
[1]
第1の端部および第2の端部を有するガス流導管と、
このガス流導管の上記第2の端部に接続され、上記ガス流導管の上記第2の端部へ流体を流通可能に接続された1つあるいはそれ以上の孔の開いた導管を有するノズル構造と、
上記ガス流導管の周りで且つ上記ノズル構造から離間した関係で配置されたプレートと、を有し、
上記1つあるいはそれ以上の孔の開いた導管および上記プレートは、両方とも、上記ガス流導管の軸から放射状に延びている、
液体先駆物質の蒸気を供給するための泡立てシステム。
[2]
上記プレートは、上記ガス流導管の周りで且つ上記ノズル構造から平行に離間した関係で配置されている、[1]によるところの泡立てシステム。
[3]
上記プレートは、上記1つあるいはそれ以上の孔の開いた導管の長さと等しく或いはそれより大きい直径を有する環状ディスクを有する、[1]或いは[2]によるところの泡立てシステム。
[4]
上記環状ディスクは、該環状ディスクの直径と上記孔の開いた導管の長さの比が1:1から約2:1より大きくなる割合を有する、[3]によるところの泡立てシステム。
[5]
上記環状ディスクは、約1:12から約1:1の上記ノズル構造からの距離と環状ディスクの直径の割合によって、上記ガス流導管に沿って上記ノズル構造から離れて配置されている、[3]によるところの泡立てシステム。
[6]
上記プレートは、上記ガス流導管に沿って上記ノズル構造から約0.5cmから約6cm離れて配置されている、[1]によることろの泡立てシステム。
[7]
上記プレートは、約4cmから約8cmのディスク直径を有する環状ディスクを有し、上記ガス流導管に沿って上記ノズル構造から約3cmから約4cm離れて配置されている、[6]によるところの泡立てシステム。
[8]
上記1つ或いはそれ以上の孔の開いた導管は、上記ガス流導管へ直交する方法で指向されている、[1]によるところの泡立てシステム。
[9]
流体容器内に配置されたガス流導管をさらに有する、[1]によるところの泡立てシステム。
[10]
上記流体容器は、約0.1リッターから約10リッターの容積を有する、[9]によるところの泡立てシステム。
[11]
上記1つ或いはそれ以上の孔の開いた導管それぞれは、2つのアームを有し、各アームは、1つ或いはそれ以上の孔を有する、[1]によるところの泡立てシステム。
[12]
各孔は、約0.1mmから約3mmの直径である、[11]によるところの泡立てシステム。
[13]
各孔は、直線に沿って互いに離間された関係で各アームに沿って配置されている、[11]によるところの泡立てシステム。
[14]
上記1つ或いはそれ以上の孔の開いた導管は、互いに30°から90°の角度で配置されている、[11]によるところの泡立てシステム。
[15]
上記1つ或いはそれ以上の孔の開いた導管は、互いに約90°の角度で配置された2つの導管を有する、[11]によるところの泡立てシステム。
[16]
バブラーは、上記容器の側壁および底に配置されたジャケットヒーター、およびこのジャケットヒーターに接続されたコントローラーをさらに有する、[9]によるところの泡立てシステム。
[17]
上記流体容器と上記ジャケットヒーターとの間に配置された熱拡散シートをさらに有する、[16]によるところの泡立てシステム。
[18]
上記容器内に配置されたポート、およびこのポート内に配置された熱電対をさらに有する、[9]によるところの泡立てシステム。
[19]
上記ポートと上記熱電対との間に配置された熱拡散ジェルをさらに有する、[18]によるところの泡立てシステム。
[20]
上記ジャケットヒーターは、開口およびこの開口内に配置された熱電対をさらに有する、[9]によるところの泡立てシステム。
[21]
上記開口と上記熱電対の間に配置された熱拡散ジェルをさらに有する、[20]によるところの泡立てシステム。
[22]
上記プレートは、約4cmから約8cmの直径、および約0.1mmから約2cmの厚さを有する、[1]によるところの泡立てシステム。
[23]
上記1つ或いはそれ以上の孔の開いた導管のそれぞれは、約0.5cmから約1.5cmの直径、および約1cmから約8cmの長さを有する、[1]によるところの泡立てシステム。
[24]
[1]から[23]のいずれか1つによるところの、液体容器をさらに有する、泡立てシステムを供給する工程と、
液体先駆物質を上記液体容器へ供給し、上記プレートの高さより大きい初めの容積を形成する工程と、
上記ガス導管を通してキャリアガスを供給し、上記ノズル構造の上記1つ或いはそれ以上の孔の開いた導管から出す工程と、を有し、
上記キャリアガスを出す工程は、上記液体先駆物質内で第1のサイズを有する第1の泡を形成し、
上記第1の泡は、上記プレートに接触して、上記第1のサイズより小さな第2のサイズを有する第2の泡を形成し、
上記第2の泡は、上記液体先駆物質の表面へ流れ、上記液体先駆物質の表面で気化された先駆物質を製造する、
液体先駆物質を気化するための方法。
[25]
上記第1の泡は、上記ノズル構造の1つ或いはそれ以上の孔の直径より大きくないサイズを有する、[24]によるところの方法。
[26]
上記ノズル構造の上記1つ或いはそれ以上の孔の直径は、0.1mmから3mmの直径を含む、[24]によるところの方法。
[27]
上記液体の上記表面へ上記第2の泡が流れる工程は、上記第1の泡の上昇速度より小さい上昇速度で第2の泡を流す工程を含む、[24]によるところの方法。
[28]
上記第2の泡は、上記液体先駆物質中で、上記第1の泡より均一に配置される、[27]によるところの方法。
[29]
上記第2の泡は、上記液体先駆物質中で、上記第1の泡より大きな拡散を有する、[27]によるところの方法。
[30]
上記気化された先駆物質は、約1.5グラム/分から約11.8グラム/分の供与量を有する、[24]によるところの方法。
[31]
上記気化された先駆物質は、約20℃から約200℃の温度で供給される、[30]によるところの方法。
[32]
上記プレートの高さより少ないプロセスボリュームを発生させる液体先駆物質をさらに有し、液体先駆物質の霧が上記プレートに接触する、[24]によるところの方法。
[33]
上記キャリアガスは、窒素、アルゴン、ヘリウム、およびそれらの混合物のグループから選択され、約1slmより大きく約10slmまでの流量で上記ガス導管へ供給される、[24]によるところの方法。
[34]
上記容器は、約150トルから約760トルの圧力を有する、[24]によるところの方法。
[35]
上記液体先駆物質は、炭化水素混合物或いは金属含有先駆物質を含む、[24]によるところの方法。
[36]
上記液体先駆物質は、ジエチル亜鉛、ジメチル亜鉛、トリメチルアルミニウム、およびそれらの混合物のグループから選択された金属有機先駆物質を含む、[35]によるところの方法。
[37]
上記液体先駆物質は、約20℃から約200℃の温度で供給される、[24]によるところの方法。
[38]
上記プレートは、上記1つ或いはそれ以上の孔の開いた導管の長さと等しい或いはそれより大きい直径を有する環状ディスクを有する、[24]によるところの方法。
[39]
上記環状ディスクは、約1:12から約1:1の上記ノズル構造からの距離と環状ディスクの直径の割合によって、上記ガス流導管に沿って上記ノズル構造から離れて配置されている、[24]によるところの方法。
[40]
上記液体の初めの容積は、約0.4Lから約8Lであり、上記プレートは、上記流体容器の上記底から約4cmの高さで配置されている、[24]によるところの方法。
[41]
上記1つ或いはそれ以上の孔の開いた導管のそれぞれは、2つのアームを有し、各アームは、1つ或いはそれ以上の孔を有する、[24]によるところの方法。
[42]
各孔は、約0.1mmから約3mmの直径である、[24]によるところの方法。
[43]
上記1つ或いはそれ以上の孔の開いた導管は、互いに30°から90°の角度で配置されている、[24]によるところの方法。
[44]
上記1つ或いはそれ以上の孔の開いた導管は、互いに約90°の角度で配置された2つの導管を有する、[24]によるところの方法。
[45]
上記流体容器は、約0.5リッターから約10リッターの容積を有する、[44]によるところの方法。

Claims (27)

  1. 液体先駆物質の蒸気を供給するための泡立てシステムであって、
    第1の端部および第2の端部を有するガス流導管と、
    このガス流導管の上記第2の端部に接続され、上記ガス流導管の上記第2の端部へ流体を流通可能に接続された1つあるいはそれ以上の孔の開いた導管を有するノズル構造と、
    上記ガス流導管の周りで且つ上記ノズル構造から離間した関係で配置され、上記液体先駆物質内に浸らせたプレートと、を有し、
    上記1つあるいはそれ以上の孔の開いた導管および上記プレートは、両方とも、上記ガス流導管の軸から放射状に延びている、泡立てシステム。
  2. 上記プレートは、上記1つあるいはそれ以上の孔の開いた導管の長さと等しく或いはそれより大きい直径を有する環状ディスクを有する、請求項1によるところの泡立てシステム。
  3. 上記プレートは、上記ガス流導管に沿って上記ノズル構造から0.5cmから6cm離れて配置されている、請求項1によるところの泡立てシステム。
  4. 上記プレートは、4cmから8cmのディスク直径を有する環状ディスクを有し、上記ガス流導管に沿って上記ノズル構造から3cmから4cm離れて配置されている、請求項3によるところの泡立てシステム。
  5. 上記ガス流導管は、流体容器内に配置されている、請求項1によるところの泡立てシステム。
  6. 上記流体容器は、0.1リッターから10リッターの容積を有する、請求項5によるところの泡立てシステム。
  7. 上記1つ或いはそれ以上の孔の開いた導管それぞれは、2つのアームを有し、各アームは、1つ或いはそれ以上の孔を有する、請求項1によるところの泡立てシステム。
  8. 各孔は、0.1mmから3mmの直径である、請求項7によるところの泡立てシステム。
  9. 各孔は、直線に沿って互いに離間された関係で各アームに沿って配置されている、請求項7によるところの泡立てシステム。
  10. 上記1つ或いはそれ以上の孔の開いた導管は、互いに90°の角度で配置された2つの導管を有する、請求項7によるところの泡立てシステム。
  11. 流体容器の側壁および底に配置されたジャケットヒーター、およびこのジャケットヒーターに接続されたコントローラーをさらに有する、請求項5によるところの泡立てシステム。
  12. 上記流体容器と上記ジャケットヒーターとの間に配置された熱拡散シートをさらに有する、請求項11によるところの泡立てシステム。
  13. 上記流体容器内に配置されたポート、およびこのポート内に配置された熱電対をさらに有する、請求項5によるところの泡立てシステム。
  14. 上記ポートと上記熱電対との間に配置された熱拡散ジェルをさらに有する、請求項13によるところの泡立てシステム。
  15. 上記プレートは、4cmから8cmの直径、および0.1mmから2cmの厚さを有する、請求項1によるところの泡立てシステム。
  16. 上記1つ或いはそれ以上の孔の開いた導管のそれぞれは、0.5cmから1.5cmの直径、および1cmから8cmの長さを有する、請求項1によるところの泡立てシステム。
  17. 請求項5−6または11−14のいずれか1つによるところの泡立てシステムを供給する工程と、
    液体先駆物質を上記流体容器へ供給し、上記プレートの高さより大きい初めの容積を形成する工程と、
    上記ガス導管を通してキャリアガスを供給し、上記ノズル構造の上記1つ或いはそれ以上の孔の開いた導管から出す工程と、を有し、
    上記キャリアガスを出す工程は、上記液体先駆物質内で第1のサイズを有する第1の泡を形成し、
    上記第1の泡は、上記プレートに接触して、上記第1のサイズより小さな第2のサイズを有する第2の泡を形成し、
    上記第2の泡は、上記液体先駆物質の表面へ流れ、上記液体先駆物質の表面で気化された先駆物質を製造する、
    液体先駆物質を気化するための方法。
  18. 上記第1の泡は、上記ノズル構造の1つ或いはそれ以上の孔の直径より大きくないサイズを有する、請求項17によるところの方法。
  19. 上記液体先駆物質の上記表面へ上記第2の泡が流れる工程は、上記第1の泡の上昇速度より小さい上昇速度で第2の泡を流す工程を含む、請求項17によるところの方法。
  20. 上記第2の泡は、上記液体先駆物質中で、上記第1の泡より均一に配置される、請求項19によるところの方法。
  21. 上記第2の泡は、上記液体先駆物質中で、上記第1の泡より大きな拡散を有する、請求項19によるところの方法。
  22. 上記気化された先駆物質は、1.5グラム/分から11.8グラム/分の供与量を有する、請求項17によるところの方法。
  23. 上記気化された先駆物質は、20℃から200℃の温度で供給される、請求項22によるところの方法。
  24. 上記キャリアガスは、窒素、アルゴン、ヘリウム、およびそれらの混合物のグループから選択され、1slmより大きく10slmまでの流量で上記ガス導管へ供給される、請求項17によるところの方法。
  25. 上記流体容器は、150トルから760トルの圧力を有する、請求項17によるところの方法。
  26. 上記液体先駆物質は、ジエチル亜鉛、ジメチル亜鉛、トリメチルアルミニウム、およびそれらの混合物のグループから選択された金属有機先駆物質を含む、請求項17によるところの方法。
  27. 上記液体先駆物質の初めの容積は、0.4Lから8Lであり、上記プレートは、上記流体容器の上記底から4cmの高さで配置されている、請求項17によるところの方法。
JP2014148227A 2009-03-11 2014-07-18 安定した先駆物質供給のための泡供給システム Expired - Fee Related JP5889971B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15933409P 2009-03-11 2009-03-11
US61/159,334 2009-03-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011553592A Division JP5680565B2 (ja) 2009-03-11 2010-03-11 安定した先駆物質供給のための泡供給システム、およびその方法

Publications (2)

Publication Number Publication Date
JP2015007286A JP2015007286A (ja) 2015-01-15
JP5889971B2 true JP5889971B2 (ja) 2016-03-22

Family

ID=42236414

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011553592A Expired - Fee Related JP5680565B2 (ja) 2009-03-11 2010-03-11 安定した先駆物質供給のための泡供給システム、およびその方法
JP2014148227A Expired - Fee Related JP5889971B2 (ja) 2009-03-11 2014-07-18 安定した先駆物質供給のための泡供給システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011553592A Expired - Fee Related JP5680565B2 (ja) 2009-03-11 2010-03-11 安定した先駆物質供給のための泡供給システム、およびその方法

Country Status (6)

Country Link
US (2) US8348248B2 (ja)
EP (1) EP2406410A1 (ja)
JP (2) JP5680565B2 (ja)
CN (1) CN102348832B (ja)
TW (1) TW201040306A (ja)
WO (1) WO2010103487A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8348248B2 (en) * 2009-03-11 2013-01-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bubbling supply system for stable precursor supply
FR2979636B1 (fr) * 2011-09-07 2014-08-29 Soitec Silicon On Insulator Injection directe de liquide pour des systemes et des procedes d'epitaxie en phase vapeur a base d'halogenures
US9644285B2 (en) 2011-08-22 2017-05-09 Soitec Direct liquid injection for halide vapor phase epitaxy systems and methods
TWI470672B (zh) * 2011-08-22 2015-01-21 Soitec Silicon On Insulator 用於鹵化物氣相磊晶系統之直接液體注入及方法
US20130220221A1 (en) * 2012-02-23 2013-08-29 Applied Materials, Inc. Method and apparatus for precursor delivery
DE102013103603A1 (de) 2013-04-10 2014-10-16 Osram Opto Semiconductors Gmbh Verfahren zum Versorgen eines Prozesses mit einem angereicherten Trägergas
CN103710683B (zh) * 2014-01-09 2016-08-17 北京七星华创电子股份有限公司 一种应用于原子层沉积设备的源瓶
JP6094513B2 (ja) * 2014-02-28 2017-03-15 東京エレクトロン株式会社 処理ガス発生装置、処理ガス発生方法、基板処理方法及び記憶媒体
JP2015195312A (ja) * 2014-03-31 2015-11-05 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
US10443128B2 (en) * 2015-04-18 2019-10-15 Versum Materials Us, Llc Vessel and method for delivery of precursor materials
DE112016002782T5 (de) 2016-08-24 2018-07-05 Google LLC (n.d.Ges.d. Staates Delaware) Änderungserkennungsbasiertes System zur Aktualisierung von Kartenschnittstellen
CN108404699A (zh) * 2017-02-09 2018-08-17 埃尔微尘科技(北京)有限公司 一种气液混合装置
KR101965805B1 (ko) * 2017-04-17 2019-04-04 한밭대학교 산학협력단 열 응답성을 향상시킨 캐니스터
KR101951644B1 (ko) * 2017-05-11 2019-02-25 고등기술연구원연구조합 미생물에 의한 수소생산장치 및 이를 이용한 수소생산방법
JP6920923B2 (ja) * 2017-08-25 2021-08-18 株式会社Screenホールディングス ポンプ装置および基板処理装置
CN109023301B (zh) * 2018-10-24 2023-10-13 乐山新天源太阳能科技有限公司 氧化铝膜制备装置
KR102690002B1 (ko) * 2018-12-11 2024-07-29 어플라이드 머티어리얼스, 인코포레이티드 앰풀 스플래시 완화
JP7033622B2 (ja) * 2020-03-19 2022-03-10 株式会社Kokusai Electric 気化装置、基板処理装置、クリーニング方法および半導体装置の製造方法
KR102308275B1 (ko) * 2020-06-17 2021-10-06 한국수력원자력 주식회사 버블 직경 산출방법
CN114367231A (zh) * 2021-12-03 2022-04-19 浙江陶特容器科技股份有限公司 一种用于半导体加工的智能液体前驱体源存储装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US229374A (en) * 1880-06-29 Friedbtch ad
US664457A (en) * 1900-05-24 1900-12-25 James Frederick Bennett Carbureter.
US673798A (en) * 1900-07-18 1901-05-07 Eleazer Kempshall Carbureter.
US797615A (en) * 1905-03-15 1905-08-22 Frederick Schmitt Carbureter.
US826936A (en) * 1905-11-28 1906-07-24 Ozro H Hinds Carbureter.
BE493382A (ja) * 1949-05-06
US3429676A (en) * 1965-08-26 1969-02-25 Casper J Gatza Gas saturator and detector
JPS5219462A (en) * 1975-08-06 1977-02-14 Aiko Kojima Waste water treating apparatus (26)
JPS60131973A (ja) * 1983-12-19 1985-07-13 Matsushita Electric Ind Co Ltd 有機金属の気化方法
US4863644A (en) * 1988-11-04 1989-09-05 Enviroquip, Inc. Gas diffuser
EP0420596B1 (en) * 1989-09-26 1996-06-19 Canon Kabushiki Kaisha Gas feeding device and deposition film forming apparatus employing the same
JPH04261020A (ja) * 1991-01-07 1992-09-17 Mitsubishi Electric Corp 化学気相成長装置
JPH05335243A (ja) * 1992-06-03 1993-12-17 Mitsubishi Electric Corp 液体バブリング装置
JPH06240456A (ja) * 1992-12-21 1994-08-30 Kawasaki Steel Corp 半導体装置のアルミニウム配線の形成方法及び装置
JPH079433U (ja) * 1993-07-16 1995-02-10 日新電機株式会社 バブラ
JP2996101B2 (ja) * 1994-08-05 1999-12-27 信越半導体株式会社 液体原料ガスの供給方法および装置
US5595691A (en) * 1995-11-07 1997-01-21 Hsu; Shui-Yuan Air supply apparatus for pond fisheries
US6161398A (en) * 1998-04-09 2000-12-19 Lucent Technologies, Inc. Methods of and systems for vapor delivery control in optical preform manufacture
US6142458A (en) * 1998-10-29 2000-11-07 General Signal Corporation Mixing system for dispersion of gas into liquid media
DE60020781T2 (de) 1999-08-20 2006-05-11 Rohm And Haas Chemicals Llc Sprudelvorrichtung mit zwei Fritten
US6444038B1 (en) * 1999-12-27 2002-09-03 Morton International, Inc. Dual fritted bubbler
KR100360494B1 (ko) 1999-09-21 2002-11-13 삼성전자 주식회사 기화장치
GB9929279D0 (en) * 1999-12-11 2000-02-02 Epichem Ltd An improved method of and apparatus for the delivery of precursors in the vapour phase to a plurality of epitaxial reactor sites
EP1160355B1 (en) * 2000-05-31 2004-10-27 Shipley Company LLC Bubbler
EP1329540A3 (en) 2000-07-03 2003-11-05 Epichem Limited An apparatus for the delivery of precursors in the vapour phase to epitaxial reactor sites
FR2817170B1 (fr) * 2000-11-30 2003-01-03 Commissariat Energie Atomique Procede, module et dispositif de mise en contact d'un gaz et d'un liquide
US6540211B2 (en) * 2001-05-08 2003-04-01 Jui-Tsun Tseng Container for liquid oil of energy
TW200300701A (en) 2001-11-30 2003-06-16 Asml Us Inc High flow rate bubbler system and method
US7077388B2 (en) 2002-07-19 2006-07-18 Asm America, Inc. Bubbler for substrate processing
US6893484B2 (en) * 2003-10-06 2005-05-17 Desert Energy Ltd Low operating pressure gas scrubber
GB2432371B (en) * 2005-11-17 2011-06-15 Epichem Ltd Improved bubbler for the transportation of substances by a carrier gas
JP2007239008A (ja) 2006-03-08 2007-09-20 Soken Kogyo Kk 材料供給装置
CN101092690A (zh) * 2006-06-19 2007-12-26 住友电气工业株式会社 金属有机汽化和供给设备
US8708320B2 (en) 2006-12-15 2014-04-29 Air Products And Chemicals, Inc. Splashguard and inlet diffuser for high vacuum, high flow bubbler vessel
US7708259B2 (en) * 2007-02-23 2010-05-04 Jesse Alan James Self-standing weighted diffuser assembly
US8348248B2 (en) * 2009-03-11 2013-01-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Bubbling supply system for stable precursor supply

Also Published As

Publication number Publication date
JP2015007286A (ja) 2015-01-15
US20130092241A1 (en) 2013-04-18
CN102348832A (zh) 2012-02-08
US8348248B2 (en) 2013-01-08
US20100230834A1 (en) 2010-09-16
TW201040306A (en) 2010-11-16
EP2406410A1 (en) 2012-01-18
JP5680565B2 (ja) 2015-03-04
JP2012520393A (ja) 2012-09-06
WO2010103487A1 (en) 2010-09-16
CN102348832B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5889971B2 (ja) 安定した先駆物質供給のための泡供給システム
JP5726831B2 (ja) 化学気相堆積のための装置及び方法
TWI643974B (zh) 氣相沉積膜中用以減輕瑕疵狀態之方法及設備
KR100794201B1 (ko) 거품기
KR101178030B1 (ko) 증기 이송 시스템, 기화기, 기화기 유닛 및 기화된 공급원 물질 이송 방법
JP5732025B2 (ja) 基板処理システムにおける材料蒸着方法及び装置
US7452424B2 (en) Vaporizer
US5421895A (en) Apparatus for vaporizing liquid raw material and apparatus for forming thin film
GB2345298A (en) Liquid delivery system for chemical vapour deposition method
WO1994006529A1 (fr) Appareil de gazeification de liquide
KR20010050136A (ko) 이중 프릿을 가진 버블러
CN112176317A (zh) 液体汽化器
TW201303971A (zh) 氣化裝置、氣體供給裝置及成膜裝置
JPH038330A (ja) 液状半導体形成材料気化供給装置
JP3720083B2 (ja) 半導体素子用薄膜の製造方法および装置、並びに半導体ウェハ
JP5568743B2 (ja) 霧化装置の恒温水循環システム、霧化装置、及び、配線形成装置
US20020160606A1 (en) Method for material removal from an in-process microelectronic substrate
JP2001295046A (ja) 銅薄膜の気相成長装置
TWI388688B (zh) 化學氣相沈積法及設備
JP2005175249A (ja) 液体材料の気化器及び気化方法
JPH05291144A (ja) 化学気相成長装置及びその気化器
KR20010110909A (ko) 전구체 공급 장치
JP2005039034A (ja) 気化供給装置及び気化供給方法
JPH06140380A (ja) エッチング装置
JPH05283340A (ja) 液体原料気化供給装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees