JP5886364B2 - 導波モード共振センサアセンブリ - Google Patents

導波モード共振センサアセンブリ Download PDF

Info

Publication number
JP5886364B2
JP5886364B2 JP2014101591A JP2014101591A JP5886364B2 JP 5886364 B2 JP5886364 B2 JP 5886364B2 JP 2014101591 A JP2014101591 A JP 2014101591A JP 2014101591 A JP2014101591 A JP 2014101591A JP 5886364 B2 JP5886364 B2 JP 5886364B2
Authority
JP
Japan
Prior art keywords
sensor assembly
sensor
array
gmr sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014101591A
Other languages
English (en)
Other versions
JP2014178329A (ja
Inventor
マグヌッソン、ロバート
ディ. ワウロ、デブラ
ディ. ワウロ、デブラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnusson robert
Wawro debra D
Original Assignee
Magnusson robert
Wawro debra D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnusson robert, Wawro debra D filed Critical Magnusson robert
Publication of JP2014178329A publication Critical patent/JP2014178329A/ja
Application granted granted Critical
Publication of JP5886364B2 publication Critical patent/JP5886364B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • G01N21/7743Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7776Index

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • External Artificial Organs (AREA)

Description

(優先権)
本出願は、1999年11月5日出願の仮特許出願第60/163,705号の優先権を主張するものであり、当該仮特許出願の全文を本明細書において参照することにより、当該仮特許出願の全文が特許権の一部放棄を伴うことなく本明細書に特に組み込まれる。本出願はまた、1999年11月6日出願の仮特許出願第60/164,089号の優先権を主張するものであり、当該仮特許出願の全文を本明細書において参照することにより、当該仮特許出願の全文が特許権の一部放棄を伴うことなく本明細書に特に組み込まれる。本出願は更に、2006年9月8日出願の仮特許出願第60/825,066号の優先権を主張するものであり、当該仮特許出願の全文を本明細書において参照することにより、当該仮特許出願の全文が特許権の一部放棄を伴うことなく本明細書に特に組み込まれる。本出願は更に、仮特許出願第60/163,705号及び第60/164,089号の優先権を主張した2000年11月6日出願の米国特許出願第09/707,435号の優先権を主張するものであり、当該米国特許出願の全文を本明細書において参照することにより、当該米国特許出願の全文が特許権の一部放棄を伴うことなく本明細書に特に組み込まれる。
(開示の背景)
(発明の分野)
本開示は、共振漏洩モードで周期構造の中で動作する光センサを提供するものであり、周期構造では、角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏波ダイバーシチを有利に適用して高精度検出を小型システム構成で行なう。このようにして得られ、かつ数値モデルにフィッティングされる相互参照データセットによって精度及び確度が高くなって、非常に広範囲の用途において検出動作の信頼性が向上する。
(関連技術の説明)
バイオ検出及び化学検出用の非常に多くの光センサが開発され市販され、そして研究文献に公開されている。例示的なデバイスとして、表面プラズモン共振センサ、MEMS加工カンチレバーセンサ、共振ミラー、ブラッグ格子センサ、導波路センサ、干渉導波路センサ、エリプソメトリー及び格子を適用したセンサを挙げることができる。これらのデバイスのうち表面プラズモン共振(SPR)センサは、コンセプト、機能、及び性能の点で大幅に異なるものの、本開示の主題である導波モード共振(GMR)センサに最も類似している。GMRセンサ及びSPRセンサは共に、タグ不要の生化学的検出能を備える。
表面プラズモン(SP)という用語は、電磁界によって誘起される電荷密度振動であり、導体と誘電体との界面(例えば、金/ガラス界面)で起こり得る電荷密度振動を指す。SPモードは、平行偏光されたTM偏光光(TM偏光とは、入射面に対して平行な電界ベクトルを有する光を指す)によって共振励起することができるが、TE偏光光とは共振励起することができない(TE偏光とは、入射面の法線方向に向いているTEベクトルを有する光を指す)。位相整合は、金属化回折格子を用いることにより、またはプリズム結合におけるような高屈折率材料による全内部反射を使用することにより、または導波する光のエバネッセント場を利用することにより起こる。SPR表面波が励起されると、特定の波長帯域で吸収極小が発生する。これらのセンサに関する角度感度及びスペクトル感度は非常に高いが、分解能は広い共振線幅(〜50nm)、及びセンサ応答の信号対雑音比によって制限される。更に、センサの動作ダイナミックレンジが広いほど、センサ感度は普通低くなる。検出を行なうために物理的に使用することができるのは単一の偏光(TM)だけなので、1回の測定で屈折率の変化と厚さの変化を同時に分解することはできない。これは、結合動態がセンサ表面の厚さ変化を含み、背景屈折率が検体濃度によって変化し得るような化学センサ用途において特に重要となる。本明細書において提供される本開示によって現在の技術の制約の幾つかを解決することができる。
マグヌッソンらは、共振器構造のパラメータの変化を調整することができる導波モード共振フィルタを発見した。よって、層厚の変化によって生じる、または周囲媒質中のまたはデバイス層中の屈折率の変化によって生じるスペクトル変化または角度変化を使用してこれらの変化を検出することができる。ワウロらは、新規のGMRセンサ形態だけでなく、光ファイバに組み込んだときのこれらのセンサ形態の新規の適用可能性を発見した。種々の用途計画におけるGMRセンサの更に別の態様もある。
本開示は、反射モード(すなわち、帯域阻止フィルタ)または透過モード(すなわち、帯域通過フィルタ)で動作するタグ不要の共振センサを提供し、この場合、整形された角度スペクトルに対応する光がGMRセンサ素子を照明する。これらのスペクトルは、1次検出器アレイまたはCCDマトリクス、或いは他の検出器群を直接照明する受信信号光に関して注目される入射角度範囲を同時にカバーする。生体分子が付着すると、あるいは注目する他の変化が検出領域に生じると、比較的狭いこれらの反射または透過角度スペクトルの位置が検出器マトリクス内で変化して、注目する分子イベントの定量測定値が得られる。更に、異なるTE偏光応答及びTM偏光応答をすると共振が生じるので、入力光の偏光状態を切り替える操作を適用して検出動作の精度を高める、または更に別のパラメータを、2つのTE/TM共振データを取得することにより測定することができる。更に、必要に応じて、入力光のスペクトル調整を一連の離散波長を利用して行なうことができるので、検出器群における測定スペクトルの位置を空間的にシフトさせて、測定の精度を更に向上させることができる。最後に、複数の漏洩型の導波路モードを用いて複数の共振ピークでセンサを動作させることにより、測定精度を更に向上させることもできる。
これらの動作モダリティ(角度、スペクトル、モード、及び偏光)は、種々の組み合わせで必要に応じて使用することができる。センサ群は、最小限の試薬量しか必要としない小型かつ高密度のプラットフォームに配置することができる。従って、本開示において説明されるように、本アプローチは、実用上のセンサシステムにおいて非常に多くの有利な態様で高精度測定用途に使用することができる。
本開示の使用及び実施を、この技術分野の当業者が理解し易くなるようにするために、本明細書に添付される多くの図を参照して、本発明が明瞭になり、かつ分かり易くなるようにしている。
バイオセンサの表面での生体分子結合イベントの例を示す。 例示的なバクテリア検出の様子を模式的に示す。 ゼロ次条件及び漏洩モード共振励起が明確に定義された状態の共振フォトニック結晶導波路構造による回折を説明している。 誘電体共振素子に関する実測と理論との比較を示す。 図4の素子に関連する、共振時の漏洩モードの電場プロファイルを示す。 極大点での図5における漏洩モードに関連する電磁定在波パターンの計算による瞬時「スナップショット」を示す。 TE偏光及びTM偏光ダイバーシチを用いる導波モード共振屈折率センサを示し、そして計算による応答を求める場合の構造を描いている。 図7の例に対応する広いダイナミックレンジで検出を行なう場合の該当するTE偏光共振波長シフトを示す。 空気中における厚さ検出の様子を示す。 シラン化学リンカー(左下)で修飾されるTE偏光(左上)素子表面に対応する空気中での測定GMRセンサスペクトル応答を示す。走査型電子顕微鏡(SEM)(右上)だけでなく、素子モデル(左下)も示される。 サブミクロン格子コンタクト印刷法を示す図。 光学接着媒質に印刷された520−nm周期の格子コンタクトの電子顕微鏡写真を示す。 生体材料の異なる付加厚さ(dbio)に対応してGMRセンサに関して計算されるTE偏光角度応答を示す。 図12の応答に対応するTM偏光応答を示す。 2つの偏光を検出するために提案される共振センサシステムを模式的に描いている。LEDまたはLD、或いはVCSELのような光源からの発散ビームがセンサに種々の角度で同時に入射する。 発散入力ビームを用いる例示的なGMRセンサ形態、及び偏光−発散検出を用いる関連する検出器を示す。 図15に詳細に示すGMR−センサ/検出器ユニットに組み込まれるマイクロウェル群から成る任意サイズのN×Mアレイを模式的に描いている。 TEピーク(または極小点)及びTMピーク(または極小点)を有する光が、マイクロウェルの壁での反射を利用する検出器アレイに誘導される透過モードにおける偏光検出を説明している。 GMRセンサ偏光ダイバーシチを実験的に使用して、シラン被覆センサ表面へのビオチン結合を定量化する様子を示す。分子付着イベントは時間の関数としてモニタリングされる。TE偏光及びTM偏光の両方に関する結果が示される。 帯域通過フィルタ特性が実現することにより、GMRセンサが透過モードで動作することができるような例示的な素子構造を示す。この素子は、シリコン・オン・インシュレータ(SOI)材料システムの中に実現することができる。 生体材料の異なる付加厚さに関して計算される透過型SOI共振センサスペクトルを示す。センサは、図19に示すように、入射波、反射波(R)、及び透過波(T)を含む空気の中で動作する。入射波は、この例ではTM偏光される。センサ構造は図19に示される。 直接透過モードで行なわれる検出動作に関連するセンサ/検出器構造を示す。 図21に示すGMRセンサレイアウトのようなGMRセンサレイアウトに関連して、生体材料の異なる付加厚さに対して計算されるTE角度応答を示す。 変化する入力波長に対して、図21のGMRセンサ構造に関して計算されるTE角度応答を示して、波長ダイバーシチ(wavelength diversity)を示す。この計算では、dbio=100nmである。発散入力ビームは、注目する角度範囲に自動的に対応する。 異なる生体層厚さに対して、図19に模式的に示すGMR帯域通過型センサに関して計算されるTM角度応答を示す。発散入力ビームは、注目する角度範囲に自動的に対応する。パラメータは図19に示すパラメータと同じであり、そして入力波長はこの例では、□=1.5436□mに設定される。 直接偏光を利用した検出を行なう場合のコンパクトレイアウトにおける検出動作に関連するセンサ/検出器構造を示す。検出器アレイ上のTEモード共振及びTMモード共振に関連する零(または、ピーク)の位置が破線矢印によって模式的に示される。 マイクロ流体バイオセンシングシステムまたはマイクロ流体化学検出システムにおいて流路を横切って行なわれる直接透過モードでの検出動作に関連するセンサ/検出器構造を示す。 単一光源からの光の平面波入力をレンズアレイによって波面整形して、可動部分を持たない角度指定可能なGMRセンサアレイを実現するHTSプラットフォームを示す。 単一光源からの光の入力をレンズアレイによって波面整形して、角度指定可能なGMRセンサアレイをマイクロ流体環境において実現するHTSプラットフォームを示す。 プラスティック媒質またはガラス媒質に、インプリンティング法及び成形法によって作製されるGMRセンサアレイを示す。 シリコン・オン・インシュレータ材料システムに作製されるGMRセンサアレイを示す。 生体材料の異なる付加厚さ(dbio)に対応するGMRマルチモードセンサに関して計算されるTE反射率角度応答を示す。 図31のマルチモードセンサに対応する計算による角度透過率スペクトルを示す。 マルチモード共振特性を示す法線入射□=0の場合の図31における素子パラメータに対応する計算による透過率スペクトルを示す。このマルチモードバイオセンサは、図示の波長範囲における漏洩モードTE0,TE1,及びTE2を利用して動作する。最高感度はこの例示的な事例では、TE2モードによって得られる。 光スプリッタ及び光ファイバ伝送を利用する単一光源システムを示す。 抗体に結合する化学検体または生物学的検体を検出する無標識の導波モード共振センサシステムの単一チャネルを模式的に示す。 光ファイバアレイを利用して光伝送を行なう反射構造を示す。 走査型線光源を用いる反射型センサシステムを示す。
(背景)
本願発明者らによって、共振導波路格子の屈折率及び/又は厚さを変化させることにより、共振導波路格子の共振周波数を変化させる、または調整することができることが提案されている。本願発明者らは、このアイデアをバイオセンサに適用することができることを発見した。というのは、接着する生体層の蓄積をリアルタイムに、化学タグを使用することなく、該当する共振周波数シフトを分光計で追跡調査することによりモニタリングすることができるからである。従って、検体と当該検体に対して指定された受容体との間の会合速度を定量化することができる。実際、会合、解離、及び再生を含む結合サイクル全体の特性を記録することができる。同様に、周囲媒質の屈折率の小さな変化、または導波路格子層群の内のいずれかの導波路格子層の小さな変化を測定することができる。このようにして非常に高い感度の新種のバイオセンサまたは化学センサが実用化されている。このセンサ技術は医療診断、薬剤開発、産業プロセス制御、ゲノミクス、環境モニタリング、及び自国の保安に広く適用することができる。
いくぶん細部に亘って一の例示的な使用に対処するには、高性能でタグ不要なフォトニック結晶GMRセンサが薬剤開発用途におけるプロセス制御を向上させるために非常に有望である。この方法は、このセンサ技術が提供することができる検出精度が高くなるので特に有用であり、薬剤開発及び薬剤スクリーニングのプロセスを向上させる。この産業分野では、何百万もの異なる化合物を迅速かつ正確にスクリーニングして、どの化合物が特定のタンパク質と結合するかまたは目的反応を阻害するかについて判断する必要がある。ハイスループットスクリーニング(HTS)の目的は、見込みのない化合物を、開発コストが更に発生する前に除外することにある。現在のHTS技術では通常、蛍光タグまたは放射化学タグが生物活性の指標として使用される。指標−化合物結合複合体に起因して、或る場合には、全く新規のアッセイを、新規の指標技術または反応化学を利用して細心の注意を払って設計する必要がある。標識化を必要とせず、広範囲の種類の材料を選択的に、リアルタイムに、アッセイ開発(容易に利用可能な抗体−抗原、核酸、及び他の高選択性の生体材料を使用する)を最小限に抑えながらスクリーニングすることのできる画期的なセンサ技術が益々必要となっている。スクリーニング変数(温度、及び周囲の流体の変化等)による誤差を小さくする機能だけでなく、結合動態を簡単なアレイ構造によってリアルタイムにモニタリングする機能は、望ましい他の機能である。本明細書に開示されるような高精度GMRセンサによる方法は、ハイスループットスクリーニング用途におけるこれらのニーズを満たすことができる。
このセンサは、共振漏洩モードが入射光波によって励起される周期構造誘電体導波路(フォトニック結晶とも表記される)を含む。広帯域入射光は狭スペクトル帯域で高効率で反射され、狭スペクトル帯域の中心波長は、センサ素子の表面で発生する化学反応に対して非常に高い感度を示す。センサ表面上の生物化学層との標的検体の相互作用によって、測定可能なスペクトルシフトが生じ、このスペクトルシフトによって、結合イベントを、処理タグまたは外部タグの追加なしで直接特定することができる。図1に示すように、(抗体のような)生体関連物質選択層をセンサ表面に固定して、動作中の特異性を付与することができる。ナノスケール(<0.1オングストローム)から数ミクロン程度のサイズへの厚さ変化に対する感度を持つセンサ構造が解析されている。従って、同じセンサ技術を使用して小分子薬剤(<1nm)やタンパク質(<10nm)だけでなく、図2に模式的に示すような大きいバクテリア検体(>1μm)に関する結合イベントを検出することができる。高分解能(狭い明瞭な共振ピークを利用して得られる)及び高感度(表面に局在化した漏洩モードに関連する)によってイベントを正確に検出する確率を高くすることができる。更に、両方の主偏光状態は、生体材料結合イベントを正確に検出するための独立した共振ピークを持つ。この機能によって、センサ表面に生じる平均厚さ変化と平均密度変化とを区別する機能が実現する。従って、目的とする化学結合イベント(分子立体配座変化を含む)に対するセンサ共振応答は、未結合材料がセンサ表面に定着する現象とは区別することができ、誤って陽性と判定することを低減することができる。
GMRセンサ技術は非常に用途が広い。個別センサ、またはアレイ中のセンサ素子に関連する生体分子反応は、角度スペクトル、波長スペクトル、及び偏光を含む種々の光の特性を使用して同時に測定することができる。更に、GMR素子自体は、異なる偏光に共振する現象を、単一の漏洩モードに起因する、すなわちTE基本モードに起因する単一のピークに示すように、または複数の漏洩モード、例えばTE,TE,及びTEモードで生じる複数のピークに示すように設計することができる。このような複数のモードは、センサ設計を正しく行なうことにより、注目する角度スペクトル領域及び波長スペクトル領域内で励起することができるようにする。共振モードの電磁場構造は、センサが検出領域のエバネッセント減衰波によって動作する、または検出領域全体が漏洩モードになるバルクモードセンサとして動作するように構成することができる。実際、特定の動作漏洩モードは、光測定による相互作用を最大にして検出感度を高めるように選択することができる。例えば、特定の構成では、TEモードでの動作によって、TEモードよりも優れた結果が得られる。このように概括される検出方法によって、分子イベントについて収集される情報の量及び信頼性が、他の手段で収集される情報の量及び信頼性よりも大きくなる。
このセンサコンセプトは、材料、動作波長、及び設計構成の点から広範囲に適用できる。異なる生化学種を検出するには、感作表面層を化学的に改質するのみで済むことから、このコンセプトは多くの機能を発揮する。空気環境下及び液体環境下の両方で操作可能である。材料選択に柔軟性があるので、環境に優しい誘電体をセンサ素子の作製に選択することができる。適用可能な材料として、ポリマー、半導体、ガラス、金属、及び誘電体を挙げることができる。
(導波モード共振効果)
図3は、薄膜導波路格子(フォトニック結晶スラブ)及び入射面波の相互作用を示す。周期Λが短くなると、図3(b)のようにゼロ次成分(zero−order regime)が得られるようになるまで、高次数の伝搬波はますます遮断される。この構造が適切な導波路を含む場合、この時点で減衰しているまたは遮断されている1次モード波は、漏洩モードとカップリングすることにより共振を誘発することができる。実際には、ゼロ次のモード波は好ましい場合が多いが、これは、図3(a)の回折波のように高次数の回折波が伝搬する際にエネルギーが浪費されないからである。
導波路層及び周期構造素子(フォトニック結晶)を含むこのような薄膜構造は、正しい条件の下では導波モード共振(GMR)効果を示す。入射波が周期構造素子によって図3(c)に示す漏洩導波モードと位相整合する場合、入射波は、図3(c)に示すように特定の反射方向に反射率Rで再放出されるが、これは、入射波が導波路に沿って伝搬し、そして直接反射波と増幅的に干渉するからである。逆にまた等価的に、図3(c)における順方向で直接透過される波(透過率T)の方向における再放出漏洩モードの位相は、導波されない直接T波から□ラジアンだけずれるので、透過光が消光される。
(帯域阻止フィルタ実験例)
図4は、誘電体導波モード共振素子の測定スペクトル反射率と計算スペクトル反射率を示す。この素子、低次数の側帯波を含む狭帯域で反射される注目スペクトルを持つ帯域阻止フィルタとして機能する。理論計算上では、平面波が入射する場合に100%のピーク効率が予測されるが、実際には、当該平面波は材料損失、散乱損失、入射ビーム発散、及び横方向素子サイズのような種々の要因によって減衰し、ここで実験により得られるピーク効率は90%である。この共振素子は、HfO層(約210nm)及びSiO層(約135nm)を溶融シリカ基板(直径1インチ)の上に堆積させることにより作製された。SiO格子は、一連のプロセスによって得られ、これらのプロセスでは、フォトレジストマスク格子(□=446nmの周期)のホログラフィック転写をAr+UVレーザ(□=364nm)を用いてロイドミラー干渉光学系の中で行ない、現像を行ない、約10nmのクロムマスク層をフォトレジスト格子の上に堆積させ、フォトレジスト格子をリフトオフし、そして次に、SiO層をCFで反応性イオンエッチングする。SEM(走査型電子顕微鏡)によって明らかになる表面粗さがピーク効率の低下の原因になる。
(漏洩モードフィールド構造)
伝搬する電磁波の反射/透過特性の他に、局在化及び電磁場強度増大を含む共振周期構造格子の近接場特性がセンサ用途において注目されている。図4の例示的な作製構造に関連する計算による近接場パターンを図5に示す。厳密な結合波解析(PCWA)によって得られる数値結果が、近接場に関連する相対的な電磁場強度及び電磁場空間分布に関する定量情報を提供する。図5に示すように、ゼロ次のS波(Sはゼロ次の電場を指す)は、ほぼ同じ(close to unity)反射波振幅をもって伝搬し、単位振幅の入射波との干渉によって示される定在波パターンを生成する。従って、共振を起こすと、エネルギーのほとんどは元に戻る方向に反射される。同時に、S及びS−1で示される1次のエバネッセント回折波がこの例では、反対方向に伝搬する漏洩モードを構成する。この特定のセンサでは、最大電磁場値は均質層の中に位置し、この場合、エバネッセント減衰波が図5に明瞭に表示されるように、基板及び被覆層の中にまで徐々に伝搬する。図6は、反対方向に伝搬するS−1波及びS+1波によって所定の時点で形成される定在波パターンを示す。S±1空間高調波は局在波に対応するので、これらの空間高調波は、共振が起こるときに非常に強くなることができる。格子変調(Δε=n −n )の大きさによって変わるが、層内の電磁場振幅は、局在強度I〜Sの大きな増加を表わす入射波振幅に対して約10倍〜1000倍の大きさとなり得る。Sの最大振幅は変調強度にほぼ逆比例する。Sの最大振幅は変調強度にほぼ逆比例する。一般的に、変調が小さいということは、ライン幅Δλが狭く、かつ共振器QファクタQ=λ/Δλが大きいことを意味する。
(例示的なセンサ応答及び感度)
液体環境における使用のために設計される単層センサに関して計算されるスペクトル応答を図7に示す。このセンサは、Siを用いて作製されることができ、回折層を形成するためのプラズマエッチングによりパターニングされることができる。1次元共振導波路格子構造はTE偏光入射波(用紙面の法線方向の電気ベクトル)及びTM偏光入射波に対応する個別の反射率ピークを有する。計算によれば、この構造によって、分光計の分解能を0.01nmとすると、3×10−5屈折率単位(RIU)の平均屈折率変化を分解可能であると判明している。ほぼ直線的な波長シフトが、格子構造(n=n=1.3〜1.8)と接触する媒質の広範囲の屈折率変化に対して維持されて(図8)、この格子構造を広いダイナミックレンジを有する汎用センサとすることができる。バイオセンサの感度は、検出対象の特定量の材料に関して測定される応答(ピーク波長シフトのような)として定義される。この測定応答は、検出対象の検体に対する達成可能な最大感度を示す。センサ分解能には、分光装置分解能、パワーメータ精度、生体に対し高い選択性を示す物質の応答、及びピーク形状またはライン幅のような実際の要素上の制約が含まれる。ライン幅は反射ピーク応答の半値全幅(FWHM)である。ライン幅は分光センサの精度に影響を与えるが、これは、ラインが狭くなることによって通常、波長シフトの分解能を高くすることができるからであり、導波路格子を用いた共振センサは通常、構造によって制御することができる約1nmのレベルの狭いライン幅を有する。実際の材料及び波長に関する図9の計算結果が示すように、共振センサは非常に小さい屈折率変化をモニタリングすることができるとともに、センサ表面での厚さ変化を検出するために使用することもできる。
(例示的なセンサ結果)
図10に例示されるように、バイオセンシング用途にGMRセンサ技術を使用する手法は、法線入射で照明される2層共振素子を利用する空気中でのタンパク質結合分析を利用して研究されている。この場合、まずクリーンな格子表面を3%アミノプロピルトリメトキシシラン(Sigma社製)を含むメタノール溶液で処理してアミン基で化学修飾する(図10の左上に示す)。次に、当該素子をウシ血清アルブミン(BSA,100mg/ml,Sigma社製)溶液中で洗浄する。そして堆積した38nm厚さのBSA層が、6.4nmの反射共振ピークスペクトルシフトを生じる(図10の左下に示す)。BSA付着の前後で反射率が約90%に維持されたことから、センサ表面上の生体材料層に起因して最小の信号劣化しか生じていないことに注目されたい。
(コンタクト印刷による共振センサ素子の作製)
これまで説明してきた方法の他に、光学ポリマーに所望のサブミクロン格子パターンを転写するコスト効率の高いコンタクト印刷法が非常に有用である。シリコーン格子スタンプを使用することにより、格子をUV硬化型光学接着剤の薄膜層に転写することができる(図11(a))。次に、導波路層を格子の上側表面に、Siまたは他の適切な媒質から成る薄膜層をスパッタリングで形成することにより堆積させる。別の方法として、格子を高屈折率のスピン塗布TiOポリマー膜で被覆して、高品質の共振センサ素子を形成する。コンタクト印刷された格子の例を図11(b)に示す。
(デュアルモードTE/TM偏光GMRセンサ)
センサに対する生体層の付着によるTE共振シフト及びTM共振シフトを同時に検出することにより、検出動作の精度を著しく向上させることができる。これにより、全ての生体層の特性、すなわち、屈折率及び厚さを正確に求めることができる。図12及び13は、両方の偏光に関して角度に対する共振シフトの関係を示す計算結果を示す。実際、素子を正しく設計することにより実現するTE/TMモード共振の適切な角度分離を行なうことにより、2つの信号を、図14に示すような1次元検出器アレイ上で発散照明光を用いて同時に検出することができ、この場合、発散照明光は、発光ダイオード(LED,フィルタリングすることによりスペクトルを狭くすることができる)、または垂直共振器型面発光レーザ(VCSEL)、または注目する角度範囲に自動的に対応する□=850nmのレーザダイオード(LD)によって放出される。この例では、調査光ビームが溶融シリカまたはプラスティックシート(屈折率n)のようなカバー媒質を通って入射する。注目する光分布が反射ピークとして検出器上に現われる。この例は、均質層及び周期層の両方として機能する高屈折率ポリマー材料を使用する様子を示す。この構造は、例えばシリコーン鋳型を使用して、格子を、支持ウェハにスピン塗布される市販のTiOリッチの熱硬化型またはUV硬化型ポリマー媒質の中に形成することにより作製することができる。別の構成として、高屈折率導波路層を支持ウェハに堆積させることができ、そして周期層を支持ウェハの上面に成形することができる。
図15は、本発明の一実施形態を生体分子検出に適用する様子を示す。非偏光光によってTEモード共振ピーク及びTMモード共振ピークが検出器アレイ上でまたは検出器マトリクス上で得られるが、信号対雑音(S/N)比は、図15に示すような複数の偏光状態の間で切り替えを行ない、そして偏光切り替えによって時間軸上で同期させた個別のTE信号及びTM信号に関して検出器を走査することにより高めることができる。また、S/N比を更に高くするために、光源にビーム整形素子を配設することにより、光分布をセンサ上に最適な態様で形成することができる。実際、或る用途では、波面を発散させる方法ではなく収束させる方法を使用することが望ましい。このようなビーム整形は、例えば適切なホログラフィック光学素子または回折光学素子を用いて行なうことができる。これにより、任意の振幅及び位相分布を持つ波面を生成することができる。図16は、図15の素子をマルチウェルシステムに使用する様子を示す。製薬分野では、マイクロウェルプレートを使用して、薬剤化合物のスクリーニングを効率的に行ない、このスクリーニングでは、このシステム形態を有利に展開することができる。図17は更に別の構成を示し、この構成では、この場合、検出器マトリクスがウェルの上に位置し、そしてTEモード共振及びTMモード共振に関連する透過率零(または、透過率ピーク)が測定される。生体層がセンサに付着すると、検出器上の零の位置がシフトすることにより、結合イベントの定量化が可能になる。この例では、入射波が或る角度で入射し、そして信号の取り出しは、マイクロウェルの壁による反射を利用して行なわれる。
予備実験によれば、この技術には偏光ダイバーシチ機能(polarization diversity feature)があることが判明しており、この偏光ダイバーシチ機能によって、各偏光(TE及びTM)に関して個別の共振ピークシフトが得られるので、上に議論したように検出を高精度で行なう手段が得られる。図18は、GMRバイオセンサ用途に関する例示的な結果を示す。
(帯域通過GMRセンサ)
透過型センサ素子、または帯域通過共振センサ素子は種々の媒質の中に作製することができ、これらの媒質として、シリコン・オン・インシュレータ(SOI)、シリコン・オン・サファイア(SOS)、及び直接転写型熱硬化性ポリマーまたはUV硬化性ポリマーを挙げることができる。周期層の形成は、従来の方法を利用して行なうことができ、これらの方法として、電子ビーム描写及びエッチング法、ホログラフィック干渉法、及び予め成形された原版(マスター)を利用するナノ転写リソグラフィ技術を挙げることができる。この実施形態を明示するために、図19は、例示的なSOI構造の中に構成される透過型センサを示す。図20は、厚さdbioの生体分子層がセンサ表面に付着したときのセンサの応答を示す。透過率ピークは、当該ピークのスペクトル位置を高感度で変える。このプロットを、例えば反射モードで動作する図12〜14のセンサと比較する必要がある。生体材料がセンサの表面に付着すると、共振波長はほぼ、付着材料1nm当たり、約1.6nmのスペクトルシフトの割合でシフトする。この性能をこの事例において達成する特定のプロファイルの形に注目されたい。
(平板小型構成のコンパクトGMRセンサ及びアレイ状センサシステム)
作製を容易にし、かつコストを下げるために、我々は次に、上に提示した本発明の実施形態を平板状のシステム機構として実施した構造を開示する。センサは透過モードで動作するものとする。従って、光は、媒質と接触するセンサに入射し、この媒質とセンサとの相互作用に注目する。光は媒質を通過して検出器に到達し、検出器上で、透過光強度の最小値が測定される(帯域阻止フィルタ)、または強度の最大値が測定される(帯域通過フィルタ)。これらの光分布の位置の空間シフトによって生体分子結合反応の重要な特徴を定量化することができる。
図21は、レーザダイオード(LD)、発光ダイオード(LED)、または垂直共振器型面発光レーザ(VCSEL)からの発散ビームを利用して調査を行なう単一のセンサに関するこのコンセプトを示す。偏光ビーム整形機能またはライン狭幅化(line−narrowing)機能を光源に必要に応じて搭載することができる。検出器は、図示のように、検出ボリュームの反対側に配置される。図22は、帯域阻止モードで動作することにより反射率ピーク、及びピークに付随する透過率極小を生じるGMRセンサに対応する検出器マトリクスの上の計算による強度分布(信号)を示す。入力波長はこの例では850nmである。2つの極小点が、センサ表面の法線に対して対称な角度位置に現われるが、これは、光が法線方向に入射するときの共振波長が、光が法線方向以外の方向に入射するときの共振波長とは異なるからである。2つの極小点を同時に使用して、検出動作の精度を、2つの角度シフトが得られるので高めることができる。図22では、付着生体層の厚さがdbio=0の場合、極小点がθ約6度に現われるのに対し、dbio=100nmの場合、角度の共振がこの事例では、θ約5度で見られる。図23は、波長が分散する様子を示している。すなわち、入力波長を離散的な一連の波長に調整することにより、追加データポイント群を収集して、データ分析の精度、及び数値モデルへのフィッティングの精度を高めることができる。波長が変化すると、共振角度及びセンサ上の光分布も変化する。更に、波長によって検出器上の極小点の位置を制御して、センサアレイの各GMRセンサピクセルに専用に利用される検出領域の大きさを指定するための柔軟性を提供する。
図20に関連して説明したように、我々は、透過ピークを持つように動作する帯域通過フィルタのような多くの共振フィルタを設計してきた。図21の構造のような構造に対応するこの事例では、強度極大点(極小点ではなく)が検出器アレイ上に現われる。このような透過素子は、シリコンのような高屈折率媒質の中に特に効果的に構成することができる。図24は、帯域通過フィルタを用いた角度発散バイオセンシング(angularly diverse biosensing)の様子を示す。波長を、素子が透過ピークを、摂動のない表面に対して維持するように設定することにより、超高感度構造が得られる。透過率角度スペクトルの最も急峻な変化は、生体層の付着による性能低下によって、図24に示すように、センサが帯域通過状態から帯域阻止状態に、法線入射時に変化するので生じる。従って、ナノメートル未満の生体膜が付着することによって、出力側の検出器における簡単な強度変化によって直接測定することができる。検出器マトリクスによって受信される順方向透過光分布の形状は、図24に明瞭に示されるように、生体層の厚さに対して高感度に変化する。
更に別の偏光発散光の形態が図25に模式的に示され、この場合、4つの極小点(またはピーク)を同時にモニタリングしてバイオセンシングの精度を高める。図26は、マイクロ流体システムにおける検出に適用することができる実施形態を示す。
生物学的標的及び薬剤標的の数が益々増大する状況において、化学的活動を大量かつ並列に分析する新規の手段を創造する必要が益々高まっている。同時に、最小量の試薬をアッセイ装置に分注することによりHTS費用を減らす必要がある。従って、この産業分野における開発はナノリットル規模の液体分注に向かって進められている。ここに開示されるGMRセンサ技術は、これらの要求を満たすように適合させることができる。上に示し、かつ説明した平板状の透過型機構によってマルチチャネルセンサシステムの開発が可能になる。下限が5〜10□mのレベルのピクセル群を備える既存の、そして開発中のCCD及びCMOS検出器マトリクス技術によって、強度分布及びこれらの分布の変化を高精度に測定することができる。ナノ転写技術及び高精度薄膜形成方法によって、不可欠なGMRセンサアレイの作製が可能になる。成形法は、比較的大きなパターンをこれらのアレイに設定し、そして転写するために適用することができる。
図27は、本開示に示される本発明の実施形態によるパラレルバイオセンシング機能を備えるシステムを示す。マイクロウェルプレートに埋め込まれるGMRセンサ群は、入射面波を球形波または円筒波に、図に示すような適切に設計される回折マイクロレンズアレイまたは屈折マイクロレンズアレイによって変換することにより生成される角度スペクトルによって特定される。上のようにして取り付けられる検出器アレイは信号を受信して、高精度なバイオセンシングを行なう。図28は同様の動作を示し、この場合、センサ群は、マイクロ流体アセンブリの流路内の誘導流によって刺激される。尚、図28からは、実際のマイクロ流体デバイスに関連する複雑な流路構造及び詳細は省略されている。
実用的でコスト効率の高いGMRアレイはガラス媒質またはプラスティック媒質の中に作製することができる。一例を示すと、プラスティック基板上の所定の焦点距離及び直径を持つ回折または屈折レンズアレイは幾つかのベンダーから安価に購入することができる。レンズアレイの反対側の基板の空いている方の側に、高屈折率のスピン塗布TiOポリマー膜を塗布する。次に、格子パターンを、特殊設計シリコーンスタンプで、図11において述べた適切な周期を持つように転写することにより、GMRセンサが得られる。次に、異なる溶液を分離し、そして相互汚染を回避するためのスピルウォール(こぼれた液が外へ流出しないように設けた壁)、成形法により設けることができる。別の構成として、高屈折率薄膜をまず、基板の上に堆積させ、この場合、この薄膜の上には、格子パターンが引き続き形成される。結果として得られるGMRアレイを図29に示す。図30は、SOIの中に形成されて既存のシリコン系微細加工法の利点を生かした概念的なGMRアレイを示す。
(マルチモードGMRセンサ)
検出精度を高めるための更に別のアプローチでは、動作共振漏洩モードの数を増やすことにより、より多くのスペクトルを検出及び高精度カーブフィッティングに適用する。従って、複数の導波路モードが存在することに起因する複数の共振ピークを生成し、そしてモニタリングすることができる。これらの複数のモードによって、高精度検出に利用することができる異なるスペクトル軌跡が得られる。図31は、側壁への付着が生じないと仮定した場合に、図の説明文に指定されるパラメータを持つ2重層GMRセンサのTE偏光応答を示す。入力波長が固定される場合、反射率スペクトルは、異なる漏洩モードで生じる幾つかの共振ピークを示す。生体層が付着すると、スペクトルは、図31に示すように、角度スペクトルの測定可能な変化を示す応答スペクトルとして現われる。このスペクトルは、例えば図16の構造に関する反射率スペクトルとしてモニタリングされる。図32は、例えば図27のシステムにおいてモニタリングされる該当する透過率スペクトルを示す。図33は、法線入射時のこのセンサの波長スペクトルを示し、3つの漏洩モードが図示のスペクトル帯域に含まれる様子を示す。電磁場のこのセンサ内部での特定の分布によって、TEモードでの動作が最高の感度を示す、すなわち図31〜33に示すように、付着厚さ単位当たり最大の角度シフト及びスペクトルシフトを示す。
次に、図34,35,及び36を参照し、最初にこれらの図の内の図34を参照すると、ファイバ結合光伝送をGMRセンサプラットフォームにおいて用いるセンサ/検出器構造が示される。図1は、光スプリッタ及び光ファイバ伝送を利用する単一光源システムを示す。単一光源からの光は“M”個のチャネルに分波され(光スプリッタによって)、そしてセンサアレイに光ファイバを通って入射する。各ファイバから出て行く光は、高密度または外部レンズ/DOEによって整形され、そして自由空間内でセンサ素子に入射する。別の構成として、光ファイバから出て行く発散光は、ビーム整形素子を使用することなくセンサ素子に直接入射させることができる。光ファイバは、当該ファイバの開口数または他の特性に基づいて、システム設計の一部として選択することができる。偏光素子または偏光維持ファイバをシステムに使用することにより、センサ素子に入射する偏光状態(群)を制御することができる。入射波長は調整することができるので、角度調整及びスペクトル調整の両方を単一のシステムにおいて行なうことができる。
システムは透過システムとして構成することができ、透過システムでは、センサアレイを透過する光は、図示のように、アレイの内、入射光とは反対の側の検出器マトリクスで検出される。システムは反射システムとして構成することもでき、反射システムでは、光はアレイに或る角度で入射し、そしてアレイによって反射されるビームは、アレイの内、入射光と同じ側に配置される検出器マトリクスで検出される。
図35は、抗体に結合した化学的検体または生物学的検体を検出する無標識の導波モード共振センサシステムのシングルチャネル模式図を示す。抗体は“Y”として描かれ、そして抗体は“Y”のカップの中の球として描かれている。抗体は、検出対象の検体または検体群に基づいて選択する必要がある。或る実施形態では、ウシの血清抗体、ラマの血清抗体、またはアルパカの血清抗体が使用されるが、本発明はこれらの抗体には制限されない。
動作状態では、ファイバ結合レーザダイオードからの発散ビームはセンサに連続的な角度範囲で入射する。結合イベントがセンサ表面で生じると(検体が抗体と結合することによって)、共振ピーク変化を入射角の関数として追跡することができる。共振は、入力光のTE偏光状態及びTM偏光状態に対応する異なる角度で生じるので、高精度の相互参照の検出が可能になる。
図36はマルチチャネルアレイを示す。マルチチャネルアレイは、光伝送のために光ファイバアレイを利用する反射構造を有する。光ファイバアレイでセンサアレイを走査することもできる(反射または透過のいずれかに関して)。
例えば、M×Nセンサアレイをスクリーニングするために、Mファイバアレイで、N行のセンサ素子群の底面を走査することができる。走査は、(a)ファイバアレイ+検出器アレイを、センサプレートを横断するように移動させることにより、または(b)センサプレートを、ファイバアレイ+検出器マトリクスを横断するように移動させることにより行なうことができる。
図37は、走査型線光源を用いるセンサ/検出器構造を示す。図37は反射型センサを示しているが、当該センサは、検出素子をアレイプレートの内、入射光とは反対の側に配置することにより透過型センサとして構成することもできる。
光源は単一波長(または、波長選択可能な)光源とすることができ、この光源からの光は、ライン集光素子(例えば、円筒レンズ)で整形される。ライン集光光で、M×NセンサアレイのM個のセンサ素子を同時に照明する。反射応答は、M行の検出器マトリクス群(行に並んだCCD検出素子群のような)で測定される。線光源及び検出素子アセンブリで、センサプレートの底面を走査することにより、M×Nセンサアレイを効率的に読み出すことができる。注記:ライン集光素子は、ビーム整形素子としても機能する(すなわち、発散する、収束する、またはいずれかの構成の波面とすることができる)。
以下の追加実施形態も企図されている。
入力光の一以上の漏洩モードでまたはその付近で動作するように構成される導波路構造と、そして少なくともM×N個のセンサ素子群を含むセンサアレイを有するTE共振検出器及びTM共振検出器と、を備えるGMRセンサアセンブリ。
更に、照明光を整形する反射レンズを備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、照明光を整形する反射レンズアレイを備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、照明光を整形する回折レンズを備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、入力光の波面の偏光状態、及び波面の波形の特徴を求める手段を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、少なくとも2つの異なる波長を有する入力光を供給する手段を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、少なくとも第1及び第2の偏光特性を有する入力光を供給する手段を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、少なくとも2つの共振モードを検出する手段を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
前記導波路構造に隣接する高密度マイクロ流体流路を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
透明媒質と一体化される基板、光調整素子、及びマイクロバイアルを備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
アレイが、半導体、半導体/誘電体複合体、半導体/誘電体/金属複合体、及び誘電体から成る群から選択される高密度媒質に配置される構成であり、かつ上述の節76に定義されるGMRセンサアセンブリ。
アレイ状のセンサ素子群が、照明光源から物理的に分離されている構成であり、かつ上述の節76に定義されるGMRセンサアセンブリ。
アレイ状のセンサ素子群が、照明入力光源と一体化される構成であり、かつ上述の節76に定義されるGMRセンサアセンブリ。
更に、小型バイオチップの構造の、またはマイクロベンチの構造の読み取り検出器を備え、かつ上述の節76に定義されるGMRセンサアセンブリ。
照明光源からの光がファイバに結合する、または導波路に結合する構成の導波モード共振センサ。
導波路または光ファイバが、特定の開口数、偏光維持特性、または材料仕様を有するように或る目的を持って選択される構成の導波モード共振センサ。
照明光源からの光を、ライン集光素子を使用して線状に集光する構成の導波モード共振センサ。
照明光源からの光を、円筒レンズを含むライン集光素子を使用して線状に集光する構成の導波モード共振センサ。
照明光源及び検出素子群でセンサアレイを走査する構成の導波モード共振センサ。
単一の光源からの光を幾つかのチャネルに光スプリッタを使用して分波する構成の導波モード共振センサ。
光ファイバ/導波路から成るアレイを有する導波モード共振センサを使用して光をセンサ素子アレイに照射する。
更に、これまでの記述から、種々の変形及び変更を本発明の好適な実施形態に本発明の真の技術思想から逸脱しない限り加えることができることが理解できるであろう。この記述は、例示のためにのみ行なわれるのであって、制限的な意味として捉えられるべきではない。本発明の範囲は次の請求項の文言によってのみ制限されるべきである。

Claims (21)

  1. 入力光によって励振される複数の漏洩モードでまたはその付近で動作するように構成される光導波路格子であって、前記入力光によって励振される複数の漏洩モードの共振波長より小さい周期を有する前記光導波路格子を有する構造と、
    少なくともN×M個のセンサ素子を含む二次元センサアレイを有する、偏光TE導波モード共振及び偏光TM導波モード共振(polarized TE and TM guided mode resonances)を検出するための検出器であって、Nは整数でかつ前記二次元センサアレイの第1の寸法に対応するものであり、Mは1より大きい整数でかつ前記二次元センサアレイの第2の寸法に対応するものであり、多数の漏洩モードについての位相の変化、波形の変化及び振幅の変化の内の一以上の変化を検出して前記構造またはその直近環境の第1物理状態と第2物理状態とを区別可能にするように構成される前記検出器と
    を備える導波モード共振(GMR)センサアセンブリ。
  2. 照明光を整形するための屈折レンズを更に備える、請求項1記載のGMRセンサアセンブリ。
  3. 照明光を整形するための屈折レンズアレイを更に備える、請求項1記載のGMRセンサアセンブリ。
  4. 照明光を整形するための回折レンズを更に備える、請求項1記載のGMRセンサアセンブリ。
  5. 入力光の波面の偏光状態、及び波面の波形の特徴を求めるための手段を更に備える、請求項1記載のGMRセンサアセンブリ。
  6. 少なくとも2つの異なる波長を有する入力光を供給する手段を更に備える、請求項1記載のGMRセンサアセンブリ。
  7. 少なくとも第1の偏光特性及び第2の偏光特性を有する入力光を供給する手段を更に備える、請求項1記載のGMRセンサアセンブリ。
  8. 前記偏光TE導波モード共振及び前記偏光TM導波モード共振を個別に検出する手段を更に備える、請求項1記載のGMRセンサアセンブリ。
  9. 前記構造に隣接する集積化マイクロ流体流路を更に備える、請求項1記載のGMRセンサアセンブリ。
  10. 透明光学材料と一体化された、基板、光調整素子、及びマイクロバイアルを更に備える、請求項1記載のGMRセンサアセンブリ。
  11. 前記アレイが、半導体、半導体/誘電体複合体、半導体/誘電体/金属複合体、及び誘電体から成る群から選択される一体材料に配置されている、請求項1記載のGMRセンサアセンブリ。
  12. アレイ状の前記センサ素子が、照明光源から物理的に分離されている、請求項1記載のGMRセンサアセンブリ。
  13. アレイ状の前記センサ素子が、照明用入力光の光源と一体化される、請求項1記載のGMRセンサアセンブリ。
  14. 小型バイオチップの構造の読み取り検出器を更に備える、請求項1記載のGMRセンサアセンブリ。
  15. 照明源は結合されたファイバまたは導波路を含む、請求項1記載のGMRセンサアセンブリ。
  16. 導波路または光ファイバが、特定の開口数、偏光維持特性、または材料仕様を有するように設計によって選択される、請求項1記載のGMRセンサアセンブリ。
  17. 照明源は、ライン集光素子を使用して線状に集光される、請求項1記載のGMRセンサアセンブリ。
  18. 照明源は、円筒レンズを含むライン集光素子を使用して線状に集光される、請求項1記載のGMRセンサアセンブリ。
  19. 照明源及び検出器素子は前記センサアレイを横切って走査される、請求項1記載のGMRセンサアセンブリ。
  20. 光スプリッタを使用することにより単一の光源が幾つかのチャネルに分波される、請求項1記載のGMRセンサアセンブリ。
  21. 前記センサ素子のアレイに光を伝送するための光ファイバのアレイまたは導波路のアレイを更に備える、請求項1記載のGMRセンサアセンブリ。
JP2014101591A 2006-09-08 2014-05-15 導波モード共振センサアセンブリ Active JP5886364B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82506606P 2006-09-08 2006-09-08
US60/825,066 2006-09-08
US11/656,612 2007-01-22
US11/656,612 US8111401B2 (en) 1999-11-05 2007-01-22 Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009527595A Division JP5547484B2 (ja) 2006-09-08 2007-09-07 導波モード共振センサアセンブリ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016023781A Division JP6306620B2 (ja) 2006-09-08 2016-02-10 導波モード共振センサアセンブリ

Publications (2)

Publication Number Publication Date
JP2014178329A JP2014178329A (ja) 2014-09-25
JP5886364B2 true JP5886364B2 (ja) 2016-03-16

Family

ID=39157595

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2009527595A Active JP5547484B2 (ja) 2006-09-08 2007-09-07 導波モード共振センサアセンブリ
JP2014101591A Active JP5886364B2 (ja) 2006-09-08 2014-05-15 導波モード共振センサアセンブリ
JP2016023781A Active JP6306620B2 (ja) 2006-09-08 2016-02-10 導波モード共振センサアセンブリ
JP2018041774A Pending JP2018091869A (ja) 2006-09-08 2018-03-08 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009527595A Active JP5547484B2 (ja) 2006-09-08 2007-09-07 導波モード共振センサアセンブリ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016023781A Active JP6306620B2 (ja) 2006-09-08 2016-02-10 導波モード共振センサアセンブリ
JP2018041774A Pending JP2018091869A (ja) 2006-09-08 2018-03-08 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ

Country Status (7)

Country Link
US (3) US8111401B2 (ja)
EP (1) EP2059789B1 (ja)
JP (4) JP5547484B2 (ja)
CN (2) CN102288552B (ja)
CA (2) CA2962332C (ja)
HK (1) HK1138066A1 (ja)
WO (1) WO2008031071A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075713A (ja) * 2006-09-08 2016-05-12 マグヌッソン、ロバートMAGNUSSON, Robert 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US8938141B2 (en) * 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US7639362B2 (en) * 2006-07-25 2009-12-29 The Regents Of The University Of Michigan Photonic crystal sensor
CN103495439B (zh) 2007-05-04 2015-09-16 欧普科诊断有限责任公司 流体连接器和微流体系统
NL1036322A1 (nl) * 2007-12-21 2009-06-23 Asml Holding Nv Systems and methods for lithographic illuminator beam deviation measurement and calibration using grating sensors.
JP5256808B2 (ja) * 2008-03-21 2013-08-07 株式会社島津製作所 導波モード共鳴格子を用いた屈折率測定方法及び屈折率測定装置
US7858921B2 (en) * 2008-05-05 2010-12-28 Aptina Imaging Corporation Guided-mode-resonance transmission color filters for color generation in CMOS image sensors
JP5195112B2 (ja) * 2008-07-18 2013-05-08 株式会社リコー 屈折率センサ、屈折率センサアレイおよびバイオセンサ
WO2010087999A1 (en) 2009-02-02 2010-08-05 Claros Diagnostics, Inc. Structures for controlling light interaction with microfluidic devices
CN102472618B (zh) * 2009-07-31 2015-11-25 惠普开发有限公司 束方向传感器
US9791623B2 (en) * 2009-11-30 2017-10-17 Board Of Regents, The University Of Texas System Multilevel leaky-mode resonant optical devices
US8395768B2 (en) * 2010-04-30 2013-03-12 Hewlett-Packard Development Company, L.P. Scattering spectroscopy apparatus and method employing a guided mode resonance (GMR) grating
JP2012098272A (ja) * 2010-08-23 2012-05-24 Nsk Ltd 標的物質濃度測定装置および標的物質濃度測定方法
JP5574926B2 (ja) * 2010-11-17 2014-08-20 キヤノン株式会社 固体撮像素子
EP2500314A1 (en) * 2011-03-14 2012-09-19 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Photonic crystal sensor
WO2012129068A1 (en) * 2011-03-22 2012-09-27 Research Triangle Institute, International Optical sensing device for sensing analytes and related apparatus and methods
CN102230986B (zh) * 2011-05-20 2013-10-09 北京航空航天大学 一种光学相位器件及其应用方法和系统
CN102221328B (zh) * 2011-06-08 2012-09-19 上海理工大学 一种基于导模共振结构设计的高分辨率角度测量方法
EP2734841B1 (en) 2011-07-20 2017-07-05 University Of Washington Through Its Center For Commercialization Photonic blood typing
US10031138B2 (en) 2012-01-20 2018-07-24 University Of Washington Through Its Center For Commercialization Hierarchical films having ultra low fouling and high recognition element loading properties
DK3312749T3 (da) 2012-03-05 2024-06-03 Oy Arctic Partners Ab Fremgangsmåder og anordninger til forudsigelse af risiko for prostatacancer og prostatakirtelvolumen
US8670121B1 (en) * 2012-09-13 2014-03-11 Corning Incorporated Wavelength-tunable detector for label-independent optical reader
EP2720027A1 (en) 2012-10-10 2014-04-16 ETH Zürich Absorption based guided-mode resonance sensor/switch and method for sensing physical changes in various environments
DE102012219643B4 (de) * 2012-10-26 2014-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensorelement mit einer photonischen kristallanordnung
JP6263884B2 (ja) * 2013-07-18 2018-01-24 コニカミノルタ株式会社 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定方法
JP6263887B2 (ja) * 2013-07-22 2018-01-24 コニカミノルタ株式会社 表面プラズモン増強蛍光測定方法および表面プラズモン増強蛍光測定装置
CN103398952B (zh) * 2013-08-13 2016-01-20 上海理工大学 生物传感器检测中的导模共振滤波片反射率优化方法
US9383312B2 (en) * 2013-11-06 2016-07-05 Ciencia, Inc. Electro-optic grating-coupled surface plasmon resonance (EOSPR)
JP6392876B2 (ja) * 2013-12-23 2018-09-19 セエスウエム サントル スイス デレクトロニクエ ドゥ ミクロテクニク ソシエテ アノニム−ルシェルシェ エ デブロップマン 導波モード共鳴デバイス
CN103968770B (zh) * 2014-05-08 2017-01-25 中国科学院光电技术研究所 一种基于表面等离子体共振的高精度纳米间隙检测结构及方法
CN103969220B (zh) * 2014-05-20 2016-07-13 复旦大学 一种检测uv胶水固化过程动态光学特性的方法
CN104165864A (zh) * 2014-09-04 2014-11-26 浙江清华长三角研究院 一种无标记导模共振布儒斯特传感器检测装置
CN104458615B (zh) * 2014-12-03 2017-04-12 哈尔滨工业大学 光子晶体全反射层制备方法及基于该全反射层的细菌总数快速检测仪
CN104634453B (zh) * 2015-02-03 2016-08-17 上海理工大学 一种检测线偏振入射光偏振角的方法
JP2016178234A (ja) * 2015-03-20 2016-10-06 株式会社東芝 半導体受光デバイス
AU2016208337B2 (en) 2015-07-27 2018-03-22 Personal Genomics, Inc. Sensing module and sensing method
FR3041474A1 (fr) 2015-09-23 2017-03-24 Commissariat Energie Atomique Dispositif d’imagerie sans lentille et procede d’observation associe
WO2017099803A1 (en) * 2015-12-11 2017-06-15 Hewlett Packard Enterprise Development Lp Polarization diverse ring resonator receivers
KR20170070685A (ko) * 2015-12-14 2017-06-22 삼성전자주식회사 하이브리드 컬러필터를 포함한 이미지 센서
US10782153B2 (en) 2016-03-08 2020-09-22 Analog Devices Global Multiturn sensor arrangement and readout
GB201610647D0 (en) * 2016-06-17 2016-08-03 Univ York Improved sensor and associated methods
US10084979B2 (en) * 2016-07-29 2018-09-25 International Business Machines Corporation Camera apparatus and system, method and recording medium for indicating camera field of view
KR101953252B1 (ko) * 2017-08-14 2019-02-28 한국식품연구원 큐 값 조절이 가능한 도파모드 공진 소자, 제조 방법 및 제조 장치
JP7268880B2 (ja) * 2017-08-24 2023-05-08 国立大学法人東北大学 透過型導波モード共鳴格子一体型分光デバイス及びその製造方法
CN107577009A (zh) * 2017-09-30 2018-01-12 华中科技大学 一种基于泄漏模波导的在线模式分辨器
CN107884060B (zh) * 2017-10-27 2020-10-30 中国人民解放军国防科技大学 一种光纤分布式传感探测方法及装置
CN108387551B (zh) * 2018-01-08 2021-07-16 上海理工大学 一种基于导模共振效应的传感器
TWI673481B (zh) * 2018-02-02 2019-10-01 國立交通大學 共振波長量測裝置及其量測方法
JP6693601B2 (ja) 2018-05-11 2020-05-13 日本製鉄株式会社 電縫溶接用給電コイル及びこれを用いた造管設備
US11506602B2 (en) * 2018-05-15 2022-11-22 The Administrators Of The Tulane Educational Fund Refractive-index sensor and method
US10458909B1 (en) 2018-10-24 2019-10-29 International Business Machines Corporation MEMS optical sensor
US11460521B2 (en) 2019-03-18 2022-10-04 Analog Devices International Unlimited Company Multiturn sensor arrangement
CN110119028B (zh) * 2019-05-10 2020-08-25 中南大学 用于任意光束的振幅、相位和偏振的整形算法及其光路
CN111001452B (zh) * 2019-12-20 2022-04-05 京东方科技集团股份有限公司 一种微型全分析器件及其制作方法
CN111302298A (zh) * 2020-02-20 2020-06-19 大连理工大学 一种转移金属薄膜的方法及其应用
RU2738314C1 (ru) * 2020-02-20 2020-12-11 Самсунг Электроникс Ко., Лтд. Система, вычислительное устройство и способ определения оптических свойств объемно-рассеивающей среды с использованием диффузной рефлектометрии
WO2021193589A1 (ja) * 2020-03-23 2021-09-30 積水化学工業株式会社 検査方法、検査キット及び検査システム
CN114696103B (zh) * 2020-12-31 2024-03-08 江苏俊知技术有限公司 适用于mimo技术的漏泄圆波导组件及其制造方法
US20230296521A1 (en) * 2022-03-17 2023-09-21 Visera Technologies Company Limited Bio-detection device, bio-detection system, and bio-detection method
CN114509563A (zh) * 2022-04-18 2022-05-17 合肥工业大学 一种结合微流控技术的巨磁阻传感器及其制造方法与应用
JP2024004872A (ja) * 2022-06-29 2024-01-17 国立大学法人東北大学 導波モード共鳴格子、光学部材、光学製品、及び導波モード共鳴格子の製造方法

Family Cites Families (255)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3693025A (en) 1969-11-28 1972-09-19 Brun Sensor Systems Inc Apparatus and method for eliminating interference errors in dual-beam infrared reflection measurements on a diffusely reflecting surface by geometrical elimination of interference-producing specularly-reflected radiation components
US3689346A (en) 1970-09-29 1972-09-05 Rowland Dev Corp Method for producing retroreflective material
US3916182A (en) 1972-08-21 1975-10-28 Western Electric Co Periodic dielectric waveguide filter
US3810688A (en) 1973-05-21 1974-05-14 A Ballman Optical waveguiding devices using monocrystalline materials of the sillenite family of bismuth oxides
US3856404A (en) 1973-06-06 1974-12-24 Phys Chem Res Corp Method and apparatus for measuring vapor pressure
US4009933A (en) 1975-05-07 1977-03-01 Rca Corporation Polarization-selective laser mirror
US4050895A (en) 1975-09-26 1977-09-27 Monsanto Research Corporation Optical analytical device, waveguide and method
US4576850A (en) 1978-07-20 1986-03-18 Minnesota Mining And Manufacturing Company Shaped plastic articles having replicated microstructure surfaces
US4668558A (en) 1978-07-20 1987-05-26 Minnesota Mining And Manufacturing Company Shaped plastic articles having replicated microstructure surfaces
US4344438A (en) 1978-08-02 1982-08-17 The United States Of America As Represented By The Department Of Health, Education And Welfare Optical sensor of plasma constituents
US4240751A (en) 1978-11-09 1980-12-23 Akzona Incorporated Method and apparatus for specific binding substances
US4289371A (en) 1979-05-31 1981-09-15 Xerox Corporation Optical scanner using plane linear diffraction gratings on a rotating spinner
US4321057A (en) 1979-09-20 1982-03-23 Buckles Richard G Method for quantitative analysis using optical fibers
US4420502A (en) 1980-09-05 1983-12-13 Conley Kenneth E Apparatus and method for producing a flexible sheet material having a predetermined surface characteristic
GB2103786A (en) 1981-08-14 1983-02-23 Ici Plc Fibre optic sensor
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
DE3277030D1 (en) 1981-09-18 1987-09-24 Battelle Memorial Institute Method and apparatus for the determination of species in solution with an optical wave-guide
USRE33064E (en) 1981-09-18 1989-09-19 Prutec Limited Method for the determination of species in solution with an optical wave-guide
JPH0627742B2 (ja) 1982-12-21 1994-04-13 コムテツク リサ−チ ユニツト リミテツド 検定方法及びそのための装置
US4536608A (en) 1983-04-25 1985-08-20 Exxon Research And Engineering Co. Solar cell with two-dimensional hexagonal reflecting diffraction grating
US4652290A (en) 1983-07-05 1987-03-24 Motorola, Inc. Method for making optical channel waveguides and product manufactured thereby
US4531809A (en) 1983-09-08 1985-07-30 Gte Laboratories Incorporated Optical waveguide coupling device
GB2156970B (en) 1984-01-06 1987-09-16 Plessey Co Plc Optical detection of specific molecules
EP0422708B1 (en) 1984-06-13 1996-09-25 Applied Research Systems Ars Holding N.V. Devices for use in chemical test procedures
US4701008A (en) 1984-08-10 1987-10-20 Motorola, Inc. Optical waveguide including superstrate of niobium or silicon oxynitride and method of making same
GB8423204D0 (en) 1984-09-14 1984-10-17 Comtech Res Unit Assay technique and equipment
US4650329A (en) 1984-11-29 1987-03-17 The United States Of America As Represented By The Secretary Of The Navy Optical 3-d signature device for detecting chemical agents
EP0184600B1 (en) 1984-12-10 1990-03-14 Prutec Limited Method for optically ascertaining parameters of species in a liquid analyte
GB8509491D0 (en) 1985-04-12 1985-05-15 Plessey Co Plc Optic waveguide biosensors
CH669050A5 (de) 1985-05-29 1989-02-15 Oerlikon Buehrle Holding Ag Sensor zum nachweis von aenderungen der brechzahl einer festen oder fluessigen messsubstanz.
WO1986007149A1 (de) 1985-05-29 1986-12-04 Kurt Tiefenthaler Optischer sensor zum selektiven nachweis von substanzen und zum nachweis von brechzahländerungen in messubstanzen
CH670521A5 (en) 1985-05-29 1989-06-15 Oerlikon Buehrle Holding Ag Optical sensor detecting specific substances in material
EP0215669A3 (en) 1985-09-17 1989-08-30 Seiko Instruments Inc. Analytical device and method for analysis of biochemicals, microbes and cells
US5468606A (en) 1989-09-18 1995-11-21 Biostar, Inc. Devices for detection of an analyte based upon light interference
US5148302A (en) 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
US4753529A (en) 1986-06-23 1988-06-28 Litton Systems, Inc. Apparatus and method for precision adjustment of interferometer pathlength difference
GB8618133D0 (en) 1986-07-24 1986-09-03 Pa Consulting Services Biosensors
US4876208A (en) 1987-01-30 1989-10-24 Yellowstone Diagnostics Corporation Diffraction immunoassay apparatus and method
GB8705649D0 (en) 1987-03-10 1987-04-15 Pa Consulting Services Assay sensor
US4888260A (en) 1987-08-10 1989-12-19 Polaroid Corporation Volume phase reflection holograms and methods for fabricating them
US4999234A (en) 1987-08-10 1991-03-12 Polaroid Corporation Holographic optical data storage medium
NL8800219A (nl) 1988-01-29 1989-08-16 Philips Nv Roteerbare magneetkopeenheid voor een magneetbandapparaat.
US4952056A (en) 1988-05-17 1990-08-28 Entwicklungsgemeinschaft Asi Method of determining the autocollimation angle of a grating coupler
GB2220080A (en) 1988-06-24 1989-12-28 Marconi Gec Ltd Improvements in optical waveguides
JPH0715589B2 (ja) 1988-09-26 1995-02-22 富士ゼロックス株式会社 電子写真感光体、その基体の処理方法および電子写真感光体の製造方法
US6235488B1 (en) 1988-09-29 2001-05-22 Agilent Technologies, Inc. Surface preparation for chemical-specific binding
SE8804074D0 (sv) 1988-11-10 1988-11-10 Pharmacia Ab Sensorenhet och dess anvaendning i biosensorsystem
SE462454B (sv) 1988-11-10 1990-06-25 Pharmacia Ab Maetyta foer anvaendning i biosensorer
GB2227089A (en) 1989-01-11 1990-07-18 Plessey Co Plc An optical biosensor
US5252293A (en) 1989-01-17 1993-10-12 Vladimir Drbal Analytical slide with porous filter membrane
US5175030A (en) 1989-02-10 1992-12-29 Minnesota Mining And Manufacturing Company Microstructure-bearing composite plastic articles and method of making
GB8916764D0 (en) 1989-07-21 1989-09-06 Sambles John R Surface plasmon optical sensor
US5156785A (en) 1991-07-10 1992-10-20 Cordis Corporation Extruded tubing and catheters having increased rotational stiffness
US5541057A (en) 1989-09-18 1996-07-30 Biostar, Inc. Methods for detection of an analyte
WO1991013339A1 (en) 1990-03-02 1991-09-05 Fisons Plc Sample cell for use in chemical or biochemical assays
EP0455067B1 (de) 1990-05-03 2003-02-26 F. Hoffmann-La Roche Ag Mikrooptischer Sensor
IL98150A0 (en) 1990-05-17 1992-08-18 Adeza Biomedical Corp Highly reflective biogratings and method for theirhighly reflective biogratings and method production
US5478756A (en) 1990-07-24 1995-12-26 Fisons Plc Chemical sensor for detecting binding reactions
JP2587743B2 (ja) 1990-08-31 1997-03-05 ベル コミュニケーションズ リサーチ インコーポレーテッド 同調可能な液晶エタロンフィルタ
GB2248497B (en) * 1990-09-26 1994-05-25 Marconi Gec Ltd An optical sensor
US5337183A (en) 1991-02-01 1994-08-09 Yeda Research And Development Co. Ltd. Distributed resonant cavity light beam modulator
GB2254415B (en) 1991-03-22 1994-10-12 Marconi Gec Ltd An optical sensor
SE468188B (sv) 1991-04-08 1992-11-16 Stiftelsen Inst Foer Mikroelek Metod foer inkoppling av straalning i en infraroeddetektor, jaemte anordning
US5442169A (en) 1991-04-26 1995-08-15 Paul Scherrer Institut Method and apparatus for determining a measuring variable by means of an integrated optical sensor module
US5155785A (en) 1991-05-01 1992-10-13 At&T Bell Laboratories Optical fiber interconnection apparatus and method
GB9111912D0 (en) 1991-06-04 1991-07-24 Fisons Plc Analytical methods
GB2256477B (en) 1991-06-07 1995-03-08 Marconi Gec Ltd An optical sensor
CH681920A5 (ja) * 1991-07-02 1993-06-15 Artificial Sensing Instr Asi A
US5216680A (en) 1991-07-11 1993-06-01 Board Of Regents, The University Of Texas System Optical guided-mode resonance filter
JPH0588396A (ja) 1991-09-27 1993-04-09 Fuji Electric Co Ltd 電子写真感光体
FR2684239B1 (fr) 1991-11-27 1994-03-04 France Telecom Procede de fabrication d'un guide d'onde optique planaire entierement a base de polymeres, et son utilisation dans un isolateur optique integre.
US5170448A (en) 1992-01-06 1992-12-08 Motorola, Inc. Optical waveguide apparatus and method for partially collecting light
GB9200562D0 (en) 1992-01-11 1992-03-11 Fisons Plc Analytical device with polychromatic light source
US5268782A (en) 1992-01-16 1993-12-07 Minnesota Mining And Manufacturing Company Micro-ridged, polymeric liquid crystal display substrate and display device
US5325386A (en) 1992-04-21 1994-06-28 Bandgap Technology Corporation Vertical-cavity surface emitting laser assay display system
US5494829A (en) 1992-07-31 1996-02-27 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
US5413884A (en) 1992-12-14 1995-05-09 American Telephone And Telegraph Company Grating fabrication using electron beam lithography
US5420688A (en) 1992-12-14 1995-05-30 Farah; John Interferometric fiber optic displacement sensor
US5331654A (en) 1993-03-05 1994-07-19 Photonics Research Incorporated Polarized surface-emitting laser
US5615052A (en) 1993-04-16 1997-03-25 Bruce W. McCaul Laser diode/lens assembly
US5343542A (en) 1993-04-22 1994-08-30 International Business Machines Corporation Tapered fabry-perot waveguide optical demultiplexer
US5512492A (en) 1993-05-18 1996-04-30 University Of Utah Research Foundation Waveguide immunosensor with coating chemistry providing enhanced sensitivity
US5416884A (en) * 1993-05-25 1995-05-16 Sharp Kabushiki Kaisha Semiconductor waveguide structure of a II-VI group compound
WO1994028396A1 (en) * 1993-05-28 1994-12-08 Fisons Plc Analytical apparatus
EP0702610B1 (en) 1993-06-11 1997-05-28 Minnesota Mining And Manufacturing Company Laser machined replication tooling
US5475780A (en) 1993-06-17 1995-12-12 At&T Corp. Optical waveguiding component comprising a band-pass filter
GB9314991D0 (en) * 1993-07-20 1993-09-01 Sandoz Ltd Mechanical device
KR100313263B1 (ko) 1993-09-13 2001-12-28 스프레이그 로버트 월터 연마품,이의제조방법,이를사용한마무리방법및제작용금형
US6042998A (en) 1993-09-30 2000-03-28 The University Of New Mexico Method and apparatus for extending spatial frequencies in photolithography images
US5691846A (en) 1993-10-20 1997-11-25 Minnesota Mining And Manufacturing Company Ultra-flexible retroreflective cube corner composite sheetings and methods of manufacture
JP3491969B2 (ja) 1994-06-27 2004-02-03 キヤノン株式会社 変位情報測定装置
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5559338A (en) 1994-10-04 1996-09-24 Excimer Laser Systems, Inc. Deep ultraviolet optical imaging system for microlithography and/or microfabrication
US5955335A (en) 1994-10-08 1999-09-21 Foschungszentrum Julich GmbH Biomaterial immobilization on an Si3 N4 surface containing Si-NH2 groups with a heterobifunctional cross-linking agent
TW323341B (ja) 1995-01-09 1997-12-21 Minnesota Mining & Mfg
US5606170A (en) 1995-02-03 1997-02-25 Research International, Inc. Multifunctional sensor system
US5633527A (en) 1995-02-06 1997-05-27 Sandia Corporation Unitary lens semiconductor device
KR100398940B1 (ko) 1995-03-03 2003-12-31 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 다양한높이의구조화면을갖는광지향성필름과이러한필름으로구성된물품
US5690894A (en) 1995-05-23 1997-11-25 The Regents Of The University Of California High density array fabrication and readout method for a fiber optic biosensor
WO1996038726A1 (en) 1995-05-30 1996-12-05 Ecole Polytechnique Federale De Lausanne (Epfl) Covalently immobilized phospholipid bilayers on solid surfaces
US5598300A (en) 1995-06-05 1997-01-28 Board Of Regents, The University Of Texas System Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects
US6200737B1 (en) 1995-08-24 2001-03-13 Trustees Of Tufts College Photodeposition method for fabricating a three-dimensional, patterned polymer microstructure
US5991480A (en) 1995-09-01 1999-11-23 Paul Scherrer Institut Process and device for measuring light beams
GB9518429D0 (en) 1995-09-08 1995-11-08 Pharmacia Biosensor A rapid method for providing kinetic and structural data in molecular interaction analysis
US5814516A (en) 1995-10-13 1998-09-29 Lockheed Martin Energy Systems, Inc. Surface enhanced Raman gene probe and methods thereof
US6174677B1 (en) 1995-10-13 2001-01-16 Ut-Battelle, Llc Advanced surface-enhanced Raman gene probe systems and methods thereof
WO1997015819A1 (en) 1995-10-25 1997-05-01 University Of Washington Surface plasmon resonance light pipe sensor
US5978401A (en) 1995-10-25 1999-11-02 Honeywell Inc. Monolithic vertical cavity surface emitting laser and resonant cavity photodetector transceiver
US5858799A (en) 1995-10-25 1999-01-12 University Of Washington Surface plasmon resonance chemical electrode
US5822486A (en) 1995-11-02 1998-10-13 General Scanning, Inc. Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein
US5814524A (en) 1995-12-14 1998-09-29 Trustees Of Tufts College Optical sensor apparatus for far-field viewing and making optical analytical measurements at remote locations
GB9602542D0 (en) 1996-02-08 1996-04-10 Fisons Plc Analytical device
US5801390A (en) 1996-02-09 1998-09-01 Nikon Corporation Position-detection method and apparatus with a grating mark
US5804453A (en) 1996-02-09 1998-09-08 Duan-Jun Chen Fiber optic direct-sensing bioprobe using a phase-tracking approach
AU2038897A (en) 1996-03-27 1997-10-17 British Telecommunications Public Limited Company Optical diffraction grating
US5863449A (en) 1996-03-29 1999-01-26 The Whitaker Corporation Method for forming optical interferometer
BE1010069A6 (nl) 1996-03-29 1997-12-02 Imec Inter Uni Micro Electr Optisch systeem met hoge reflectiviteitsrooster.
US5821343A (en) 1996-04-25 1998-10-13 Medtronic Inc Oxidative method for attachment of biomolecules to surfaces of medical devices
IL118209A0 (en) 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
US6174497B1 (en) 1997-06-04 2001-01-16 Euro-Celtique, S.A. Detection systems and methods for predicting the dissolution curve of a drug from a pharmaceutical dosage form
KR20000016498A (ko) 1996-06-10 2000-03-25 다니엘 제이. 설리반 생산환경을 위한 홀로그래픽 패터닝방법 및 공구
US5654118A (en) 1996-07-15 1997-08-05 Xerox Corporation Imaging member including a blocking layer containing an enriched amount of nickel hydroxide
US5666197A (en) 1996-08-21 1997-09-09 Polaroid Corporation Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography
US6395558B1 (en) * 1996-08-29 2002-05-28 Zeptosens Ag Optical chemical/biochemical sensor
GB9618635D0 (en) 1996-09-06 1996-10-16 Thermo Fast Uk Ltd Improvements in or relating to sensors
US5812571A (en) 1996-10-25 1998-09-22 W. L. Gore & Associates, Inc. High-power vertical cavity surface emitting laser cluster
US5846843A (en) 1996-11-18 1998-12-08 The University Of Toledo Sensor using long range surface plasmon resonance with diffraction double-grating
US5922550A (en) 1996-12-18 1999-07-13 Kimberly-Clark Worldwide, Inc. Biosensing devices which produce diffraction images
SE9700384D0 (sv) 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
US6096127A (en) 1997-02-28 2000-08-01 Superconducting Core Technologies, Inc. Tuneable dielectric films having low electrical losses
US5864641A (en) 1997-04-11 1999-01-26 F&S, Inc. Optical fiber long period sensor having a reactive coating
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US6055262A (en) 1997-06-11 2000-04-25 Honeywell Inc. Resonant reflector for improved optoelectronic device performance and enhanced applicability
US6035089A (en) 1997-06-11 2000-03-07 Lockheed Martin Energy Research Corporation Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
US5925878A (en) 1997-08-20 1999-07-20 Imation Corp. Diffraction anomaly sensor having grating coated with protective dielectric layer
US5955378A (en) 1997-08-20 1999-09-21 Challener; William A. Near normal incidence optical assaying method and system having wavelength and angle sensitivity
US6902703B2 (en) 1999-05-03 2005-06-07 Ljl Biosystems, Inc. Integrated sample-processing system
US20030205681A1 (en) * 1998-07-22 2003-11-06 Ljl Biosystems, Inc. Evanescent field illumination devices and methods
US6154480A (en) 1997-10-02 2000-11-28 Board Of Regents, The University Of Texas System Vertical-cavity laser and laser array incorporating guided-mode resonance effects and method for making the same
KR100497586B1 (ko) 1997-10-02 2005-07-01 아사히 가라스 가부시키가이샤 광헤드장치와 그에 적합한 회절소자 및 회절소자와광헤드장치의 제조방법
US6128431A (en) 1997-10-08 2000-10-03 The Regents Of The University Of California High efficiency source coupler for optical waveguide illumination system
US5994150A (en) 1997-11-19 1999-11-30 Imation Corp. Optical assaying method and system having rotatable sensor disk with multiple sensing regions
US6338968B1 (en) 1998-02-02 2002-01-15 Signature Bioscience, Inc. Method and apparatus for detecting molecular binding events
GB9803704D0 (en) 1998-02-24 1998-04-15 Univ Manchester Waveguide structure
US6210910B1 (en) 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
DE19814811C1 (de) 1998-04-02 1999-08-05 Inst Physikalische Hochtech Ev Anordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie
NL1008934C2 (nl) 1998-04-20 1999-10-21 Univ Twente Geïntegreerde optische lichtgeleider inrichting.
US6316153B1 (en) 1998-04-21 2001-11-13 The University Of Connecticut Free-form fabricaton using multi-photon excitation
US5998298A (en) 1998-04-28 1999-12-07 Sandia Corporation Use of chemical-mechanical polishing for fabricating photonic bandgap structures
TW460758B (en) 1998-05-14 2001-10-21 Holographic Lithography System A holographic lithography system for generating an interference pattern suitable for selectively exposing a photosensitive material
US6346376B1 (en) 1998-06-03 2002-02-12 Centre Suisse D'electronique Et De Mictotechnique Sa Optical sensor unit and procedure for the ultrasensitive detection of chemical or biochemical analytes
JP3416532B2 (ja) 1998-06-15 2003-06-16 富士通カンタムデバイス株式会社 化合物半導体装置及びその製造方法
US5986762A (en) 1998-06-15 1999-11-16 Imation Corp. Optical sensor having optimized surface profile
US6052188A (en) 1998-07-08 2000-04-18 Verity Instruments, Inc. Spectroscopic ellipsometer
US6406921B1 (en) 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
US6137576A (en) * 1998-07-28 2000-10-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Optical transducers based on liquid crystalline phases
US6320991B1 (en) 1998-10-16 2001-11-20 Imation Corp. Optical sensor having dielectric film stack
EP1047929B1 (en) 1998-11-13 2007-07-04 Reichert, Inc. Method for qualitative and quantitative measurements
US6579673B2 (en) 1998-12-17 2003-06-17 Kimberly-Clark Worldwide, Inc. Patterned deposition of antibody binding protein for optical diffraction-based biosensors
US20020037593A1 (en) * 1999-01-25 2002-03-28 Craighead Harold G. Diffraction-based cell detection using a micro-contact-printed antibody grating
WO2000046622A1 (en) 1999-02-05 2000-08-10 Corning Incorporated Optical fiber component with shaped optical element and method of making same
US6303179B1 (en) 1999-02-08 2001-10-16 Medtronic, Inc Method for attachment of biomolecules to surfaces through amine-functional groups
EP1031828B1 (en) 1999-02-25 2006-09-13 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Integrated-optical sensor and method for integrated-optically sensing a substance
US6332663B1 (en) 1999-06-16 2001-12-25 Xerox Corporation Methods and apparatus for marking images and obtaining image data using a single marking engine platform
PT1192448E (pt) 1999-07-05 2007-01-31 Novartis Ag Processo para a utilização de uma plataforma de sensor
US6771376B2 (en) 1999-07-05 2004-08-03 Novartis Ag Sensor platform, apparatus incorporating the platform, and process using the platform
WO2001004697A1 (en) 1999-07-12 2001-01-18 Coho Holdings, Llc Electro-optic device allowing wavelength tuning
EP1085315B1 (en) 1999-09-15 2003-07-09 CSEM Centre Suisse d'Electronique et de Microtechnique SA Integrated-optical sensor
US6212312B1 (en) 1999-09-17 2001-04-03 U.T. Battelle, Llc Optical multiplexer/demultiplexer using resonant grating filters
US6376177B1 (en) 1999-10-06 2002-04-23 Virtual Pro, Inc. Apparatus and method for the analysis of nucleic acids hybridization on high density NA chips
KR100390875B1 (ko) 1999-10-27 2003-07-10 (주)해빛정보 위상 회절 격자형 광 저대역 통과필터
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US8111401B2 (en) * 1999-11-05 2012-02-07 Robert Magnusson Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats
FR2801977B1 (fr) 1999-12-02 2002-05-17 Commissariat Energie Atomique Amplification d'un signal de fluorescence emis par un echantillon surfacique
EP1255996B1 (en) 2000-02-16 2010-05-26 Wisconsin Alumni Research Foundation Biochemical blocking layer for liquid crystal assay
US6797463B2 (en) 2000-02-16 2004-09-28 Wisconsin Alumni Research Foundation Method and apparatus for detection of microscopic pathogens
WO2001071410A2 (en) 2000-03-17 2001-09-27 Zograph, Llc High acuity lens system
US6639674B2 (en) 2000-03-28 2003-10-28 Board Of Regents, The University Of Texas System Methods and apparatus for polarized reflectance spectroscopy
JP2001281284A (ja) * 2000-03-30 2001-10-10 Makoto Hirano 複素誘電率の非破壊測定装置
US7396675B2 (en) 2000-06-02 2008-07-08 Bayer Technology Services Gmbh Kit and method for determining a plurality of analytes
US6449097B1 (en) 2000-06-05 2002-09-10 Lightchip, Inc. Diffraction grating for wavelength division multiplexing/demultiplexing devices
US6969449B2 (en) 2000-07-10 2005-11-29 Vertex Pharmaceuticals (San Diego) Llc Multi-well plate and electrode assemblies for ion channel assays
GB2365966A (en) 2000-08-18 2002-02-27 Lattice Intellectual Property Method and apparatus for detecting chemical contamination
US7306827B2 (en) 2000-10-30 2007-12-11 Sru Biosystems, Inc. Method and machine for replicating holographic gratings on a substrate
US6951715B2 (en) 2000-10-30 2005-10-04 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US6870624B2 (en) 2000-10-30 2005-03-22 Coho Holdings Llc Optical wavelength resonant device for chemical sensing
US7615339B2 (en) 2000-10-30 2009-11-10 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US7094595B2 (en) 2000-10-30 2006-08-22 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US7300803B2 (en) 2000-10-30 2007-11-27 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7371562B2 (en) 2000-10-30 2008-05-13 Sru Biosystems, Inc. Guided mode resonant filter biosensor using a linear grating surface structure
US7101660B2 (en) 2000-10-30 2006-09-05 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US20030113766A1 (en) 2000-10-30 2003-06-19 Sru Biosystems, Llc Amine activated colorimetric resonant biosensor
US7070987B2 (en) 2000-10-30 2006-07-04 Sru Biosystems, Inc. Guided mode resonant filter biosensor using a linear grating surface structure
US7142296B2 (en) 2000-10-30 2006-11-28 Sru Biosystems, Inc. Method and apparatus for detecting biomolecular interactions
US7153702B2 (en) 2000-10-30 2006-12-26 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7175980B2 (en) 2000-10-30 2007-02-13 Sru Biosystems, Inc. Method of making a plastic colorimetric resonant biosensor device with liquid handling capabilities
US7524625B2 (en) 2000-10-30 2009-04-28 Sru Biosystems, Inc. Real time binding analysis of antigens on a biosensor surface
US7264973B2 (en) 2000-10-30 2007-09-04 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant optical biosensor
US7023544B2 (en) 2000-10-30 2006-04-04 Sru Biosystems, Inc. Method and instrument for detecting biomolecular interactions
US20030092075A1 (en) 2000-10-30 2003-05-15 Sru Biosystems, Llc Aldehyde chemical surface activation processes and test methods for colorimetric resonant sensors
US7575939B2 (en) 2000-10-30 2009-08-18 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US7217574B2 (en) 2000-10-30 2007-05-15 Sru Biosystems, Inc. Method and apparatus for biosensor spectral shift detection
US7202076B2 (en) 2000-10-30 2007-04-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
JP2002196117A (ja) 2000-12-25 2002-07-10 Nitto Denko Corp 光拡散層、光拡散性シート及び光学素子
US6587617B2 (en) * 2001-02-22 2003-07-01 Maven Technologies, Llc Micro lens array for bioassay
US7030988B2 (en) * 2001-03-22 2006-04-18 Fuji Photo Film Co., Ltd. Measuring apparatus and measuring chip
US6665070B1 (en) 2001-04-20 2003-12-16 Nanometrics Incorporated Alignment of a rotatable polarizer with a sample
US6661952B2 (en) 2001-05-04 2003-12-09 Ut Battelle, Llc Sub-wavelength efficient polarization filter (SWEP filter)
US20020197732A1 (en) * 2001-06-20 2002-12-26 Carnahan James Claude Method and apparatus for combinatorial screening of polymer compositions
US7244614B2 (en) 2001-08-01 2007-07-17 Cellomics, Inc. Fusion proteins and assays for molecular binding
US6748138B2 (en) 2001-09-14 2004-06-08 Fibera, Inc. Optical grating fabrication
JP2005535870A (ja) 2001-11-07 2005-11-24 オーバーン ユニバーシティ ファージリガンドセンサーデバイスおよびその使用
JP2003161816A (ja) 2001-11-29 2003-06-06 Nitto Denko Corp 光拡散性シート、光学素子および表示装置
US20030224369A1 (en) 2002-02-25 2003-12-04 Surber Mark W. Reverse screening and target identification with minicells
US7074311B1 (en) 2002-05-08 2006-07-11 Sru Biosystems Inc. Biosensor electrophoresis
AU2002951346A0 (en) 2002-09-05 2002-09-26 Garvan Institute Of Medical Research Diagnosis of ovarian cancer
US7927822B2 (en) 2002-09-09 2011-04-19 Sru Biosystems, Inc. Methods for screening cells and antibodies
US7429492B2 (en) 2002-09-09 2008-09-30 Sru Biosystems, Inc. Multiwell plates with integrated biosensors and membranes
US7309614B1 (en) 2002-12-04 2007-12-18 Sru Biosystems, Inc. Self-referencing biodetection method and patterned bioassays
FR2851373B1 (fr) 2003-02-18 2006-01-13 St Microelectronics Sa Procede de fabrication d'un circuit electronique integre incorporant des cavites
US7497992B2 (en) 2003-05-08 2009-03-03 Sru Biosystems, Inc. Detection of biochemical interactions on a biosensor using tunable filters and tunable lasers
US7057720B2 (en) * 2003-06-24 2006-06-06 Corning Incorporated Optical interrogation system and method for using same
US20050018944A1 (en) * 2003-07-25 2005-01-27 Mozdy Eric J. Polarization modulation interrogation of grating-coupled waveguide sensors
US7142298B2 (en) 2003-09-29 2006-11-28 Shaw Intellectual Property Holdings, Inc. Particulate monitor
US20050070027A1 (en) 2003-09-30 2005-03-31 Jacques Gollier Double resonance interrogation of grating-coupled waveguides
JP2007510928A (ja) 2003-11-06 2007-04-26 エス アール ユー バイオシステムズ,インコーポレイテッド 高密度アミン機能化表面
US6990259B2 (en) 2004-03-29 2006-01-24 Sru Biosystems, Inc. Photonic crystal defect cavity biosensor
CN101057131A (zh) 2004-06-28 2007-10-17 Sru生物系统公司 用于分子的功能和结构表征的直接结合传感器与质谱集成
US7689086B2 (en) 2004-07-30 2010-03-30 University Of Connecticut Resonant leaky-mode optical devices and associated methods
US8938141B2 (en) 2004-07-30 2015-01-20 University Of Connecticut Tunable resonant leaky-mode N/MEMS elements and uses in optical devices
US20060072114A1 (en) * 2004-10-06 2006-04-06 Sigalas Mihail M Apparatus and mehod for sensing with metal optical filters
ATE475886T1 (de) 2005-04-12 2010-08-15 Sru Biosystems Inc Proteolipidmembran und lipidmembranen-biosensor
US7162125B1 (en) 2005-06-23 2007-01-09 Sru Biosystems, Inc. Optimized grating based biosensor and substrate combination
US7197198B2 (en) 2005-06-23 2007-03-27 Sru Biosystems, Inc. Biosensor substrate structure for reducing the effects of optical interference
US7521769B2 (en) 2005-07-08 2009-04-21 Sru Biosystems, Inc. Photonic crystal biosensor structure and fabrication method
US7479404B2 (en) 2005-07-08 2009-01-20 The Board Of Trustees Of The University Of Illinois Photonic crystal biosensor structure and fabrication method
US7483127B1 (en) 2005-08-08 2009-01-27 Sru Biosystems, Inc. Method and apparatus for generating an image of biomolecular sensor target area
US7790406B2 (en) 2005-08-11 2010-09-07 Sru Biosystems, Inc Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor
NZ564642A (en) 2005-08-11 2010-05-28 Sru Biosystems Inc Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor
US8288157B2 (en) 2007-09-12 2012-10-16 Plc Diagnostics, Inc. Waveguide-based optical scanning systems
US7812143B2 (en) 2006-03-31 2010-10-12 Memorial Sloan-Kettering Cancer Center Biomarkers for cancer treatment
WO2008008247A2 (en) 2006-07-07 2008-01-17 The Board Of Trustees Of The University Of Illinois Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface to bulk sensitivity ratio
CA2667992A1 (en) 2006-10-31 2008-05-08 Sru Biosystems, Inc. Method for blocking non-specific protein binding on a functionalized surface
CA2668943C (en) 2006-11-09 2012-07-24 The Board Of Trustees Of The University Of Illinois Photonic crystal sensors with integrated fluid containment structure
US7628085B2 (en) 2006-11-17 2009-12-08 Sru Biosystems, Inc. Simultaneous aspirator and dispenser for multiwell plates and similar devices
US20080240543A1 (en) 2007-03-30 2008-10-02 Wolfgang Ernst Gustav Budach Calibration and normalization method for biosensors
EP2153203A4 (en) 2007-04-19 2010-04-21 Sru Biosystems Inc METHOD FOR USING A BIOSENSOR TO DETECT SMALL MOLECULES BINDING DIRECTLY TO IMMOBILIZED OBJECTIVES
US9134307B2 (en) 2007-07-11 2015-09-15 X-Body, Inc. Method for determining ion channel modulating properties of a test reagent
US8268638B2 (en) 2007-07-18 2012-09-18 Advantageous Systems, Llc Methods and apparatuses for detecting analytes in biological fluid of an animal
US8268637B2 (en) 2008-01-11 2012-09-18 The Board Of Trustees Of The University Of Illinois Label-free biosensors based upon distributed feedback laser
US8257936B2 (en) 2008-04-09 2012-09-04 X-Body Inc. High resolution label free analysis of cellular properties
EP2304500A1 (en) 2008-06-04 2011-04-06 SRU Biosystems, Inc. Detection of promiscuous small submicrometer aggregates
US20100008826A1 (en) 2008-07-10 2010-01-14 Sru Biosystems, Inc. Biosensors featuring confinement of deposited material and intra-well self-referencing
AU2009269037A1 (en) 2008-07-11 2010-01-14 Sru Biosystems, Inc. Methods for identifying modulators of ion channels
WO2010087806A1 (en) 2009-02-02 2010-08-05 Sru Biosystems, Inc Efficient optical arrangement for illumination and detection of label-free biosensors and method to reduce interference fringes in label-free imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075713A (ja) * 2006-09-08 2016-05-12 マグヌッソン、ロバートMAGNUSSON, Robert 角度ダイバーシチ、スペクトルダイバーシチ、モードダイバーシチ、及び偏光ダイバーシチを用いて高精度検出を小型構成で行なう導波モード共振センサ

Also Published As

Publication number Publication date
HK1138066A1 (en) 2010-08-13
JP2016075713A (ja) 2016-05-12
JP2014178329A (ja) 2014-09-25
CA2663160C (en) 2018-01-09
US20080062418A1 (en) 2008-03-13
JP5547484B2 (ja) 2014-07-16
WO2008031071A1 (en) 2008-03-13
EP2059789B1 (en) 2015-07-22
CA2663160A1 (en) 2008-03-13
CN102288552B (zh) 2014-04-02
US10274432B1 (en) 2019-04-30
EP2059789A4 (en) 2011-02-16
JP6306620B2 (ja) 2018-04-04
US9528940B2 (en) 2016-12-27
CN102288552A (zh) 2011-12-21
EP2059789A1 (en) 2009-05-20
CN101617211A (zh) 2009-12-30
CN101617211B (zh) 2011-06-29
CA2962332C (en) 2020-07-07
US20120140208A1 (en) 2012-06-07
JP2010502996A (ja) 2010-01-28
US8111401B2 (en) 2012-02-07
CA2962332A1 (en) 2008-03-13
JP2018091869A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6306620B2 (ja) 導波モード共振センサアセンブリ
Estevez et al. Integrated optical devices for lab‐on‐a‐chip biosensing applications
US7756365B2 (en) Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface to bulk sensitivity ratio
US7142296B2 (en) Method and apparatus for detecting biomolecular interactions
Dostálek et al. Rich information format surface plasmon resonance biosensor based on array of diffraction gratings
US7292336B2 (en) Method and instrument for detecting biomolecular interactions
US7101660B2 (en) Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US7615339B2 (en) Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US7582486B2 (en) Double resonance interrogation of grating-coupled waveguides
JP2007501432A (ja) 回折格子結合導波路の感度向上のための基板屈折率変更
KR20070080914A (ko) 나노 크기의 정렬된 금속 구조체들을 사용하는 국소 표면플라즈몬 센서
EP2327955B1 (en) Optical detection system for labelling-free high-sensitivity bioassays
Mukherji et al. Label—Free integrated optical biosensors for multiplexed analysis
Valsecchi et al. Low-cost leukemic serum marker screening using large area nanohole arrays on plastic substrates
Schmitt et al. High-refractive-index waveguide platforms for chemical and biosensing
Gauglitz et al. Direct optical detection in bioanalytics
Wawro et al. Guided-mode resonance sensors for rapid medical diagnostic testing applications
Piliarik High-Throughput Biosensor Based on Surface Plasmon Resonance Imaging

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250