CN107884060B - 一种光纤分布式传感探测方法及装置 - Google Patents

一种光纤分布式传感探测方法及装置 Download PDF

Info

Publication number
CN107884060B
CN107884060B CN201711023413.1A CN201711023413A CN107884060B CN 107884060 B CN107884060 B CN 107884060B CN 201711023413 A CN201711023413 A CN 201711023413A CN 107884060 B CN107884060 B CN 107884060B
Authority
CN
China
Prior art keywords
light
polarization
pulse
rayleigh
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711023413.1A
Other languages
English (en)
Other versions
CN107884060A (zh
Inventor
路阳
张学亮
孟洲
余志杰
姚琼
陈伟
彭承彦
黄良金
楼康
曹春燕
熊水东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201711023413.1A priority Critical patent/CN107884060B/zh
Publication of CN107884060A publication Critical patent/CN107884060A/zh
Application granted granted Critical
Publication of CN107884060B publication Critical patent/CN107884060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Abstract

本发明公开了一种光纤分布式传感探测方法及装置,方法包括:S1.将具有偏振正交和同偏振态的双光脉冲分别注入传感光纤,获得所述传感光纤的瑞利光及与瑞利光对应的四路偏振通道的干涉光强;S2.将所述偏振通道的干涉光强复数化,生成传感通道响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数;S3.从所述复数中计算提取所述瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。具有可优化探测噪声水平,提高探测灵敏度,消除因高相位噪声导致的探测盲区等优点。

Description

一种光纤分布式传感探测方法及装置
技术领域
本发明涉及光纤分布式传感技术领域,尤其涉及一种光纤分布式传感探测方法及装置。
背景技术
相位敏感光时域反射仪技术(Φ-OTDR)是应用广泛的光纤分布式振动和声音探测技术,在周界安防,地震波检测,油汽勘探、以及管道和铁路等大型结构安全监测等领域具有重大应用价值,逐渐成为国内外研究热点。Φ-OTDR技术通过获取脉冲光在传感光纤中各处产生的后向瑞利散射光(简称为瑞利光)的相位信息实现分布式振动或声传感。当外界振动或声音作用于光纤某一位置,将引起该位置光纤拉伸和折射率变化,导致经过此处的瑞利光发生相位变化。通过检测瑞利光由振动或声因诱导的相位变化可以同时获得外界振动或声音的频率、幅度和相位的完整信息。
为了获取瑞利光的相位变化,研究者们发展了基于瑞利散射信号延时自干涉的Φ-OTDR系统[Gaosheng Fang等人,Phase-Sensitive Optical Time DomainReflectometer Based on Phase-Generated Carrier Algorithm,Journal of LightwaveTechnology,2015年]。该系统将光纤中返回的瑞利光注入Michelson干涉仪(MI)或Mach-Zender干涉仪(M-ZI)中。在干涉仪中,瑞利光被分成功率相等的两束,分别经历干涉仪长臂和短臂。由于干涉仪臂差,在干涉仪出射端同时存在瑞利光信号和延时的瑞利光信号。通过此方式,光纤某一位置z0的瑞利光E(z0)将与来自相隔距离L处光纤的瑞利光E(z0+L)发生干涉,L由干涉仪臂差决定,干涉信号的时变相位
Figure BDA0001447917850000011
包含了光纤位置z0与z0+L之间光纤所感应的振动或声音信息。通过相位产生载波(PGC)或3×3等相位解调技术,可从干涉信号中获得相位信息
Figure BDA0001447917850000012
Φ-OTDR系统的最小可测信号(检测灵敏度)受限于
Figure BDA0001447917850000013
检测的相位噪声,相位噪声受干涉信号可见度影响。
由于单模光纤中存在随机低双折射,瑞利光在单模光纤中传输时偏振态发生随机变化,导致光纤中瑞利光E(z0)与E(z0+L)的相对偏振态随光纤位置z0发生变化。当E(z0)与E(z0+L)偏振正交,干涉信号可见度为0,
Figure BDA0001447917850000014
检测的相位噪声最大;当E(z0)与E(z0+L)同偏振态,干涉信号可见度最大,此时相位噪声最小。E(z0)与E(z0+L)相对偏振态的位置相关性使
Figure BDA0001447917850000015
检测的相位噪声随光纤位置发生变化,导致基于Φ-OTDR的分布式振动和声音探测的噪声涨落。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种消除基于延时自干涉Φ-OTDR技术的光纤分布式传感系统振动和声音探测的偏振相关性,抑制由偏振失配导致的探测噪声涨落,可优化探测噪声水平,提高探测灵敏度,消除因高相位噪声导致的探测盲区的光纤分布式传感探测方法及装置。
为解决上述技术问题,本发明提出的技术方案为:一种光纤分布式传感探测方法,包括:
S1.将具有偏振正交和同偏振态的双光脉冲分别注入传感光纤,获得所述传感光纤的瑞利光及与瑞利光对应的四路偏振通道的干涉光强;
S2.将所述偏振通道的干涉光强复数化,生成传感通道响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数;
S3.从所述复数中计算提取所述瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。
进一步地,所述双光脉冲由脉冲光通过具有预设臂差的非平衡干涉仪,并通过周期性的偏振调制而生成。
进一步地,所述双光脉冲具有四组偏振组合状态,包括XX、XY、YY、YX,其中X和Y表示两个正交光偏振状态。
进一步地,所述步骤S3的具体步骤具体包括:以所述复数的实部和虚部为基础,通过微分交叉相乘或反正切算法提取瑞利光的相位信息,从而获得传感光纤感应到的振动信号和/或声信号的频率信息、幅度信息和相位信息。
一种光纤分布式传感探测装置,包括:双光脉冲生成组件,光脉冲注入及接收装置、光电探测器、数据采集处理装置和信号发生装置;
所述双光脉冲生成组件用于生成具有偏振正交和同偏振态的双光脉冲;
所述光脉冲注入及接收装置用于将所述双光脉冲注入传感光纤,并接收所述传感光纤中所产生的瑞利光;
所述光电探测器用于获取所述瑞利的光强信号;
所述数据采集处理装置用于采集所述光强信号,并进行分析计算得到所述瑞利光的相位信息;
所述信号发生装置用于为所述双光脉冲生成组件和数据采集处理装置提供控制脉冲信号及时钟同步信号。
进一步地,所述双光脉冲生成组件包括依次连接的激光器、光强调制器、非平衡干涉仪和偏振切换器;
所述激光器用于产生高相干激光;
所述光强调制器用于根据所述信号发生装置的控制脉冲对所述高相干激光进行强度调制,产生周期性重复脉冲光;
所述非平衡干涉仪用于根据所述信号发生装置的控制脉冲生成具有延时双光脉冲;
所述偏振切换器用于根据所述信号发生装置的控制脉冲对所述双光脉冲的偏振状态进行调制,得到具有偏振正交和同偏振态的双光脉冲。
进一步地,所述数据采集处理装置包括数据采集器和信号处理机;
所述数据采集器用于根据所述信号发生装置的控制脉冲对所述光强信号进行采集,并提供给信号处理机;
所述信号处理机用于将所述光强信号复数化,生成响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数,并从所述复数中计算提取所述瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。
进一步地,所述信号发生装置提供给所述光强调制器、非平衡干涉仪、偏振切换器和数据采集器的控制脉冲时钟同步。
进一步地,所述光脉冲注入及接收装置为环形注入器。
进一步地,在所述双光脉冲生成组件与光脉冲注入及接收装置之间,以及光脉冲注入及接收装置与光电探测器之间还设置有光信号放大滤波器,用于放大光路中光的功率,并滤除放大功率时产生的噪声。
与现有技术相比,本发明的优点在于:本发明采用正交偏振切换技术,消除基于延时自干涉Φ-OTDR技术的光纤分布式振动和声音探测的偏振相关性,抑制由瑞利光与延时瑞利光偏振失配导致的探测噪声涨落,优化探测噪声水平,提高探测灵敏度,消除因高相位噪声导致的探测盲区。
附图说明
图1为本发明具体实施例流程示意图。
图2为本发明具体实施例结构示意图。
图3为本发明具体实施例光强调制器的输出光脉冲,偏振切换器的输出光脉冲,以及施加在偏振切换器上的调制方波电压信号的时序图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
如图1所示,本实施例的光纤分布式传感探测方法,包括:S1.将具有偏振正交和同偏振态的双光脉冲分别注入传感光纤,获得传感光纤的瑞利光及与瑞利光对应的四路偏振通道的干涉光强;S2.将偏振通道的干涉光强复数化,生成传感通道响应矩阵,根据响应矩阵的酉矩阵特性计算得到与偏振无关的复数;S3.从复数中计算提取瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。
在本实施例中,双光脉冲由脉冲光通过具有预设臂差的非平衡干涉仪,并通过周期性的偏振调制而生成。该预设臂差记为L干涉仪,由于非平衡干涉仪具有臂差,因此,所产生的双光脉冲存在时延。在本实施例中,双光脉冲通过周期性的偏振调制,具有四组偏振组合状态,包括XX、XY、YY、YX,其中X和Y表示两个正交光偏振状态。
在本实施例中,将四组偏振组合的双光脉冲分别注入传感光纤,从而获得传感光纤中各个位置瑞利光与相隔为L通道位置瑞利光对应的四路偏振通道的干涉光强,传感光纤中每一个位置与相隔L通道位置间的光纤构成一个传感通道。如果非平衡干涉仪为Mach-Zender干涉仪,则L通道=0.5L干涉仪;如果非平衡干涉仪为Michelson干涉仪,则L通道=L干涉仪。由于一个传感通道对应四路偏振通道,因此,对每一路偏振通道的干涉信号的采样率应为光脉冲调制频率的1/4。
在本实施例中,干涉光强可表示为如式(1)所示,
Figure BDA0001447917850000041
式(1)中,mn=XX、XY、YY、YX表示双脉冲光不同的偏振组合,Imn表示偏振态为m和n的双脉冲光所产生的瑞利光之间干涉信号的光强,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn为与光纤双折射有关的系数,满足0≤kmn≤1,φmn为与光纤双折射相关的相位,kmn和φmn均与脉冲光偏振态有关,φ0为非平衡干涉仪长臂上引入的正弦相位调制,用以产生PGC相位解调技术所需的相位调制。
在本实施例中,将各偏振通道对应的干涉光强复数化,并利用四组偏振通道复数化的干涉信号构成传感通道响应矩阵,如式(2)所示,
Figure BDA0001447917850000042
式(1)中,XX、XY、YY、YX表示双脉冲光不同的偏振组合,R为响应矩阵,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,i为复数中的虚数单位,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn(mn=XX、XY、YY、YX)为与光纤双折射有关的系数,满足0≤kmn≤1,φmn(mn=XX、XY、YY、YX)为与光纤双折射相关的相位,kmn(mn=XX、XY、YY、YX)和φmn(mn=XX、XY、YY、YX)均与脉冲光偏振态有关。计算响应矩阵R行列式,根据响应矩阵R的酉矩阵特性,从其平方根中获得与偏振无关的复数,其实部和虚部分别表示为:
Figure BDA0001447917850000051
Figure BDA0001447917850000052
其中,各参数的定义与式(2)中相同。
在本实施例中,步骤S3的具体步骤具体包括:以复数的实部和虚部为基础,通过微分交叉相乘或反正切算法提取瑞利光的相位信息,从而获得传感光纤感应到的振动信号和/或声信号的频率信息、幅度信息和相位信息。
如图2所示,本实施例的光纤分布式传感探测装置,包括:双光脉冲生成组件,光脉冲注入及接收装置、光电探测器、数据采集处理装置和信号发生装置;双光脉冲生成组件用于生成具有偏振正交和同偏振态的双光脉冲;光脉冲注入及接收装置用于将双光脉冲注入传感光纤,并接收传感光纤中所产生的瑞利光;光电探测器用于获取瑞利的光强信号;数据采集处理装置用于采集光强信号,并进行分析计算得到瑞利光的相位信息;信号发生装置用于为双光脉冲生成组件和数据采集处理装置提供控制脉冲信号及时钟同步信号。
在本实施例中,双光脉冲生成组件包括依次连接的激光器、光强调制器(AOM)、非平衡干涉仪和偏振切换器;激光器用于产生高相干激光;光强调制器用于根据信号发生装置的控制脉冲(为电压脉冲信号)对高相干激光进行强度调制,产生周期性重复脉冲光;非平衡干涉仪用于根据信号发生装置的控制脉冲(为正弦电压信号)生成具有延时双光脉冲;偏振切换器用于根据信号发生装置的控制脉冲(为方波信号)对双光脉冲的偏振状态进行调制,得到具有偏振正交和同偏振态的双光脉冲。
在本实施例中,非平衡干涉仪为压电陶瓷环干涉仪,其包括两个光纤耦合器、两路延迟光纤及压电陶瓷环;两路延迟光纤长度不等,具有预设臂差,记为L干涉仪。第一个光纤耦合器用于将所述脉冲光等功率地分成两束光,分别注入两路延迟光纤;压电陶瓷环缠绕在延迟光纤中的一路,根据信号发生器发出的控制脉冲对经过缠绕延迟光纤的脉冲光进行正弦相位调制;第二个光纤耦合器用于将所述两路延迟光纤输出的延迟光脉冲对合束并注入至偏振切换器。
在本实施例中,激光器为窄线宽激光器,偏振切换器为铌酸锂偏振切换器,要求入射光与主轴方向成45°角入射,因此偏振切换器的输入光必须为线偏振光,因此,本实施例中,激光器、光强调制器、非平衡干涉仪中的光纤耦合器、延迟光纤均采用保偏结构。
在本实施例中,数据采集处理装置包括数据采集器和信号处理机;数据采集器用于根据信号发生装置的控制脉冲对光强信号进行采集,并提供给信号处理机;信号处理机用于将光强信号复数化,生成响应矩阵,根据响应矩阵的酉矩阵特性计算得到与偏振无关的复数,并从复数中计算提取瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。
在本实施例中,信号发生装置提供给光强调制器、非平衡干涉仪、偏振切换器和数据采集器的控制脉冲时钟同步。光脉冲注入及接收装置为环形注入器。在双光脉冲生成组件与光脉冲注入及接收装置之间,以及光脉冲注入及接收装置与光电探测器之间还设置有光信号放大滤波器,用于放大光路中光的功率,并滤除放大功率时产生的噪声。
如图3所示,通过在偏振切换器上施加方波信号实现对非平衡干涉仪输出的双光脉冲的偏振态正交切换,方波信号的高低电平分别为V1和V2,分别对应偏振切换器的两个正交的偏振态输出。偏振切换器的切换频率fPS与光强调制器调制频率fAOM满足关系fPS=fAOM/4。根据采样定理,压电陶瓷环产生的用于PGC相位解调的正弦相位调制的调制频率不大于偏振切换频率的1/8。
在本实施例中,偏振切换器输出的双脉冲的偏振态经过正交切换,获得四组偏振态组合如式(3)所示,
Figure BDA0001447917850000061
式(3)中,E为入射传感光纤的光脉冲的琼斯矩阵,下标1,2分别表示注入传感光纤的双脉冲中第一个和第二个光脉冲,下标X,Y表示正交的两个偏振态,E10和E20分别表示第一个和第二个入射光脉冲的幅度,运算符号T表示矩阵转置,φ0=Ccos(ω0t)为非平衡干涉仪长臂引入的正弦相位调制,用以产生PGC相位解调技术所需的相位调制,C为相位调制深度,ω0=2πf0,f0为相位调制频率。
在本实施例中,由偏振切换器输出的四组偏振态组合的双光脉冲分别问询传感通道,得到该传感通道对应的四路偏振通道的干涉光强,干涉光强可表示为如式(4)所示,
Figure BDA0001447917850000062
式(4)中,mn=XX、XY、YY、YX表示双脉冲光不同的偏振组合,Imn表示偏振态为m和n的双脉冲光所产生的瑞利光之间干涉信号的光强,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn为与光纤双折射有关的系数,满足0≤kmn≤1,φmn为与光纤双折射相关的相位,kmn和φmn均与脉冲光偏振态有关,φ0为非平衡干涉仪长臂上引入的正弦相位调制,用以产生PGC相位解调技术所需的相位调制。
将式(4)中各偏振通道对应的干涉光强按Bessel级数展开,得到式(5),
Figure BDA0001447917850000071
式(5)中,J为贝塞尔函数,q为正整数,ω0=2πf0为相位调制角频率,t为时间,C为相位调制深度,其余参数的定义与式(4)相同。
将式(5)分别与φ0=Ccos(ω0t)和cos(2ω0t)相乘,滤除频率为ω0的载波及其高阶载波频率成分,分别得到式(6)和式(7),
Figure BDA0001447917850000072
Figure BDA0001447917850000073
式(6)和式(7)中,C为相位调制深度,各参数的定义与式(5)相同。
通过式(6)和式(7)构造复数如式(8)所示,
Figure BDA0001447917850000074
式(8)中,i为复数中的虚数单位,各参数的定义与式(5)相同。
在本实施例中,四路偏振通道干涉光强的复数域结果Rmn中包含系统响应矩阵的四个元素,构造响应矩阵R,如式(9)所示,
Figure BDA0001447917850000075
式(9)中,XX、XY、YY、YX表示双脉冲光不同的偏振组合,R为响应矩阵,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn(mn=XX、XY、YY、YX)为与光纤双折射有关的系数,满足0≤kmn≤1,φmn(mn=XX、XY、YY、YX)为与光纤双折射相关的相位,kmn(mn=XX、XY、YY、YX)和φmn(mn=XX、XY、YY、YX)均与脉冲光偏振态有关。
在本实施例中,由于响应矩阵R的酉矩阵特性,其行列式平方根为计算响应矩阵R行列式,其行列式平方根如式(10)所示,
Figure BDA0001447917850000081
式(10)中,det为矩阵行列式运算符,其余各参数的定义与式(9)相同。从其平方根中获得与偏振无关的复数,即式(10)所包含的两个正交项,即实部和虚部分别为
Figure BDA0001447917850000082
Figure BDA0001447917850000083
其中参数的定义与式(10)相同。通过微分交叉相乘或反正切算法,利用上两式可以获得相位信息φs
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

1.一种光纤分布式传感探测方法,其特征在于,包括:
S1.将具有偏振正交和同偏振态的双光脉冲分别注入传感光纤,获得所述传感光纤的瑞利光及与瑞利光对应的四路偏振通道的干涉光强;
S2.将所述偏振通道的干涉光强复数化,生成传感通道响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数;
S3.从所述复数中计算提取所述瑞利光的相位信息,从而获得传感光纤感应到的信号的信息;
所述干涉光强可表示为如式(1)所示,
Figure FDA0002260817550000011
式(1)中,mn=XX、XY、YY、YX表示双脉冲光不同的偏振组合,Imn表示偏振态为m和n的双脉冲光所产生的瑞利光之间干涉信号的光强,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn为与光纤双折射有关的系数,满足0≤kmn≤1,φmn为与光纤双折射相关的相位,kmn和φmn均与脉冲光偏振态有关,φ0为非平衡干涉仪长臂上引入的正弦相位调制,用以产生PGC相位解调技术所需的相位调制;
所述传感通道响应矩阵如式(2)所示,
Figure FDA0002260817550000012
式(1)中,XX、XY、YY、YX表示双脉冲光不同的偏振组合,R为响应矩阵,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,i为复数中的虚数单位,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn(mn=XX、XY、YY、YX)为与光纤双折射有关的系数,满足0≤kmn≤1,φmn(mn=XX、XY、YY、YX)为与光纤双折射相关的相位,kmn(mn=XX、XY、YY、YX)和φmn(mn=XX、XY、YY、YX)均与脉冲光偏振态有关;
所述复数的实部和虚部分别为:
Figure FDA0002260817550000013
Figure FDA0002260817550000014
其中,各参数的定义与式(2)中相同。
2.根据权利要求1所述的光纤分布式传感探测方法,其特征在于:所述双光脉冲由脉冲光通过具有预设臂差的非平衡干涉仪,并通过周期性的偏振调制而生成。
3.根据权利要求2所述的光纤分布式传感探测方法,其特征在于:所述双光脉冲具有四组偏振组合状态,包括XX、XY、YY、YX,其中X和Y表示两个正交光偏振状态。
4.根据权利要求3所述的光纤分布式传感探测方法,其特征在于,所述步骤S3的具体步骤具体包括:以所述复数的实部和虚部为基础,通过微分交叉相乘或反正切算法提取瑞利光的相位信息,从而获得传感光纤感应到的振动信号和/或声信号的频率信息、幅度信息和相位信息。
5.一种光纤分布式传感探测装置,其特征在于,包括:双光脉冲生成组件,光脉冲注入及接收装置、光电探测器、数据采集处理装置和信号发生装置;
所述双光脉冲生成组件用于生成具有偏振正交和同偏振态的双光脉冲;
所述光脉冲注入及接收装置用于将所述双光脉冲注入传感光纤,并接收所述传感光纤中所产生的瑞利光;
所述光电探测器用于获取所述瑞利的光强信号;
所述数据采集处理装置用于采集所述光强信号,并进行分析计算得到所述瑞利光的相位信息;
所述信号发生装置用于为所述双光脉冲生成组件和数据采集处理装置提供控制脉冲信号及时钟同步信号;
所述数据采集处理装置具体用于获取各传感通道的干涉光强,生成传感通道响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数;
所述干涉光强可表示为如式(4)所示,
Figure FDA0002260817550000021
式(4)中,mn=XX、XY、YY、YX表示双脉冲光不同的偏振组合,Imn表示偏振态为m和n的双脉冲光所产生的瑞利光之间干涉信号的光强,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn为与光纤双折射有关的系数,满足0≤kmn≤1,φmn为与光纤双折射相关的相位,kmn和φmn均与脉冲光偏振态有关,φ0为非平衡干涉仪长臂上引入的正弦相位调制,用以产生PGC相位解调技术所需的相位调制;
所述传感通道响应矩阵如式(2)所示,
Figure FDA0002260817550000022
式(1)中,XX、XY、YY、YX表示双脉冲光不同的偏振组合,R为响应矩阵,I1为偏振态为m的脉冲光所产生的瑞利光的光强,I2为偏振态为n的脉冲光所产生的瑞利光的光强,i为复数中的虚数单位,r表示瑞利散射的振幅反射率,φs为待检测的瑞利光的相位信息,kmn(mn=XX、XY、YY、YX)为与光纤双折射有关的系数,满足0≤kmn≤1,φmn(mn=XX、XY、YY、YX)为与光纤双折射相关的相位,kmn(mn=XX、XY、YY、YX)和φmn(mn=XX、XY、YY、YX)均与脉冲光偏振态有关;
所述复数的实部和虚部分别为:
Figure FDA0002260817550000031
Figure FDA0002260817550000032
其中,各参数的定义与式(2)中相同。
6.根据权利要求5所述的分布式传感探测装置,其特征在于:所述双光脉冲生成组件包括依次连接的激光器、光强调制器、非平衡干涉仪和偏振切换器;
所述激光器用于产生高相干激光;
所述光强调制器用于根据所述信号发生装置的控制脉冲对所述高相干激光进行强度调制,产生周期性重复脉冲光;
所述非平衡干涉仪用于根据所述信号发生装置的控制脉冲生成具有延时双光脉冲;
所述偏振切换器用于根据所述信号发生装置的控制脉冲对所述双光脉冲的偏振状态进行调制,得到具有偏振正交和同偏振态的双光脉冲。
7.根据权利要求6所述的分布式传感探测装置,其特征在于:所述数据采集处理装置包括数据采集器和信号处理机;
所述数据采集器用于根据所述信号发生装置的控制脉冲对所述光强信号进行采集,并提供给信号处理机;
所述信号处理机用于将所述光强信号复数化,生成响应矩阵,根据所述响应矩阵的酉矩阵特性计算得到与偏振无关的复数,并从所述复数中计算提取所述瑞利光的相位信息,从而获得传感光纤感应到的信号的信息。
8.根据权利要求7所述的分布式传感探测装置,其特征在于:所述信号发生装置提供给所述光强调制器、非平衡干涉仪、偏振切换器和数据采集器的控制脉冲时钟同步。
9.根据权利要求8所述的分布式传感探测装置,其特征在于:所述光脉冲注入及接收装置为环形注入器。
10.根据权利要求5至9任一项所述的分布式传感探测装置,其特征在于:在所述双光脉冲生成组件与光脉冲注入及接收装置之间,以及光脉冲注入及接收装置与光电探测器之间还设置有光信号放大滤波器,用于放大光路中光的功率,并滤除放大功率时产生的噪声。
CN201711023413.1A 2017-10-27 2017-10-27 一种光纤分布式传感探测方法及装置 Active CN107884060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711023413.1A CN107884060B (zh) 2017-10-27 2017-10-27 一种光纤分布式传感探测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711023413.1A CN107884060B (zh) 2017-10-27 2017-10-27 一种光纤分布式传感探测方法及装置

Publications (2)

Publication Number Publication Date
CN107884060A CN107884060A (zh) 2018-04-06
CN107884060B true CN107884060B (zh) 2020-10-30

Family

ID=61782751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711023413.1A Active CN107884060B (zh) 2017-10-27 2017-10-27 一种光纤分布式传感探测方法及装置

Country Status (1)

Country Link
CN (1) CN107884060B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617874B (zh) * 2019-10-16 2021-11-23 南京理工大学 基于双脉冲移相干涉的φ-otdr系统及相位解调方法
CN111273265B (zh) * 2020-03-02 2020-09-29 中国人民解放军国防科技大学 基于demon谱的单矢量水听器自主测距装置及方法
CN113049083B (zh) * 2021-03-09 2024-01-12 中国人民解放军国防科技大学 一种在分布式光纤传感系统中实现高频相位解调的方法
CN113310563A (zh) * 2021-04-22 2021-08-27 成都海恒之星科技合伙企业(有限合伙) 一种分布式光纤振动传感装置及提高定位精度的方法
CN113405646A (zh) * 2021-06-17 2021-09-17 润智科技有限公司 一种基于双通道φ-OTDR地埋光缆分布式振动识别方法
CN113916351B (zh) * 2021-10-28 2024-03-12 苏州光格科技股份有限公司 光纤振动监测系统
US20230296425A1 (en) * 2022-03-21 2023-09-21 Eagle Technology, Llc Distributed acoustic sensing system with propagation direction and related methods
CN114608697A (zh) * 2022-03-22 2022-06-10 中国人民解放军国防科技大学 基于fbg的低噪声宽频带分布式声波探测装置与方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172914A (ja) * 1993-12-21 1995-07-11 Toyota Motor Corp 圧電体の製造方法
US6522797B1 (en) * 1998-09-01 2003-02-18 Input/Output, Inc. Seismic optical acoustic recursive sensor system
CN101290457A (zh) * 2008-06-03 2008-10-22 电子科技大学 全光模数转换器2amsx并行量化编码方法
CN101617211A (zh) * 2006-09-08 2009-12-30 罗伯特·马格努松 利用角、光谱、模态和偏振分集的用于高精度感测的紧凑形式导模共振传感器
CN101634571A (zh) * 2009-08-18 2010-01-27 重庆理工大学 光纤脉栅分布传感装置
CN102374895A (zh) * 2011-09-26 2012-03-14 中国人民解放军国防科技大学 一种大动态光纤振动传感器
CN103872572A (zh) * 2014-03-13 2014-06-18 中国科学院福建物质结构研究所 一种自调q、正交偏振双波长脉冲激光器
US9146441B2 (en) * 2013-07-24 2015-09-29 The United States Of America As Represented By The Secretary Of The Air Force Apparatus and method for a symmetric sequential entangler of periodic photons in a single input and output mode
CN105628174A (zh) * 2016-01-08 2016-06-01 中国人民解放军国防科学技术大学 基于偏振切换的光纤f-p传感器振动解调系统和方法
CN105676483A (zh) * 2016-01-15 2016-06-15 北京邮电大学 一种光偏振控制装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231367A (zh) * 2007-01-24 2008-07-30 中国科学院半导体研究所 高分辨率波长解调系统及其解调方法
CN103368044A (zh) * 2013-07-17 2013-10-23 杭州电子科技大学 基于温控机制的同步双频脉冲微片激光器装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172914A (ja) * 1993-12-21 1995-07-11 Toyota Motor Corp 圧電体の製造方法
US6522797B1 (en) * 1998-09-01 2003-02-18 Input/Output, Inc. Seismic optical acoustic recursive sensor system
CN101617211A (zh) * 2006-09-08 2009-12-30 罗伯特·马格努松 利用角、光谱、模态和偏振分集的用于高精度感测的紧凑形式导模共振传感器
CN101290457A (zh) * 2008-06-03 2008-10-22 电子科技大学 全光模数转换器2amsx并行量化编码方法
CN101634571A (zh) * 2009-08-18 2010-01-27 重庆理工大学 光纤脉栅分布传感装置
CN102374895A (zh) * 2011-09-26 2012-03-14 中国人民解放军国防科技大学 一种大动态光纤振动传感器
US9146441B2 (en) * 2013-07-24 2015-09-29 The United States Of America As Represented By The Secretary Of The Air Force Apparatus and method for a symmetric sequential entangler of periodic photons in a single input and output mode
CN103872572A (zh) * 2014-03-13 2014-06-18 中国科学院福建物质结构研究所 一种自调q、正交偏振双波长脉冲激光器
CN105628174A (zh) * 2016-01-08 2016-06-01 中国人民解放军国防科学技术大学 基于偏振切换的光纤f-p传感器振动解调系统和方法
CN105676483A (zh) * 2016-01-15 2016-06-15 北京邮电大学 一种光偏振控制装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
干涉型光纤传感系统偏振切换技术原理及实验研究;刘悦 等;《激光与光电子学进展》;20151231;第120606-1到120606-6页 *

Also Published As

Publication number Publication date
CN107884060A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN107884060B (zh) 一种光纤分布式传感探测方法及装置
Sun et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer
WO2018082208A1 (zh) 光纤水听器阵列系统和加速度传感器阵列系统及测量方法
CN108759884B (zh) 消除偏振衰落影响的分布式弱光栅阵列传感系统和方法
GB2514699A (en) Optical sensor and method of use
AU2020102296A4 (en) A distributed optical fiber sensing system based on heterodyne detection technology
CN104819770A (zh) 基于外差检测和相位解调的相位光时域反射装置及方法
CN110470327A (zh) 一种光时域分析仪和分析方法
CN113188647B (zh) 三脉冲错位干涉的光栅增强型分布式振动解调系统及方法
Song et al. Improved localization algorithm for distributed fiber-optic sensor based on merged Michelson-Sagnac interferometer
CN110617874B (zh) 基于双脉冲移相干涉的φ-otdr系统及相位解调方法
CN109724685A (zh) 基于Fizeau干涉的光纤光栅水声传感阵列解调方法及系统
CN105784101A (zh) 基于光纤弱反射点阵Fizeau干涉分布式振动传感系统及方法
US11725965B2 (en) Method and device for reconstructing a backscattered electromagnetic vector wave
CN110470377A (zh) 一种多波长外差传感系统及其传感方法
Wang et al. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance
Pang et al. Comparison between time shifting deviation and cross-correlation methods
CN110411334B (zh) 一种改进的相位载波pgc解调方法及系统
Ren et al. Efficient and compact inline interferometric fiber sensor array based on fiber Bragg grating and rectangular-pulse binary phase modulation
Wang et al. Dual-wavelength Michelson interferometer employing time delay estimation for distributed disturbance location
CN109631962A (zh) 一种基于pgc方案的多频载波偏振调制解调系统及方法
Shang et al. Analysis on leading-fiber-induced Doppler noise in interferometric FBG sensor arrays using polarization switching and PGC hybrid processing method
CN114608697A (zh) 基于fbg的低噪声宽频带分布式声波探测装置与方法
Pi et al. Intrusion localization algorithm based on linear spectrum in distributed Sagnac optical fiber sensing system
Tong et al. Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant