JP5839111B2 - 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法 - Google Patents

三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法 Download PDF

Info

Publication number
JP5839111B2
JP5839111B2 JP2014506142A JP2014506142A JP5839111B2 JP 5839111 B2 JP5839111 B2 JP 5839111B2 JP 2014506142 A JP2014506142 A JP 2014506142A JP 2014506142 A JP2014506142 A JP 2014506142A JP 5839111 B2 JP5839111 B2 JP 5839111B2
Authority
JP
Japan
Prior art keywords
torque
current
phase
command value
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014506142A
Other languages
English (en)
Other versions
JPWO2013141059A1 (ja
Inventor
好博 飯島
好博 飯島
中村 英夫
英夫 中村
志保 梅木
志保 梅木
田添 和彦
和彦 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014506142A priority Critical patent/JP5839111B2/ja
Publication of JPWO2013141059A1 publication Critical patent/JPWO2013141059A1/ja
Application granted granted Critical
Publication of JP5839111B2 publication Critical patent/JP5839111B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、誘導モータの制御に関する。
誘導モータの制御として、ステータに流す三相交流電流を、モータ電気角周波数とすべり周波数の和である電源角周波数に同期した直交2軸座標系に変換して励磁電流とトルク電流を生成し、これらを調整することでモータトルクを制御する誘導モータ用ベクトル制御が知られている。
すべり角周波数を、トルク電流とロータ磁束の比率に比例するように制御する場合、誘導モータトルクは、励磁電流に遅れを伴って発生するロータ磁束と、直交するトルク電流との積に比例する。さらに、各軸は互いに干渉し合っているので、それぞれ独立して制御できるように、干渉項を事前に相殺する非干渉制御器を設ける技術が知られている。
例えば、JP09−047097Aでは、電流指令値を入力とし、数式モデルを用いて干渉電圧を算出している。また、JP01−020688Aでは、実電流を入力し、数式モデルを用いて非干渉電圧を算出している。
ところで、例えば自己インダクタンスや相互インダクタンスといった上記制御に用いるパラメータは、トルクや回転速度等といった運転条件により変化する。このパラメータ変動は、非線形性を有する。しかしながら、JP09−047097AやJP01−020688Aでは、パラメータ変動による誤差を考慮していないので、トルクと電流の応答が乱れるおそれがある。
また、誘導モータ制御では、励磁電流によって発生するロータ磁束は必ず遅れを伴うが、JP09−047097AやJP01−020688Aでは、この遅れについて考慮されていない。つまり、ロータ磁束が発生するまでの過渡応答期間が無視された入力に基づいて制御するため、実際には、制御応答が不安定になる可能性がある。
本発明は、運転条件によるパラメータ誤差の影響を回避し、かつ、ロータ磁束の応答遅れによる影響も回避して、安定した制御を可能にすることを目的とする。
一実施形態における三相交流誘導モータの制御装置は、電源角周波数に同期した直交2軸座標系に基づいてトルク制御を行なう。この三相交流誘導モータの制御装置は、モータ回転速度、トルク指令値、及び電源電圧が入力され、非干渉制御器にて予め記憶しているマップを参照してトルク軸非干渉補償電圧及び磁束軸非干渉補償電圧を算出する非干渉制御器と、トルク軸非干渉補償電圧に、直達項と回転子磁束応答遅れを含むフィルタ処理を施す非干渉磁束応答フィルタとを備える。
本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、第1実施形態による三相交流誘導モータの制御システムのブロック図である。 図2Aは、第1実施形態の効果を説明するための電流値及び電圧値のタイムチャートである。 図2Bは、第1実施形態の効果を説明するためのロータ磁束、電源角周波数、トルクのタイムチャートである。 図3は、第2実施形態による三相交流誘導モータの制御システムのブロック図である。 図4Aは、第2実施形態の効果を説明するための電流値及び電圧値のタイムチャートである。 図4Bは、第2実施形態の効果を説明するためのロータ磁束、電源角周波数、トルクのタイムチャートである。 図5は、第3実施形態による三相交流誘導モータの制御システムのブロック図である。 図6Aは、第3実施形態の効果を説明するための電流値及び電圧値のタイムチャートである。 図6Bは、第3実施形態の効果を説明するためのロータ磁束、電源角周波数、トルクのタイムチャートである。 図7は、第4実施形態による三相交流誘導モータの制御システムのブロック図である。 図8Aは、第4実施形態の効果を説明するための電流値及び電圧値のタイムチャートである。 図8Bは、第4実施形態の効果を説明するためのロータ磁束、電源角周波数、トルクのタイムチャートである。
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
図1は、第1実施形態における三相交流誘導モータの制御システムのブロック図である。本制御システムでは、直流電源2からインバータ3を介して三相交流誘電モータ(以下、単に誘導モータという)1に電力を供給し、電源角周波数に同期した直交2軸座標系に基づいてトルク制御を行なう。
直流電源2は、高電圧を供給可能な電源であり、例えば積層型リチウムイオンバッテリである。
PWM変換器6は、後述する座標変換器12で算出された三相電圧指令値vu *、vv *、vw *が入力され、これらの指令値に基づいて、インバータ3のスイッチング素子(例えばIGBT等)のPWM_Duty駆動信号Duu *、Dul *、Dvu *、Dvl *、Dwu *、Dwl *を生成する。
インバータ3は、三相電圧型インバータであり、PWM_Duty駆動信号Duu *、Dul *、Dvu *、Dvl *、Dwu *、Dwl *に応じて、直流電源2の直流電圧を交流電圧に変換し、誘導モータ1に供給する。
電流センサ4は、インバータ3から誘導モータ1へ供給する三相のうち少なくとも二相の電流(例えば、U相とV相)iu、ivを検出し、A/D変換器7に入力する。A/D変換器7は、電流値iu、ivをデジタル信号に変換した電流値ius、ivsを座標変換器11に入力する。なお、図1のように、電流センサ4をU相とV相の二相に取り付ける場合、電流センサ4を取付けないW相の電流値iwは、式(1)により算出する。もちろん、三相ともセンサにより検出してもよい。
Figure 0005839111
磁極位置検出器5は、誘導モータ1の回転子角度に応じたA相、B相、Z相のパルスをパルスカウンタ8に入力する。パルスカウンタ8は、入力されたパルスに基づいて回転子の機械角度θrmを算出し、角速度演算器9に出力する。
角速度演算器9は、入力された機械角度θrmの時間変化率に基づいて、回転子の機械角速度ωrmと、モータ極対数pを乗じた回転子の電気角速度ωreを算出する。
座標変換器12は、後述する電源角速度ωで回転する直交2軸直流座標系(γ−δ軸)から三相交流座標系(uvw軸)への変換を行なう。座標変換器12は、γ軸電圧指令値(励磁電圧指令値)vγs *、δ軸電圧指令値(トルク電圧指令値)vδs *と、電源角速度ωを角度変換器10で積分した電源角θが入力され、式(2)による座標変換処理によってUVW相の電圧指令値vu *、vv *、vw *を算出し、PWM変換器6へ出力する。
Figure 0005839111
座標変換器11は、三相交流座標系(uvw軸)から前述した直交2軸直流座標系(γ−δ軸)への変換を行なう。座標変換器11は、U相電流ius、V相電流ivs、及び式(1)で求めたW相電流iwsと、電源角速度ωを角度変換器10で積分したθが入力され、式(3)によりγ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsを算出する。
Figure 0005839111
電流指令値演算部13は、目標モータトルク、モータ回転速度(機械角速度ωrm)、直流電源電圧Vdcが入力され、γ軸電流指令値(励磁電流指令値)iγs *、δ軸電流指令値(トルク電流指令値)iδs *を算出する。なお、直流電源電圧Vdcは、電圧センサで直接検出する。目標モータトルクは、図示しないトルク設定部にて設定する。例えば、本システムを電動車両に適用する場合には、運転者のアクセルペダル踏み込み量等に基づいて目標トルクを設定する。
非干渉制御器17は、目標モータトルク、モータ回転速度(機械角速度ωrm)、直流電源電圧Vdcが入力され、γ−δ直交座標軸間の干渉電圧を相殺するために必要な非干渉補償電圧(トルク軸非干渉補償電圧、磁束軸非干渉補償電圧)を、予めメモリに記憶したマップから読み取り、出力する。磁束軸については、マップ値がそのまま磁束軸非干渉補償電圧vγs_dcpl *として、トルク軸については、マップ値に非干渉磁束応答フィルタ18によるフィルタ処理を施したものがトルク軸非干渉補償電圧vδs_dcpl *として、各電圧指令値vγs *、vδs *に加算される。非干渉制御器17及び非干渉磁束応答フィルタ18の詳細については後述する。
γ軸電流フィードバック制御器(励磁電流FB制御器)15は、γ軸電流指令値(励磁電流指令値)iγs *に、計測されたγ軸電流値(励磁電流)iγsを定常偏差無く所望の応答性で追従させるための処理を行う。δ軸電流フィードバック制御器(トルク電流FB制御器)16も同様に、δ軸電流指令値(トルク電流指令値)iδs *に、δ軸電流(トルク電流)iδsを追従させるための処理を行う。
通常、γーδ軸非干渉電圧補正が理想的に機能すれば、1入力1出力の単純な制御対象特性となるので、γ軸電流フィードバック制御器15及びδ軸電流フィードバック制御器16は簡単なPIフィードバック補償器で実現可能である。
γ軸電流フィードバック制御器15の出力である電圧指令値を前述した非干渉電圧vγs_dcpl *で補正した値が、座標変換器12に入力されるγ軸電圧指令値(励磁電圧指令値)vγs *である。同様に、δ軸電流フィードバック制御器16の出力である電圧指令値を前述した非干渉電圧vδs_dcpl *で補正した値が、座標変換器12に入力されるδ軸電圧指令値(トルク電圧指令値)vδs *である。
すべり周波数制御器14は、γ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsを入力として、式(4)により、すべり角速度ωseを算出する。なお、式(4)では、定常分のみを記載してある。算出したすべり角速度ωseを回転子電気角速度ωreに加算した値を電源角速度ωとして出力する。このすべり周波数制御を実施することで、誘導モータトルクは、γ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsの積に比例する。
Figure 0005839111
ここで、非干渉制御器17及び非干渉磁束応答フィルタ18の詳細について説明する。
上述したように、非干渉制御器17は、目標モータトルク、モータ回転速度(機械角速度ωrm)、直流電源電圧Vdcを入力として、γーδ直交軸座標間の干渉電圧を相殺するために必要な非干渉補償電圧を引き出すマップを予めメモリに記憶している。このマップには、過渡を考慮した非干渉補償電圧を記憶させることは困難である。そこで、各入力値に適した定常状態の非干渉補償電圧を予め実験から求めて記憶させておく。
非干渉磁束応答フィルタ18は、非干渉制御器17から出力されたトルク軸非干渉補償電圧に、式(5)の伝達関数で表わされる直達項と回転子磁束応答遅れを含むフィルタ処理を施す。
Figure 0005839111
なお、式(5)のσは漏れ係数σ=1−M2/(Ls・Lr)である。τfは回転子磁束応答遅れ時定数で、一般的に、回転子側(二次側)のインダクタンスLrと抵抗値Rrの比率Lr/Rrで定まる。sはラプラス演算子である。
上述したように、非干渉制御器17にてマップ検索により非干渉補償電圧を算出することにより、トルク、回転数、電源電圧といった運転条件による定常的なパラメータ誤差の影響を回避するとともに、ロータ磁束の応答遅れによる影響を回避することで非干渉補償を正確に行うことができる。その結果、電流制御系の応答性を大幅に改善するこができる。さらに、乗算や加減算の回数が比較的少なく、演算周期も比較的長く設定可能なので、演算負荷の低減にもつながる。
図2A、図2Bは、本実施形態を実施した場合と、比較例として単純に非干渉補償電圧をマップ検索で算出しただけで非干渉磁束応答フィルタ18を用いない場合とを、トルクステップ応答で比較した結果を示すタイムチャートである。図2Aは、上から順に、励磁電流iγs、トルク電流iδs、磁束軸成分の電圧vγs、トルク軸成分の電圧vδsを示し、図2Bは、上から順に、ロータ磁束Φγr、電源角周波数ω、モータトルクを示す。図中の破線は指令値を示す。なお、ここではパラメータ誤差がないものとする。
両者を比較すると、非干渉磁束応答フィルタ18を備えることによって、γ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsや、トルクの過渡応答性が改善されていることが分かる。
以上のように本実施形態によれば、非干渉制御器17が運転条件に基づいてマップ参照により非干渉補償電圧を出力するので、演算負荷を低減しつつ運転条件によるパラメータ変動の影響を回避することができる。また、非干渉磁束応答18が非干渉制御器17の出力値の一つであるトルク軸干渉補償電圧に、直達項と回転子磁束応答遅れを含むフィルタ処理を施すことにより、ロータ磁束の応答遅れによる影響を回避して、非干渉補償を正確に実施することができる。これにより、電流制御系の応答性を大幅に改善することができる。
(第2実施形態)
図3は、第2実施形態における三相交流誘導モータの制御システムのブロック図である。
第1実施形態と異なるのは、γ軸とδ軸の非干渉補償電圧にフィルタ処理を施す電流遅れフィルタ20、21を備える点である。以下、この相違点について説明する。
電流遅れフィルタ20、21として、式(6)の伝達特性G2(s)をタスティン近似等で離散化して得られるデジタルフィルタを利用する。時定数τcは、電流フィードバック制御系の応答遅れに応じて定める。
Figure 0005839111
上記のような電流制御の遅れを模擬した遅れ処理を施す電流遅れフィルタ20、21を設けることにより、非干渉補償を高い周波数でも正確に実施することが可能となり、トルク応答性を高い周波数域まで改善することができる。
図4A、図4Bは、第2実施形態を実施した場合と、第1実施形態を実施した場合を、トルクステップ応答で比較した結果を示す図である。なお、図4Aおよび図4Bでは、図2Aおよび図2Bのステップ付近を拡大しており、縦軸及び横軸のスケールは、図2Aおよび図2Bと異なる。また、ここではパラメータ誤差がないものとする。
γ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsや、トルクの過渡応答性は第1実施形態でも改善されているが、図4A、図4Bに示すように、ステップ直後の部分を拡大すると、ステップ直後の電流波形及びトルク波形が振動していることがわかる。これに対して第2実施形態によれば、ステップ直後の電流波形やトルク波形の振動が抑制されている。
以上、第2実施形態によれば、第1実施形態と同様の効果に加え、電流制御遅れを模擬した電流遅れフィルタ20、21を設けることにより、γ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsやトルクの過渡応答性をさらに改善することができる。
(第3実施形態)
図5は、第3実施形態による三相交流誘導モータの制御システムのブロック図である。
第1実施形態と異なるのは、非干渉磁束応答フィルタ18で用いるパラメータが、ロータ特性の推定値または計測値を入力とする可変値であること、すなわち、非干渉磁束応答フィルタ18の特性がロータ特性に応じて可変であることである。ロータ特性は、例えば、ロータの温度、抵抗値、インダクタンスである。また、非干渉磁束応答フィルタの特性とは、例えば、時定数、直達項と過渡項の配分比等である。以下、この相違点について説明する。
第1実施形態及び第2実施形態により、運転条件の違いによるパラメータ誤差に対して、制御系のロバスト性を高めることができる。しかし、非干渉磁束応答フィルタ18で用いるパラメータには、運転条件以外の外部要因、例えば温度変化に対して感度が高いものがあるため、外部要因によってパラメータ誤差が発生することがある。そこで、非干渉磁束応答フィルタ18で用いているパラメータを、温度変化に対応させるべくロータ特性に応じて可変に設定する。例えば、ロータの温度を入力とする場合、回転子側(二次側)の抵抗値Rrを、ロータの材質によって異なる温度係数αを用いて、式(7)のように補正することができる。これにより、式(5)の回転子磁束応答遅れ時定数τfが変化する。
Figure 0005839111
なお、式(7)におけるRtはt[℃]における抵抗値であり、α20は基準となる20[℃]における温度係数、R20は基準となる20[℃]における抵抗値である。
これにより、ロータ特性の変化によるパラメータ誤差が発生した場合にも、非干渉補償を正確に実施することが可能となる。その結果、電流制御系の応答性を大幅に改善することができる。
なお、回転子側(二次側)の抵抗値Rrを推定する手段を設け、推定した抵抗値Rrを入力として非干渉磁束応答フィルタ18で用いているパラメータを補正する手法もある。また、非干渉磁束応答フィルタ18で使用しているパラメータのインダクタンスは電流に依存するので、入力を電流、出力をインダクタンスとしたマップを予め作成しておき、これを用いてインダクタンスを補正する手法もある。
図6A、図6Bは、温度変化によるパラメータ誤差がある場合に、第3実施形態を実施した場合と第1実施形態を実施した場合をトルクステップ応答で比較した結果を示す図である。なお、図6Aと図2Aを比較すると、横軸は同一スケールであるが、縦軸のフルスケールは、図6Aの方が図2Aに比べて小さい。
上述したように、温度変化を考慮して、非干渉磁束応答フィルタ18で用いるパラメータを可変にすることにより、電流応答やトルク応答が第1実施形態よりさらに改善されていることがわかる。
以上、第3実施形態によれば、第1実施形態と同様の効果に加え、さらに、ロータ特性を用いて非干渉磁束応答フィルタ18の特性を可変にするので、パラメータ誤差が有る場合の電流応答やトルク応答を改善することができる。
(第4実施形態)
図7は、第4実施形態における三相交流誘導モータの制御システムのブロック図である。第1実施形態との違いは、非干渉制御器17の入力がモータ回転速度(機械角速度ωrm)、γ軸電流指令値(励磁電流指令値)iγs *、δ軸電流指令値(トルク電流指令値)iδs *であり、各軸の電流指令値入力に電流遅れを模擬したフィルタ処理を施す電流遅れフィルタ40、41を備える点である。
電流遅れフィルタ40、41として、上述した式(6)で表される伝達特性G2(s)をタスティン近似等で離散化して得られるデジタルフィルタを利用する。時定数τcは、電流フィードバック制御系の応答遅れに基づいて定める。
上述した第2実施形態では、非干渉制御器17においてマップに基づいて算出された非干渉補償電圧に対して、電流制御遅れを模擬した電流遅れフィルタ20、21によるフィルタ処理を施している。これによって、トルク応答性等を十分に改善することができるが、電流制御遅れを考慮しない電流指令値を用いてマップ検索するため、数式モデルに基づく理想的な非干渉補償に比べると、過渡応答性に電流制御遅れの影響が若干残る。
これに対して本実施形態では、電流指令値演算部13で算出した電流指令値iγs *、iδs *に対して、電流制御遅れを模擬したフィルタ処理を施したものを、非干渉制御器17の入力とする。したがって、より適切な位置で電流制御遅れが反映されることになり、運転条件の違いによるパラメータ誤差が発生した場合にも、非干渉補償を正確に実施することが可能となる。結果として、電流制御系の応答性を大幅に改善することができる。
図8A、図8Bは、第4実施形態を実施した場合と第1実施形態を実施した場合をトルクステップ応答で比較した結果を示す図である。なお、図8Aおよび図8Bは、図2Aおよび図2Bのステップ付近を、図4Aおよび図4Bよりもさらに拡大したものであり、縦軸及び横軸のスケールは、図2Aおよび図2Bと異なる。また、ここではパラメータ誤差がないものとする。
上記のように、適切な位置で電流制御遅れが反映されることで、図8Aの楕円で囲んだ部分に示すように、トルクステップ時におけるγ軸電流(励磁電流)iγs、δ軸電流(トルク電流)iδsの応答性が第1実施形態よりもさらに向上する。
以上、第4実施形態によれば、第1実施形態と同様の効果に加え、さらに、電流指令値iγs、iδsに電流制御遅れを模擬したフィルタ処理を施すことにより、電流制御系の応答性をさらに向上させることができる。
なお、本発明は上記の実施形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
本願は、2012年3月22日に日本国特許庁に出願された特願2012−065887に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1. 電源角周波数に同期した直交2軸座標系に基づいてトルク制御を行なう三相交流誘導モータの制御装置において、
    モータ回転速度、トルク指令値、及び電源電圧が入力され、予め記憶しているマップを参照して、トルク軸非干渉補償電圧及び磁束軸非干渉補償電圧を算出する非干渉制御器と、
    前記トルク軸非干渉補償電圧に、回転子磁束応答遅れに応じたフィルタ処理を施す非干渉磁束応答フィルタと、
    を備える三相交流誘導モータの制御装置。
  2. 請求項1に記載の三相交流誘導モータの制御装置において、
    該三相交流誘導モータの制御装置は、電流フィードバック制御を行うものであって、
    前記磁束軸非干渉補償電圧に前記電流フィードバック制御の電流制御遅れを模擬した遅れ処理を施す第1フィルタと、
    前記トルク軸非干渉補償電圧に前記電流フィードバック制御の電流制御遅れを模擬した遅れ処理を施す第2フィルタと、
    をさらに備える。
  3. 請求項1に記載の三相交流誘導モータの制御装置において、
    前記非干渉磁束応答フィルタは、フィルタ処理後のトルク軸非干渉補償電圧として、回転子の運転状態に応じた値が得られるように、回転子の運転状態に応じて変化するロータ特性値に応じたフィルタ処理を行う。
  4. 請求項1に記載の三相交流誘導モータの制御装置において、
    該三相交流誘導モータの制御装置は、電流フィードバック制御を行うものであって、
    トルク指令値、モータ回転速度、及び電源電圧が入力され、予め記憶しているマップを参照して、励磁電流指令値及びトルク電流指令値を生成する電流指令値演算部と、
    前記トルク電流指令値に前記電流フィードバック制御の電流制御遅れを模擬したフィルタ処理を施す第3フィルタと、
    前記励磁電流指令値に前記電流フィードバック制御の電流制御遅れを模擬したフィルタ処理を施す第4フィルタと、
    をさらに備え、
    前記非干渉制御器は、前記モータ回転速度、前記トルク指令値及び前記電源電圧に代えて前記モータ回転速度、前記第3フィルタ通過後のトルク電流指令値、及び前記第4フィルタ通過後の励磁電流指令値が入力され、予め記憶しているマップを参照して、トルク軸非干渉補償電圧及び磁束軸非干渉補償電圧を算出する。
  5. 電源角周波数に同期した直交2軸座標系に基づいてトルク制御を行なう三相交流誘導モータの制御方法において、
    トルク指令値、電動機回転速度、及び電源電圧に基づいて、予め記憶しているマップを参照して、トルク軸非干渉補償電圧及び磁束軸非干渉補償電圧を算出するステップと、
    前記トルク軸非干渉補償電圧に、回転子磁束応答遅れに応じたフィルタ処理を施すステップと、
    を備える三相交流誘導モータの制御方法。
JP2014506142A 2012-03-22 2013-03-11 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法 Active JP5839111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506142A JP5839111B2 (ja) 2012-03-22 2013-03-11 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012065887 2012-03-22
JP2012065887 2012-03-22
PCT/JP2013/056622 WO2013141059A1 (ja) 2012-03-22 2013-03-11 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法
JP2014506142A JP5839111B2 (ja) 2012-03-22 2013-03-11 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法

Publications (2)

Publication Number Publication Date
JPWO2013141059A1 JPWO2013141059A1 (ja) 2015-08-03
JP5839111B2 true JP5839111B2 (ja) 2016-01-06

Family

ID=49222519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014506142A Active JP5839111B2 (ja) 2012-03-22 2013-03-11 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法

Country Status (5)

Country Link
US (1) US9318989B2 (ja)
EP (1) EP2830211B1 (ja)
JP (1) JP5839111B2 (ja)
CN (1) CN104205614B (ja)
WO (1) WO2013141059A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591794B2 (ja) * 2015-06-12 2019-10-16 株式会社日立産機システム 誘導機の電力変換装置と二次時定数測定方法及び速度制御方法
RU2605458C1 (ru) * 2015-06-15 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Способ энергоэффективного двухзонного регулирования скорости асинхронного электропривода с гибким ограничением мощности
US9673743B1 (en) 2016-09-08 2017-06-06 Limiter Power Management System (PTY) LTD. Efficient motor control
US10222776B2 (en) 2016-09-12 2019-03-05 Linestream Technologies Wizard for configuring a motor
JP6320603B1 (ja) * 2017-06-20 2018-05-09 三菱電機株式会社 交流回転機の制御装置
CN113056868B (zh) * 2018-11-15 2022-07-05 日产自动车株式会社 电动车辆的控制方法以及控制装置
WO2020217438A1 (ja) * 2019-04-26 2020-10-29 三菱電機株式会社 モータ制御装置
US11277088B1 (en) * 2020-09-22 2022-03-15 Rockwell Automation Technologies, Inc. High frequency injection transition disturbance elimination for a salient pole electric machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420688A (en) 1987-07-15 1989-01-24 Brother Ind Ltd Drive circuit for semiconductor laser
JP3283729B2 (ja) 1995-07-25 2002-05-20 三菱電機株式会社 誘導電動機の制御装置
JP3679246B2 (ja) * 1998-04-24 2005-08-03 潔 大石 交流電動機の速度制御装置
JP2004040861A (ja) * 2002-07-01 2004-02-05 Sanyo Electric Co Ltd モータの駆動装置
CN101136607A (zh) * 2002-11-28 2008-03-05 日本精工株式会社 电机驱动控制装置及电动动力转向装置
WO2008004294A1 (fr) * 2006-07-06 2008-01-10 Mitsubishi Electric Corporation Dispositif de commande de vecteur de moteur à induction, procédé de commande de vecteur de moteur à induction, et dispositif de commande d'entraînement de moteur à induction
EP2211457A1 (en) * 2007-11-15 2010-07-28 Kabushiki Kaisha Yaskawa Denki Motor control device and control method thereof
CN101884164B (zh) * 2007-12-04 2013-02-27 三菱电机株式会社 交流电动机的控制装置
JP5412820B2 (ja) * 2008-12-11 2014-02-12 日産自動車株式会社 交流電動機の制御装置及び制御方法
JP5493536B2 (ja) * 2009-07-24 2014-05-14 日産自動車株式会社 電動機の制御装置
JP5116785B2 (ja) * 2010-02-25 2013-01-09 株式会社日立製作所 交流電動機の駆動装置及び電動機車両

Also Published As

Publication number Publication date
EP2830211B1 (en) 2018-10-24
EP2830211A4 (en) 2015-11-04
JPWO2013141059A1 (ja) 2015-08-03
CN104205614B (zh) 2016-10-12
WO2013141059A1 (ja) 2013-09-26
CN104205614A (zh) 2014-12-10
US9318989B2 (en) 2016-04-19
US20150048774A1 (en) 2015-02-19
EP2830211A1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5839111B2 (ja) 三相交流誘導モータの制御装置及び三相交流誘導モータの制御方法
JP6361450B2 (ja) 誘導電動機の制御装置
JP5800108B2 (ja) 周期外乱自動抑制装置
WO2013137129A1 (ja) 電動機の制御装置及び電動機の制御方法
WO2016125559A1 (ja) モータ制御装置
JP6115392B2 (ja) モータ制御装置
JP3919003B2 (ja) Dcブラシレスモータのロータ角度検出装置
JP4455245B2 (ja) 誘導電動機のベクトル制御装置
JP6519149B2 (ja) モータ制御装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP3920750B2 (ja) Dcブラシレスモータの制御装置
JP2010273400A (ja) 誘導電動機制御装置
JP6241331B2 (ja) 電動機の制御装置
JP6343979B2 (ja) 電動機の制御装置
JP5842487B2 (ja) モータ制御装置
JP7035818B2 (ja) 巻線界磁型同期モータの制御方法、及び、制御装置
JP2013188074A (ja) 誘導モータの制御装置および制御方法
JP6417881B2 (ja) 誘導モータの制御装置
JP6032047B2 (ja) モータ制御装置
JP2013042631A (ja) 永久磁石同期モータの制御装置
JP6565594B2 (ja) モータ制御装置及びモータ制御方法
WO2015019905A1 (ja) 誘導モータの制御装置および誘導モータの制御方法
JP7291578B2 (ja) 回転電機制御方法及び回転電機制御システム
JP6464559B2 (ja) 電動機の制御装置
JP7225561B2 (ja) モータ制御方法、及び、モータ制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5839111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151