JP5792008B2 - カルコパイライト型太陽電池の製造方法 - Google Patents

カルコパイライト型太陽電池の製造方法 Download PDF

Info

Publication number
JP5792008B2
JP5792008B2 JP2011200291A JP2011200291A JP5792008B2 JP 5792008 B2 JP5792008 B2 JP 5792008B2 JP 2011200291 A JP2011200291 A JP 2011200291A JP 2011200291 A JP2011200291 A JP 2011200291A JP 5792008 B2 JP5792008 B2 JP 5792008B2
Authority
JP
Japan
Prior art keywords
buffer layer
solution
layer
light absorption
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011200291A
Other languages
English (en)
Other versions
JP2013062394A (ja
Inventor
隆宏 平野
隆宏 平野
良太 新井
良太 新井
俊介 小西
俊介 小西
健太郎 松永
健太郎 松永
和彦 船川
和彦 船川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011200291A priority Critical patent/JP5792008B2/ja
Publication of JP2013062394A publication Critical patent/JP2013062394A/ja
Application granted granted Critical
Publication of JP5792008B2 publication Critical patent/JP5792008B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、カルコパイライト型化合物からなる光吸収層と、該光吸収層上に積層されたバッファ層とを有するカルコパイライト型太陽電池の製造方法に関する。
カルコパイライト型太陽電池は、複数個のセルが互いに電気的に接続された後、該セルが樹脂材で封止されてモジュール化されることによって作製される。各セルは、例えば、Mo膜等からなる裏面電極(正極)、p型半導体の光吸収層、n型半導体のバッファ層、透明電極(負極)がガラス基板上にこの順番で設けられることによって形成される。
周知の通り、カルコパイライト型太陽電池における光吸収層は、カルコパイライト型化合物からなる。すなわち、例えば、CIGSと指称されるCu(In,Ga)Se等である。
一方、バッファ層は、多くの場合でCdSから形成される(例えば、特許文献1参照)。この場合、カルコパイライト型太陽電池が高出力を示すからである。なお、高出力が得られる理由は、光吸収層とバッファ層の界面のバンドオフセットが0.2eVと理想的な状態となるためであると考えられている。
バッファ層を成膜するに際しては、光吸収層までが形成された積層物を、バッファ層の構成元素を供給し得る物質を含む溶液に浸漬する、ケミカルバスデポジション(CBD)法が広汎に採用されている。ここで、CdSからなるバッファ層を得る際には、Cdイオンを含む溶液を用いる必要があるが、Cdは有害物質であるため、CdS層を成膜する作業を行うことは、本来、好ましいものではない。
この観点から、CdS以外の物質からなるバッファ層を形成することが提案されている。例えば、特許文献2記載の技術では、ZnSからなるバッファ層を成膜するようにしている。
しかしながら、CIGSをはじめとするカルコパイライト型化合物と、ZnSとでは組成が大きく相違する。従って、光吸収層とバッファ層との間に接合欠陥が生じ易い。しかも、CBD法でZnS層を成膜する場合、ZnS層が形成されると同時に光吸収層にZnが拡散するので、Znの拡散量によっては、光吸収層の結晶が、純粋なカルコパイライト型化合物とは相違するものとなる。
すなわち、この場合、光吸収層とバッファ層との接合状態や、光吸収層の物性(組成や結晶性)等を安定させることが容易ではない。このため、得られたカルコパイライト型太陽電池に変換効率のバラツキが生じ易い。
InSでバッファ層を形成することも試みられている。しかしながら、InSからなるバッファ層は、光吸収層との界面のバンドオフセットが低くなる。このため、CdSからなるバッファ層を具備するカルコパイライト型太陽電池に比して出力が小さくなるという不具合がある。
そこで、本出願人は、特許文献3において、インジウム酸化物及びインジウム水酸化物を含むInSからなり、且つ光吸収層に近接する側ではInSリッチ、透明電極に近接する側ではインジウム酸化物及びインジウム水酸化物リッチであるバッファ層を形成することを提案している。インジウム酸化物及びインジウム水酸化物を含ませることによって、バンドギャップを大きくすることができるようになる。
なお、組成は、CBD法における溶液のpHを変更することで変化させることができる。すなわち、成膜の初期では溶液を酸性としてInSが生成する反応が優先的に生起されるようにし、成膜を開始してから所定時間が経過した後に溶液をアルカリ性としてインジウム酸化物及びインジウム水酸化物が生成する反応が優先的に生起されるようにすればよい。
特開2004−47917号公報 特開平8−330614号公報 特開2003−282909号公報
特許文献3に記載の成膜方法は、成膜速度が十分であるとは言い難い。このため、所定の厚みのバッファ層を短時間で形成するという要請に対応することが容易ではない。
また、CBD法において、多量のカルコパイライト型太陽電池を1つの溶液に同時に浸漬したときには、バッファ層の厚みが不均一となり易い。すなわち、ある部位では厚みが大きいのに対し、別のある部位では厚みが小さくなる傾向がある。この理由は、Cd源やZn源、In源、S源が溶液中に不均一に分散するためであると推察される。仮に、厚みが過度に小さい部位がバッファ層に形成されると、正極側であるCIGS薄膜と、負極である透明電極との間にリーク電流が発生する懸念がある。このような事態が生じると、発電効率が低下する。
そこで、CBD法に代替してスパッタを採用し、これによりバッファ層を成膜することが想起される。しかしながら、光吸収層の上端面の表面粗度は比較的大きいため、ステップカバレッジを均一にすることが困難である。このため、厚みが略均等なバッファ層を得ることも困難である。
本発明は上記した問題を解決するためになされたもので、部位に関わらず厚みが略均等なバッファ層を効率よく成膜することが可能なカルコパイライト型太陽電池の製造方法を提供することを目的とする。
前記の目的を達成するために、本発明は、カルコパイライト型化合物からなる光吸収層と、前記光吸収層上に積層されたバッファ層とを有するカルコパイライト型太陽電池の製造方法であって、
基板上に、少なくとも電極及び前記光吸収層を形成した積層物を得る工程と、
バッファ層の構成元素の供給源となる物質を含む溶液に前記積層物を浸漬し、前記溶液中に気泡を発生させながら、バッファ層を形成する工程と、
を有することを特徴とする。
この場合、溶液は、該溶液中に発生させた気泡によって撹拌される。これにより、該溶液と、該溶液に含まれるコロイド粒子(例えば、In(OH))との間に気液界面が形成される。その表面張力により、コロイド粒子同士の間に粒子間引力が発生し、コロイド粒子が凝集し易くなる。しかも、気泡によって溶液が撹拌されることに伴い、凝集したコロイド粒子同士、ないし凝集したコロイド粒子と光吸収層とが衝突し易くなる。
以上のような理由から、光吸収層上にバッファ層が容易に成長する。従って、この際の成膜速度が大きくなる。
また、気泡によって溶液が撹拌されるので、該溶液に温度ムラが発生することが回避される。すなわち、溶液の全体にわたって温度が略均一となる。また、拡散された溶液は、光吸収層に高頻度で接触する。このため、部位に関わらず厚みが略均等なバッファ層を得ることができる。
バッファ層を成膜する際には、前記積層物を溶液に浸漬する際、光吸収層を鉛直方向に沿って延在させることが好ましい。この場合、気泡、ひいてはコロイド粒子が光吸収層に高頻度で接触するようになるので、バッファ層の成膜速度を一層向上させることができる。
また、気泡の径は、0.5〜3.0mmである。径がこのような範囲内であると、ガスが溶液に溶解することを回避し得るとともに、気泡を制御することが容易である。
溶液の温度は、45℃以下であることが好ましい。この場合、バッファ層における水酸化物の割合が比較的大きくなる。従って、例えば、InSを含むバッファ層を形成する場合、光吸収層との界面におけるバンドオフセットを、CdSからなるバッファ層を形成した場合のバンドオフセットに近づけることが容易となる。
以上において、溶液として、In源及びS源を含み、且つpHが3以下であるものを用いたときには、InS系化合物からなるバッファ層を形成することができる。InS系化合物の具体的な一例としては、InS(ただし、x+y=1、以下同じ)が挙げられる。
また、本発明は、カルコパイライト型化合物からなる光吸収層上にバッファ層を形成するためのバッファ層成膜装置であって、
バッファ層の構成元素の供給源となる物質を含む溶液を貯留するための貯留槽と、
前記溶液内に0.5〜3.0mmの範囲内の径の気泡を発生させるための気泡発生手段と、
を備えることを特徴とする。
このような構成とすることにより、バッファ層を成膜する際に気泡を発生させることができる。その結果、上記したように、部位に関わらず厚みが略均等なバッファ層を容易に得ることができる。
本発明によれば、溶液中に気泡を発生させながらバッファ層を成膜するようにしているので、コロイド粒子が凝集し易くなるとともに、凝集したコロイド粒子が光吸収層に対して高頻度に衝突するようになる。しかも、溶液の全体にわたって温度が略均一となる。従って、厚みが略均等なバッファ層を大きな成膜速度で得ることができる。
カルコパイライト型太陽電池の概略構成を示す要部側面模式図である。 カルコパイライト型太陽電池を製造するにあたり、光吸収層を形成するまでの過程を示した概略フロー図である。 本実施の形態に係るバッファ層成膜装置にてバッファ層を形成している状態を示す要部縦断面図である。 図3のバッファ層成膜装置を構成する気泡発生装置の全体概略斜視図である。 図4のバッファ層成膜装置を構成する気泡発生装置の平面図である。 バッファ層を得るための溶液に気泡を発生させたときと、発生させなかったときでの溶液の温度ムラの度合い、及びバッファ層の厚みの標準分布を示す図表である。 バッファ層を得るための溶液に気泡を発生させたときと、発生させなかったときでの同一時間におけるバッファ層の厚みの分布を示すグラフである。
以下、本発明に係るカルコパイライト型太陽電池の製造方法につき、該カルコパイライト型太陽電池のバッファ層を形成する際に用いるバッファ層成膜装置との関係で好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。
先ず、カルコパイライト型太陽電池の構成につき、その模式図である図1を参照して概略説明する。このカルコパイライト型太陽電池10は、SLG(ソーダライムガラス)等からなるガラス基板12上に、裏面電極14、p型半導体である光吸収層16、n型半導体であるバッファ層18、透明電極20がこの順序で積層されて構成される。
裏面電極14は正極として機能する電極であり、この場合、Moからなる。なお、裏面電極14は、Wからなるものであってもよい。
裏面電極14上に形成された光吸収層16は、この場合、Cu(In,Ga)Se、すなわち、いわゆるCIGSからなる。後述するように、この光吸収層16は、プリカーサとしてのCu−In−Ga合金層がセレン化されることによって形成される。
バッファ層18は、光吸収層16とともにヘテロ接合を形成する。本実施の形態において、このバッファ層18は、インジウム酸化物であるIn、及びインジウム水酸化物であるIn(OH)を含むInSからなる。
さらに、透明電極20は、太陽光等の光を透過するように光透過性に優れる透明体であり、且つ集電効率が高い物質からなる。この種の物質の好適な例としては、ZnSや、ZnOにAlをドープしたZnO:Al等が挙げられる。
次に、本実施の形態に係るカルコパイライト型太陽電池10の製造方法につき説明する。
はじめに、図2(a)に示すように、Mo膜(又はW膜)をガラス基板12上に成膜し、これにより裏面電極14を成膜する。この成膜には、例えば、スパッタリングを採用すればよい。
次に、図2(b)に示すように、裏面電極14上にIn層22を成膜する。In層22は、Inからなるターゲット材T1を用いた第1のスパッタリング工程SPT−1によって成膜することができる。
その後、図2(c)に示すように、In層22の上にCu−Ga合金層24を成膜する。成膜には、第2のスパッタリング工程SPT−2を行えばよい。この際には、Cu−Ga合金からなるターゲット材T2を用いればよい。
好ましくは、このCu−Ga合金層24上にアルカリ層(図示せず)が設けられる。このアルカリ層は、例えば、塩化ナトリウム水溶液をはじめとするナトリウム塩水溶液等のアルカリ溶液を塗布した後、該溶液を乾燥することによって形成することもできる。なお、前記溶液の塗布は、Cu−Ga合金層24までが形成された半製品を前記溶液内に浸漬することによって行われる。又は、スピンコート等の公知の塗布方法を採用するようにしてもよい。
さらに、図2(d)に示すように、In層22及びCu−Ga合金層24に対し、HSeを流通した処理炉(図示せず)内で熱処理を施す。すなわち、熱処理工程HEATを実施する。これにより、In層22及びCu−Ga合金層24がセレン化され、その結果、CIGSからなる光吸収層16が形成される。この際には、前記アルカリ層に含まれるNa等のアルカリ成分がCu(In,Ga)Seの結晶化を促進する。なお、アルカリ層は最終的に光吸収層16に拡散して消滅するので、該アルカリ層が光吸収層の上方に層として残留することはない。
以下、ガラス基板12、裏面電極14及び光吸収層16からなる半製品を積層物と表記するとともに参照符号を26とすると、該積層物26は、光吸収層16上にバッファ層18を形成するべく、図3に示すバッファ層成膜装置30に移送される。
ここで、バッファ層成膜装置30につき説明する。このバッファ層成膜装置30は、貯留槽としての処理層32と、該処理層32の底壁近傍に設置されて気泡発生手段を構成する気泡発生器34とを有する。
この中、処理層32は、バッファ層18の構成元素(本実施の形態では、In、S)の供給源となる物質を含む溶液を貯留するためのものである。なお、溶液36の具体例としては、三塩化インジウム四水和物(InCl・4HO)及びチオアセトアミド(CHCSNH)の水溶液が挙げられる。
図3にて簡略化した気泡発生器34は、図4及び図5に示すように、第1支持板37及び第2支持板38に挟持された複数個のエアストーン40を具備する。なお、図3では、第1支持板37及び第2支持板38を省略し、エアストーン40のみを模式的に示している。
エアストーン40は、円柱体形状をなし、第1支持板37から第2支持板38に向かって延在する。この場合、処理層32の底壁に近接する下方に6本のエアストーン40が配置され、その上方に、7本のエアストーン40が配置されている。図5から諒解されるように、上方のエアストーン40は、下方のエアストーン40に対して重ならないように位置している。
個々のエアストーン40には、継手用管部42が設けられる。この継手用管部42には、図示しないフレキシブルチューブの一端部が接続される。勿論、該フレキシブルチューブの他端部は、図示しないガス供給源に接続されており、従って、ガス供給源から供給されたガスは、前記フレキシブルチューブ及び継手用管部42を流通した後、エアストーン40に到達する。
周知の通り、エアストーン40は多孔体である。従って、エアストーン40に到達したガスは、エアストーン40の側壁から気泡44(図3参照)として溶液36に流出する。
気泡44の径は、エアストーン40から流出するガスの流量を調節することで制御することができる。後述する理由から、気泡44の径は0.5〜3mmであることが好ましいが、このような径の気泡44を得るべく、ガスの流量を、溶液1リットル当たり4〜20ミリリットル/分とすることが好ましい。
バッファ層18は、基本的には上記のように構成されるバッファ層成膜装置30を用い、以下のようにして成膜することができる。
はじめに、溶液36(図3参照)を調製する。例えば、0.01mol/リットルのInCl・4HO水溶液と、0.3mol/リットルのCHCSNH水溶液とを体積比で1:1の割合で混合すればよい。このようにして得られた溶液36においては、pHは3〜3.5である。
この溶液36を、処理層32に移液する。なお、処理層32にて溶液36を調製するようにしてもよいことは勿論である。
溶液36は、室温よりも若干高温として保持することが好ましい。この場合、成膜時間を短くすることができるからである。溶液36の温度は、45℃以下とすればよく、35℃程度が好ましい。
次に、積層物26を溶液36に浸漬する。この際には、積層物26の積層方向を鉛直方向に対して略直交させることが好ましい。この場合、光吸収層16の上端面が鉛直方向に対して略平行に延在することになる。
さらに、前記ガス供給源からガスの供給を開始する。ガスとしては、溶液36に溶解したり、InやSに対して反応を起こしたりしないものが好適である。具体的には、ArやN等を用いることができる。
ガスは、前記フレキシブルチューブ及び継手用管部42を流通した後、エアストーン40の側壁から流出し、気泡44としてエアストーン40の側壁から流出する。この気泡44が溶液36中を上昇することに伴い、該溶液36が撹拌される。この際、気泡44が処理層32の底壁側からランダムに上昇するので、溶液36の全体を撹拌することができる。
ここで、気泡44の径が過度に小さいと、気泡44に対する溶液36の接触面積が大きくなる。このため、ガスが溶液36に溶解し、バッファ層18の成膜に影響を与える原因となる可能性がある。一方、過度に大きいと、気泡44を制御することが容易でなくなる。従って、溶液36を均等に撹拌することが容易でなくなるので、略均等な厚みのバッファ層18を得ることが容易でなくなる。
このような懸念を払拭するべく、気泡44の径は、0.5mm〜3mm程度とすることが好ましい。この場合、バッファ層18の組成を制御することが容易であり、しかも、厚みが略均等なバッファ層18を得ることができる。
上記したように、気泡44の径は、エアストーン40から流出するガスの流量を、溶液1リットル当たり4〜20ミリリットル/分に設定することによって制御することができる。
溶液36のpHが3〜3.5である本実施の形態では、InSのコロイド粒子による成膜も進行するものの、In(OH)のコロイド粒子による成膜の方が優勢である。溶液36に気泡44を発生させない場合、後者の成膜の速度は低いが、本実施の形態では、上記したように気泡44を発生させるようにしている。従って、溶液36に含まれるIn(OH)のコロイド粒子と、気泡44との間に気液界面が形成され、この気液界面の表面張力によって、該コロイド粒子間に引力が発生するので、該コロイド粒子が凝集し易くなる。
このことと、気泡44によって溶液36が撹拌されることに伴って凝集したコロイド粒子同士、ないし凝集したコロイド粒子と光吸収層16とが衝突し易くなることが相俟って、光吸収層16上に膜(バッファ層18)が容易に成長するようになる。
このようにしてバッファ層18がある程度成長すると、この成長したバッファ層18に対し、In(OH)のコロイド粒子が衝突するようになる。前記特許文献3記載の先行技術では、溶液の温度を60℃程度に上昇させるようにしているが、この場合、該溶液に含まれるチオアセトアミドの分解が過度に促進され、InS及び水素イオンが生成する。このようにInSが生成することと、水素イオンが生成することで溶液36が酸性となることとに起因して、In(OH)のコロイド粒子による成膜速度が低下する。
これに対し、本実施の形態では、溶液36の温度を45℃以下、好ましくは35℃程度としているので、InS及び水素イオンが生成することが抑制される。従って、In(OH)のコロイド粒子が相対的に多く存在することになるので、この段階では、バッファ層18に対するIn(OH)のコロイド粒子の衝突頻度が低下することなく維持される。このため、バッファ層18が十分な成膜速度で成長する。すなわち、溶液36を過度に高温にすることなく、効率的な成膜を行うことが可能となる。換言すれば、In(OH)による成膜速度が向上する。
以上のようにしてIn(OH)を比較的多く含むようにしてバッファ層18が成長している間、チオアセトアミドからSが供給されるとともに水素イオンが生成する。これにより溶液36のpHが小さくなることに伴い、InSのコロイド粒子による成膜が優先的に起こるようになる。勿論、InSのコロイド粒子についても上記と同様の現象が起こるため、InSの成膜速度も向上する。結局、
InSとIn(OH)との混合層となる。
このように、本実施の形態においては、溶液36を気泡44により撹拌するようにしているため、コロイド粒子同士が衝突する頻度や、凝集したコロイド粒子が光吸収層16に対して衝突(接触)する頻度が高くなる。これにより、バッファ層18の成膜速度を高めることが可能となる。
しかも、光吸収層16の延在方向は、溶液36中の気泡44の進行方向と同じく鉛直方向である。従って、光吸収層16に対してコロイド粒子が接触し易い。このことも、バッファ層18の成膜速度を高めることに寄与する。
加えて、溶液36の全体が撹拌されるので、該溶液36に温度ムラや濃度ムラが生じ難い。従って、バッファ層18が略均等な厚みで形成される。
図6に、気泡44を発生させたときの溶液36の15箇所を無作為に選定し、各々の箇所で測定した温度から求めた温度差の平均値と、最高温度から最低温度を差し引いた温度差を示す。なお、この図6には、気泡44を発生させていないときの溶液36における同一箇所での温度から求めた温度差の平均値と、最高温度から最低温度を差し引いた温度差(図6中の「最高−最低」)とを併せて示している。
この図6から明らかな通り、溶液36に気泡44を発生させることにより、該溶液36の温度ムラを小さくし得る。換言すれば、溶液36の温度を、全体にわたって略均一とすることができる。
その上、気泡44によって溶液36の全体が撹拌されるので、溶液36に複数個の積層物26が浸漬されたときであっても、コロイド粒子が個々の積層物26に対して均等に接触する。従って、処理層32の場所によってバッファ層18の成膜の度合いに大きな差が生じることが回避される。
積層物26の溶液36への浸漬時間(成膜時間)は、溶液36の温度を35〜45℃とした場合、90〜100分程度で十分である。これにより、厚みが1000〜1200Å程度であり、且つ部位に関わらず略均等であるバッファ層18が得られる。
その後、純水を用い、いわゆるオーバーフロー洗浄を行う。
以上のようにして得られたバッファ層18は、光吸収層16に近接する側ではIn(OH)リッチであり、光吸収層16から離間するにつれてInSの組成比が大きくなる。上記したように、In(OH)のコロイド粒子同士の衝突頻度や、該コロイド粒子の光吸収層16に対する衝突頻度が大きく、このためにIn(OH)の成膜速度が大きいので、バッファ層18には、比較的多くのIn(OH)が含まれる。従って、バッファ層18におけるIn(OH)の組成比が大きい。なお、バッファ層18におけるIn(OH)の組成比は、溶液36の温度が低いほど大きくなるが、この場合、成膜速度が低くなるので、成膜時間を長くする必要がある。
このバッファ層18を乾燥することにより、In(OH)の一部又は全部がInに変化する。結局、InSからなるバッファ層18が形成される。
図6には、以上のようにして得られたバッファ層18から無作為に25箇所を選定し、光干渉式膜厚測定器によって測定した厚みの標準偏差と、気泡44を発生させることなく形成したバッファ層から同様に選定した25箇所の厚みの標準偏差とを併せて示している。図6から、溶液36中に気泡44を発生させることによってバッファ層18の厚みのバラツキを抑制し得ること、すなわち、厚みを略均等にし得ることが分かる。なお、改善率は34.4%であった。
また、溶液36中に気泡44を発生させて得たバッファ層18の厚みの分布と、気泡44を発生させることなく形成したバッファ層の厚みの分布を図7に併せて示す。勿論、成膜時間は同一である。
この図7から、溶液36中に気泡44を発生させることによってバッファ層18の成膜速度を大きくし得ることが明らかである。
最後に、バッファ層18上にZnO:Al、ZnS等からなる透明電極20をスパッタリングにより成膜することによって、カルコパイライト型太陽電池10が得られるに至る。
上記から諒解されるように、このカルコパイライト型太陽電池10では、バッファ層18に含まれるInの組成比が比較的大きい。このため、光吸収層16とバッファ層18との間の界面のバンドオフセットが、CdSからなるバッファ層を形成したときのバンドオフセットに近くなる。従って、カルコパイライト型太陽電池10における変換効率が大きくなる。具体的には、気泡44を発生させることなくCBD法によってInSからなるバッファ層を形成したカルコパイライト型太陽電池と、本実施の形態に係る製造方法によって得たカルコパイライト型太陽電池10とで変換効率を比較すると、後者の方が1.05倍程大きくなるという結果が得られている。
このことから、バッファ層18を成膜する際に溶液36に気泡44を発生させることが、カルコパイライト型太陽電池10の変換効率を向上させるために有効であることが明らかである。
なお、上記した実施の形態では、InSを含むバッファ層18を形成する場合を例示して説明したが、CdS又はZnSを含むバッファ層18を成膜する際にも、上記に準拠して実施することができる。すなわち、本発明におけるバッファ層18は、InSを含むものに特に限定されるものではない。
10…カルコパイライト型太陽電池 12…ガラス基板
14…裏面電極 16…光吸収層
18…バッファ層 20…透明電極
22…In層 24…Cu−Ga合金層
26…積層物 30…バッファ層成膜装置
32…処理層 34…気泡発生器
40…エアストーン 44…気泡

Claims (5)

  1. カルコパイライト型化合物からなる光吸収層と、前記光吸収層上に積層されたバッファ層とを有するカルコパイライト型太陽電池の製造方法であって、
    基板上に、少なくとも電極及び前記光吸収層を形成した積層物を得る工程と、
    バッファ層の構成元素の供給源となる物質を含む溶液に前記積層物を浸漬し、前記溶液中に0.5〜3.0mmの範囲内の径の気泡を発生させながら、バッファ層を形成する工程と、
    を有することを特徴とするカルコパイライト型太陽電池の製造方法。
  2. 請求項1記載の製造方法において、前記積層物を前記溶液に浸漬する際、前記光吸収層を鉛直方向に沿って延在させることを特徴とするカルコパイライト型太陽電池の製造方法。
  3. 請求項1又は2記載の製造方法において、前記溶液の温度を45℃以下とすることを特徴とするカルコパイライト型太陽電池の製造方法。
  4. 請求項1〜3のいずれか1項に記載の製造方法において、前記溶液として、In源及びS源を含み、且つpHが3以上であるものを用い、InS系化合物からなるバッファ層を形成することを特徴とするカルコパイライト型太陽電池の製造方法。
  5. 請求項4記載の製造方法において、InSxOy(ただし、x+y=1)からなるバッファ層を形成することを特徴とするカルコパイライト型太陽電池の製造方法。
JP2011200291A 2011-09-14 2011-09-14 カルコパイライト型太陽電池の製造方法 Expired - Fee Related JP5792008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011200291A JP5792008B2 (ja) 2011-09-14 2011-09-14 カルコパイライト型太陽電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200291A JP5792008B2 (ja) 2011-09-14 2011-09-14 カルコパイライト型太陽電池の製造方法

Publications (2)

Publication Number Publication Date
JP2013062394A JP2013062394A (ja) 2013-04-04
JP5792008B2 true JP5792008B2 (ja) 2015-10-07

Family

ID=48186809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200291A Expired - Fee Related JP5792008B2 (ja) 2011-09-14 2011-09-14 カルコパイライト型太陽電池の製造方法

Country Status (1)

Country Link
JP (1) JP5792008B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887405A1 (de) * 2013-12-23 2015-06-24 Saint-Gobain Glass France Schichtsystem für Dünnschichtsolarzellen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080061B2 (ja) * 1998-05-07 2008-04-23 本田技研工業株式会社 Cbd成膜装置
JP4443645B2 (ja) * 1998-05-07 2010-03-31 本田技研工業株式会社 Cbd成膜装置
JP2000144488A (ja) * 1998-11-11 2000-05-26 Canon Inc 電析装置
JP2000243991A (ja) * 1999-02-19 2000-09-08 Canon Inc 酸化亜鉛膜の形成方法及び該酸化亜鉛膜を使用した半導体素子
JP2002118068A (ja) * 2000-10-12 2002-04-19 Honda Motor Co Ltd Cbd成膜方法
JP2002141297A (ja) * 2000-11-06 2002-05-17 Honda Motor Co Ltd Cbd成膜装置
JP4055053B2 (ja) * 2002-03-26 2008-03-05 本田技研工業株式会社 化合物薄膜太陽電池およびその製造方法
DE102004040546B3 (de) * 2004-08-18 2006-05-18 Hahn-Meitner-Institut Berlin Gmbh Verfahren zum Aufbringen einer Zinksulfid-Pufferschicht auf ein Halbleitersubstrat mittels chemischer Badabscheidung, insbesondere auf die Absorberschicht einer Chalkopyrit-Dünnschicht-Solarzelle
JP2009112975A (ja) * 2007-11-08 2009-05-28 Sumitomo Chemical Co Ltd 微細気泡発生装置、及び微細気泡発生方法
JP2010239055A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The 表面粗化銅板を用いた太陽電池

Also Published As

Publication number Publication date
JP2013062394A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
JP4055053B2 (ja) 化合物薄膜太陽電池およびその製造方法
JP4680183B2 (ja) カルコパイライト型薄膜太陽電池の製造方法
US9181437B2 (en) Bath deposition solution for the wet-chemical deposition of a metal sulfide layer and related production method
TWI546848B (zh) 用於化學浴沉積之設備以及使用化學浴沉積於一基材上製作光伏裝置之一材料層的方法
JP5421890B2 (ja) 光電変換素子の製造方法
JP4320529B2 (ja) 化合物薄膜太陽電池およびその製造方法
JP2004047916A (ja) 化合物薄膜太陽電池およびその製造方法
JP2015233139A (ja) 原子層蒸着法で形成されたバッファ層を含む太陽電池、及び、その製造方法
Baid et al. A comprehensive review on Cu 2 ZnSnS 4 (CZTS) thin film for solar cell: forecast issues and future anticipation
EP2348544A2 (en) Buffer layer manufacturing method and photoelectric conversion device
JP5792008B2 (ja) カルコパイライト型太陽電池の製造方法
WO2010050338A1 (ja) 酸化亜鉛を主成分とする透明導電膜のテクスチャー加工液及び凹凸を有する透明導電膜の製造方法
CN106486557B (zh) 一种深紫外光化学水浴沉积制备硫化镉纳米薄膜的方法
JP6035122B2 (ja) 光電変換素子および光電変換素子のバッファ層の製造方法
JP2011159652A (ja) 光電変換素子の製造方法および光電変換素子
CN104485386A (zh) 一种多晶硅太阳能电池的制绒方法
JP5655669B2 (ja) 半導体層の製造方法、及び、太陽電池の製造方法
JP2011159648A (ja) バッファ層の製造方法および製造装置
CN111613680A (zh) 铜铟镓硒太阳能电池硫化镉层的制备方法、太阳能电池及铜铟镓硒层上生长硫化镉层的方法
Hwang et al. Current Status and Future Prospects of Kesterite Cu2ZnSn (S, Se) 4 (CZTSSe) Thin Film Solar Cells Prepared via Electrochemical Deposition
JP2005142371A (ja) 太陽電池用反射防止膜の形成方法
KR101114635B1 (ko) 스프레이법을 이용한 박막태양전지용 CdTe 박막의 제조방법
WO2013001807A1 (ja) バッファ層の製造方法および光電変換素子の製造方法
Xu et al. Heterojunction interface regulation to realize high-performance flexible Kesterite solar cells
TWI583017B (zh) 薄膜太陽能電池的製作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5792008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees