JP5783312B1 - エピタキシャルシリコンウェーハの製造方法及び気相成長装置 - Google Patents
エピタキシャルシリコンウェーハの製造方法及び気相成長装置 Download PDFInfo
- Publication number
- JP5783312B1 JP5783312B1 JP2014191580A JP2014191580A JP5783312B1 JP 5783312 B1 JP5783312 B1 JP 5783312B1 JP 2014191580 A JP2014191580 A JP 2014191580A JP 2014191580 A JP2014191580 A JP 2014191580A JP 5783312 B1 JP5783312 B1 JP 5783312B1
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen chloride
- chloride gas
- diaphragm
- chamber
- silicon wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 45
- 239000010703 silicon Substances 0.000 title claims abstract description 45
- 238000001947 vapour-phase growth Methods 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 107
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 101
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 101
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 101
- 238000005260 corrosion Methods 0.000 claims abstract description 30
- 230000007797 corrosion Effects 0.000 claims abstract description 30
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 238000012423 maintenance Methods 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 5
- 230000001105 regulatory effect Effects 0.000 claims description 35
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 35
- 239000000463 material Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 238000011109 contamination Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 17
- 238000004140 cleaning Methods 0.000 description 16
- 239000000047 product Substances 0.000 description 14
- 229910052721 tungsten Inorganic materials 0.000 description 11
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 230000006837 decompression Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 7
- 229910000856 hastalloy Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4405—Cleaning of reactor or parts inside the reactor by using reactive gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4409—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Valve Housings (AREA)
- Recrystallisation Techniques (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
このような気相成長装置を起因とする金属汚染を低減するために、気相成長装置を構成する部材のうち、ガスに接触し、かつ金属を含む材料からなる部位を、全て非金属の保護膜で覆い、各構成部材の接合部にはTiを含まないO−リングを用いることが提案されている(特許文献1参照)。特許文献1によれば、上記構成の気相成長装置を用いることにより、ガスと金属の接触を防ぐことができるため、金属汚染が防止される。結果として、白キズの発生が少ない、Mo,W,V,Nbの4元素の合計濃度が4×1010個/cm3以下で、かつTiの濃度が3×1012個/cm3以下の高品質のエピタキシャルシリコンウェーハを製造できることが報告されている。
本発明者らは、前記課題を解決すべく、白キズを生じさせる汚染源について鋭意検討した。
チャンバークリーニングに使用する塩化水素ガスは、副生成物の除去効果は大きいが、その一方で、腐食性が高い。このため、塩化水素ガスを供給する塩化水素ガス供給設備が塩化水素ガスによって腐食され、チャンバーへと導入される金属汚染が撮像製品の白キズ特性への影響が大きいと考えた。
また、白キズを生じさせる汚染源となる金属は、Mo、W、Ti、Nb、Taなどの金属が主要因であると考えられていたが、本発明者らは、金属汚染のうち、W汚染が白キズを発生させる影響が最も大きいことを見出した。
そこで、チャンバークリーニング時に、チャンバー内へ塩化水素ガスを供給する塩化水素ガス供給設備、並びに汚染金属としてWについて着目し、鋭意検討した。
塩化水素ガス供給設備3は、塩化水素ガス供給ユニット31、減圧ユニット32、バルブマニホールドボックス33(Valve Manifold Box:VMB)などがそれぞれ配置され、塩化水素ガスを流通させる配管34により、チャンバー2に連通して接続されている。
減圧ユニット32には、圧力調整弁40と、ダイヤフラムバルブ50と、圧力計60とがそれぞれ設置されている。圧力調整弁40は、流通する塩化水素ガスの圧力を制御するものである。ダイヤフラムバルブ50では、ダイヤフラムにより、塩化水素ガスの流通量を調節する。圧力計60では、圧力調整弁40で減圧される前の塩化水素ガスの圧力と、減圧された後の塩化水素ガスの圧力をそれぞれ測定する。
なお、図1に示す減圧ユニット32では、圧力調整弁40を2段構成にしているが、1段構成としてもよい。
VMB33では、配管34が複数本に分岐しており、分岐した配管34のそれぞれにダイヤフラムバルブ50が設置された構造を有している。VMB33で分岐したそれぞれの配管34を、複数台のチャンバー2に接続することにより、1基の塩化水素ガス供給設備3で、複数台のチャンバー2に対して、塩化水素ガスが供給可能に構成されている。
ダイヤフラムバルブ50は、本体部51と、ダイヤフラム52と、駆動部53とを備えている。本体部51には、塩化水素ガスの流路となる入口流路511と出口流路512、及びダイヤフラム52と接触する弁座513が設けられている。ダイヤフラム52は、本体部51の入口流路511、弁座513及び出口流路512を覆うように配置されている。駆動部53は、ダイヤフラム52を介して本体部51と接続され、ダイヤフラム52の引き上げ、並びに押し付けが可能に構成されている。
ダイヤフラムバルブ50は、駆動部53によってダイヤフラム52を引き上げ、或いはダイヤフラム52を本体部51の弁座513に押し付けることにより、本体部51の入口流路511と出口流路512とを連通或いは遮断する。
圧力調整弁40は、本体部41、ダイヤフラム42、調圧ハンドル43とを備えている。本体部41には、塩化水素ガスの流路となる入口流路411と出口流路412、シート413、シールスプリング414が設けられている。ダイヤフラム42は、シート413と接し、かつ入口流路411及び出口流路412を覆うように配置されている。調圧ハンドル43は、ダイヤフラム42を介して本体部41と接続され、調圧スプリング431により、調圧が可能に構成されている。
調圧ハンドル43の締め具合により、調圧スプリング431からダイヤフラム42に物理的な力が加えられる。これにより、流通する塩化水素ガスと接触する領域の空間体積が調整されることで、圧力調整(減圧)が行われる。圧力調整が繰り返し行われることから、圧力調整弁40内のシート413などの流路を構成する部材やダイヤフラム42は、塩化水素ガスの流通時に腐食され易い。ダイヤフラムバルブ50と同様に、腐食された部分はガス化して、チャンバー2内へと導入されるものと推察される。
塩化水素ガス供給設備3の配管34について、以下のような評価試験を行った。
先ず、複数回に渡って使用された配管(以下、中古配管という。)と、未使用の配管(以下、新品配管という。)と、をそれぞれ用意した。配管の材質は、SUS316Lである。SUS316Lの組成を上記表1に示す。なお、中古配管は、溶接有り、溶接無しの2種類について検討した。そして、これらの配管を設置した塩化水素ガス供給設備3から、チャンバー2内へと塩化水素ガスを供給した。
次に、塩化水素ガスの供給を終えた配管内部の表面を、走査型電子顕微鏡(Scanning Electron Microscope:SEM)で撮像した。その結果を図5に示す。なお、図5の上段は、新品配管のSEM画像、図5下段は、中古配管(溶接無し)のSEM画像である。
図5に示すように、配管の材質であるSUS316Lは、耐食性が低いため、中古配管及び新品配管の双方で、若干の腐食が見られた。このうち、中古配管の方が腐食度合は高いことが確認された。
図6に示すように、中古配管及び新品配管の双方で、FeやNi、Cr、Moなどの金属が検出された。なお、Mnについては、溶接有りの中古配管のみで金属が検出され、溶接無しの中古配管や新品配管については検出されなかった。また、SUS316Lには、TiやWが含有されていないため、いずれの配管からもTiやWは検出されなかった。
上記結果から、配管34の材料に使用されているSUS316Lは、Wの汚染源ではないことが結論付けられる。
次に、塩化水素ガス供給設備3のダイヤフラムバルブ50について、以下のような評価試験を行った。使用したダイヤフラムバルブ50を構成するダイヤフラム52の材質として、耐食性に優れるCo−Ni−Cr−Mo合金の一つであるSPRON100(セイコーインスツル社製、SPRONは登録商標)を用いた。SPRON100の組成を下記表1に示す。表1に示す通り、SPRON100はWを含む合金材料である。
また、塩化水素ガス供給後の、ダイヤフラム52について、エネルギー分散型X線分析法(EDX:Energy Dispersive X−ray spectroscopy)を用いて組成分析を行った。図8にその結果を示す。
図7に示すSEM画像から、ダイヤフラム52表面が腐食されていることが確認できる。また、図8に示すように、SPRON100に含有されているWが検出されている。
図9に示すように、未使用品と比較して、使用済み品では、MoとWの組成割合が低下していることが確認された。この結果から、上記組成割合が低下した元素については、腐食によって、チャンバー2内へと導入されているものと推察される。
次に、塩化水素ガス供給設備に設置されている圧力調整弁40について、以下のような評価試験を行った。使用した圧力調整弁40のダイヤフラム42の材質は、耐食性に優れるNi−Cr−Mo合金の一つであるハステロイC22(ヘインズインターナショナル社製、ハステロイは登録商標)を用いた。上記表1に示す通り、ハステロイC22はWを含む合金材料である。
塩化水素ガス供給設備3から、チャンバー2内へと塩化水素ガスを供給した。そして、塩化水素ガスの供給を終えた圧力調整弁40のダイヤフラム42を、SEMで撮像した。その結果を図10に示す。
また、塩化水素ガス供給後の、圧力調整弁40のダイヤフラム42について、EDXを用いて組成分析を行った。図11にその結果を示す。
図10に示すSEM画像から、ダイヤフラム42表面が腐食されていることが確認できる。また、図11に示すように、ハステロイC22に含有されているWが検出されている。
図12に示すように、未使用品と比較して、使用済み品では、MoとWの組成割合が低下していることが確認された。この結果から、上記組成割合が低下した元素については、腐食によって、チャンバー2内へと導入されているものと推察される。
また、圧力調整弁40を構成する部材のうち、例えば、圧力調整弁40内の流路を構成するシート413などは、従来、ダイヤフラム42と同材質が使用されている。したがって、使用済み品については、これらの部材の腐食によっても、汚染金属がチャンバー2内へと導入されているものと推察される。
次に、エピタキシャルシリコンウェーハとして、白キズが発生していないサンプルと、白キズが発生したサンプルとをそれぞれ用意し、エピタキシャル層表面のW濃度、並びにMo濃度をICP−MSにより測定した。
図13の右側にW濃度を、左側にMo濃度をそれぞれ示す。図13において、丸印は白キズが発生しなかったサンプルを、三角印は白キズが少々発生したけれども、撮像素子用として使用可能と判断されたサンプル、バツ印は白キズが発生し、撮像素子用として使用不可能と判断されたサンプルをそれぞれ示す。
図13に示すように、W濃度とMo濃度とを比較すると、Mo濃度は1×107atoms/cm2前後で白キズが発生しなかったのに対し、W濃度は5×106atoms/cm2以下において白キズが発生しないことが確認された。この結果から、Mo汚染に比べて、W汚染の方が、白キズを発生させる影響が大きいと推察される。
本実施形態のエピタキシャルシリコンウェーハの製造方法では、ダイヤフラム42,52には、Wを含有していない耐食合金材料が使用される。Wを含有していない耐食合金材料としては、Wを含有していないCo−Ni−Cr−Mo合金、具体的には、SPRON510(セイコーインスツル社製、SPRONは登録商標)が挙げられる。SPRON510の組成を上記表1に示す。
また、圧力調整弁40内の流路を構成する部材には、Wを含有していないNi−Cr−Mo合金が使用される。Wを含有していないNi−Cr−Mo合金としては、MAT21(MMCスーパーアロイ社製、MAT21は登録商標)が挙げられる。MAT21の組成を上記表1に示す。
なお、SPRON510は、SPRON100と比較してMoの組成割合が高い材料である。本来なら、白キズ発生の原因とされるMo汚染を考慮すれば、Mo濃度を高めた材質を適用するべきではない。一方で、上述した本発明者らの検討により、白キズ発生の主な原因がWであることを突き止めることができた。そして、Mo濃度を高めることで耐食性をより向上させ、腐食そのものを抑制するとともに、Wを含まない材料を選定することが有効であるという結論に至った。これら要件を満たすSPRON510を採用することで、本発明の効果が達成される。また、ハステロイC22とMAT21との関係についても、上記と同様のことが言えるため、MAT21を採用することで、本発明の効果が達成される。
上述したように、上記実施形態では、以下のような作用効果を奏することができる。
(1)塩化水素ガス供給設備3のダイヤフラムバルブ50を構成するダイヤフラム52、圧力調整弁40を構成するダイヤフラム42には、Wを含有していない耐食合金材料が使用される。このため、チャンバークリーニング時に、塩化水素ガス供給設備3から腐食性が高い塩化水素ガスを供給して、ダイヤフラム42,52が腐食されたとしても、白キズを発生させる影響が大きいと考えられるWは溶出されない。このように、チャンバークリーニング時に、塩化水素ガス供給設備3からのチャンバー2へのW汚染を低減できる。結果として、上記気相成長装置1を用いることで、白キズの発生を抑制した高品質のエピタキシャルシリコンウェーハを簡便に製造することができる。
(2)ダイヤフラム42,52に使用されるWを含有していない耐食合金材料として、Wを含有していないCo−Ni−Cr−Mo合金を採用するので、ダイヤフラムを起因とするW汚染を抑制できる。また、ダイヤフラムは材質によっては加工が難しい部材であるが、上記合金であれば、加工が容易であり、従来使用されていた材料と同様の性能を維持できる。
(3)圧力調整弁40内の流路を構成する部材に、Wを含有していないNi−Cr−Mo合金を使用するので、圧力調整弁40を起因とするW汚染を抑制できる。結果として、塩化水素ガス供給設備3からのチャンバー2へのW汚染の導入をより一層低減できる。
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能であり、その他、本発明の実施の際の具体的な手順、及び構造等は本発明の目的を達成できる範囲で他の構造等としてもよい。
図1に示す気相成長装置1を使用して、エピタキシャルシリコンウェーハを作製し、所定枚数のエピタキシャル処理を終えた後は、チャンバークリーニングを実施するサイクルを繰り返し実施した。そして、上記サイクルを繰り返し実施するにあたって、塩化水素ガス供給設備3の減圧ユニット32、並びにVMB33を構成するダイヤフラムバルブ50におけるダイヤフラム52の材質を変更した実験を行った。具体的には、本実施例1としてWフリーのSPRON510を用い、比較例1としてWを4%含有するSPRON100を用いた実験を行った。
そして、上記サイクルを繰り返し実施して得られたサンプルについて、エピタキシャル層表面のW濃度を測定した。なお、W濃度は、以下のようにして求めた。エピタキシャル層の表面に酸系の溶液を滴下してウェーハ上をスキャンすることにより、エピタキシャル層表面の金属不純物を溶液内に回収した。そして、回収した溶液をICP−MSにて定量分析した。
なお、本実施例1における、塩化水素ガス供給設備3の減圧ユニット32を構成する圧力調整弁40のダイヤフラム42の材質は、Wを4%含有するSPRON100である。また、圧力調整弁40内の流路を構成する部材(シート413など)の材質は、Wを2.5〜3.5%含有するハステロイC22である。
その結果を図14に示す。図中の太線は、ダイヤフラム52の材質変更を実施した点を示す。なお、図14中のChは、VMB33にそれぞれ接続したチャンバーA、チャンバーB、チャンバーCでそれぞれ作製したサンプルであることを示す。
圧力調整弁40のダイヤフラム42、圧力調整弁40内の流路を構成する部材(シート413など)の材質を、以下に変更した以外は、実施例1と同様にしてエピタキシャルシリコンウェーハのサンプルを作製した。そして、得られたサンプルについて、エピタキシャル層表面のW濃度を測定した。
比較例2:圧力調整弁40のダイヤフラム42の材質は、Wを4%含有するSPRON100、圧力調整弁40内の流路を構成する部材(シート413など)の材質は、Wを2.5〜3.5%含有するハステロイC22。
本実施例2:圧力調整弁40のダイヤフラム42の材質は、WフリーのSPRON510、圧力調整弁40内の流路を構成する部材(シート413など)の材質は、WフリーのMAT21。
なお、本実施例2における、減圧ユニット32並びにVMB33を構成するダイヤフラムバルブ50におけるダイヤフラム52の材質は、Wを4%含有するSPRON100である。
その結果を図15に示す。図中の太線は、材質変更を実施した点を示す。なお、図15中のChは、VMB33にそれぞれ接続したチャンバーA、チャンバーB、チャンバーCでそれぞれ作製したサンプルであることを示す。
Claims (6)
- シリコンウェーハ上に気相成長を行ってエピタキシャルシリコンウェーハを製造する方法であって、
気相成長が行われる気相成長装置は、少なくとも、チャンバーと、前記チャンバー内に連通して接続され、前記チャンバー内に塩化水素ガスを供給する塩化水素ガス供給設備とを備え、
前記塩化水素ガス供給設備には、入口流路から出口流路への塩化水素ガスの流通を調節するダイヤフラムを有するバルブが配置され、
前記ダイヤフラムには、Wを含有していない耐食合金材料が使用され、
前記チャンバー内のメンテナンス時には前記塩化水素ガス供給設備から前記チャンバー内へと塩化水素ガスが供給される
ことを特徴とするエピタキシャルシリコンウェーハの製造方法。 - 請求項1に記載のエピタキシャルシリコンウェーハの製造方法において、
前記Wを含有していない耐食合金材料が、Wを含有していないCo−Ni−Cr−Mo合金である
ことを特徴とするエピタキシャルシリコンウェーハの製造方法。 - 請求項2に記載のエピタキシャルシリコンウェーハの製造方法において、
前記ダイヤフラムを有するバルブが、流通する前記塩化水素ガスの圧力を調整可能な圧力調整弁であり、
前記圧力調整弁内の流路を構成する部材には、Wを含有していないNi−Cr−Mo合金が使用される
ことを特徴とするエピタキシャルシリコンウェーハの製造方法。 - シリコンウェーハ上に気相成長を行ってエピタキシャルシリコンウェーハを製造する気相成長装置であって、
少なくとも、チャンバーと、前記チャンバー内に連通して接続され、前記チャンバー内に塩化水素ガスを供給する塩化水素ガス供給設備とを備え、
前記塩化水素ガス供給設備には、入口流路から出口流路への塩化水素ガスの流通を調節するダイヤフラムを有するバルブが配置され、
前記ダイヤフラムには、Wを含有していない耐食合金材料が使用され、
前記チャンバー内のメンテナンス時には前記塩化水素ガス供給設備から前記チャンバー内へと塩化水素ガスが供給される
ことを特徴とする気相成長装置。 - 請求項4に記載の気相成長装置において、
前記Wを含有していない耐食合金材料が、Wを含有していないCo−Ni−Cr−Mo合金である
ことを特徴とする気相成長装置。 - 請求項5に記載の気相成長装置において、
前記ダイヤフラムを有するバルブが、流通する前記塩化水素ガスの圧力を調整可能な圧力調整弁であり、
前記圧力調整弁内の流路を構成する部材には、Wを含有していないNi−Cr−Mo合金が使用される
ことを特徴とする気相成長装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/856,005 US20160087049A1 (en) | 2014-09-18 | 2015-09-16 | Epitaxial silicon wafer |
US14/855,943 US9670581B2 (en) | 2014-09-18 | 2015-09-16 | Production method of epitaxial silicon wafer and vapor deposition apparatus |
TW104130687A TWI584348B (zh) | 2014-09-18 | 2015-09-17 | 磊晶矽晶圓的製造方法、氣相成長裝置及磊晶矽晶圓 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462052114P | 2014-09-18 | 2014-09-18 | |
US62/052,114 | 2014-09-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015115815A Division JP2016063213A (ja) | 2014-09-18 | 2015-06-08 | エピタキシャルシリコンウェーハ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5783312B1 true JP5783312B1 (ja) | 2015-09-24 |
JP2016063146A JP2016063146A (ja) | 2016-04-25 |
Family
ID=54200742
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014191580A Active JP5783312B1 (ja) | 2014-09-18 | 2014-09-19 | エピタキシャルシリコンウェーハの製造方法及び気相成長装置 |
JP2015115815A Pending JP2016063213A (ja) | 2014-09-18 | 2015-06-08 | エピタキシャルシリコンウェーハ |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015115815A Pending JP2016063213A (ja) | 2014-09-18 | 2015-06-08 | エピタキシャルシリコンウェーハ |
Country Status (3)
Country | Link |
---|---|
US (2) | US20160087049A1 (ja) |
JP (2) | JP5783312B1 (ja) |
TW (1) | TWI584348B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017112206A (ja) * | 2015-12-16 | 2017-06-22 | 信越半導体株式会社 | エピタキシャルウェーハの製造方法及びエピタキシャル成長装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017054909A (ja) * | 2015-09-09 | 2017-03-16 | 株式会社Sumco | エピタキシャルシリコンウェーハの製造方法、気相成長装置及びバルブ |
JP7144283B2 (ja) * | 2018-11-09 | 2022-09-29 | 株式会社ニューフレアテクノロジー | 気相成長装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3116487B2 (ja) * | 1991-11-22 | 2000-12-11 | ソニー株式会社 | 半導体エピタキシャル基板の製造方法 |
JP3449509B2 (ja) * | 1995-08-25 | 2003-09-22 | 三菱住友シリコン株式会社 | エピタキシャルウェーハの製造方法 |
JP2001250818A (ja) | 1999-12-28 | 2001-09-14 | Tokyo Electron Ltd | 酸化処理装置及びそのクリーニング方法 |
US20020020433A1 (en) | 1999-12-28 | 2002-02-21 | Asami Suemura | Oxidation apparatus and method of cleaning the same |
JP2007258602A (ja) * | 2006-03-24 | 2007-10-04 | Sharp Corp | 金属汚染評価方法、半導体素子の製造方法および電子情報機器 |
JP5228857B2 (ja) * | 2008-12-02 | 2013-07-03 | 信越半導体株式会社 | シリコンエピタキシャルウェーハの製造方法 |
US8143078B2 (en) * | 2009-12-23 | 2012-03-27 | Memc Electronic Materials, Inc. | Methods for monitoring the amount of contamination imparted into semiconductor wafers during wafer processing |
JP5541190B2 (ja) * | 2011-02-17 | 2014-07-09 | 信越半導体株式会社 | P型シリコンウェーハの金属不純物濃度評価方法 |
TW201246297A (en) * | 2011-04-07 | 2012-11-16 | Veeco Instr Inc | Metal-organic vapor phase epitaxy system and process |
JP5884705B2 (ja) | 2012-10-16 | 2016-03-15 | 信越半導体株式会社 | 気相成長装置の汚染量測定方法及びエピタキシャルウェーハの製造方法 |
JP6070095B2 (ja) | 2012-11-13 | 2017-02-01 | 株式会社Sumco | エピタキシャルシリコンウェーハの汚染評価方法およびエピタキシャル成長装置炉内の汚染評価方法 |
JP5775110B2 (ja) | 2013-03-26 | 2015-09-09 | 株式会社フジキン | 流量制御装置用の流量制御弁 |
JP5967019B2 (ja) | 2013-05-31 | 2016-08-10 | 信越半導体株式会社 | 半導体ウェーハの評価方法 |
-
2014
- 2014-09-19 JP JP2014191580A patent/JP5783312B1/ja active Active
-
2015
- 2015-06-08 JP JP2015115815A patent/JP2016063213A/ja active Pending
- 2015-09-16 US US14/856,005 patent/US20160087049A1/en not_active Abandoned
- 2015-09-16 US US14/855,943 patent/US9670581B2/en active Active
- 2015-09-17 TW TW104130687A patent/TWI584348B/zh active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017112206A (ja) * | 2015-12-16 | 2017-06-22 | 信越半導体株式会社 | エピタキシャルウェーハの製造方法及びエピタキシャル成長装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016063213A (ja) | 2016-04-25 |
TW201621982A (zh) | 2016-06-16 |
JP2016063146A (ja) | 2016-04-25 |
US20160087049A1 (en) | 2016-03-24 |
US20160083836A1 (en) | 2016-03-24 |
TWI584348B (zh) | 2017-05-21 |
US9670581B2 (en) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5783312B1 (ja) | エピタキシャルシリコンウェーハの製造方法及び気相成長装置 | |
TWI222681B (en) | Semiconductor treating apparatus and cleaning method of the same | |
KR0173536B1 (ko) | 유체제어기 | |
JP5929386B2 (ja) | 成膜装置内の金属膜のドライクリーニング方法 | |
JP2000299289A (ja) | クリーニングガス及び真空処理装置のクリーニング方法 | |
JP4884561B1 (ja) | インジウムターゲット及びその製造方法 | |
JP2017054909A (ja) | エピタキシャルシリコンウェーハの製造方法、気相成長装置及びバルブ | |
JP2008308701A (ja) | 炭化タンタル被覆炭素材料およびその製造方法 | |
JP2004342845A (ja) | 微細構造体の洗浄装置 | |
US20230139267A1 (en) | Conditioning treatment for ald productivity | |
JP6685423B2 (ja) | ポリシリコン顆粒製造用のピンチフィッティングを有する流動床反応器、ならびにその方法および使用 | |
WO2021100415A1 (ja) | 多結晶シリコンの製造装置および多結晶シリコンの製造方法 | |
JP2720716B2 (ja) | 耐食性に優れる高純度ガス用オーステナイト系ステンレス鋼材及びその製造方法 | |
JP2023080894A (ja) | 金属膜、これを用いた水素透過装置及び水素製造方法 | |
JPH10280123A (ja) | オゾン含有超純水用ステンレス鋼部材およびその製造方法 | |
JP2737551B2 (ja) | 耐食性に優れる高純度ガス用オーステナイト系ステンレス鋼材の製造方法 | |
JP2014145108A (ja) | 硫化水素およびセレン化水素に対する耐侵食性に優れたNi基合金およびそのNi基合金からなる装置構成部材 | |
KR102720415B1 (ko) | 내식성 부재 | |
JP2009188042A (ja) | 半導体製造システム及び該半導体製造システムによって作製される半導体デバイスに含まれる異物の発生箇所特定方法 | |
KR20090058449A (ko) | 벨로스의 제조방법 | |
JP6475609B2 (ja) | エピタキシャルウェーハの製造方法 | |
JP2012067365A (ja) | 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法 | |
JPH08302448A (ja) | 高純度ガス用フェライト系ステンレス鋼材 | |
JP2005207480A (ja) | 容器弁 | |
JP2006169579A (ja) | Ni基合金製品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5783312 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |