WO2021100415A1 - 多結晶シリコンの製造装置および多結晶シリコンの製造方法 - Google Patents

多結晶シリコンの製造装置および多結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2021100415A1
WO2021100415A1 PCT/JP2020/040170 JP2020040170W WO2021100415A1 WO 2021100415 A1 WO2021100415 A1 WO 2021100415A1 JP 2020040170 W JP2020040170 W JP 2020040170W WO 2021100415 A1 WO2021100415 A1 WO 2021100415A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
valve
gas
corrosion
valve body
Prior art date
Application number
PCT/JP2020/040170
Other languages
English (en)
French (fr)
Inventor
明 箱守
岳司 梶田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2021558243A priority Critical patent/JPWO2021100415A1/ja
Publication of WO2021100415A1 publication Critical patent/WO2021100415A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor

Definitions

  • the present invention relates to a polycrystalline silicon manufacturing apparatus and a polycrystalline silicon manufacturing method.
  • Valves are the main components for controlling the movement of fluids such as gas flowing through equipment such as chemical plants.
  • the valve is required to have heat resistance and strength.
  • Non-Patent Document 1 discloses a valve having a valve body overlaid with a metal having excellent heat resistance and wear resistance.
  • gas containing corrosive components such as hydrogen chloride and silanes is generated from the polycrystalline silicon reactor.
  • gas discharged from the reactor causes corrosion of the valve that controls the discharge of gas from the reactor.
  • Non-Patent Document 1 describes the heat resistance and wear resistance of the valve, but does not disclose the corrosion resistance of the valve against chemical substances. In particular, it is unclear about valves that are effective in preventing corrosion caused by hydrogen chloride and silanes.
  • One aspect of the present invention is to reduce contamination of polycrystalline silicon in a reactor by using an discharge valve that is less likely to be corroded by hydrogen chloride and silanes.
  • the polycrystalline silicon manufacturing apparatus includes a reactor for precipitating polycrystalline silicon and at least one of hydrogen chloride and silanes from the reactor.
  • a discharge valve for controlling the opening and closing of a discharge path of a discharge gas containing silicon is provided, and the discharge valve has a valve body and a receiving sheet that can be in airtight contact with the valve body.
  • At least one of the valve body and the receiving sheet has a contact surface with the exhaust gas formed of a corrosion-resistant material.
  • contamination of polycrystalline silicon in the reactor can be reduced by using an discharge valve that is less likely to be corroded by hydrogen chloride and silanes.
  • FIG. 1 It is a schematic diagram which shows a part of the polycrystalline silicon manufacturing apparatus which concerns on one Embodiment. It is sectional drawing which shows typically the discharge valve provided in the manufacturing apparatus shown in FIG. It is a figure which shows the state after the long-term operation of the discharge valve provided in each manufacturing apparatus which concerns on an Example and a comparative example, after each valve body is boiled, and after the water is wiped off.
  • the polycrystalline silicon manufacturing apparatus 1 includes a reactor 10, a supply path 11, a discharge path 12, a supply valve 20, and a discharge valve 30.
  • the reactor 10 is a member that precipitates polycrystalline silicon inside.
  • the reactor 10 is a Belger type reactor, but the shape of the reactor 10 is not limited to this.
  • the reaction furnace 10 may be a reaction vessel for precipitating polycrystalline silicon inside.
  • a supply path 11 and a discharge path 12 are connected to the reaction furnace 10.
  • the supply path 11 is a pipe that supplies a reaction gas containing hydrogen and silanes to the reaction furnace 10.
  • silanes silane compounds such as monosilane, trichlorosilane, tetrachlorosilane, monochlorosilane, and dichlorosilane are used, and in general, trichlorosilane gas is preferably used.
  • the discharge path 12 is a pipe through which the exhaust gas discharged from the reactor 10 flows. The arrows shown in FIG. 1 indicate the flow directions of the reaction gas and the exhaust gas.
  • the exhaust gas contains the gas component generated during the reaction in the reactor 10 in addition to the gas component contained in the reaction gas.
  • the exhaust gas contains at least one of hydrogen chloride or silanes such as trichlorosilane and tetrachlorosilane.
  • the exhaust gas may further contain hydrogen and other reaction by-products and the like.
  • the supply valve 20 is arranged on the path of the supply path 11.
  • the supply valve 20 controls the supply of the reaction gas from the supply path 11 to the reaction furnace 10 by opening and closing. When the supply valve 20 is in the closed state, the supply valve 20 airtightly shuts off the supply path 11.
  • the discharge valve 30 is arranged on the discharge path 12.
  • the discharge valve 30 controls the discharge of exhaust gas from the reaction furnace 10 to the discharge path 12 by opening and closing.
  • the discharge valve 30 airtightly shuts off the discharge path 12.
  • both the supply valve 20 and the exhaust valve 30 are closed, the reaction furnace 10 is in an airtight state, and the reaction gas or the exhaust gas is sealed in the reaction furnace 10.
  • Examples of the method for producing polycrystalline silicon using the production apparatus 1 include a Siemens method or a melt precipitation method (VLD method, Vapor to Liquid Deposition method).
  • VLD method Vapor to Liquid Deposition method
  • a method for producing polycrystalline silicon will be described by taking the Siemens method as an example.
  • the silicon core wire 13 is erected inside the reactor 10.
  • the discharge valve 30 is closed and the supply valve 20 is opened to supply the reactor 10 in this state with an inert gas and / or at least one gas constituting the reaction gas as a standby gas from the supply path 11.
  • the standby gas nitrogen gas is preferable as long as it is an inert gas, and hydrogen is preferable as the standby gas as long as it is a gas constituting the reaction gas.
  • the discharge valve 30 is opened again (discharge step), the supply valve 20 is opened, the reaction gas is supplied to the reaction furnace 10 from the supply path 11, and further, the reaction gas is supplied to the reaction furnace 10.
  • the silicon core wire 13 is heated to a temperature equal to or higher than the silicon precipitation temperature.
  • a temperature is, for example, 600 ° C. or higher and 1250 ° C. or lower, and more preferably 900 ° C. or higher and 1200 ° C. or lower.
  • silicon is deposited around the silicon core wire 13 in the reaction furnace 10 to obtain polycrystalline silicon (precipitation step).
  • the operation of heating the silicon core wire 13 to a temperature equal to or higher than the silicon precipitation temperature may be performed in a standby state in which the standby gas is sealed in the reaction furnace 10. That is, in the standby state, the silicon core wire 13 is heated to a temperature equal to or higher than the silicon precipitation temperature, and then the discharge valve 30 and the supply valve 20 are also opened to supply the reaction gas into the reaction furnace 10. The precipitation of silicon on the silicon core wire 13 may proceed.
  • the reaction furnace 10 in the above-mentioned standby state, the reaction furnace 10 is in an airtight state, and the reaction furnace 10 is in a state where the standby gas is sealed.
  • the discharge valve 30 if the discharge valve 30 is operated for a long period of time, the discharge valve 30 will be corroded. Due to the corrosion, even if the discharge valve 30 is closed, the discharge path 12 cannot be completely shut off, and gas leakage may occur in the discharge valve 30.
  • the backflowing standby gas may contain a metal pollutant derived from the corrosion of the discharge valve 30. Therefore, when polycrystalline silicon is produced in a state where the discharge valve 30 is corroded, the obtained polycrystalline silicon is contaminated by metal pollutants contained in the backflow standby gas at the initial stage of precipitation. As a result of diligent research, it was found as a new finding.
  • the operation of filling the standby gas in the reactor 10 is often performed by repeating the gas replacement operation involving the step-up / down pressure of the gas in the reactor 10 a plurality of times.
  • the standby gas flows back from the discharge path 12 to the reactor 10
  • the amount of metal pollutants contained in the backflowing standby gas further increases. Therefore, the contamination of the obtained polycrystalline silicon with metal pollutants becomes more remarkable.
  • the discharge valve 30 included in the manufacturing apparatus 1 according to the present embodiment has the following configuration.
  • FIG. 2 shows the open state 201 and the closed state 202 of the discharge valve 30.
  • the discharge valve 30 is arranged on the discharge path 12.
  • the discharge valve 30 includes a valve body 31, a valve seat (receiving seat) 32, a stem 33, and a main body 34.
  • the structure and function of each part of the discharge valve 30 will be described below together with the operation when the discharge valve 30 is closed.
  • An opening 31a is formed in the valve body 31.
  • the opening 31a and the discharge path 12 are spatially connected. Therefore, the exhaust gas flowing inside the discharge path 12 passes through the space surrounded by the opening 31a.
  • a stem 33 is attached to the valve body 31.
  • the stem 33 is a member that rotates the direction of the valve body 31.
  • the valve body 31 also rotates, and the direction of the valve body 31 changes.
  • the position of the opening 31a with respect to the discharge path 12 changes.
  • the spatial connection state between the opening 31a and the discharge path 12 changes, and the opening and closing of the discharge valve 30 is switched.
  • the valve body 31 faces in a direction in which the spatial connection between the opening 31a and the discharge path 12 is cut off when the discharge valve 30 is in the closed state 202.
  • a valve seat 32 is arranged between the valve body 31 and the main body 34.
  • the valve seat 32 is in airtight contact with the valve body 31. Therefore, the exhaust gas can pass through the exhaust valve 30 only in the space surrounded by the opening 31a. Therefore, if the opening 31a and the exhaust path 12 are not spatially connected, the exhaust gas cannot pass through the exhaust valve 30.
  • the valve seat 32 is arranged only on one discharge path 12 side (on the right side when facing the paper surface in FIG. 2).
  • the valve seat 32 may be arranged so that the valve body 31 and the main body 34 are in airtight contact with each other.
  • the valve seat 32 may be arranged on the other discharge path 12 side of the discharge valve 30 (on the left side when facing the paper in FIG. 2), or on both sides of the discharge valve 30. May be good.
  • the discharge valve 30 is not limited to such a configuration.
  • the discharge valve 30 may be, for example, a non-sliding valve in which the valve body 31 and the valve seat 32 do not come into contact with each other when the valve body 31 is rotating.
  • the valve body 31 and the valve seat 32 may be arranged so as to be airtightly contactable.
  • the discharge valve 30 is arranged on the discharge path 12 as described above. Exhaust gas containing hydrogen chloride, silanes, etc. flows through the discharge path 12. Therefore, the discharge valve 30 is easily corroded because it is exposed to corrosive components such as hydrogen chloride, which is a major cause of metal corrosion, and silanes, which are a cause of metal silicidation.
  • the exhaust gas from the reactor 10 contains 0 mol% or more and 5 mol% or less of hydrogen chloride, and in many cases, hydrogen chloride is 0.5 mol% or more and 3 mol% or less. Further, the exhaust gas from the reactor 10 contains 0 mol% or more and 20 mol% or less of silanes, and in many cases, the silanes are 5 mol% or more and 15 mol% or less. Exhaust gases containing such concentrations of hydrogen chloride and / or silanes are prone to corrode metals.
  • the exhaust gas from the reactor 10 has a high temperature of, for example, about 500 ° C. due to the heating of the silicon core wire 13.
  • the higher the temperature the more likely it is that metal corrosion by hydrogen chloride and silanes will progress. Therefore, it can be said that the discharge valve 30 is used in an environment where corrosion is particularly likely to occur.
  • the valve body 31 has a contact surface with an exhaust gas formed of a corrosion resistant material.
  • the entire surface of the valve body 31 is covered with Stellite (registered trademark), which is a corrosion resistant material, and the main body portion inside the valve body 31 is made of stainless steel.
  • the main body portion is not limited to stainless steel, and may be formed of a corrosion-resistant material or a material such as a metal having no corrosion resistance.
  • the corrosion-resistant material forming the coating portion of the valve body 31 preferably has a cobalt content of 25% by mass or more as an alloy, more preferably 30% by mass or more, and 35% by mass, as in the above-mentioned stellite. % Or more is more preferable, 40% by mass or more is more preferable, 45% by mass or more is more preferable, and 50% by mass or more is more preferable.
  • a corrosion-resistant material has particularly excellent corrosion resistance to hydrogen chloride, silanes, and the like, and can effectively prevent corrosion of the discharge valve 30.
  • Table 1 shows the compositions of various stellites (No. 1, 6, 12, 21) as examples of alloys containing 25% by mass or more of cobalt.
  • the alloy containing 25% by mass or more of cobalt is not limited to the metals shown in Table 1.
  • the corrosion resistant material forming the coating portion of the valve body 31 is not limited to the alloy containing 25% by mass or more of cobalt.
  • Table 2 shows examples of corrosion-resistant materials other than alloys containing 25% by mass or more of cobalt, such as Ni—Cr—B—Si alloy (metal A1), chrome steel (metal A2), and precipitation hardening stainless steel (metal A3). The composition is shown.
  • the corrosion-resistant material forming the covering portion of the valve body 31 is not limited to this.
  • Such a corrosion-resistant material formed on the contact surface of the valve body 31 with the exhaust gas preferably has a thickness of 1.5 mm or more.
  • the thickness of the corrosion-resistant material is not particularly limited, and for example, the entire valve body 31 may be formed of the corrosion-resistant material. However, from the viewpoint of ease of manufacturing the valve body 31, manufacturing cost, and the like, the thickness of the corrosion-resistant material is preferably 10 mm or less. With such a thickness, the corrosion resistant material can effectively reduce the corrosion of the valve body 31.
  • the valve seat 32 may be made of a special graphite material such as Gratite (registered trademark), carbon, other resin products, metals, or the like. From the viewpoint of easily ensuring the airtightness between the valve body 31 and the valve seat 32, the material of the valve seat 32 is preferably a material soft enough to be easily processed, such as the special graphite material described above. With such a material, the contact portion of the valve seat 32 with the valve body 31 can be easily processed into a shape that matches the shape of the valve body 31. Therefore, the airtightness between the valve body 31 and the valve seat 32 can be easily and accurately ensured.
  • Gratite registered trademark
  • the contact surface of the valve seat 32 with the exhaust gas may be formed of a corrosion resistant material instead of the valve body 31.
  • the composition and thickness of the corrosion-resistant material formed on the contact surface of the valve seat 32 with the exhaust gas may be the same as that of the corrosion-resistant material formed on the contact surface of the valve body 31 with the exhaust gas.
  • the contact surfaces of the valve body 31 and the valve seat 32 with the exhaust gas may both be formed of a corrosion resistant material.
  • at least one of the valve body 31 and the valve seat 32 may have a contact surface with the exhaust gas formed of a corrosion resistant material.
  • the contact surface of the valve body 31 with the exhaust gas and the contact surface of the valve seat 32 with the exhaust gas may be formed of the same corrosion-resistant material, or may be formed of different corrosion-resistant materials.
  • the portion (main body portion) of the valve seat 32 other than the contact surface with the exhaust gas may be, for example, a special graphite material such as grateite, carbon, other resin products, or a metal.
  • a corrosion-resistant material such as grateite, carbon, other resin products, or a metal.
  • the supply valve 20 may have the same configuration as the discharge valve 30, or a conventional general valve may be used.
  • the supply gas contains almost no hydrogen chloride as compared with the exhaust gas, and the temperature is often 200 ° C. or lower. Therefore, the supply valve 20 is less likely to corrode than the discharge valve 30.
  • the airtightness of the exhaust valve 30 is not impaired by corrosion, the amount of exhaust gas flowing back from the discharge path 12 to the reaction furnace 10 can be suppressed to a low level in the first place. As a result, the possibility that the polycrystalline silicon deposited in the reactor 10 is contaminated by the metal contaminants derived from the corrosion of the discharge valve 30 can be greatly reduced.
  • the backflow of the exhaust gas from the discharge path 12 to the reaction furnace 10 can be prevented.
  • a large amount of hydrogen gas is required, which increases the production cost of polycrystalline silicon.
  • the exhaust valve 30 is not easily corroded, it is derived from the backflow of the exhaust gas from the discharge path 12 to the reactor 10 and the corrosion of the discharge valve 30 without using a large amount of hydrogen gas that increases the manufacturing cost. Contamination of polycrystalline silicon by metal contaminants can be reduced.
  • polycrystalline silicon which is a raw material for semiconductors and solar cells, is required to have extremely high purity. This is particularly noticeable when polycrystalline silicon is used as a raw material for semiconductors.
  • Corrosion of the discharge valve 30 not only causes gas leakage of the exhaust gas, but also causes metal pollutants to be generated due to the backflow of the standby gas from the discharge path 12 in the standby state of the reactor 10, which causes the polycrystalline silicon. Can cause pollution.
  • This fact is a new finding by the inventor who has been producing polycrystalline silicon for a long period of time. Conventionally, in general, it is not known that the exhaust gas flows back from the discharge path 12 to the reactor 10, and it is not assumed that the corrosion of the discharge valve 30 causes the contamination of polycrystalline silicon. It was.
  • the configuration of the discharge valve 30 included in the manufacturing apparatus 1 according to the present embodiment in which corrosion is unlikely to occur is based on the above-mentioned new knowledge that the problem of advanced pollution prevention peculiar to the production of polycrystalline silicon is solved. It is an effective solution.
  • the maintenance frequency of the discharge valve 30 can be greatly reduced.
  • the manufacturing apparatus 1 cannot be operated during the maintenance of the discharge valve 30. Maintenance such as cleaning, repairing and replacing the valve body 31 and / or the valve seat 32 of the discharge valve 30 requires time. Therefore, when the discharge valve 30 is maintained frequently, the loss of manufacturing opportunity of polycrystalline silicon becomes a big problem.
  • the maintenance frequency of the discharge valve 30 not only the maintenance cost of the discharge valve 30 can be reduced, but also the loss of manufacturing opportunity of polycrystalline silicon can be reduced.
  • valve body 31 and the valve seat 32 are prone to wear due to friction caused by the rotation of the valve body 31.
  • the surface of the valve body 31 or the valve seat 32 formed of the corrosion-resistant material can be easily repaired by plating the worn portion with the corrosion-resistant material. Therefore, the discharge valve 30 can be easily maintained at low cost and in a short time.
  • the polycrystalline silicon manufacturing apparatus comprises a reactor for precipitating polycrystalline silicon and an emission path for exhaust gas containing at least one of hydrogen chloride and silanes from the reactor.
  • a discharge valve for controlling opening and closing is provided, and the discharge valve has a valve body and a receiving sheet that can be in airtight contact with the valve body, and the valve body and the receiving sheet. At least one of them has a contact surface with the exhaust gas formed of a corrosion-resistant material.
  • At least one of the valve body and the receiving sheet of the discharge valve has a contact surface with hydrogen chloride formed of a corrosion resistant material. Therefore, corrosion of the discharge valve is effectively prevented. Therefore, metal contaminants derived from corrosion of the discharge valve are less likely to occur. Further, since the backflow of gas from the discharge valve to the reactor is unlikely to occur, the possibility that the polycrystalline silicon deposited in the reactor is contaminated by the metal contaminants derived from the corrosion of the discharge valve can be greatly reduced.
  • the corrosion resistant material may be an alloy containing 25% by mass or more of cobalt. According to the above configuration, the corrosion resistance of the corrosion resistant material is particularly excellent. Therefore, corrosion of the discharge valve can be prevented more effectively.
  • the reaction gas containing hydrogen and silanes is supplied to the reaction furnace using any of the above-mentioned polycrystalline silicon production apparatus, and the polycrystalline silicon is produced. It includes a precipitation step of precipitating silicon and a discharge step of discharging the exhaust gas from the reactor.
  • the precipitation step in the state where the discharge valve is closed, an inert gas and / or at least one gas constituting the reaction gas is placed in the reaction furnace.
  • the discharge valve may be opened and the supply of the reaction gas to the reaction furnace may be started when the precipitation of polycrystalline silicon is started.
  • the discharge valve is closed in the previous step of supplying the reaction gas to the reaction furnace and starting the precipitation of the polycrystalline silicon.
  • the reactor is filled with an inert gas and / or at least one gas constituting the reaction gas in an airtight state.
  • the valve body or the receiving seat of the discharge valve is corroded, it is difficult to maintain the airtight state.
  • the exhaust gas will flow back from the discharge valve to the reactor. Since the backflowed exhaust gas may contain metal contaminants derived from the corrosion of the exhaust valve, if the polycrystalline silicon is deposited later, the metal contamination of the obtained polycrystalline silicon is particularly early. Material contamination occurs.
  • At least one of the valve body and the receiving sheet of the discharge valve has a contact surface with gas formed of a corrosion-resistant material, so that the discharge valve is less likely to be corroded. Therefore, since the backflow of gas from the discharge valve to the reactor is unlikely to occur, the possibility that the polycrystalline silicon deposited in the reactor is contaminated by the metal contaminants derived from the corrosion of the discharge valve can be greatly reduced.
  • composition of valve body The manufacturing apparatus according to the embodiment of the present invention and the manufacturing apparatus according to the comparative example were each operated for a certain period of time, and the valve body was recovered from the discharge valve provided in each manufacturing apparatus, and the degree of corrosion was observed.
  • Table 3 shows the composition of the valve body according to Examples and Comparative Examples.
  • the valve body according to the embodiment is composed of a main body portion and a covering portion, and the entire surface of the main body portion is covered with the covering portion.
  • the coated portion is formed of a corrosion resistant material.
  • the valve body according to the comparative example is composed of only the main body portion shown in Table 3 and does not have a covering portion.
  • the polycrystalline silicon manufacturing apparatus 1 As the polycrystalline silicon manufacturing apparatus 1, the one having the structure shown in FIG. 1 was used. In the step of depositing polycrystalline silicon, the reaction furnace 10 was once filled with the standby gas with the discharge valve 30 closed, and held for 50 hours. After that, the discharge valve 30 was opened, the reaction gas was supplied to the reaction furnace 10, and the precipitation of polycrystalline silicon was started to produce polycrystalline silicon. The production of such polycrystalline silicon was operated for 3 years (number of batches: 105 times) in the examples and 9 months (number of batches: 33 times) in the comparative example.
  • the standby gas is hydrogen gas
  • the encapsulation of the hydrogen gas in the reactor 10 was carried out by repeating the gas replacement work involving the step-up / down pressure of the gas in the reactor 10 a plurality of times.
  • the precipitation temperature of polycrystalline silicon remained between 900 ° C. and 1100 ° C. or lower.
  • valve body according to the example and the valve body according to the comparative example were collected and boiled, and the moisture was wiped off with a cloth, and then the appearance of each valve body was observed.
  • the valve body according to the example operated for 3 years maintained the smoothness of the surface, but the valve body according to the comparative example operated for 9 months was due to surface corrosion. The coarseness was severe, and partial peeling was observed.
  • the amount of metal pollutants was analyzed by sampling the portion including the boundary portion between the silicon core wire and the precipitated layer. Specifically, for each of the obtained rod-shaped polycrystalline silicon having a diameter of 150 mm, the diameter is 10 mm and the length is 150 mm in the horizontal direction orthogonal to the longitudinal direction near the intermediate position in the longitudinal direction of the rod. The column was hollowed out. The columnar body extends in the horizontal direction.
  • the cylinder was vertically cut at a position 2 mm in the front-rear direction in the radial direction from the boundary portion between the silicon core wire and the precipitation layer to obtain a sample for measurement.
  • the metal content of each measurement sample was measured by inductively coupled plasma mass spectrometry (ICP-MS) to analyze the amount of each metal element in the solution obtained by dissolving the mixture in a mixed solution of fluorinated nitrate. The results are shown in Table 4.
  • the amount of contamination by Cr, Fe, and Ni was higher in the polycrystalline silicon obtained by the manufacturing apparatus according to the comparative example than in the polycrystalline silicon obtained by the manufacturing apparatus according to the example. It is considered that this is because in the manufacturing apparatus according to the comparative example, the backflow of the standby gas from the discharge path occurred in the standby state of the reactor 10, and the metal pollutant derived from the corrosion of the discharge valve 30 contaminated the polycrystalline silicon. Be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

腐食しにくいバルブを用いて多結晶シリコンの汚染を低減する。多結晶シリコンの製造装置(1)であって、反応炉(10)と、反応炉(10)から排出される排出ガスの排出経路(12)の開閉を制御する排出バルブ(30)と、を備えており、排出バルブ(30)は、弁体(31)と受けシート(32)とを有しており、弁体(31)および受けシート(32)の少なくともいずれか一方は、排出ガスとの接触面が耐食材料により形成されている。

Description

多結晶シリコンの製造装置および多結晶シリコンの製造方法
 本発明は、多結晶シリコンの製造装置および多結晶シリコンの製造方法に関する。
 バルブは、化学プラント等の設備中を流れるガス等の流体の動きを制御するための主要な部材である。当該ガスが高温高圧である場合、バルブには耐熱性および強度が求められる。例えば非特許文献1には、耐熱性および耐摩耗性に優れた金属により肉盛された弁体を有するバルブが開示されている。
バルブの耐熱硬化肉盛溶接(溶接学会誌1971年40巻10号 p.988-994)
 多結晶シリコンの製造では、多結晶シリコンの反応炉から塩化水素およびシラン類等の腐食性成分を含むガスが発生する。反応炉から排出されるこのようなガスは、反応炉からのガスの排出を制御するバルブを腐食させる原因となる。
 本発明者らは、当該バルブの腐食が、反応炉中に析出された多結晶シリコンの汚染原因となり得ることを見出した。したがって、バルブは耐食性に優れたものであることが好ましい。非特許文献1には、バルブの耐熱性および耐摩耗性等については示されているが、化学物質に対するバルブの耐食性については開示されていない。特に、塩化水素およびシラン類等による腐食の防止に有効なバルブについては不明である。
 本発明の一態様は、塩化水素およびシラン類による腐食が生じにくい排出バルブを用いることで、反応炉中の多結晶シリコンの汚染を低減することを目的とする。
 前記の課題を解決するために、本発明の一態様に係る多結晶シリコンの製造装置は、多結晶シリコンを析出する反応炉と、前記反応炉からの、塩化水素およびシラン類の少なくともいずれか一方が含まれる排出ガスの排出経路の開閉を制御する排出バルブと、を備えており、前記排出バルブは、弁体と、前記弁体と気密的に接触可能な受けシートと、を有しており、前記弁体および前記受けシートの少なくともいずれか一方が、前記排出ガスとの接触面が耐食材料により形成されている。
 本発明の一態様によれば、塩化水素およびシラン類による腐食が生じにくい排出バルブを用いることで、反応炉中の多結晶シリコンの汚染を低減できる。
一実施形態に係る多結晶シリコンの製造装置の一部を示す模式図である。 図1に示す製造装置が備える排出バルブを模式的に示す断面図である。 実施例および比較例に係るそれぞれの製造装置が備える排出バルブの、長期運用後における、各弁体を煮沸後、水分を拭き取り処理した後の状態を示す図である。
 〔多結晶シリコンの製造装置〕
 (製造装置の構成)
 本発明の一実施形態について、図1から図3を参照して以下に説明する。図1に示すように、多結晶シリコンの製造装置1は、反応炉10と、供給経路11と、排出経路12と、供給バルブ20と、排出バルブ30と、を備えている。
 反応炉10は、内部で多結晶シリコンを析出する部材である。反応炉10はベルジャー型の反応炉であるが、反応炉10の形状はこれに限られない。反応炉10は、内部に多結晶シリコンを析出するための反応容器であればよい。反応炉10には、供給経路11および排出経路12が接続されている。
 供給経路11は、水素およびシラン類を含む反応ガスを反応炉10に供給する配管である。前記シラン類としては、具体的には、モノシラン、トリクロロシラン、テトラクロロシラン、モノクロロシラン、ジクロロシラン等のシラン化合物が使用され、一般的には、トリクロロシランガスが好適に使用される。排出経路12は、反応炉10から排出される排出ガスが流れる配管である。図1に示す矢印は、反応ガスおよび排出ガスの流れる方向を示している。
 排出ガスには、反応ガスに含まれているガス成分に加え、反応炉10での反応時に生成されたガス成分が含まれている。具体的には、排出ガスには塩化水素またはトリクロロシランおよびテトラクロロシラン等のシラン類の、少なくともいずれか一方が含まれている。排出ガスにはさらに、水素および他の反応副生成物等が含まれていてもよい。
 供給バルブ20は、供給経路11の経路上に配置されている。供給バルブ20は、開閉によって供給経路11から反応炉10への反応ガスの供給を制御する。供給バルブ20が閉状態となっている場合、供給バルブ20は供給経路11を気密的に遮断する。
 排出バルブ30は、排出経路12の経路上に配置されている。排出バルブ30は、開閉によって反応炉10から排出経路12への排出ガスの排出を制御する。排出バルブ30が閉状態となっている場合、排出バルブ30は排出経路12を気密的に遮断する。供給バルブ20および排出バルブ30の両方が閉状態となっている場合、反応炉10は気密状態となり、反応炉10に反応ガスまたは排出ガスが封入された状態となる。
 (多結晶シリコンの製造方法)
 製造装置1を用いた多結晶シリコンの製造方法としては、例えばシーメンス法または溶融析出法(VLD法、Vapor to Liquid Deposition法)等が挙げられる。ここでは、シーメンス法を例に挙げて多結晶シリコンの製造方法を説明する。
 シーメンス法では、反応炉10の内部にシリコン芯線13を立設する。この状態の反応炉10に、排出バルブ30を閉じると共に供給バルブ20を開放して、供給経路11から、不活性ガスおよび/または前記反応ガスを構成する少なくとも一種のガスを待機ガスとして供給する。待機ガスは、不活性ガスであれば窒素ガスが好ましく、前記の反応ガスを構成するガスであれば水素が好ましい。このようにして所定量の待機ガスを反応炉10に供給後、供給バルブ20を閉じ、反応炉10に反応ガスを封入することで、多結晶シリコンの析出を開始するまでの待機状態にする。
 そして、多結晶シリコンの析出を開始する際には、再び排出バルブ30を開放する(排出工程)とともに供給バルブ20を開放して、供給経路11から反応炉10に反応ガスを供給し、さらに、シリコン芯線13をシリコン析出温度以上の温度に加熱する。このような温度は、例えば600℃以上1250℃以下であり、より好ましくは900℃以上1200℃以下である。これにより、反応炉10でシリコン芯線13の周りにシリコンが析出し、多結晶シリコンが得られる(析出工程)。
 なお、シリコン芯線13をシリコン析出温度以上の温度に加熱する操作は、反応炉10内に待機ガスが封入されている待機状態で実施してもよい。すなわち、当該待機状態で、シリコン芯線13をシリコン析出温度以上の温度に加熱し、その後に、排出バルブ30を開放するとともに供給バルブ20も開放して、反応炉10内に反応ガスを供給し、シリコン芯線13へのシリコンの析出を進行させてもよい。
 ここで、上述の析出工程では、前記の待機状態において、反応炉10は気密状態となり、反応炉10に待機ガスが封入された状態となる。しかしながら、排出バルブ30を長期に渡って運用すると、排出バルブ30に腐食が生じる。当該腐食により、排出バルブ30を閉じていても排出経路12を完全に遮断できず、排出バルブ30にガス漏れが生じる場合がある。
 排出バルブ30が閉じられて反応炉10内が気密状態にあると、排出経路12から反応炉10への待機ガスの逆流が生じる。加えて、当該待機ガスの反応炉10への逆流は、排出バルブ30に腐食が生じ、ガス漏れが発生してその気密性が低下すると、より程度が激しくなる。ここで、当該逆流した待機ガスには、排出バルブ30の腐食に由来する金属汚染物質が含まれ得る。そのため、排出バルブ30が腐食した状態で多結晶シリコンを製造すると、得られる多結晶シリコンは析出の初期において、当該逆流した待機ガスに含まれる金属汚染物質により汚染されることが、発明者らの鋭意研究の結果、新たな知見として見出された。
 特に、反応炉10内に待機ガスを封入する操作は、反応炉10内のガスの昇降圧を伴うガス置換作業を複数回繰り返して実施することにより行われることが多い。この場合、排出経路12から反応炉10への待機ガスの逆流が生じると、当該逆流した待機ガスに含まれる金属汚染物質の量はより増大する。従って、得られる多結晶シリコンの金属汚染物質による汚染は一層顕著になる。
 このような、排出バルブ30の腐食に起因する多結晶シリコンの汚染を防止するため、本実施形態に係る製造装置1が備える排出バルブ30は、以下に示す構成を備えている。
 〔排出バルブの構成〕
 (基本的構造)
 排出バルブ30の構造について、図2を参照して詳細に説明する。図2には、排出バルブ30の開状態201および閉状態202を示している。図2に示すように、排出バルブ30は排出経路12の経路上に配置されている。排出バルブ30は、弁体31と、バルブシート(受けシート)32と、ステム33と、本体部34と、を備えている。排出バルブ30の各部の構造および機能について、排出バルブ30を閉じるときの動作とともに以下に説明する。
 弁体31には、開口部31aが形成されている。排出バルブ30が開状態201の場合、開口部31aと排出経路12とは空間的に接続される。したがって、排出経路12の内部を流れる排出ガスは、開口部31aに囲まれた空間を通過する。
 弁体31にはステム33が取り付けられている。ステム33は、弁体31の方向を回転させる部材である。ステム33が回転すると弁体31も回転し、弁体31の方向が変化する。これに伴い排出経路12に対する開口部31aの位置が変化する。これにより、開口部31aと排出経路12との空間的な接続状態が変化し、排出バルブ30の開閉が入れ替わる。弁体31は、排出バルブ30が閉状態202の場合には、開口部31aと排出経路12との間の空間的な接続が遮断される方向を向いている。
 弁体31と本体部34との間には、バルブシート32が配置されている。バルブシート32は弁体31と気密的に接触している。そのため、排出バルブ30内で排出ガスが通過できるのは、開口部31aに囲まれた空間のみである。したがって、開口部31aと排出経路12とが空間的に接続されていなければ、排出ガスは排出バルブ30を通過できない。
 本実施形態では、バルブシート32は一方の排出経路12側(図2では紙面に向かって右側)にのみ配置されている。しかしバルブシート32の配置は、弁体31と本体部34とが気密的に接触する配置であればよい。このような配置として、例えばバルブシート32が配置されるのは排出バルブ30における他方の排出経路12側(図2では紙面に向かって左側)であってもよく、排出バルブ30の両側であってもよい。
 なお、排出バルブ30はこのような構成に限られない。排出バルブ30は例えば、弁体31が回転しているときは、弁体31とバルブシート32とが接触しない無摺動バルブであってもよい。言い換えれば、弁体31とバルブシート32とは気密的に接触可能に配置されていればよい。このような構成であれば、弁体31の回転に起因して生じる摩擦による、弁体31およびバルブシート32の摩耗が大きく低減できる。そのため、排出バルブ30の耐用期間を延長できる。
 (弁体およびバルブシートの組成)
 排出バルブ30は、上述の通り排出経路12の経路上に配置されている。排出経路12には、塩化水素およびシラン類等が含まれている排出ガスが流れる。したがって、排出バルブ30は、金属が腐食する大きな原因となる塩化水素、および金属のシリサイド化の原因となるシラン類等の腐食性成分に曝されるため、腐食しやすい。
 特に、反応炉10からの排出ガスには、塩化水素が0mol%以上5mol%以下含まれており、多くの場合には塩化水素が0.5mol%以上3mol%以下である。また、反応炉10からの排出ガス中には、シラン類が0mol%以上20mol%以下含まれており、多くの場合にはシラン類が5mol%以上15mol%以下である。このような濃度の塩化水素および/またはシラン類が含まれている排出ガスは、金属を腐食させやすい。
 さらに、反応炉10からの排出ガスは、シリコン芯線13の加熱に伴い、例えば略500℃の高温となっている。温度が高いほど、塩化水素およびシラン類による金属の腐食は進行しやすい。したがって、排出バルブ30は特に腐食が起こりやすい環境で使用されているといえる。当該腐食を低減するため、弁体31は、排出ガスとの接触面が耐食材料により形成されている。
 具体的には、弁体31は、表面全体が耐食材料であるステライト(登録商標)により被覆されており、その内部である本体部分はステンレス鋼により形成されている。当該本体部分は、ステンレス鋼に限られず、耐食材料により形成されていてもよく、耐食性を有さない金属等の材料により形成されていてもよい。
 弁体31の被覆部分を形成する耐食材料は、上述のステライトのように、合金としてのコバルト含有量が25質量%以上であることが好ましく、30質量%以上であることがより好ましく、35質量%以上であることがより好ましく、40質量%以上であることがより好ましく、45質量%以上であることがより好ましく、50質量%以上であることがより好ましい。このような耐食材料であれば、塩化水素およびシラン類等に対する耐食性が特に優れており、排出バルブ30の腐食を効果的に防止できる。
 表1に、コバルトを25質量%以上含む合金の例として、種々のステライト(No.1、6、12、21)の組成を示している。ただし、コバルトを25質量%以上含む合金は、表1に示す金属に限られない。
Figure JPOXMLDOC01-appb-T000001
 また、弁体31の被覆部分を形成する耐食材料は、コバルトを25質量%以上含む合金に限られない。表2に、コバルトを25質量%以上含む合金以外の耐食材料の例として、Ni-Cr-B-Si合金(金属A1)、クロム鋼(金属A2)および析出硬化型ステンレス鋼(金属A3)の組成を示している。ただし、弁体31の被覆部分を形成する耐食材料はこれに限られない。
Figure JPOXMLDOC01-appb-T000002
 弁体31の排出ガスとの接触面に形成されているこのような耐食材料は、厚さが1.5mm以上であることが好ましい。また、耐食材料の厚さは特に制限なく、例えば弁体31の全体が耐食材料により形成されていてもよい。ただし、弁体31の製造の容易さおよび製造コスト等の観点から、耐食材料の厚さは10mm以下であることが好ましい。このような厚さであれば、耐食材料により弁体31の腐食を効果的に低減できる。
 バルブシート32は、グラタイト(登録商標)等の特殊グラファイト材、カーボン、その他の樹脂製品または金属等により形成されていてよい。弁体31とバルブシート32との間の気密性を容易に確保する観点から、バルブシート32の材料は前記の特殊グラファイト材などの、加工が容易な程度に柔らかい材料であることが好ましい。このような材料であれば、バルブシート32の弁体31との接触部分について、弁体31の形状に合わせた形状に容易に加工できる。したがって、弁体31とバルブシート32との間の気密性を容易に精度よく確保できる。
 なお、弁体31ではなく、バルブシート32の排出ガスとの接触面が、耐食材料により形成されていてもよい。この場合、バルブシート32の排出ガスとの接触面に形成される耐食材料の組成および厚さ等は、弁体31の排出ガスとの接触面に形成される耐食材料と同様であってよい。また、弁体31およびバルブシート32の排出ガスとの接触面が、いずれも耐食材料により形成されていてもよい。言い換えれば、弁体31およびバルブシート32の少なくともいずれか一方が、排出ガスとの接触面が耐食材料により形成されていればよい。弁体31の排出ガスとの接触面と、バルブシート32の排出ガスとの接触面とは、同一の耐食材料により形成されていてもよく、それぞれ異なる耐食材料により形成されていてもよい。
 バルブシート32の、排出ガスとの接触面以外の部分(本体部分)は、例えばグラタイト等の特殊グラファイト材、カーボン、その他の樹脂製品または金属等であってよい。バルブシート32の排出ガスとの接触面が耐食材料により形成されている場合、当該耐食材料の組成および厚さ等は、上述の弁体31に用いられる耐食材料と同様であってよい。
 なお、供給バルブ20については、排出バルブ30と同様の構成であってもよく、または従来一般的なバルブを用いてもよい。供給ガスには、排出ガスと比べて塩化水素がほとんど含まれておらず、また温度も多くの場合200℃以下である。そのため供給バルブ20は、排出バルブ30に比べて腐食しにくい。
 (耐食材料による効果)
 このように、弁体31および/またはバルブシート32の排出ガスとの接触面が耐食材料により形成されている構成によれば、弁体31および/またはバルブシート32が排出ガスに曝されても腐食が極めて発生しにくい。したがって、弁体31および/またはバルブシート32の腐食に起因した、排出バルブ30からのガス漏れが発生しにくい。また、このように弁体31および/またはバルブシート32が腐食しにくいと、多結晶シリコンの製造を継続しても、待機状態の反応炉10において、排出経路12から反応炉10に逆流する待機ガスへの金属汚染物質の混入を抑制できる。また、腐食により排出バルブ30の気密性が損なわれることがないため、そもそもこの排出経路12から反応炉10へ逆流する排出ガスの量が低く抑えられる。その結果、反応炉10に析出した多結晶シリコンが、排出バルブ30の腐食に由来する金属汚染物質により汚染される虞を大きく低減できる。
 なお、反応炉10での多結晶シリコンの析出前に、供給経路11から水素ガスを供給し続けることで、排出経路12から反応炉10への排出ガスの逆流は防止できる。しかしながら、この場合には多量の水素ガスが必要となり、多結晶シリコンの製造コストが上昇する。一方、排出バルブ30が腐食しにくい構成によれば、製造コストを上昇させる多量の水素ガスを用いずとも、排出経路12から反応炉10への排出ガスの逆流および排出バルブ30の腐食に由来する金属汚染物質による多結晶シリコンの汚染を低減できる。
 製造装置1では、多結晶シリコン析出に伴い、金属の腐食原因となる塩化水素およびシラン類が多く発生するため、特に排出バルブ30が腐食しやすい環境に曝される。一方、半導体および太陽電池等の原料となる多結晶シリコンには、極めて高い純度が求められる。これは特に、多結晶シリコンが半導体の原料となる場合に顕著である。
 排出バルブ30の腐食により、排出ガスのガス漏れが生じるだけでなく、反応炉10の待機状態において、排出経路12からの待機ガスの逆流による金属汚染物質の発生が起こり、これにより多結晶シリコンの汚染原因となり得る。この事実は、長期間多結晶シリコンの製造を行ってきた発明者による新規な知見である。従来一般的には、排出経路12から反応炉10への排出ガスの逆流が起こることは知られておらず、排出バルブ30の腐食が多結晶シリコンの汚染原因となることは全く想定されていなかった。したがって、製造装置1が備える排出バルブ30を、腐食が発生しにくい本実施形態の構成とすることは、多結晶シリコンの製造に特有の高度な汚染防止という課題を、前記の新規な知見に基づいて効果的に解決するものである。
 また、排出バルブ30が腐食しにくい構成によれば、排出バルブ30のメンテナンス頻度を大きく低減できる。排出バルブ30のメンテナンス中には、製造装置1を稼働できない。排出バルブ30の、弁体31および/またはバルブシート32の洗浄、修復および交換等のメンテナンスには時間を要する。そのため、排出バルブ30のメンテナンスを高頻度で行う場合には、多結晶シリコンの製造機会損失が大きな問題となる。排出バルブ30のメンテナンス頻度を低減できることで、排出バルブ30の保守管理コストを低減できるだけでなく、多結晶シリコンの製造機会損失も低減できる。
 また、弁体31およびバルブシート32は弁体31の回転に起因して生じる摩擦により、弁体31およびバルブシート32の摩耗が生じやすい。弁体31またはバルブシート32の耐食材料により形成されている面は、摩耗が生じた部分に耐食材料によるめっき等を施すことにより、容易に修復できる。そのため、排出バルブ30は、低コストおよび短時間で、容易にメンテナンスを完了できる。
 〔まとめ〕
 本発明の一態様に係る多結晶シリコンの製造装置は、多結晶シリコンを析出する反応炉と、前記反応炉からの、塩化水素およびシラン類の少なくともいずれか一方が含まれる排出ガスの排出経路の開閉を制御する排出バルブと、を備えており、前記排出バルブは、弁体と、前記弁体と気密的に接触可能な受けシートと、を有しており、前記弁体および前記受けシートの少なくともいずれか一方が、前記排出ガスとの接触面が耐食材料により形成されている。
 多結晶シリコンの製造では、反応炉での多結晶シリコンの析出後、反応炉から塩化水素およびシラン類等を含むガスが排出される。塩化水素およびシラン類は金属材料を腐食させる大きな原因となるため、当該ガスの排出経路に設けられる排出バルブは腐食しやすい。多結晶シリコンの析出前に気密状態となる反応炉では、排出バルブの弁体または受けシートに腐食が生じているとガス漏れが生じ、排出バルブからガスが反応炉に逆流してしまう虞がある。逆流したガスには、排出バルブの腐食に由来する金属汚染物質が含まれ得る。そのため、多結晶シリコンが当該金属汚染物質により汚染されてしまう可能性があることが、発明者らの鋭意研究の結果、新たな知見として見出された。
 しかし前記の構成によれば、排出バルブが有する弁体および受けシートの少なくともいずれか一方は、塩化水素との接触面が耐食材料により形成されている。そのため、排出バルブの腐食が効果的に防止される。したがって、排出バルブの腐食に由来する金属汚染物質が生じにくい。また、排出バルブから反応炉へのガスの逆流が起こりにくいため、反応炉に析出した多結晶シリコンが、排出バルブの腐食に由来する金属汚染物質により汚染される虞を大きく低減できる。
 本発明の一態様に係る多結晶シリコンの製造装置は、前記耐食材料は、コバルトを25質量%以上含む合金であってもよい。前記の構成によれば、耐食材料の耐食性が特に優れている。そのため、排出バルブの腐食をより効果的に防止できる。
 本発明の一態様に係る多結晶シリコンの製造方法は、上述のいずれかの多結晶シリコンの製造装置を用い、前記反応炉に、水素およびシラン類を含む反応ガスを供給して、前記多結晶シリコンを析出する析出工程と、前記反応炉から前記排出ガスを排出する排出工程と、を含んでいる。
 本発明の一態様に係る多結晶シリコンの製造方法は、前記析出工程では、前記排出バルブを閉じた状態で、前記反応炉に、不活性ガスおよび/または前記反応ガスを構成する少なくとも一種のガスを封入し、その後多結晶シリコンの析出を開始するに際して、前記排出バルブを開放し、前記反応炉への前記反応ガスの供給を開始してもよい。
 前記の構成によれば、多結晶シリコンの析出工程では、反応炉に反応ガスを供給して、多結晶シリコンの析出を開始するまでの前工程において、排出バルブが閉じている。このとき反応炉には、不活性ガスおよび/または反応ガスを構成する少なくとも一種のガスが気密状態で封入されている。ここで、排出バルブの弁体または受けシートに腐食が生じていると、気密状態が保ちにくい。また、排出バルブから反応炉に排出ガスが逆流してしまう虞がある。逆流した排出ガスには、排出バルブの腐食に由来する金属汚染物質が含まれ得るため、後に多結晶シリコンの析出を行うと、特に当該析出の初期において、得られる多結晶シリコンへの当該金属汚染物質による汚染が生じる。
 しかしながら、前記の製造方法によれば、排出バルブが有する弁体および受けシートの少なくとも一方は、ガスとの接触面が耐食材料により形成されているため、排出バルブの腐食が起こりにくい。したがって、排出バルブから反応炉へのガスの逆流が起こりにくいため、反応炉に析出した多結晶シリコンが、排出バルブの腐食に由来する金属汚染物質により汚染される虞を大きく低減できる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 (弁体の組成)
 本発明の一実施例に係る製造装置および比較例に係る製造装置をそれぞれ一定期間運用し、それぞれの製造装置が備える排出バルブから弁体を回収し、腐食の程度を観察した。
 表3に、実施例および比較例に係る弁体の組成を示している。表3に示すように、実施例に係る弁体は本体部分および被覆部分からなり、当該本体部分の表面全体が被覆部分により被覆されている。当該被覆部分は耐食材料により形成されている。また、比較例に係る弁体は、表3に示す本体部分のみからなり、被覆部分を備えていない。
Figure JPOXMLDOC01-appb-T000003
 (弁体の腐食評価)
 多結晶シリコンの製造装置1は図1に示した構造のものを使用した。多結晶シリコンの析出工程において、排出バルブ30を閉じた状態で、反応炉10に、待機ガスを一旦封入し、50時間保持した。その後に排出バルブ30を開放し、反応炉10に反応ガスを供給して多結晶シリコンの析出を開始することにより、多結晶シリコンを製造した。かかる多結晶シリコンの製造は、実施例では3年間運用(バッチ数:105回)し、比較例では9ヶ月運用(バッチ数:33回)した。
 待機ガスは水素ガスであり、当該水素ガスの反応炉10内への封入は、反応炉10内のガスの昇降圧を伴うガス置換作業を複数回繰り返すことで実施した。多結晶シリコンの析出温度は900℃以上1100℃以下の間を推移した。
 前記の各多結晶シリコンの製造後、実施例に係る弁体および比較例に係る弁体をそれぞれ回収して煮沸し、水分を布により拭き取り処理した後に、各弁体の外観を観察した。結果は、図3に示すように、3年間運用した実施例に係る弁体は、表面の平滑性が保持されていたが、9か月間運用した比較例に係る弁体は、表面の腐食による粗雑化が激しく、部分的に剥落が認められた。
 (多結晶シリコンの汚染評価)
 次に、それぞれ1年間運用した実施例に係る製造装置および比較例に係る製造装置を用いて、多結晶シリコンの析出を行った。
 表4に、各製造装置を用いて多結晶シリコンの析出を行った後、シリコン芯線と析出層との境界部分を含む箇所をサンプリングして金属汚染物質量の分析を行った。具体的には、得られた直径150mmのロッド形状である多結晶シリコンのそれぞれについて、ロッドにおける長手方向の中間の位置付近で、当該長手方向に直交する水平方向に、直径10mm、長さ150mmの円柱体をくり抜いた。当該円柱体は、当該水平方向に延伸するものである。
 この円柱体について、シリコン芯線と析出層との境界部分から、半径方向に前後2mmの位置で前記円柱体を垂直に切断し測定用サンプルを得た。各測定用サンプルの金属含有量を、フッ硝酸混合溶液に溶解させることにより得られた溶解液の各金属元素量を、誘導結合プラズマ質量分析(ICP-MS)にて分析することにより測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 Cr、FeおよびNiによる汚染量はいずれも、比較例に係る製造装置により得られた多結晶シリコンの方が、実施例に係る製造装置により得られた多結晶シリコンよりも多かった。これは、比較例に係る製造装置では、反応炉10の待機状態において、排出経路からの待機ガスの逆流が生じ、排出バルブ30の腐食に由来する金属汚染物質が多結晶シリコンを汚染したためと考えられる。
 1  製造装置
 10 反応炉
 12 排出経路
 30 排出バルブ
 31 弁体
 32 バルブシート(受けシート)

Claims (4)

  1.  多結晶シリコンを析出する反応炉と、
     前記反応炉からの、塩化水素およびシラン類の少なくともいずれか一方が含まれる排出ガスの排出経路の開閉を制御する排出バルブと、を備えており、
     前記排出バルブは、弁体と、前記弁体と気密的に接触可能な受けシートと、を有しており、
     前記弁体および前記受けシートの少なくともいずれか一方は、前記排出ガスとの接触面が耐食材料により形成されていることを特徴とする、多結晶シリコンの製造装置。
  2.  前記耐食材料は、コバルトを25質量%以上含む合金であることを特徴とする、請求項1に記載の多結晶シリコンの製造装置。
  3.  請求項1または2に記載の多結晶シリコンの製造装置を用い、
     前記反応炉に、水素およびシラン類を含む反応ガスを供給して、前記多結晶シリコンを析出する析出工程と、
     前記反応炉から前記排出ガスを排出する排出工程と、を含んでいることを特徴とする、多結晶シリコンの製造方法。
  4.  前記析出工程では、前記排出バルブを閉じた状態で、前記反応炉に、不活性ガスおよび/または前記反応ガスを構成する少なくとも一種のガスを封入し、その後多結晶シリコンの析出を開始するに際して、前記排出バルブを開放し、前記反応炉への前記反応ガスの供給を開始することを特徴とする、請求項3に記載の多結晶シリコンの製造方法。
PCT/JP2020/040170 2019-11-21 2020-10-27 多結晶シリコンの製造装置および多結晶シリコンの製造方法 WO2021100415A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021558243A JPWO2021100415A1 (ja) 2019-11-21 2020-10-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210568 2019-11-21
JP2019-210568 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100415A1 true WO2021100415A1 (ja) 2021-05-27

Family

ID=75981185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040170 WO2021100415A1 (ja) 2019-11-21 2020-10-27 多結晶シリコンの製造装置および多結晶シリコンの製造方法

Country Status (3)

Country Link
JP (1) JPWO2021100415A1 (ja)
TW (1) TW202134177A (ja)
WO (1) WO2021100415A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123795A (ja) * 2007-11-13 2009-06-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2010216577A (ja) * 2009-03-17 2010-09-30 Fujikin Inc 調整弁装置
CN102120577A (zh) * 2011-03-24 2011-07-13 天津大学 一种多晶硅还原炉预升温系统及预升温方法
WO2011158404A1 (ja) * 2010-06-16 2011-12-22 信越化学工業株式会社 ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
CN203360011U (zh) * 2013-07-15 2013-12-25 青海黄河上游水电开发有限责任公司新能源分公司 一种氢还原炉尾气输送装置
CN104999732A (zh) * 2015-06-17 2015-10-28 苏州市大力电器有限公司 用于密封阀门的抗氧化合金材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123795A (ja) * 2007-11-13 2009-06-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2010216577A (ja) * 2009-03-17 2010-09-30 Fujikin Inc 調整弁装置
WO2011158404A1 (ja) * 2010-06-16 2011-12-22 信越化学工業株式会社 ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
CN102120577A (zh) * 2011-03-24 2011-07-13 天津大学 一种多晶硅还原炉预升温系统及预升温方法
CN203360011U (zh) * 2013-07-15 2013-12-25 青海黄河上游水电开发有限责任公司新能源分公司 一种氢还原炉尾气输送装置
CN104999732A (zh) * 2015-06-17 2015-10-28 苏州市大力电器有限公司 用于密封阀门的抗氧化合金材料

Also Published As

Publication number Publication date
TW202134177A (zh) 2021-09-16
JPWO2021100415A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
JP2730695B2 (ja) タングステン膜の成膜装置
EP1717330B1 (en) Metal tube for use in carburizing gas atmosphere
TWI498165B (zh) 具有經矽化物塗覆的金屬表面之反應器
CA3028948C (en) Austenitic alloy material and austenitic alloy pipe
Kalivodová et al. Corrosion behaviour of boiler steels, coatings and welds in flue gas environments
JP3433452B2 (ja) フェライト系ステンレス鋼管の内面酸化処理方法
Crook Corrosion of Nickel and Nickel-Base Alloys
WO2021100415A1 (ja) 多結晶シリコンの製造装置および多結晶シリコンの製造方法
AU8607698A (en) Corrosion resistance of high temperature alloys
CN107322003A (zh) 一种制备低杂质含量钨粉的工业方法
US9670581B2 (en) Production method of epitaxial silicon wafer and vapor deposition apparatus
WO1995018240A1 (fr) Acier austenitique inoxydable, systeme de tuyauterie et pieces en contact avec les fluides
TW201113391A (en) Silicide-coated metal surfaces and methods of utilizing same
US20170067181A1 (en) Production method of epitaxial silicon wafer, vapor deposition equipment and valve
JP2004345941A (ja) 高純度アンモニアガスの供給機器および供給方法
JP2018087126A (ja) 多結晶シリコンロッド製造用反応炉及びその製造方法並びにそれを用いた多結晶シリコンロッドの製造方法
US6602355B2 (en) Corrosion resistance of high temperature alloys
CN107130242A (zh) 含铬铁基高温合金的表面处理方法及含铬铁基高温合金件
JP2720716B2 (ja) 耐食性に優れる高純度ガス用オーステナイト系ステンレス鋼材及びその製造方法
JP4016073B2 (ja) 酸化アルミニウム不働態膜の形成方法及び溶接方法並びに接流体部材及び流体供給・排気システム
JP4633748B2 (ja) ごみ焼却炉用の高耐食ボイラ肉盛管の製造方法及びこれに用いる粉末肉盛材料
JP4023288B2 (ja) 耐浸炭性に優れた金属複合管
JP2012067365A (ja) 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
JP6780558B2 (ja) Cr含有合金の腐食抑制方法
JP2637296B2 (ja) 軽水原子炉用弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021558243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890238

Country of ref document: EP

Kind code of ref document: A1