WO2011158404A1 - ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置 - Google Patents

ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置 Download PDF

Info

Publication number
WO2011158404A1
WO2011158404A1 PCT/JP2011/001319 JP2011001319W WO2011158404A1 WO 2011158404 A1 WO2011158404 A1 WO 2011158404A1 JP 2011001319 W JP2011001319 W JP 2011001319W WO 2011158404 A1 WO2011158404 A1 WO 2011158404A1
Authority
WO
WIPO (PCT)
Prior art keywords
bell jar
polycrystalline silicon
pressure
drying
cleaning
Prior art date
Application number
PCT/JP2011/001319
Other languages
English (en)
French (fr)
Inventor
靖志 黒澤
暁二 小黒
伸一 黒谷
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2012520242A priority Critical patent/JP5699145B2/ja
Priority to EP11795312.5A priority patent/EP2583943B1/en
Priority to US13/704,767 priority patent/US9126242B2/en
Priority to AU2011266575A priority patent/AU2011266575B2/en
Priority to CN201180029911.1A priority patent/CN102985364B/zh
Publication of WO2011158404A1 publication Critical patent/WO2011158404A1/ja
Priority to US14/822,378 priority patent/US20150345862A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/042Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum for drying articles or discrete batches of material in a continuous or semi-continuous operation, e.g. with locks or other air tight arrangements for charging/discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/12Drying solid materials or objects by processes not involving the application of heat by suction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a technology for cleaning a bell jar used for the production of polycrystalline silicon, and more specifically, to efficiently remove moisture on the inner wall surface of a bell jar that causes impurities to be mixed into polycrystalline silicon. It relates to a method and a device enabling it.
  • High-purity polycrystalline silicon is a single crystal silicon substrate for manufacturing semiconductor devices and a raw material for manufacturing solar cells.
  • High-purity polycrystalline silicon is generally manufactured in a batch system by a method (Siemens method) in which a silicon-containing reaction gas, which is a raw material gas, is converted into high-purity silicon by thermal decomposition or hydrogen reduction and deposited on a thin silicon filament rod.
  • a silicon-containing reaction gas which is a raw material gas
  • a general deposition reaction vessel used for the production of high-purity polycrystalline silicon is composed of a metallic base plate (base plate) and a metallic bell jar installed on the base plate, and the inside of the bell jar is a reaction space. Become.
  • the deposition reaction vessel must be capable of being cooled and capable of sealing the gas inside the bell jar. This is because the above-mentioned reaction gas is corrosive and tends to ignite or explode when mixed with air.
  • the polycrystalline silicon precipitation reaction described above is performed in a batch system, it is inevitable that the inner surface of the bell jar comes into contact with the atmosphere when the polycrystalline silicon is taken out of the bell jar.
  • the silicon-containing reaction gas that is the raw material gas and chlorosilanes and halogen gases by-produced by the precipitation reaction remain, but these react with moisture in the atmosphere. Then, it is known that the gas exhibits strong corrosiveness.
  • the corrosive gas described above activates and exposes harmful substances (for example, boron, aluminum, phosphorus, arsenic, antimony, etc.) that degrade the quality of polycrystalline silicon from the structural members on the inner surface of the bell jar.
  • harmful substances for example, boron, aluminum, phosphorus, arsenic, antimony, etc.
  • the deposition bell jar is cleaned with high-purity water or carbon dioxide pellets for each batch or every few batches, thereby purifying the inner surface.
  • Patent Documents 1 and 2 and JP-A-2009-196882 disclose inventions of such a cleaning apparatus and a cleaning method using the same.
  • the precipitation reactor (bell jar) for producing polycrystalline silicon is opened for each batch in order to take out the product from the inside. Then, cleaning is performed for each batch or for several batches to clean the inner surface.
  • the conventional cleaning method in which the bell jar is heated with steam or the like and at the same time the inside of the bell jar is replaced with high-purity nitrogen gas or the like completely removes moisture in a short time. While this is difficult, it has become clear that the quality of the polycrystalline silicon produced in the next batch tends to deteriorate when the drying time is increased.
  • the present invention has been made in view of the problems of the conventional bell jar cleaning technology described above, and the object is to efficiently remove moisture from the inner surface of the bell jar and finish the cleaning of the bell jar in a short time.
  • the present invention is to provide a technique that contributes to the production of high-purity polycrystalline silicon by increasing the cleanliness of the inner surface of the bell jar.
  • the bell jar cleaning method according to the present invention is a bell jar cleaning method used in the production of polycrystalline silicon by the Siemens method, and after the cleaning step using the water of the bell jar, The bell jar is provided with a drying step of removing moisture by reducing the pressure so that the pressure inside the bell jar is lower than the vapor pressure of water at the inner surface temperature.
  • the drying step is a drying step in which a vacuum pump having a vacuum reachability of 200 Pa or less is used to perform a pressure reducing operation so that the pressure inside the bell jar becomes 1000 Pa or less.
  • the bell jar cleaning method according to the present invention preferably includes a step of introducing a high-purity inert gas with reduced water content and returning the internal pressure to atmospheric pressure inside the bell jar following the drying step. .
  • the method for producing polycrystalline silicon according to the present invention is a method for producing polycrystalline silicon in which a polycrystalline silicon deposition step by the Siemens method is repeated a plurality of times, and after the completion of the precipitation step, the next batch Before the precipitation step, there is a step of cleaning a bell jar used for depositing the polycrystalline silicon, and the step of cleaning the bell jar includes a water cleaning step for cleaning the bell jar with water and the water cleaning.
  • a drying step that follows the step, and the drying step, after the water washing step, using a vacuum pump having a vacuum attainment capability of 200 Pa or less, by performing a pressure reducing operation that the pressure inside the bell jar becomes 1000 Pa or less, Removing water by reducing the pressure so that the inside of the bell jar has a pressure lower than the vapor pressure of water at the inner surface temperature, and the water washing Extent to after completion of the time until the drying process ends than 1.2 hours, wherein the.
  • the step of cleaning the bell jar further includes a step of introducing a high-purity inert gas with reduced moisture into the bell jar to return the internal pressure to atmospheric pressure following the drying step.
  • the time from the end of the water washing step to the end of the drying step is 0.8 hours or less. More preferably, the time from the end of the water washing step to the end of the drying step is set to 0.4 hours or less.
  • the drying step is terminated when 5 minutes have elapsed after the pressure inside the bell jar becomes 1000 Pa or less.
  • the drying apparatus for a bell jar is an apparatus for drying a bell jar used for producing polycrystalline silicon by the Siemens method, and the apparatus can form an airtight space by placing the bell jar.
  • a vacuum line for reducing the pressure in the airtight space and a dry gas line for returning the pressure in the airtight space to normal pressure are also provided.
  • the present invention instead of the conventional method of removing moisture by increasing the temperature of the bell jar surface, adopting a method of efficiently removing moisture by lowering the pressure inside the bell jar to below the boiling point of water; Therefore, moisture is efficiently removed from the inner surface of the bell jar, and cleaning of the bell jar can be completed in a short time. As a result, the cleanliness of the inner surface of the bell jar is increased, which greatly contributes to improving the quality of the manufactured high purity polycrystalline silicon.
  • FIG. 1 is a diagram for explaining a configuration example of a bell jar drying apparatus of the present invention.
  • the bell jar drying apparatus is a bell jar drying apparatus used for producing polycrystalline silicon, and the bell jar includes a metal bell jar 1 and a metal base plate (base plate) 2 for installing the bell jar 1.
  • the inside of the container is hermetically sealed by packing indicated by reference numeral 3.
  • the interior of the bell jar 1 installed on the base plate 2 becomes a space for the precipitation reaction of polycrystalline silicon.
  • a pressure gauge 4, a gas introduction line 5, and a gas exhaust line 6 are connected to the base plate 2 so that the internal pressure of the bell jar 1 can be monitored and gas can be introduced and exhausted.
  • a vacuum pump 7 is provided in the path of the gas exhaust line 6, and the internal pressure of the bell jar is reduced by this vacuum pump 7 so as to be lower than the vapor pressure of water.
  • an automatic valve or the like is installed on the suction side of the vacuum pump 7 so that oil in the vacuum pump 7 does not flow backward to the bell jar 1 when the vacuum pump 7 is stopped.
  • the vacuum pump 7 be of a low contamination type such as a dry vacuum pump.
  • the capacity of the vacuum pump may be selected according to the size of the bell jar to be used, as long as it has a vacuum reachability of approximately 200 Pa or less.
  • the bell jar itself used for producing polycrystalline silicon also constitutes a part of the drying apparatus, but the present invention is not limited to this embodiment.
  • the internal pressure of the bell jar is reduced by the vacuum pump 7 so as to be lower than the vapor pressure of water, thereby efficiently removing water and drying the bell jar in a short time. Will end.
  • a small amount of amorphous silicon, silane chloride polymer, or the like adheres to the inner surface of the bell jar used for the polycrystalline silicon precipitation reaction. It activates and exposes harmful substances to the quality of the product, and prevents the bell jar from being cleaned. For this reason, in order to produce high-purity polycrystalline silicon, it is necessary to efficiently remove the water adhering to the inner surface of the bell jar after the cleaning is completed to suppress the generation of the contaminants.
  • the present inventors have conducted a method of efficiently removing moisture by lowering the pressure inside the bell jar to below the boiling point of water. It was decided to adopt.
  • the advantage of adopting this method is that the drying time is shortened by increasing the efficiency of moisture removal.
  • the cleanliness of the inner wall of the bell jar at the stage of preparing for the next polycrystalline silicon manufacturing process after cleaning the bell jar after the polycrystalline silicon manufacturing process is Rather than the total opening time inside the bell jar, it depends more on the time from the cleaning of the bell jar to the end of drying. Therefore, when the drying process takes a long time as in the conventional drying method, the inner wall of the bell jar cannot be kept clean, and the risk of deteriorating the quality of the polycrystalline silicon in the next manufacturing process increases. . In this sense as well, it is very effective to shorten the drying time by efficiently removing moisture from the inner surface of the bell jar in order to produce high-purity polycrystalline silicon.
  • the dry state of the bell jar can be monitored with a vacuum gauge as the simplest method. More accurate determination of the dry state can be made based on the degree of reduced pressure. Specifically, the determination can be made by determining that the degree of reduced pressure becomes a value unique to a drying apparatus including a vacuum pump and a bell jar upon completion of moisture evaporation.
  • the drying state of the apparatus can be confirmed by stopping the drying of the bell jar under reduced pressure, returning it to normal pressure with a drying gas, and then measuring the dew point of the gas in the drying apparatus at normal pressure. Based on such data, for example, it is possible to create an operation standard for the drying process for setting the dew point to ⁇ 40 ° C. or lower or ⁇ 60 ° C. or lower.
  • the drying state is confirmed based on the degree of vacuum. For example, when the degree of vacuum reaches 1000 Pa or less and 5 minutes have elapsed, the dew point is -40 ° C. or less and the drying is completed. To do.
  • the heat capacity of the whole bell jar is large. This is because the temperature of the inner surface of the bell jar is unlikely to change even if heat is removed by evaporation of moisture.
  • the advantage of adopting the technique of removing moisture by lowering the pressure inside the bell jar to below the boiling point of water is that the amount of high purity gas consumed in the drying operation can be greatly saved.
  • a high purity inert gas is used as a carrier gas for discharging evaporated water to the outside of the bell jar and as a replacement gas for preventing moisture from being re-adsorbed inside the bell jar after the water removal. Is required in large quantities.
  • Table 1 shows, for 12 polycrystalline silicon production batches, the bell jar opening time, the time from the completion of the water washing process of the bell jar to the assembly time for the next batch polycrystalline silicon production reactor, and the electrical resistivity of the polycrystalline silicon. This is a summary of the results of the investigation.
  • FIG. 2 is a diagram for explaining the results of examining the relationship between the opening time of the bell jar and the electrical resistivity of polycrystalline silicon.
  • the opening time of the bell jar means a time during which the bell jar is in an open state from the end of the polycrystalline silicon manufacturing process to the start of the next polycrystalline silicon manufacturing process. Specifically, after the polycrystalline silicon manufacturing process of the previous batch is completed, the bell jar is opened and the polycrystalline silicon is taken out, and the bell jar is cleaned (conveying, washing with water, conveying, removing moisture on the inner surface, The time from the completion of assembly as a reactor for the next batch of polycrystalline silicon production process is the opening time of the bell jar.
  • FIG. 2 shows that the electrical resistivity of the polycrystalline silicon tends to decrease as the opening time increases.
  • the decrease in electrical resistivity means that the level of electrically active impurities taken into the polycrystalline silicon becomes higher, and the purity of the polycrystalline silicon tends to be hindered as the open time becomes longer. You can see that That is, it can be read that the shortening of the bell jar opening time described above is effective for the production of high-purity polycrystalline silicon.
  • FIG. 3 is a diagram for explaining the results of investigating the relationship between the time from the end of the water washing of the bell jar to the end of drying and the electrical resistivity of the polycrystalline silicon.
  • the end of the drying step here is the end of the drying step when the vacuum is maintained for 10 minutes after the pressure gauge reaches a certain value under reduced pressure by the vacuum pump.
  • the time from the end of the water washing of the bell jar to the end of drying and the electrical resistivity of the polycrystalline silicon can be approximated by a straight line obtained by the least square method, and the electrical resistance of the polycrystalline silicon increases as the time increases. It can be seen that the rate is low. In other words, in order to control the quality of the polycrystalline silicon, it is effective to shorten the time from the end of the water washing process to the end of the drying process rather than the opening time of the bell jar itself. It can be seen that reducing the time is a very effective technique for the production of bell jar high purity polycrystalline silicon.
  • the bell jar 1 is opened, the bell jar 1 is moved to a cleaning device, and a cleaning operation is performed by a normal procedure. After this cleaning operation is completed, the bell jar 1 is placed on the base plate 2 by a crane or the like, and the drying device is assembled. In this state, the vacuum pump 7 is operated so that the pressure in the bell jar 1 is equal to or lower than the water vapor pressure. By this decompression, the moisture adhering to the inner surface of the bell jar 1 in the cleaning process is discharged out of the bell jar 1.
  • the set pressure at the time of depressurization needs to be set so that the inside of the bell jar 1 is lower than the vapor pressure of water at the inner surface temperature, but when a vacuum pump having a vacuum reachability of approximately 200 Pa or less is used. Can reach the desired dry state in a short time without particularly worrying about the temperature.
  • the internal pressure of the bell jar 1 reaches 1000 Pa or less when confirming that the pressure gauge is dry.
  • the end of drying can be completed when 5 minutes have elapsed, but when considering the stability of the apparatus, the pressure reduction is preferably continued for 5 minutes or more. By observing the behavior of the pressure gauge for this duration, it can also be confirmed that there is no abnormality in the monitor system.
  • the operation of the vacuum pump 7 is stopped, and a high-purity inert gas not containing moisture is introduced into the bell jar 1 to set the internal pressure to atmospheric pressure.
  • the introduction of the high-purity inert gas is to suppress re-entry of moisture into the bell jar 1, and a gas having a dew point of ⁇ 40 ° C. or less is desirable. Nitrogen gas is desirable as the inert gas.
  • the cleaned bell jar 1 and the base plate 2 are assembled as early as possible as a reactor for producing polycrystalline silicon, and in a standby state for producing the next batch, that is, with an inert gas such as hydrogen or nitrogen, cleanliness is achieved. It is preferable to maintain the state.
  • Table 2 shows the results of investigating the relationship with the reduced pressure maintaining time in the dry state when a bell jar with an internal volume of 3.5 m 3 was dried by the method of the present invention.
  • the degree of vacuum attainment in the specifications of the vacuum pump apparatus itself used at this time is 20 Pa
  • the degree of internal vacuum became 1000 Pa or less after 7 minutes, and thereafter 1000 Pa or less was maintained.
  • high purity nitrogen gas was introduced into the chamber to return to atmospheric pressure, and a dew point was measured by flowing nitrogen gas (carrier gas) at a flow rate of 200 normal liters / minute.
  • the dew point of the carrier gas was less than -40 ° C when the reduced pressure was released with a carrier gas in a reduced pressure holding time of 7 minutes, and reached -61 ° C in 10 minutes or more. It was confirmed that it was in a state.
  • Table 3 shows that a heating medium by steam heating is introduced into a bell jar jacket having the same internal volume as described above, and the bell jar is heated and held at about 110 ° C., and 200 normal liters / minute (dew point ⁇ 72 ° C.) is stored in the bell jar It is the result of supplying high-purity nitrogen gas and evaluating the dew point of the nitrogen gas (carrier gas) with a dew point meter.
  • FIG. 4 is a diagram for explaining the configuration of the bell jar drying system used in this measurement.
  • reference numeral 8 denotes a jacket
  • reference numeral 9 denotes a heat medium circulation path
  • reference numerals 10 and 11 denote a heat exchanger and a heat exchanger, respectively. It is a medium circulation pump.
  • the time until the dew point of the carrier gas reaches ⁇ 60 ° C. or lower, which is a standard for drying, is 8 hours or more, and it takes about 50 times as long as the present invention.
  • moisture is efficiently removed from the inner surface of the bell jar, and the cleaning time of the bell jar can be shortened.
  • a technology that contributes to the production of high purity polycrystalline silicon by increasing the cleanliness of the inner surface of the bell jar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

 ベルジャーは、金属性のベルジャー(1)と、このベルジャー(1)を設置するための金属性のベースプレート(2)を備えており、パッキン(3)により容器内部が密閉される。ベースプレート(2)には、ベルジャー(1)の内部圧力のモニタおよびガスの導入及び排気が可能となるように、圧力計(4)、ガス導入ライン(5)、ガス排気ライン(6)、が接続されている。ガス排気ライン(6)の経路には真空ポンプ(7)が設けられており、この真空ポンプ(7)によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧される。真空ポンプ(7)によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧され、これによって効率的に水分の除去が行われ、短時間でベルジャーの乾燥が終了する。本発明により、ベルジャー内表面の清浄度を高めて高純度多結晶シリコンの製造に寄与する技術が提供される。

Description

ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
 本発明は、多結晶シリコンの製造に用いられるベルジャーの清浄化技術に関し、より詳細には、多結晶シリコン中への不純物混入の原因となるベルジャーの内壁面の水分を効率的に除去することを可能とする方法および装置に関する。
 高純度多結晶シリコンは、半導体デバイス製造用の単結晶シリコン基板や太陽電池製造用の原料である。高純度多結晶シリコンは、一般に、原料ガスであるケイ素含有反応ガスを熱分解又は水素還元により高純度珪素とし、これを細い珪素フィラメントロッド上に析出させる手法(ジーメンス法)によりバッチ式に製造される。ここで、珪素含有反応ガスとしては、モノシラン、ジクロロシラン、トリクロロシラン、テトラクロロシランなどのガスや、一般的にSiH4-n(n=0,1,2,3;X=Br、I)で標記されるハロゲンガスが用いられる。
 高純度多結晶シリコンの製造に用いられる一般的な析出反応容器は、金属性の台板(ベースプレート)と当該ベースプレート上に設置される金属性のベルジャーとで構成され、ベルジャーの内部が反応空間となる。析出反応容器は冷却可能であるとともに、ベルジャー内部のガスを密閉可能なものでなければならない。これは、上述の反応ガスは腐食性を有し、また、空気との混合により発火や爆発を起こす傾向があるからである。
 ところで、析出反応容器にて多結晶シリコンの析出反応を行うと、CVDプロセス中に、均一核形成プロセスによって無定形のシリコン・ダストが形成され、析出反応容器の内面にシリコンが付着等する。このシリコン・ダストは高水準の汚染物質を含有しており、製品となる多結晶シリコン上に沈降して表面欠陥や汚染をもたらす(特開平6-216036号公報:特許文献1を参照)。
 また、上述の多結晶シリコンの析出反応はバッチ式にて行われるため、多結晶シリコンをベルジャーから取り出す際には、ベルジャーの内表面が大気と接触することは避けられない。多結晶シリコン析出反応後のベルジャー内表面には、原料ガスである珪素含有反応ガスおよび析出反応によって副生されたクロロシラン類やハロゲンガス類が残存しているが、これらが大気中の水分と反応すると強い腐食性を示すガスとなることが知られている。
 上述した腐食性ガスは、上記ベルジャーの内表面の構造部材から、多結晶シリコンの品質を低下させる有害物質(例えば、ホウ素、アルミニウム、リン、ヒ素、アンチモンなど)を表出活性化する。
 そして、このような有害物質は、次バッチの析出反応プロセス中に多結晶シリコン中に取り込まれ、多結晶シリコンの品質を低下させてしまう(例えば、特開2008-37748号公報:特許文献2を参照)。
 このような事情から、バッチ毎もしくは数バッチ毎に、高純度な水や二酸化炭素ペレットを用いて析出ベルジャーの洗浄が行われ、内表面の清浄化が図られる。
 一方、ベルジャーについては、内表面積が広いことや構造上拭き取り作業が困難であるなどの理由から、一般に、自動化された洗浄装置が使用される。上掲の特許文献1および2や特開2009-196882号公報(特許文献3)には、かかる洗浄装置およびこれを用いた洗浄方法の発明が開示されている。
特開平6-216036号公報 特開2008-37748号公報 特開2009-196882号公報
 多結晶シリコン製造のための析出反応炉(ベルジャー)は、内部から製品を取り出すために1バッチ毎に開放される。そして、1バッチ毎又は数バッチ毎に洗浄が行われて内表面の清浄化が図られる。
 洗浄により取り除かれるべきものはベルジャーの内表面に付着したアモルファスシリコンや塩化シランポリマーなどであるが、これらは水分と反応して最終的には微粉状の物質となることが知られており、当該微粉状物質に取り込まれた水分を完全に除去することは非常に困難である。
 また、本発明者らの検討したところによれば、スチームなどを用いてベルジャーを加熱すると同時に高純度窒素ガスなどでベルジャー内部を置換する従来の洗浄方法では、短時間に水分を完全に除去することは困難である一方で、乾燥時間を長くなると次バッチで製造される多結晶シリコンの品質が低下し易いことが明らかとなった。
 本発明は、上述した従来のベルジャー清浄化技術の問題に鑑みてなされたもので、その目的とするところは、ベルジャー内表面から水分を効率的に除去し、ベルジャーの清浄化を短時間で終了させ、その結果、ベルジャー内表面の清浄度を高めて高純度多結晶シリコンの製造に寄与することとなる技術を提供することにある。
 このような課題を解決するために、本発明に係るベルジャーの清浄化方法は、ジーメンス法による多結晶シリコン製造に用いられるベルジャーの清浄化方法であって、前記ベルジャーの水を用いる洗浄工程後に、該ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する乾燥工程を備えている。
 好ましくは、前記乾燥工程は、200Pa以下の真空到達能力を有する真空ポンプを用い、前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行う乾燥工程である。
 本発明に係るベルジャーの清浄化方法は、好ましくは、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている。
 本発明に係る多結晶シリコンの製造方法は、ジーメンス法による多結晶シリコンの析出工程を複数回繰り返して行う多結晶シリコンの製造方法であって、前記析出工程の終了後であって、次のバッチの析出工程の前に、前記多結晶シリコンの析出に用いられるベルジャーを清浄化する工程を有し、該ベルジャーの清浄化工程は、前記ベルジャーを水を用いて洗浄する水洗浄工程と該水洗浄工程に続く乾燥工程とを備え、前記乾燥工程は、前記水洗浄工程後に、200Pa以下の真空到達能力を有する真空ポンプを用いて前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行うことにより、前記ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する工程であり、且つ、前記水洗浄工程終了後から乾燥工程終了までの時間を1.2時間以下とする、ことを特徴とする。
 好ましくは、前記ベルジャーの清浄化工程は、さらに、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている。
 また、好ましくは、前記水洗浄工程終了後から乾燥工程終了までの時間を0.8時間以下とする。さらに好ましくは、前記水洗浄工程終了後から乾燥工程終了までの時間を0.4時間以下とする。
 本発明では、例えば、前記乾燥工程を、前記ベルジャー内部の気圧が1000Pa以下となった後5分経過した時点で終了させる。
 本発明に係るベルジャー用乾燥装置は、ジーメンス法による多結晶シリコン製造に用いられるベルジャーを乾燥させるための装置であり、該装置は、前記ベルジャーを載置することによって気密空間を形成することができると共に、前記気密空間内の気圧を減圧するための真空ラインと、前記気密空間内の気圧を常圧に戻すための乾燥気体ラインを有することを特徴とする。
 本発明では、ベルジャー表面の温度を高めることで水分を取り除くという従来の手法に代えて、ベルジャー内部の圧力を水の沸点以下に下げることにより効率的に水分を除去するという手法を採用することとしたので、ベルジャー内表面から水分が効率的に除去され、しかも、ベルジャーの清浄化を短時間で終了させることが可能となる。その結果、ベルジャー内表面の清浄度が高められ、製造される高純度多結晶シリコンの品質向上に大きく寄与することとなる。
本発明のベルジャー乾燥装置の構成例について説明するための図である。 ベルジャーの開放時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。 ベルジャーの水洗浄工程終了後から次バッチの多結晶シリコン製造用反応炉として組み立てて内部を真空状態にするまでの時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。 スチーム乾燥に用いたベルジャー乾燥装置の構成例について説明するための図である。
 以下に、図面を参照して、本発明のベルジャー清浄化方法およびベルジャー乾燥装置について説明する。
 図1は、本発明のベルジャー乾燥装置の構成例について説明するための図である。このベルジャー乾燥装置は、多結晶シリコン製造に用いられるベルジャーの乾燥装置であって、ベルジャーは、金属性のベルジャー1とこのベルジャー1を設置するための金属性の台板(ベースプレート)2を備えており、符号3で示したパッキンにより容器内部が密閉される。ベースプレート2上に設置された状態のベルジャー1の内部が多結晶シリコンの析出反応のための空間となる。
 ベースプレート2には、ベルジャー1の内部圧力のモニタおよびガスの導入及び排気が可能となるように、圧力計4、ガス導入ライン5、ガス排気ライン6、が接続されている。ガス排気ライン6の経路には真空ポンプ7が設けられており、この真空ポンプ7によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧される。
 通常、真空ポンプ7の吸込み側には、自動弁などを設置して真空ポンプ7の停止時において真空ポンプ7内の油分などがベルジャー1側に逆流しないように配慮される。しかし、真空ポンプの運転と停止を何度も繰り返しているうちに、配管内表面を伝わって油分などが逆流する現象なども知られている。従って、真空ポンプ7は、ドライ真空ポンプなどの低汚染タイプのものであることが望ましい。また、真空ポンプの能力は、用いるベルジャーの大きさにあわせて排気能力を選択すればよく、概ね200Pa以下の真空到達能力をもつものであれば良い。
 なお、図1に示した態様では、多結晶シリコン製造に用いられるベルジャーそのものも乾燥装置の一部を構成していることとなるが、本発明は当該態様に限定されるものではない。
 上述したように、本発明においては、真空ポンプ7によってベルジャーの内部圧力が水の蒸気圧よりも低くなるように減圧され、これによって効率的に水分の除去が行われ、短時間でベルジャーの乾燥が終了することとなる。
 上述したように、多結晶シリコンの析出反応に用いたベルジャーの内表面には微量のアモルファスシリコンや塩化シランポリマーなどが付着しているが、これらは水分の存在下にベルジャー表面から上述のポリシリコンの品質に対する有害物質を表出活性化し、ベルジャーの清浄化の妨げとなってしまう。このため、高純度の多結晶シリコンを製造するためには、洗浄終了後、ベルジャーの内表面に付着した水分を効率的に除去して上記汚染物質の発生を抑制することが必要となる。
 本発明者らは検討を重ね、ベルジャー表面の温度を高めることで水分を取り除くという従来の手法に代えて、ベルジャー内部の圧力を水の沸点以下に下げることにより効率的に水分を除去するという手法を採用することとした。
 この手法を採用することの利点は、第1に、水分除去の効率化による乾燥時間の短縮化である。
 ベルジャーの清浄化作業時間が長くなると、必然的に、ベルジャー内部が開放状態にある時間が長くなり、ベルジャー内壁の清浄度を下げる要因となることが考えられる。乾燥時間の短縮化は清浄化作業時間の短縮化を意味するから、ベルジャー内壁の清浄度の向上に有効である。
 また、本発明者らの検討によれば、多結晶シリコン製造工程の終了後にベルジャーを清浄化した後に、次の多結晶シリコン製造工程の準備に入る段階でのベルジャー内壁の清浄度は、この間におけるベルジャー内部の総開放時間よりも、寧ろ、ベルジャー洗浄後から乾燥終了までの時間に依存する。従って、従来の乾燥方法のように乾燥工程に長時間を要する場合には、ベルジャー内壁を清浄に維持することができず、次製造工程において多結晶シリコンの品質を低下させてしまう危険性が高まる。この意味においても、ベルジャー内表面の水分除去を効率化して乾燥時間を短縮化することは、高純度な多結晶シリコンを製造するために極めて有効である。
 なお、ベルジャーの乾燥状態は、最も簡便な手法として、減圧ゲージによりモニタすることができる。より正確な乾燥状態の判定は、減圧度により行うことができる。具体的には、水分の蒸発終了により、減圧度が真空ポンプとベルジャーを含む乾燥装置固有の値となることで判定できる。
 また、ベルジャーの減圧乾燥を途中で打ち切り、乾燥ガスで常圧に戻し、その後、常圧になった乾燥装置内のガスの露点を測定することで、装置の乾燥状態を確認することもできる。このようなデータを基に、例えば、露点を-40℃以下あるいは-60℃以下とするための乾燥工程の操作基準を作成することもできる。
 大型のベルジャー、特に1m以上の容量のベルジャーの乾燥を行う場合には、上述したような減圧解除による乾燥状態の確認は実用上難しい。そこで、減圧状態のまま乾燥状態をモニタすることが好ましい。そのような場合には、減圧度により乾燥状態の確認を行い、例えば、減圧度が1000Pa以下となり5分経過した時点を、露点が-40℃以下となっているものとして、乾燥終了とするなどする。
 上記乾燥時間の短縮化という利点に加え、加熱のためのスチームが不要となるという利点もある。ベルジャーは年々大型化してきているが、この大型化はベルジャー自身の熱容量を大きくする。加えて、一般に、ベルジャーには冷却水や熱媒を内部に含むジャケットが設けられているため、ベルジャーを加熱するための全熱容量はさらに大きくなる。
 このような大きな熱容量のものをスチーム加熱により乾燥させようとすると、スチーム温度を高める必要性が生じるばかりではなく、設備も大掛かりなものとなってしまう。また、ジャケットにスチームを直接導入する場合には、その後の抜き取り作業等も必要となる。
 これに対して、本発明のようにベルジャー内部の圧力を水の沸点以下に下げることにより効率的に水分を除去するという手法を採用する場合には、ベルジャー全体の熱容量は大きい方が好ましい。これは、水分の蒸発により熱が奪われても、ベルジャー内表面の温度は変化し難いためである。
 ベルジャー内圧力を水の沸点以下に下げることで水分を除去するという手法を採用することの利点は、乾燥作業で消費する高純度ガスの量を大幅に節約できる点にもある。従来のスチーム加熱方式では、蒸発した水分をベルジャー外部へと排出するためのキャリアガスや水分除去後のベルジャー内部に水分が再吸着等することを防止するための置換ガスとして高純度の不活性ガスを大量に必要とする。
 これに対し、ベルジャー内部を減圧状態にすることで水分を除去する上記手法によれば、水分をベルジャー外部へと排出するためにわざわざキャリアガスを用いることは不要となり、更に、ベルジャー内部の不活性ガスへの置換も、乾燥作業の終了後にベルジャー内部を大気圧に戻す際に高純度不活性ガスを用いるのみで十分に目的が達成される。
 以下に、本発明による清浄化工程に要する時間短縮化による多結晶シリコンの高品質化について説明する。
 表1は、12の多結晶シリコン製造バッチにつき、ベルジャーの開放時間及びベルジャーの水洗浄工程終了後から次バッチの多結晶シリコン製造用反応炉として組み立てるまでの時間と、多結晶シリコンの電気抵抗率を調べた結果を纏めたものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、水洗浄工程終了後から乾燥工程終了までの時間を1.2時間以下とすると、電気抵抗率が1500Ω・cm以上の多結晶シリコンが得られた。また、水洗浄工程終了後から乾燥工程終了までの時間を0.8時間以下とすると、得られる多結晶シリコンの電気抵抗率は2000Ω・cm以上となっている。さらに、水洗浄工程終了後から乾燥工程終了までの時間が0.4時間以下の場合は、得られる多結晶シリコンの電気抵抗率は2500Ω・cm以上である。
 図2は、ベルジャーの開放時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。ここで、ベルジャーの開放時間とは、多結晶シリコン製造工程の終了後から次の多結晶シリコン製造工程を開始するまでにベルジャーが開放状態にあった時間を意味する。具体的には、先のバッチの多結晶シリコン製造工程が終了した後にベルジャーを開放して多結晶シリコンを取り出し、ベルジャーの清浄化(搬送、水洗浄、搬送、内表面の水分除去、ベルジャー内部の高純度不活性ガス置換)を行い、次バッチの多結晶シリコン製造工程用の反応炉として組み立てを完了するまでの時間が、ベルジャーの開放時間である。
 図2によれば、開放時間が長くなるにつれて多結晶シリコンの電気抵抗率が低くなる傾向が読み取れる。電気抵抗率の低下は、多結晶シリコン内部に取り込まれる電気的に活性な不純物のレベルが高くなることを意味しており、開放時間が長くなるにつれて多結晶シリコンの高純度化が阻害される傾向にあることが分かる。つまり、上述したベルジャー開放時間の短縮化は、高純度多結晶シリコンの製造にとって有効であることが読み取れる。
 図3は、ベルジャーの水洗浄終了後から乾燥終了までの時間と多結晶シリコンの電気抵抗率の関係を調べた結果を説明するための図である。ここでの乾燥工程終了は、上述の真空ポンプによる減圧下に、圧力ゲージが一定値になった後、10分間真空を維持した時点を乾燥工程終了としている。
 図3においては、ベルジャーの水洗浄終了後から乾燥終了までの時間と多結晶シリコンの電気抵抗率は、最小二乗法により得られる直線で近似可能で、時間が長くなるにつれて多結晶シリコンの電気抵抗率が低くなることが読み取れる。つまり、多結晶シリコンの品質を管理するためには、ベルジャーの開放時間そのものよりも水洗浄工程終了後から乾燥工程終了までの時間を短縮することが有効であり、真空ポンプを用いて乾燥工程の時間を短縮することが、ベルジャー高純度多結晶シリコンの製造にとって極めて有効な手法であることが分かる。
 以下に、本発明に係る清浄化技術を、実施例により説明する。
 先ず、多結晶シリコンの析出工程が終了した後にベルジャー1を開放し、ベルジャー1を洗浄装置に移動して、通常の手順により洗浄作業を行う。この洗浄作業の終了後、クレーンなどによりベルジャー1をベースプレート2上に載せ、乾燥装置を組み上げる。この状態で、真空ポンプ7を運転してベルジャー1内の圧力を水の蒸気圧以下にする。この減圧により、洗浄工程でベルジャー1の内表面に付着した水分はベルジャー1の外へと排出される。
 上記減圧時の設定圧力は、ベルジャー1の内部が内表面温度における水の蒸気圧よりも低くなるように設定する必要があるが、概ね200Pa以下の真空到達能力を有する真空ポンプを用いた場合には、特に温度を気にすることなく、短時間で目的の乾燥状態に到達させることができる。
 なお、ベルジャー1の内表面の水分や付着物が蒸発する際、ベルジャー1およびベースプレート2からは蒸発熱が奪われるが、これらの熱容量は十分に大きいため温度低下は事実上無視することができる。
 ベルジャー1の内表面の水分や付着物は圧力の低下に伴って速やかに蒸発するが、圧力ゲージで乾燥状態となったことを確認する場合、ベルジャー1の内部圧力が1000Pa以下に到達後、好ましくは5分経過した時点を乾燥終了とすることができるが、装置の安定性等を考慮した場合、好ましくは更に5分以上減圧を持続する。この持続時間の圧力ゲージの挙動を観察することで、モニタ系に異常が生じていないことの確認もできる。
 ベルジャー1内部を所定の圧力で一定時間保持する乾燥工程の終了後、真空ポンプ7の運転を停止し、水分を含まない高純度不活性ガスをベルジャー1内に導入して内部圧力を大気圧とする。この高純度不活性ガスの導入は、ベルジャー1内部への水分の再浸入を抑制するためのもので、露点が-40℃以下のガスが望ましい。不活性ガスとしては、窒素ガスが望ましい。
 そして、清浄化されたベルジャー1とベースプレート2をなるべく早めに多結晶シリコン製造用反応炉として組み立て、次のバッチの製造を行うための待機状態、即ち水素や窒素等の不活性ガスで清浄性が保たれた状態とすることが好ましい。
 表2は、本発明の手法により内容積3.5mのベルジャーの乾燥を行った際の、乾燥状態の減圧維持時間との関係を調べた結果である。なお、このとき用いた真空ポンプの装置自体が持つ仕様上の真空到達度は20Paであるが、7分を過ぎた段階で内部の真空度は1000Pa以下となり、以後1000Pa以下が維持された。また、乾燥状態は、減圧終了後に高純度窒素ガスをチャンバー内に導入して大気圧に戻し、さらに、流量200ノルマルリットル/分の窒素ガス(キャリアガス)を流して露点を測定した。これにより、バッチ毎もしくは数バッチ毎に、高純度な水や二酸化炭素ペレットを用いて析出ベルジャーの洗浄が行われ、内表面の清浄化が図られる。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、減圧保持時間7分で、減圧をキャリアガスで解除した際のキャリアガスの露点が-40℃を下回り、10分以上で-61℃に達しており、十分な乾燥状態にあることが確認された。
 これに対し、スチーム加熱による乾燥では、上記と同等の乾燥状態を得るためには長時間を要する。
 表3は、上記と同じ内容積のベルジャーのジャケットにスチーム加熱による熱媒を導入して、ベルジャーを約110℃に加熱保持し、当該ベルジャー内に200ノルマルリットル/分(露点-72℃)の高純度窒素ガスを供給し、当該当該窒素ガス(キャリアガス)の露点を露点計で評価した結果である。
 図4は、この測定で用いたベルジャー乾燥系の構成を説明するための図で、図中、符号8はジャケット、符号9は熱媒循環経路、符号10および11はそれぞれ、熱交換器および熱媒循環ポンプである。
Figure JPOXMLDOC01-appb-T000003
 キャリアガスの露点が、乾燥の目安である-60℃以下になるまでの時間は8時間以上であり、本願発明に比較して50倍程度の長時間を要する。
 本発明によれば、ベルジャー内表面から水分が効率的に除去され、ベルジャーの清浄化の短時間化が図られる。その結果、ベルジャー内表面の清浄度を高めて高純度多結晶シリコンの製造に寄与することとなる技術が提供される。
1 ベルジャー
2 ベースプレート
3 パッキン
4 真空計
5 ガス導入ライン
6 ガス排気ライン
7 真空ポンプ
8 ジャケット
9 熱媒循環経路
10 熱交換器
11 熱媒循環ポンプ

Claims (9)

  1.  ジーメンス法による多結晶シリコン製造に用いられるベルジャーの清浄化方法であって、
     前記ベルジャーの水を用いる洗浄工程後に、該ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する乾燥工程を備えているベルジャー清浄化方法。
  2.  前記乾燥工程は、200Pa以下の真空到達能力を有する真空ポンプを用い、前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行う乾燥工程である請求項1記載のベルジャー清浄化方法。
  3.  前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている請求項1又は2に記載のベルジャー清浄化方法。
  4.  ジーメンス法による多結晶シリコンの析出工程を複数回繰り返して行う多結晶シリコンの製造方法であって、
     前記析出工程の終了後であって、次のバッチの析出工程の前に、前記多結晶シリコンの析出に用いられるベルジャーを清浄化する工程を有し、
     該ベルジャーの清浄化工程は、前記ベルジャーを水を用いて洗浄する水洗浄工程と該水洗浄工程に続く乾燥工程とを備え、
     前記乾燥工程は、前記水洗浄工程後に、200Pa以下の真空到達能力を有する真空ポンプを用いて前記ベルジャー内部の気圧が1000Pa以下となる減圧操作を行うことにより、前記ベルジャー内部が内表面温度における水の蒸気圧よりも低い圧力となるように減圧して水分を除去する工程であり、且つ、前記水洗浄工程終了後から乾燥工程終了までの時間を1.2時間以下とする、ことを特徴とする多結晶シリコンの製造方法。
  5.  前記ベルジャーの清浄化工程は、さらに、前記乾燥工程に続き、前記ベルジャーの内部に水分を低下させた高純度不活性ガスを導入して内圧を大気圧に戻す工程を備えている請求項4に記載の多結晶シリコンの製造方法。
  6.  前記水洗浄工程終了後から乾燥工程終了までの時間を0.8時間以下とする請求項4又は5に記載の多結晶シリコンの製造方法。
  7.  前記水洗浄工程終了後から乾燥工程終了までの時間を0.4時間以下とする請求項6に記載の多結晶シリコンの製造方法。
  8.  前記乾燥工程を、前記ベルジャー内部の気圧が1000Pa以下となった後5分経過した時点で終了させる請求項4又は5に記載の多結晶シリコンの製造方法。
  9.  ジーメンス法による多結晶シリコン製造に用いられるベルジャーを乾燥させるための装置であり、該装置は、前記ベルジャーを載置することによって気密空間を形成することができると共に、前記気密空間内の気圧を減圧するための真空ラインと、前記気密空間内の気圧を常圧に戻すための乾燥気体ラインを有することを特徴とするベルジャー用乾燥装置。
PCT/JP2011/001319 2010-06-16 2011-03-07 ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置 WO2011158404A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012520242A JP5699145B2 (ja) 2010-06-16 2011-03-07 ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
EP11795312.5A EP2583943B1 (en) 2010-06-16 2011-03-07 Method for manufacturing polycrystalline silicon
US13/704,767 US9126242B2 (en) 2010-06-16 2011-03-07 Method for cleaning bell jar, method for producing polycrystalline silicon, and apparatus for drying bell jar
AU2011266575A AU2011266575B2 (en) 2010-06-16 2011-03-07 Method for cleaning bell jar, method for manufacturing polycrystalline silicon and device for drying bell jar
CN201180029911.1A CN102985364B (zh) 2010-06-16 2011-03-07 钟罩清洁化方法、多晶硅的制造方法以及钟罩用干燥装置
US14/822,378 US20150345862A1 (en) 2010-06-16 2015-08-10 Method for cleaning bell jar, method for producing polycrystalline silicon, and apparatus for drying bell jar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-137646 2010-06-16
JP2010137646 2010-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/704,767 A-371-Of-International US9126242B2 (en) 2010-06-16 2011-03-07 Method for cleaning bell jar, method for producing polycrystalline silicon, and apparatus for drying bell jar
US14/822,378 Division US20150345862A1 (en) 2010-06-16 2015-08-10 Method for cleaning bell jar, method for producing polycrystalline silicon, and apparatus for drying bell jar

Publications (1)

Publication Number Publication Date
WO2011158404A1 true WO2011158404A1 (ja) 2011-12-22

Family

ID=45347822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001319 WO2011158404A1 (ja) 2010-06-16 2011-03-07 ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置

Country Status (6)

Country Link
US (2) US9126242B2 (ja)
EP (1) EP2583943B1 (ja)
JP (1) JP5699145B2 (ja)
CN (1) CN102985364B (ja)
AU (1) AU2011266575B2 (ja)
WO (1) WO2011158404A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528407A (ja) * 2014-08-18 2017-09-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法
CN110753675A (zh) * 2017-06-08 2020-02-04 株式会社德山 清洗装置以及清洗方法
WO2021100415A1 (ja) * 2019-11-21 2021-05-27 株式会社トクヤマ 多結晶シリコンの製造装置および多結晶シリコンの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013209076A1 (de) * 2013-05-16 2014-11-20 Wacker Chemie Ag Reaktor zur Herstellung von polykristallinem Silicium und Verfahren zur Entfernung eines Silicium enthaltenden Belags auf einem Bauteil eines solchen Reaktors
CN104482725B (zh) * 2014-12-15 2016-05-25 上海明兴开城超音波科技有限公司 一种清洗零件的低压干燥法和它的装置
CN108213018B (zh) * 2018-01-26 2021-01-01 广州从化珠江啤酒分装有限公司 一种洗瓶机安全防护系统
CN114798554B (zh) * 2022-04-14 2022-11-04 北京华林嘉业科技有限公司 立式半导体外延石英炉管钟罩及石英件清洗机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114815A (en) * 1980-02-08 1981-09-09 Koujiyundo Silicon Kk Preliminary washing method of reaction furnace for preparing polycrystalline silicon
JPH06216036A (ja) 1991-09-16 1994-08-05 Hemlock Semiconductor Corp 多結晶シリコン製造用cvd反応器の清浄化法
JP2008037748A (ja) 2006-08-08 2008-02-21 Wacker Chemie Ag 低下されたドーパント含量を有する高純度多結晶シリコンを製造するための方法及び装置
JP2009196882A (ja) 2008-01-25 2009-09-03 Mitsubishi Materials Corp 反応炉洗浄装置
JP2009256200A (ja) * 2008-03-28 2009-11-05 Mitsubishi Materials Corp 多結晶シリコン製造装置におけるポリマー不活性化方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2494541A (en) * 1948-03-19 1950-01-17 Horace K Burr Vacuum drier with automatic capping device
ATE113757T1 (de) * 1985-08-28 1994-11-15 Fsi Int Inc Verfahren und vorrichtung zum entfernen von schichten von substraten.
DE3919529C2 (de) * 1988-07-13 1994-09-29 Osaka Vacuum Ltd Vakuumpumpe
JPH0737768A (ja) * 1992-11-26 1995-02-07 Sumitomo Electric Ind Ltd 半導体ウェハの補強方法及び補強された半導体ウェハ
US6114475A (en) * 1998-04-06 2000-09-05 Union Carbide Chemicals & Plastics Technology Corporation Reactor drying by addition of compound that lowers boiling point of water
US6623801B2 (en) * 2001-07-30 2003-09-23 Komatsu Ltd. Method of producing high-purity polycrystalline silicon
US7935327B2 (en) * 2006-08-30 2011-05-03 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor integrated into a siemens-type process
CN101717995A (zh) * 2009-11-16 2010-06-02 乐山乐电天威硅业科技有限责任公司 多晶硅生产还原炉启、停炉处理工艺及装置
JP2012101984A (ja) * 2010-11-11 2012-05-31 Shin-Etsu Chemical Co Ltd ベルジャー清浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114815A (en) * 1980-02-08 1981-09-09 Koujiyundo Silicon Kk Preliminary washing method of reaction furnace for preparing polycrystalline silicon
JPH06216036A (ja) 1991-09-16 1994-08-05 Hemlock Semiconductor Corp 多結晶シリコン製造用cvd反応器の清浄化法
JP2008037748A (ja) 2006-08-08 2008-02-21 Wacker Chemie Ag 低下されたドーパント含量を有する高純度多結晶シリコンを製造するための方法及び装置
JP2009196882A (ja) 2008-01-25 2009-09-03 Mitsubishi Materials Corp 反応炉洗浄装置
JP2009256200A (ja) * 2008-03-28 2009-11-05 Mitsubishi Materials Corp 多結晶シリコン製造装置におけるポリマー不活性化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2583943A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528407A (ja) * 2014-08-18 2017-09-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法
CN110753675A (zh) * 2017-06-08 2020-02-04 株式会社德山 清洗装置以及清洗方法
WO2021100415A1 (ja) * 2019-11-21 2021-05-27 株式会社トクヤマ 多結晶シリコンの製造装置および多結晶シリコンの製造方法

Also Published As

Publication number Publication date
CN102985364B (zh) 2015-05-20
CN102985364A (zh) 2013-03-20
US20130089489A1 (en) 2013-04-11
JP5699145B2 (ja) 2015-04-08
EP2583943A1 (en) 2013-04-24
US9126242B2 (en) 2015-09-08
EP2583943B1 (en) 2022-08-31
JPWO2011158404A1 (ja) 2013-08-15
US20150345862A1 (en) 2015-12-03
EP2583943A4 (en) 2015-10-07
AU2011266575A1 (en) 2013-01-31
AU2011266575B2 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5699145B2 (ja) ベルジャー清浄化方法、多結晶シリコンの製造方法、およびベルジャー用乾燥装置
JP5307216B2 (ja) 多結晶シリコン棒の製造方法
KR101494462B1 (ko) 다결정 실리콘의 세정 방법 및 세정 장치 및 다결정 실리콘의 제조 방법
WO2010073725A1 (ja) 多結晶シリコンの洗浄方法及び洗浄装置並びに多結晶シリコンの製造方法
TWI768025B (zh) 成膜裝置及其洗淨方法
JP2011233583A (ja) 気相成長装置及びシリコンエピタキシャルウェーハの製造方法
JP2008078285A (ja) 基板処理装置および半導体装置の製造方法
KR101731410B1 (ko) 다결정 실리콘의 증착 방법
CN101311336A (zh) 薄膜形成装置及其使用方法
JP4541739B2 (ja) 半導体装置の製造方法、クリーニング方法及び半導体装置の製造装置
CN102732855A (zh) 薄膜形成装置的清洗方法、薄膜形成方法及薄膜形成装置
TWI713946B (zh) 氣相成長裝置的汙染管理方法及磊晶晶圓的製造方法
JP5087653B2 (ja) 半導体装置の製造方法、クリーニング方法及び基板処理装置
JP2018087126A (ja) 多結晶シリコンロッド製造用反応炉及びその製造方法並びにそれを用いた多結晶シリコンロッドの製造方法
WO2020153340A1 (ja) 多結晶シリコン塊状物、その梱包体及びこれらの製造方法
JP2020119920A (ja) 基板処理装置の洗浄方法、および基板処理装置
JP5383787B2 (ja) クリーニング方法、半導体装置の製造方法及び基板処理装置
JP5495449B2 (ja) クリーニング方法、半導体装置の製造方法及び基板処理装置
JP2019091848A (ja) 気相成長装置の炉内部品の洗浄方法
JP2013023426A (ja) ポリシリコン受け容器
JP4875116B2 (ja) 半導体装置の製造方法
CN117604633A (zh) 恢复外延反应炉的方法
JPH05217902A (ja) 熱処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029911.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13704767

Country of ref document: US

Ref document number: 2011795312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011266575

Country of ref document: AU

Date of ref document: 20110307

Kind code of ref document: A