JP5780910B2 - 円筒型圧電素子の製造方法 - Google Patents

円筒型圧電素子の製造方法 Download PDF

Info

Publication number
JP5780910B2
JP5780910B2 JP2011219148A JP2011219148A JP5780910B2 JP 5780910 B2 JP5780910 B2 JP 5780910B2 JP 2011219148 A JP2011219148 A JP 2011219148A JP 2011219148 A JP2011219148 A JP 2011219148A JP 5780910 B2 JP5780910 B2 JP 5780910B2
Authority
JP
Japan
Prior art keywords
cylindrical piezoelectric
electrode
piezoelectric element
polarization
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011219148A
Other languages
English (en)
Other versions
JP2013080774A (ja
Inventor
長英 坂井
長英 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011219148A priority Critical patent/JP5780910B2/ja
Priority to PCT/JP2012/075689 priority patent/WO2013051622A1/ja
Publication of JP2013080774A publication Critical patent/JP2013080774A/ja
Priority to US14/219,178 priority patent/US9768374B2/en
Application granted granted Critical
Publication of JP5780910B2 publication Critical patent/JP5780910B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2027Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having cylindrical or annular shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2046Cantilevers, i.e. having one fixed end adapted for multi-directional bending displacement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は、円筒型圧電素子の製造方法に関する。
従来より、円筒型圧電素子の小型化が望まれている。円筒型圧電素子の小型化には、製造上の困難さが伴う。特許文献1には、小型の円筒型圧電素子を製造する方法が開示されている。すなわち、特許文献1に開示されている製造方法によれば、まず、円筒形状を呈する圧電素子であって、径方向に凸で軸方向を長手方向とする凸部が外周面に設けられた形態の圧電素子を押出成形する。続いて、前記凸部を含む外周面に駆動電極を形成し、内周面には基準電極を形成する。そして、それら電極を利用して当該圧電素子に分極処理を施した後、前記凸部を機械加工で除去する。これら一連の工程により、複数個に分割された駆動電極を備える円筒型圧電素子を得ることができる。
特開2009−212519号公報
しかしながら、特許文献1に開示されている製造方法によれば、上述した外周面の凸部を除去する工程において高精度な機械加工を要する。この機械加工の精度が良好でない場合には、例えば当該円筒型圧電素子の割れや駆動電極の短絡等の様々な不具合が生じる虞がある。具体的には、例えば前記凸部の除去が不完全であれば、駆動電極に電圧を印加しても十分な変位を得られないことがある。また、前記凸部の除去加工が深すぎて溝を形成してしまった場合には、駆動電極に電圧を印加した際の変形で、当該円筒型圧電素子に割れが発生する虞がある。
本発明は、前記の事情に鑑みて為されたものであり、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法を提供することを目的とする。
前記の目的を達成するために、本発明の第1の態様による円筒型圧電素子の製造方法は、
円筒型圧電素子の製造方法であって、
圧電材料を円筒型に成型して焼成した円筒型圧電材料を作成し、
前記円筒型圧電材料の内周面に基準電極を設け、
前記円筒型圧電材料の外周面に、周方向に所定の幅を持ち且つ軸方向には一方端から他方端へ亘る複数の駆動用電極を設け、
前記円筒型圧電材料の外周面のうち、前記円筒型圧電材料の軸方向における一方端近傍部位に、前記軸方向について前記複数の駆動用電極に対して直列に且つ電気的に導通する態様で分極用電極を設け、
前記分極用電極と前記基準電極との間に所定の電圧を印加し、当該円筒型圧電材料のうち前記複数の駆動用電極に対応する領域を分極し、
前記円筒型圧電材料のうち前記分極用電極を除去する
ことを特徴とする。
本発明によれば、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法を提供することができる。
図1は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。 図2は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“外部電極形成ステップ”を示す図である。 図3は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“分極ステップ”を示す図である。 図4は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“切断・研磨除去ステップ”を示す図である。 図5は、本発明の第1実施形態に係る円筒型圧電素子の製造方法により製造された円筒型圧電素子の斜視図を示す図である。 図6は、本発明の第1実施形態に係る円筒型圧電素子を、細径SPMプローブに適用した一例を示す斜視図である。 図7は、本発明の第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。 図8は、本発明の第1実施形態に係る円筒型圧電素子を、細径SPMプローブに適用した一例を示す斜視図である。 図9は、本発明の第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。 図10は、本発明の第2実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。 図11は、同製造方法における“外部電極形成ステップ”を示す図である。 図12は、同製造方法における“分極ステップ”を示す図である。 図13は、同製造方法における“切断・研磨除去ステップ”を示す図である。 図14は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。 図15は、複数本の円筒型圧電材料を同時に分極処理する為の装置構成を示す図である。 図16は、円筒型圧電素子を端面側から観た図である。 図17は、図16に示すA−A´線における円筒型圧電素子の断面矢視図である。 図18は、図16に示すA−A´線における円筒型圧電素子の断面矢視図である。
[第1実施形態]
以下、図面を参照して本発明の第1実施形態に係る円筒型圧電素子の製造方法について説明する。図1は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。図2は、同製造方法における“外部電極形成ステップ”を示す図である。図3は、同製造方法における“分極ステップ”を示す図である。図4は、同製造方法における“切断・研磨除去ステップ”を示す図である。図5は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。
まず、例えばジルコン酸チタン酸鉛(PZT)等に代表される圧電材料を、成型や切削等の方法によって円筒形状に成型して焼成し(成型・焼成ステップ)、中空部位(貫通孔)3Hを備える円筒型圧電材料3を作成する。
続いて、円筒型圧電材料3の外周面及び内周面に、次のように電極を形成する(外部電極形成ステップ)。すなわち、円筒型圧電材料3の外周面には、周方向に所定の幅を持ち且つ軸方向(円筒型圧電材料3の長さ方向)には一方端から他方端へ亘って、複数の駆動用電極5−1,5−2(図2では不可視の部位のものを含めて、周方向に等間隔に計4個の駆動用電極)を形成する。
さらに、これら4個の駆動用電極全てと導通し且つ当該円筒型圧電材料3の軸方向における一方端近傍に位置するように(前記軸方向について前記複数の駆動用電極に対して直列に)分極用電極5−11を形成する。
他方、円筒型圧電材料3の内周面には、その略全面に基準電極5−21を形成する。
ここで、図2に示す例では、2つの駆動用電極5−1,5−2のみしか図示されていないが、実際には当該図面の視点では不可視の部位に更に2つの駆動用電極が設けられている。詳細には、当該円筒型圧電材料3を周方向に4等分する位置に一つずつ計4個の駆動用電極が設けられている。
なお、円筒型圧電素子の軸方向と直交する4方向に駆動する円筒型圧電素子を製造する場合には、上述の態様で4つの駆動用電極を設ける方法が一般的ではある。しかしながら、少なくとも2つ以上の駆動用電極を設けた態様の円筒型圧電素子を製造するのであれば、本第1実施形態を適用することによる格別な効果(後述)を得ることができる。
上述した円筒型圧電材料3の内周面及び外周面に形成する各電極の材料としては、銀、銀パラジウム、金、またはニッケル等、任意の導電性材料を挙げることができる。また、各電極を形成する方法は任意であり、例えばスクリーン印刷、スパッタ、またはメッキ等を挙げることができる。
なお、上述の外部電極形成ステップにおいて各外部電極を形成する順序は任意である。
上述の外部電極形成ステップを完了した後、分極用電極5−11と、基準電極5−21との間に所定の電圧Vを印加し、当該円筒型圧電材料3に分極処理を施す(分極ステップ)。具体的には、例えば基準電極5−21にマイナスの電位を与え、且つ、分極用電極5−11にプラスの電位を与えることで、分極用電極5−11と基準電極5−21との間に所定の電圧を印加して当該円筒型圧電材料3を分極させればよい。
この分極ステップにより、円筒型圧電材料3のうち各駆動用電極より内径側の圧電材料(各駆動用電極の配設部位に対応する部位の圧電材料)が圧電活性領域となる。これは、分極用電極5−11が全ての駆動用電極と導通しているからであり、それぞれの駆動用電極を用いて複数回の分極処理を行う必要がない。つまり、分極用電極5−11と基準電極5−21との間で分極処理を一回施すだけで、全ての駆動用電極に対応する部位についての分極処理が完了する。
上述の分極ステップを完了した後、円筒型圧電材料3のうち分極用電極5−11が形成されている部位を例えばダイシングやレーザ加工等によって切断し、或いは、分極用電極5−11を研磨によって除去する(切断・研磨除去ステップ)。この切断・研磨除去ステップにより、全ての駆動用電極間が非導通となり、互いに独立した複数の圧電活性領域及び駆動用電極が形成され、図5に示す円筒型圧電素子10が完成する。
以上説明したように、本第1実施形態によれば、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法及び円筒型圧電素子を提供することができる。すなわち、本第1実施形態に係る円筒型圧電素子の製造方法によれば、複数の圧電活性領域を有する円筒型圧電素子の製造において、複雑な形状の円筒型圧電素子の焼成や精密な後加工等が必要なく、さらに複数の微細な電極への導通確保も必要ない。従って、簡略な製造工程且つ高い信頼性で、小型の円筒型圧電素子を製造することができる。
以下、本第1実施形態に係る円筒型圧電素子を適用した微小駆動機構について説明する。図6は、本第1実施形態に係る円筒型圧電素子を、細径SPM(Scanning Probe Microscope)プローブに適用した一例を示す斜視図である。図7は、本第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。
すなわち、図6に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端側の中空部位(開口部位)に探針部材1001を配設し、且つ、他方端を支持部1000に対して固定している。このように構成することで、探針部材1001を被駆動体とする微小駆動機構(細径SPM(Scanning Probe Microscope)プローブ)が実現する。
また、図7に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端面に平板1003を設け、且つ、他方端を支持部1000に対して固定している。このように構成することで微小ステージが実現し、例えばスキャナミラー等に用いることができる。
以下、図8及び図9を参照して、共振現象を利用した駆動を行う場合の適用例を説明する。
図8に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端側の中空部位(開口部位)に探針部材1001を配設し、且つ、他方端側の所定位置を支持部1000に対して固定している。このように構成することで、探針部材1001を被駆動体とする微小駆動機構(細径SPM(Scanning Probe Microscope)プローブ)が実現する。
また、図9に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端面に平板1003を設け、且つ、他方端側の所定位置を支持部1000に対して固定している。このように構成することで微小ステージが実現し、例えばスキャナミラー等に用いることができる。
ここで、図8及び図9に示す例において、支持部1000で固定している位置は、円筒型圧電素子10と被駆動体(探針部材1001或いは平板1003)とから成る系の共振モードにおける節位置である。このように構成し、円筒型圧電素子10と被駆動体(探針部材1001或いは平板1003)とから成る系の共振周波数の駆動信号を各圧電活性化領域に印加することで、共振現象を利用してより大きな振幅を得ることができる。
[第2実施形態]
以下、本発明の第2実施形態に係る円筒型圧電素子の製造方法について説明する。なお、説明の重複を避ける為、第1実施形態に係る円筒型圧電素子の製造方法との相違点を説明する。この相違点の一つは、外部電極形成ステップ及び分極ステップにおける処理である。
図10は、本発明の第2実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。図11は、同製造方法における“外部電極形成ステップ”を示す図である。図12は、同製造方法における“分極ステップ”を示す図である。図13は、同製造方法における“切断・研磨除去ステップ”を示す図である。図14は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。
まず、第1実施形態と同様、“成型・焼成ステップ”において中空部位(貫通孔)3Hを備える円筒型圧電材料3を作成し(図10参照)、続いて“外部電極形成ステップ”において当該円筒型圧電材料3の外周面及び内周面に外部電極を設ける(図11参照)。この“外部電極形成ステップ”においては、円筒型圧電材料3の内周面に基準電極5−21を形成し、且つ、外周面に複数の駆動用電極と、分極用電極5−11と、本第2実施形態に特有の“折り返し電極5−31”と、を設ける。
前記折り返し電極5−31は、当該円筒型圧電材料3のうち分極用電極5−11が設けられた側の端部とは逆側の端部において、当該円筒型圧電材料3の内周面の基準電極5−21と一体的に(電気的に導通して)形成されている。換言すれば、円筒型圧電材料3の内周面の基準電極5−21を外周面に導出して形成した電極が、折り返し電極5−31である。
そして、分極ステップにおいては、折り返し電極5−31と分極用電極5−11との間に所定の電圧Vを印加する(図12参照)。従って、本第2実施形態に係る円筒型圧電素子の製造方法によれば、分極処理を、円筒型圧電材料3の外周面の外部電極のみを利用して行うことができる。つまり、分極処理のための電気的接続が容易となる(電気的接続構成が簡略となる)。
上述の分極ステップを完了した後は、第1実施形態と同様に“切断・研磨除去ステップ”によって、円筒型圧電材料3のうち分極用電極5−11が形成されている部位を例えばダイシングやレーザ加工等によって切断し、或いは、分極用電極5−11を研磨によって除去する。これにより、図14に示す円筒型圧電素子10が完成する。
ところで、図15に示すように、折り返し電極5−31を利用することで、複数本の円筒型圧電材料3を同時に分極処理することができる。図15は、複数本の円筒型圧電材料3を同時に分極処理する為の装置構成を示す図である。同図に示すように、互いに平行に2本の棒状電極110,120を配設し、それら棒状電極110,120間を橋渡しするように、棒状電極110,120上に複数本の円筒型圧電材料3を載置する。
さらに、例えば絶縁性の弾性部材100等の押し付け部材によって、複数本の円筒型圧電材料3を上方から押さえる。なお、この押し付け部材による円筒型圧電材料3の押さえ付けは、単に位置固定の為であり、必ずしも必要ではない。
そして、棒状電極110と棒状電極120との間に所定の電圧Vを印加することで、全ての円筒型圧電材料3を一括して分極処理することができる。図15に示す態様で分極処理することで、円筒型圧電材料3の内周面の基準電極に電圧を印加する為の治具が不要になり、更に位置決めも容易になる。
ところで、図16は、円筒型圧電素子10を端面側から観た図である。図17及び図18は、図16に示すA−A´線における円筒型圧電素子10の断面矢視図である。図17に示す例では、円筒型圧電材料3の端面に特に何ら加工を施さない状態で、基準電極5−21と折り返し電極5−31とを設けている。図18に示す例では、円筒型圧電材料3の端面を面取り加工して面取り部3tを形成した後に、基準電極5−21と折り返し電極5−31とを設けている。
図18に示すように構成することで、円筒型圧電素子10の端面の縁部位が例えば磨耗等によって削り取られてしまう等によって、基準電極5−21と折り返し電極5−31との電気的導通が無くなってしまうことを未然に防ぐことができる。
以上説明したように、本第2実施形態によれば、第1実施形態に係る円筒型圧電素子の製造方法及び円筒型圧電素子と同様の効果を奏する上に、分極処理の為の電気的接続を円筒型圧電材料の外周面のみで行うことができる為、“分極ステップ”を更に簡略化することができる。
なお、図14に示すように完成後の円筒型圧電素子10は折り返し電極5−31を備えているが、折り返し電極5−31を切断してしまっても勿論よい。しかしながら、折り返し電極5−31を残存させることで、当該円筒型圧電素子10の駆動時に内周面の基準電極5−21にプローブを接触させる必要がない。つまり、折り返し電極5−31を利用することで、円筒型圧電素子10の内周面の外部電極(基準電極5−21)を用いずに当該円筒型圧電素子10を駆動することが可能となる。
以上、第1実施形態及び第2実施形態に基づいて本発明を説明したが、本発明は上述の例に限定されるものではなく、本発明の要旨の範囲内で、例えば次のような変形及び応用が可能なことは勿論である。
さらに、上述した実施形態には種々の段階の発明が含まれており、開示した複数の構成要件の適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示す全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。
3H…中空部位、 3…円筒型圧電材料、 3t…面取り部、 5−1,5−2…駆動用電極、 5−11…分極用電極、 5−21…基準電極、 5−31…折り返し電極、 10…円筒型圧電素子、 1000…支持部、 100…弾性部材、 1001…探針部材、 1003…平板、 110,120…棒状電極。

Claims (3)

  1. 円筒型圧電素子の製造方法であって、
    圧電材料を円筒型に成型して焼成した円筒型圧電材料を作成し、
    前記円筒型圧電材料の内周面に基準電極を設け、
    前記円筒型圧電材料の外周面に、周方向に所定の幅を持ち且つ軸方向には一方端から他方端へ亘る複数の駆動用電極を設け、
    前記円筒型圧電材料の外周面のうち、前記円筒型圧電材料の軸方向における一方端近傍部位に、前記軸方向について前記複数の駆動用電極に対して直列に且つ電気的に導通する態様で分極用電極を設け、
    前記分極用電極と前記基準電極との間に所定の電圧を印加し、当該円筒型圧電材料のうち前記複数の駆動用電極に対応する領域を分極し、
    前記円筒型圧電材料のうち前記分極用電極を除去する
    ことを特徴とする円筒型圧電素子の製造方法。
  2. 前記基準電極を前記内周面に設ける際には、さらに前記内周面から前記外周面の前記他方端近傍部位まで連続的に延出させて設ける
    ことを特徴とする請求項1に記載の円筒型圧電素子の製造方法。
  3. 前記分極は、第1の棒状電極と第2の棒状電極とを互いに略平行に配置し、前記第1の棒状電極上に前記分極用電極を設けた前記一方端近傍部位を載置し、前記第2の棒状電極上に前記基準電極が延出された前記外周面の前記他方端近傍部位を載置し、前記第1の棒状電極と前記第2の棒状電極との間に所定の電圧を印加することで行う
    ことを特徴とする請求項2に記載の円筒型圧電素子の製造方法。
JP2011219148A 2011-10-03 2011-10-03 円筒型圧電素子の製造方法 Expired - Fee Related JP5780910B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011219148A JP5780910B2 (ja) 2011-10-03 2011-10-03 円筒型圧電素子の製造方法
PCT/JP2012/075689 WO2013051622A1 (ja) 2011-10-03 2012-10-03 円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構
US14/219,178 US9768374B2 (en) 2011-10-03 2014-03-19 Method of manufacturing cylindrical piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219148A JP5780910B2 (ja) 2011-10-03 2011-10-03 円筒型圧電素子の製造方法

Publications (2)

Publication Number Publication Date
JP2013080774A JP2013080774A (ja) 2013-05-02
JP5780910B2 true JP5780910B2 (ja) 2015-09-16

Family

ID=48043776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219148A Expired - Fee Related JP5780910B2 (ja) 2011-10-03 2011-10-03 円筒型圧電素子の製造方法

Country Status (3)

Country Link
US (1) US9768374B2 (ja)
JP (1) JP5780910B2 (ja)
WO (1) WO2013051622A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932106B (zh) * 2019-04-03 2020-12-29 业成科技(成都)有限公司 压电传感器制作方法
US11849642B2 (en) * 2020-04-17 2023-12-19 Wisconsin Alumni Research Foundation 3D printed and in-situ poled flexible piezoelectric pressure sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037877B1 (en) * 1980-02-07 1984-09-19 Toray Industries, Inc. Piezoelectric polymer material, process for producing the same and an ultrasonic transducer utilizing the same
JP2665950B2 (ja) * 1988-08-30 1997-10-22 株式会社トーキン 円環状圧電振動子の製造方法
JP2993506B2 (ja) 1988-10-19 1999-12-20 株式会社東芝 アクチュエータ
JPH0626804Y2 (ja) * 1989-02-23 1994-07-20 工業技術院長 シールド付微動機構
JP3244770B2 (ja) * 1992-06-04 2002-01-07 セイコーインスツルメンツ株式会社 圧電モータ用圧電素子の製造方法
JPH07106661A (ja) * 1993-09-29 1995-04-21 Tokin Corp 圧電セラミックの電気分極方法とその分極治具
JPH07287022A (ja) * 1994-04-19 1995-10-31 Tokin Corp 顕微鏡用探針微動機構
JPH0924615A (ja) * 1995-07-11 1997-01-28 Minolta Co Ltd インクジェット記録装置に用いる円筒状圧電体の製造方法
JPH09327092A (ja) * 1996-06-05 1997-12-16 Murata Mfg Co Ltd 無指向性スピーカ
US5892318A (en) * 1997-01-02 1999-04-06 Motorola Inc. Piezoelectric transformer with multiple output
JP2003046159A (ja) * 2001-07-27 2003-02-14 Japan Science & Technology Corp アクチュエータ
JP5339851B2 (ja) * 2007-11-26 2013-11-13 株式会社日立ハイテクサイエンス 変位計付圧電アクチュエータおよび圧電素子ならびにそれを用いた位置決め装置
US8957484B2 (en) 2008-02-29 2015-02-17 University Of Washington Piezoelectric substrate, fabrication and related methods

Also Published As

Publication number Publication date
US9768374B2 (en) 2017-09-19
US20140203690A1 (en) 2014-07-24
JP2013080774A (ja) 2013-05-02
WO2013051622A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5914355B2 (ja) 圧電アクチュエータ
US9055372B2 (en) Acoustic transducer with gap-controlling geometry and method of manufacturing an acoustic transducer
US20140081299A1 (en) Micromachined Ultrasonic Scalpel with Embedded Piezoelectric Actuator
JP4704537B2 (ja) 超音波モータ及び超音波モータ付き電子機器
CN110098317B (zh) 层叠压电陶瓷部件和压电器件
CN103943772B (zh) 单片压电换能器及其制作方法
JP2010252626A (ja) 圧電振動子、その製造方法及び圧電振動子を有する線形アクチュエータ
JP5780910B2 (ja) 円筒型圧電素子の製造方法
JP2018520612A (ja) Dsrスピーカ素子及びその製造方法
CN110462485A (zh) 光扫描装置及其制造方法
JP2013084780A (ja) 圧電素子及び圧電アクチュエータ
JP2015088615A (ja) 圧電素子
JP2015088623A (ja) 圧電素子およびその製造方法
JP2013179786A (ja) 圧電素子及び圧電アクチュエータ
JP2012199325A (ja) 圧電素子の製造方法、及び圧電素子
JP2015087548A (ja) 圧電アクチュエータ
JP4497980B2 (ja) 圧電体およびその分極方法
JP6265758B2 (ja) 静電容量型トランスデューサ
JPH114025A (ja) 圧電セラミックス素子
JP2012199389A (ja) 圧電装置の製造方法
JP2010142091A (ja) 超音波モータ
JP2022165945A (ja) 筒型圧電素子
KR20150142835A (ko) 4 접점을 갖는 초음파 모터
JP2001044524A (ja) 積層圧電体
JP5482118B2 (ja) 駆動装置、レンズ鏡筒及びカメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R151 Written notification of patent or utility model registration

Ref document number: 5780910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees