WO2013051622A1 - 円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構 - Google Patents

円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構 Download PDF

Info

Publication number
WO2013051622A1
WO2013051622A1 PCT/JP2012/075689 JP2012075689W WO2013051622A1 WO 2013051622 A1 WO2013051622 A1 WO 2013051622A1 JP 2012075689 W JP2012075689 W JP 2012075689W WO 2013051622 A1 WO2013051622 A1 WO 2013051622A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical piezoelectric
piezoelectric element
electrode
peripheral surface
cylindrical
Prior art date
Application number
PCT/JP2012/075689
Other languages
English (en)
French (fr)
Inventor
長英 坂井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2013051622A1 publication Critical patent/WO2013051622A1/ja
Priority to US14/219,178 priority Critical patent/US9768374B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/202Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
    • H10N30/2027Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having cylindrical or annular shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2046Cantilevers, i.e. having one fixed end adapted for multi-directional bending displacement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base

Definitions

  • the present invention relates to a method for manufacturing a cylindrical piezoelectric element, a cylindrical piezoelectric element, and a minute driving mechanism.
  • Japanese Unexamined Patent Application Publication No. 2009-212519 discloses a method of manufacturing a small cylindrical piezoelectric element. That is, according to the manufacturing method disclosed in Japanese Patent Application Laid-Open No. 2009-212519, first, a piezoelectric element having a cylindrical shape, and a convex portion that is convex in the radial direction and whose longitudinal direction is the axial direction is formed on the outer peripheral surface. The formed piezoelectric element is extruded. Subsequently, a drive electrode is formed on the outer peripheral surface including the convex portion, and a reference electrode is formed on the inner peripheral surface.
  • the present invention has been made in view of the above circumstances, and provides a method for manufacturing a cylindrical piezoelectric element, a cylindrical piezoelectric element, and a micro-drive mechanism that achieve miniaturization without increasing the difficulty of processing. With the goal.
  • a method of manufacturing a cylindrical piezoelectric element includes: A method of manufacturing a cylindrical piezoelectric element, Create a cylindrical piezoelectric material that is fired by molding a piezoelectric material into a cylindrical shape, A reference electrode is provided on the inner peripheral surface of the cylindrical piezoelectric material, A plurality of driving electrodes having a predetermined width in the circumferential direction and extending from one end to the other end in the axial direction are provided on the outer peripheral surface of the cylindrical piezoelectric material, Polarization is performed in such a manner that, in the axial direction of the cylindrical piezoelectric material, in the vicinity of one end in the axial direction of the cylindrical piezoelectric material, the axial direction is electrically connected in series to the plurality of driving electrodes.
  • a predetermined voltage is applied between the polarization electrode and the reference electrode, and a region corresponding to the plurality of drive electrodes in the cylindrical piezoelectric material is polarized, The polarization electrode is removed from the cylindrical piezoelectric material.
  • a cylindrical piezoelectric element comprises: A cylindrical piezoelectric element, A plurality of drive electrodes provided at substantially equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical piezoelectric element; A reference electrode provided on the inner peripheral surface of the cylindrical piezoelectric element; A folded electrode provided in the vicinity of one end in the axial direction of the cylindrical piezoelectric element of the outer peripheral surface and electrically connected to the reference electrode of the inner peripheral surface; A plurality of piezoelectric activation regions that are polarized regions between the drive electrode and the reference electrode; It is characterized by comprising.
  • the micro drive mechanism comprises: A cylindrical piezoelectric element; A fixing member for fixing one end of the cylindrical piezoelectric element; A driven member disposed at the other end of the cylindrical piezoelectric element; Comprising The cylindrical piezoelectric element is A plurality of drive electrodes provided at substantially equal intervals in the circumferential direction on the outer peripheral surface of the cylindrical piezoelectric element; A reference electrode provided on the inner peripheral surface of the cylindrical piezoelectric element; A folded electrode provided in the vicinity of one end in the axial direction of the cylindrical piezoelectric element of the outer peripheral surface and electrically connected to the reference electrode of the inner peripheral surface; A plurality of piezoelectric activation regions that are polarized regions between the drive electrode and the reference electrode; It is characterized by comprising.
  • the present invention it is possible to provide a method for manufacturing a cylindrical piezoelectric element, a cylindrical piezoelectric element, and a micro-drive mechanism that can be downsized without increasing the difficulty of processing.
  • FIG. 1 is a diagram showing a “molding / firing step” in the method of manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an “external electrode forming step” in the method for manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a “polarization step” in the method of manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a “cutting / polishing removal step” in the method of manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a “molding / firing step” in the method of manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an “external electrode forming step” in the method for manufacturing a cylindrical piezoelectric element according to the first embodiment of the
  • FIG. 5 is a perspective view of a cylindrical piezoelectric element manufactured by the method for manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment of the present invention is applied to a small-diameter SPM probe.
  • FIG. 7 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment of the present invention is applied to a minute stage.
  • FIG. 8 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment of the present invention is applied to a small-diameter SPM probe.
  • FIG. 6 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment of the present invention is applied to a small-diameter SPM probe.
  • FIG. 9 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment of the present invention is applied to a minute stage.
  • FIG. 10 is a diagram showing a “molding / firing step” in the method of manufacturing a cylindrical piezoelectric element according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing an “external electrode forming step” in the manufacturing method.
  • FIG. 12 is a diagram showing a “polarization step” in the manufacturing method.
  • FIG. 13 is a diagram showing a “cutting / polishing removal step” in the manufacturing method.
  • FIG. 14 is a view showing a perspective view of a cylindrical piezoelectric element manufactured by the manufacturing method.
  • FIG. 10 is a diagram showing a “molding / firing step” in the method of manufacturing a cylindrical piezoelectric element according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing an “external electrode forming step” in the manufacturing method.
  • FIG. 15 is a diagram showing an apparatus configuration for simultaneously polarizing a plurality of cylindrical piezoelectric materials.
  • FIG. 16 is a view of the cylindrical piezoelectric element as viewed from the end face side.
  • 17 is a cross-sectional view of the cylindrical piezoelectric element taken along line AA ′ shown in FIG.
  • FIG. 18 is a cross-sectional view of the cylindrical piezoelectric element taken along line AA ′ shown in FIG.
  • FIG. 1 is a diagram showing a “molding / firing step (step S1)” in the method for manufacturing a cylindrical piezoelectric element according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing an “external electrode forming step (step S2)” in the manufacturing method.
  • FIG. 3 is a diagram showing a “polarization step (step S3)” in the manufacturing method.
  • FIG. 4 is a diagram showing a “cutting / polishing removal step (step S4)” in the manufacturing method.
  • FIG. 5 is a view showing a perspective view of a cylindrical piezoelectric element manufactured by the manufacturing method.
  • a piezoelectric material typified by lead zirconate titanate (PZT) or the like is formed into a cylindrical shape by a method such as molding or cutting and fired (molding / firing step), and the hollow portion (through hole) 3H is formed.
  • a cylindrical piezoelectric material 3 is prepared.
  • electrodes are formed on the outer peripheral surface and the inner peripheral surface of the cylindrical piezoelectric material 3 as follows (external electrode forming step).
  • the outer peripheral surface of the cylindrical piezoelectric material 3 has a predetermined width in the circumferential direction and a plurality of driving members extending from one end to the other end in the axial direction (the length direction of the cylindrical piezoelectric material 3).
  • Electrodes 5-1 and 5-2 (a total of four driving electrodes are formed at equal intervals in the circumferential direction, including those that are invisible in FIG. 2).
  • polarization is performed so as to be electrically connected to all four drive electrodes and to be located near one end in the axial direction of the cylindrical piezoelectric material 3 (in series with respect to the plurality of drive electrodes in the axial direction).
  • a working electrode 5-11 is formed.
  • a reference electrode 5-21 is formed on substantially the entire inner peripheral surface of the cylindrical piezoelectric material 3.
  • a total of four driving electrodes are provided one by one at a position where the cylindrical piezoelectric material 3 is divided into four equal parts in the circumferential direction.
  • each electrode formed on the inner peripheral surface and the outer peripheral surface of the cylindrical piezoelectric material 3 described above any conductive material such as silver, silver palladium, gold, or nickel can be cited.
  • the method of forming each electrode is arbitrary, For example, screen printing, sputtering, plating, etc. can be mentioned.
  • a predetermined voltage V is applied between the polarization electrode 5-11 and the reference electrode 5-21, and the cylindrical piezoelectric material 3 is polarized (polarization step). Specifically, for example, by applying a negative potential to the reference electrode 5-21 and applying a positive potential to the polarization electrode 5-11, the polarization between the polarization electrode 5-11 and the reference electrode 5-21 is increased. A predetermined voltage may be applied to the cylindrical piezoelectric material 3 to polarize it.
  • the piezoelectric material on the inner diameter side of each driving electrode in the cylindrical piezoelectric material 3 becomes the piezoelectric active region.
  • the polarization electrode 5-11 is electrically connected to all the drive electrodes, and there is no need to perform polarization processing a plurality of times using each drive electrode. That is, the polarization process is completed for the portions corresponding to all the drive electrodes by performing the polarization process only once between the polarization electrode 5-11 and the reference electrode 5-21.
  • a portion of the cylindrical piezoelectric material 3 where the polarization electrode 5-11 is formed is cut by, for example, dicing or laser processing, or the polarization electrode 5-11 is polished.
  • Remove (cutting / polishing removal step) By this cutting / polishing removal step, all the driving electrodes become non-conductive, and a plurality of piezoelectric active regions and driving electrodes independent from each other are formed, and the cylindrical piezoelectric element 10 shown in FIG. 5 is completed.
  • the first embodiment it is possible to provide a method for manufacturing a cylindrical piezoelectric element and a cylindrical piezoelectric element that can be downsized without increasing the difficulty of processing. That is, according to the method for manufacturing a cylindrical piezoelectric element according to the first embodiment, in the manufacture of a cylindrical piezoelectric element having a plurality of piezoelectric active regions, firing and precise post-processing of a cylindrical piezoelectric element having a complicated shape are performed. It is not necessary to secure conduction to a plurality of fine electrodes. Therefore, a small cylindrical piezoelectric element can be manufactured with a simple manufacturing process and high reliability.
  • FIG. 6 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment is applied to a small-diameter SPM (Scanning Probe Microscope) probe.
  • FIG. 7 is a perspective view showing an example in which the cylindrical piezoelectric element according to the first embodiment is applied to a minute stage.
  • the probe member 1001 is disposed in the hollow portion (opening portion) on one end side of the cylindrical piezoelectric element 10 according to the first embodiment, and the other end is the support portion 1000. It is fixed against.
  • a micro drive mechanism (a small diameter SPM (Scanning Probe Microscope) probe) using the probe member 1001 as a driven body is realized.
  • a flat plate 1003 is provided on one end face of the cylindrical piezoelectric element 10 according to the first embodiment, and the other end is fixed to the support portion 1000.
  • the probe member 1001 is disposed in the hollow part (opening part) on one end side of the cylindrical piezoelectric element 10 according to the first embodiment, and the predetermined position on the other end side is supported. It is fixed to the part 1000.
  • a micro drive mechanism (a small diameter SPM (Scanning Probe Microscope) probe) using the probe member 1001 as a driven body is realized.
  • a flat plate 1003 is provided on one end face of the cylindrical piezoelectric element 10 according to the first embodiment, and a predetermined position on the other end side is fixed to the support portion 1000.
  • the position fixed by the support portion 1000 is in the resonance mode of the system composed of the cylindrical piezoelectric element 10 and the driven body (the probe member 1001 or the flat plate 1003).
  • the resonance phenomenon is utilized by applying a drive signal having a resonance frequency of a system composed of the cylindrical piezoelectric element 10 and the driven body (the probe member 1001 or the flat plate 1003) to each piezoelectric activation region.
  • a larger amplitude can be obtained.
  • FIG. 10 is a diagram showing a “molding / firing step (step S1)” in the method for manufacturing a cylindrical piezoelectric element according to the second embodiment of the present invention.
  • FIG. 11 is a diagram showing an “external electrode formation step (step S2)” in the manufacturing method.
  • FIG. 12 is a diagram showing a “polarization step (step S3)” in the manufacturing method.
  • FIG. 13 is a diagram showing a “cutting / polishing removal step (step S4)” in the manufacturing method.
  • FIG. 14 is a view showing a perspective view of a cylindrical piezoelectric element manufactured by the manufacturing method.
  • a cylindrical piezoelectric material 3 having a hollow portion (through hole) 3H is created in the “molding / firing step” (see FIG. 10), and then the cylinder is formed in the “external electrode forming step”.
  • External electrodes are provided on the outer peripheral surface and inner peripheral surface of the piezoelectric material 3 (see FIG. 11).
  • a reference electrode 5-21 is formed on the inner peripheral surface of the cylindrical piezoelectric material 3, and a plurality of driving electrodes, a polarization electrode 5-11, A “folding electrode 5-31” unique to the second embodiment is provided.
  • the folded electrode 5-31 is formed on the inner peripheral surface of the cylindrical piezoelectric material 3 at the end of the cylindrical piezoelectric material 3 opposite to the end where the polarization electrode 5-11 is provided. It is formed integrally (electrically conductive) with the reference electrode 5-21. In other words, the electrode formed by leading the reference electrode 5-21 on the inner peripheral surface of the cylindrical piezoelectric material 3 to the outer peripheral surface is the folded electrode 5-31.
  • a predetermined voltage V is applied between the folded electrode 5-31 and the polarization electrode 5-11 (see FIG. 12). Therefore, according to the method for manufacturing the cylindrical piezoelectric element according to the second embodiment, the polarization process can be performed using only the external electrodes on the outer peripheral surface of the cylindrical piezoelectric material 3. That is, electrical connection for polarization processing is facilitated (the electrical connection configuration is simplified).
  • the “cutting / polishing removal step” is performed in the same manner as in the first embodiment, and the portion of the cylindrical piezoelectric material 3 where the polarization electrode 5-11 is formed is, for example, dicing or lasered. Cutting is performed by processing or the like, or the polarization electrode 5-11 is removed by polishing. Thereby, the cylindrical piezoelectric element 10 shown in FIG. 14 is completed.
  • FIG. 15 is a diagram showing an apparatus configuration for simultaneously polarizing a plurality of cylindrical piezoelectric materials 3.
  • a plurality of cylindrical piezoelectric materials are arranged on the rod-shaped electrodes 110 and 120 so that two rod-shaped electrodes 110 and 120 are arranged in parallel to each other and bridge between the rod-shaped electrodes 110 and 120. 3 is placed.
  • the plurality of cylindrical piezoelectric materials 3 are pressed from above by a pressing member such as an insulating elastic member 100, for example.
  • the pressing of the cylindrical piezoelectric material 3 by the pressing member is merely for fixing the position and is not always necessary.
  • V polarization electrode
  • FIG. 16 is a view of the cylindrical piezoelectric element 10 viewed from the end face side.
  • 17 and 18 are sectional views of the cylindrical piezoelectric element 10 taken along line AA ′ shown in FIG.
  • the reference electrode 5-21 and the folded electrode 5-31 are provided in a state where the end surface of the cylindrical piezoelectric material 3 is not particularly processed.
  • the reference electrode 5-21 and the folded electrode 5-31 are provided.
  • the reference electrode 5-21 and the folded electrode 5-31 are electrically connected to each other when the edge portion of the end face of the cylindrical piezoelectric element 10 is scraped off due to, for example, abrasion. It is possible to prevent the loss.
  • the same effect as that of the cylindrical piezoelectric element manufacturing method and the cylindrical piezoelectric element according to the first embodiment can be obtained, and electrical connection for polarization processing can be performed. Can be performed only on the outer peripheral surface of the cylindrical piezoelectric material, so that the “polarization step” can be further simplified.
  • the completed cylindrical piezoelectric element 10 includes the folded electrode 5-31.
  • the folded electrode 5-31 may be cut as a matter of course.
  • 3H hollow part, 3 ... cylindrical piezoelectric material, 3t ... chamfered part, 5-1, 5-2 ... driving electrode, 5-11 ... polarization electrode, 5-21 ... reference electrode, 5-31 ... folded electrode , 10 ... cylindrical piezoelectric element, 1000 ... support part, 100 ... elastic member, 1001 ... probe member, 1003 ... flat plate, 110,120 ... bar electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 円筒型圧電素子(10)を次の製造方法で製造する。円筒型圧電材料(3)の内周面に基準電極(5-21)を設け、円筒型圧電材料(3)の外周面に、周方向に所定の幅を持ち且つ軸方向には一方端から他方端へ亘る複数の駆動用電極(5-1,5-2)を設け、円筒型圧電材料(3)の外周面のうち、円筒型圧電材料(3)の軸方向における一方端近傍部位に、軸方向について複数の駆動用電極(5-1,5-2)に対して直列に且つ電気的に導通する態様で分極用電極(5-11)を設け、分極用電極(5-11)と基準電極(5-21)との間に所定の電圧を印加し、当該円筒型圧電材料(3)のうち複数の駆動用電極(5-1,5-2)に対応する領域を分極し、円筒型圧電材料(3)のうち分極用電極(5-11)を除去する。

Description

円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構
 本発明は、円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構に関する。
 従来より、円筒型圧電素子の小型化が望まれている。円筒型圧電素子の小型化には、製造上の困難さが伴う。特開2009-212519号公報には、小型の円筒型圧電素子を製造する方法が開示されている。すなわち、特開2009-212519号公報に開示されている製造方法によれば、まず、円筒形状を呈する圧電素子であって、径方向に凸で軸方向を長手方向とする凸部が外周面に設けられた形態の圧電素子を押出成形する。続いて、前記凸部を含む外周面に駆動電極を形成し、内周面には基準電極を形成する。そして、それら電極を利用して当該圧電素子に分極処理を施した後、前記凸部を機械加工で除去する。これら一連の工程により、複数個に分割された駆動電極を備える円筒型圧電素子を得ることができる。
 しかしながら、特開2009-212519号公報に開示されている製造方法によれば、上述した外周面の凸部を除去する工程において高精度な機械加工を要する。この機械加工の精度が良好でない場合には、例えば当該円筒型圧電素子の割れや駆動電極の短絡等の様々な不具合が生じる虞がある。具体的には、例えば前記凸部の除去が不完全であれば、駆動電極に電圧を印加しても十分な変位を得られないことがある。また、前記凸部の除去加工が深すぎて溝を形成してしまった場合には、駆動電極に電圧を印加した際の変形で、当該円筒型圧電素子に割れが発生する虞がある。
 本発明は、前記の事情に鑑みて為されたものであり、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構を提供することを目的とする。
 前記の目的を達成するために、本発明の第1の態様による円筒型圧電素子の製造方法は、
 円筒型圧電素子の製造方法であって、
 圧電材料を円筒型に成型して焼成した円筒型圧電材料を作成し、
 前記円筒型圧電材料の内周面に基準電極を設け、
 前記円筒型圧電材料の外周面に、周方向に所定の幅を持ち且つ軸方向には一方端から他方端へ亘る複数の駆動用電極を設け、
 前記円筒型圧電材料の外周面のうち、前記円筒型圧電材料の軸方向における一方端近傍部位に、前記軸方向について前記複数の駆動用電極に対して直列に且つ電気的に導通する態様で分極用電極を設け、
 前記分極用電極と前記基準電極との間に所定の電圧を印加し、当該円筒型圧電材料のうち前記複数の駆動用電極に対応する領域を分極し、
 前記円筒型圧電材料のうち前記分極用電極を除去する
 ことを特徴とする。
 前記の目的を達成するために、本発明の第2の態様による円筒型圧電素子は、
 円筒型圧電素子であって、
 当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
 当該円筒型圧電素子の内周面に設けられた基準電極と、
 前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
 前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
 を具備することを特徴とする。
 前記の目的を達成するために、本発明の第3の態様による微小駆動機構は、
 円筒型圧電素子と、
 前記円筒型圧電素子の一方端部を固定する固定部材と、
 前記円筒型圧電素子の他方端部に配設された被駆動部材と、
 を具備し、
 前記円筒型圧電素子は、
  当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
  当該円筒型圧電素子の内周面に設けられた基準電極と、
  前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
  前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
 を具備することを特徴とする。
 前記の目的を達成するために、本発明の第4の態様による微小駆動機構は、
 円筒型圧電素子と、
 前記円筒型圧電素子の一方端側の所定位置を固定する固定部材と、
 前記円筒型圧電素子の他方端部に配設された被駆動部材と、
 を具備し、
 前記所定位置は、前記円筒型圧電素子と前記被駆動部材とから成る系の共振モードにおける節位置であり、
 前記円筒型圧電素子は、
  当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
  当該円筒型圧電素子の内周面に設けられた基準電極と、
  前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
  前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
 を具備することを特徴とする。
 本発明によれば、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構を提供することができる。
図1は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。 図2は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“外部電極形成ステップ”を示す図である。 図3は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“分極ステップ”を示す図である。 図4は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“切断・研磨除去ステップ”を示す図である。 図5は、本発明の第1実施形態に係る円筒型圧電素子の製造方法により製造された円筒型圧電素子の斜視図を示す図である。 図6は、本発明の第1実施形態に係る円筒型圧電素子を、細径SPMプローブに適用した一例を示す斜視図である。 図7は、本発明の第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。 図8は、本発明の第1実施形態に係る円筒型圧電素子を、細径SPMプローブに適用した一例を示す斜視図である。 図9は、本発明の第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。 図10は、本発明の第2実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ”を示す図である。 図11は、同製造方法における“外部電極形成ステップ”を示す図である。 図12は、同製造方法における“分極ステップ”を示す図である。 図13は、同製造方法における“切断・研磨除去ステップ”を示す図である。 図14は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。 図15は、複数本の円筒型圧電材料を同時に分極処理する為の装置構成を示す図である。 図16は、円筒型圧電素子を端面側から観た図である。 図17は、図16に示すA-A´線における円筒型圧電素子の断面矢視図である。 図18は、図16に示すA-A´線における円筒型圧電素子の断面矢視図である。
[第1実施形態]
 以下、図面を参照して本発明の第1実施形態に係る円筒型圧電素子の製造方法について説明する。図1は、本発明の第1実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ(ステップS1)”を示す図である。図2は、同製造方法における“外部電極形成ステップ(ステップS2)”を示す図である。図3は、同製造方法における“分極ステップ(ステップS3)”を示す図である。図4は、同製造方法における“切断・研磨除去ステップ(ステップS4)”を示す図である。図5は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。
 まず、例えばジルコン酸チタン酸鉛(PZT)等に代表される圧電材料を、成型や切削等の方法によって円筒形状に成型して焼成し(成型・焼成ステップ)、中空部位(貫通孔)3Hを備える円筒型圧電材料3を作成する。
 続いて、円筒型圧電材料3の外周面及び内周面に、次のように電極を形成する(外部電極形成ステップ)。すなわち、円筒型圧電材料3の外周面には、周方向に所定の幅を持ち且つ軸方向(円筒型圧電材料3の長さ方向)には一方端から他方端へ亘って、複数の駆動用電極5-1,5-2(図2では不可視の部位のものを含めて、周方向に等間隔に計4個の駆動用電極)を形成する。
 さらに、これら4個の駆動用電極全てと導通し且つ当該円筒型圧電材料3の軸方向における一方端近傍に位置するように(前記軸方向について前記複数の駆動用電極に対して直列に)分極用電極5-11を形成する。
 他方、円筒型圧電材料3の内周面には、その略全面に基準電極5-21を形成する。 
 ここで、図2に示す例では、2つの駆動用電極5-1,5-2のみしか図示されていないが、実際には当該図面の視点では不可視の部位に更に2つの駆動用電極が設けられている。詳細には、当該円筒型圧電材料3を周方向に4等分する位置に一つずつ計4個の駆動用電極が設けられている。
 なお、円筒型圧電素子の軸方向と直交する4方向に駆動する円筒型圧電素子を製造する場合には、上述の態様で4つの駆動用電極を設ける方法が一般的ではある。しかしながら、少なくとも2つ以上の駆動用電極を設けた態様の円筒型圧電素子を製造するのであれば、本第1実施形態を適用することによる格別な効果(後述)を得ることができる。
 上述した円筒型圧電材料3の内周面及び外周面に形成する各電極の材料としては、銀、銀パラジウム、金、またはニッケル等、任意の導電性材料を挙げることができる。また、各電極を形成する方法は任意であり、例えばスクリーン印刷、スパッタ、またはメッキ等を挙げることができる。
 なお、上述の外部電極形成ステップにおいて各外部電極を形成する順序は任意である。
 上述の外部電極形成ステップを完了した後、分極用電極5-11と、基準電極5-21との間に所定の電圧Vを印加し、当該円筒型圧電材料3に分極処理を施す(分極ステップ)。具体的には、例えば基準電極5-21にマイナスの電位を与え、且つ、分極用電極5-11にプラスの電位を与えることで、分極用電極5-11と基準電極5-21との間に所定の電圧を印加して当該円筒型圧電材料3を分極させればよい。
 この分極ステップにより、円筒型圧電材料3のうち各駆動用電極より内径側の圧電材料(各駆動用電極の配設部位に対応する部位の圧電材料)が圧電活性領域となる。これは、分極用電極5-11が全ての駆動用電極と導通しているからであり、それぞれの駆動用電極を用いて複数回の分極処理を行う必要がない。つまり、分極用電極5-11と基準電極5-21との間で分極処理を一回施すだけで、全ての駆動用電極に対応する部位についての分極処理が完了する。
 上述の分極ステップを完了した後、円筒型圧電材料3のうち分極用電極5-11が形成されている部位を例えばダイシングやレーザ加工等によって切断し、或いは、分極用電極5-11を研磨によって除去する(切断・研磨除去ステップ)。この切断・研磨除去ステップにより、全ての駆動用電極間が非導通となり、互いに独立した複数の圧電活性領域及び駆動用電極が形成され、図5に示す円筒型圧電素子10が完成する。
 以上説明したように、本第1実施形態によれば、加工難易度を上げずに小型化を実現した円筒型圧電素子の製造方法及び円筒型圧電素子を提供することができる。すなわち、本第1実施形態に係る円筒型圧電素子の製造方法によれば、複数の圧電活性領域を有する円筒型圧電素子の製造において、複雑な形状の円筒型圧電素子の焼成や精密な後加工等が必要なく、さらに複数の微細な電極への導通確保も必要ない。従って、簡略な製造工程且つ高い信頼性で、小型の円筒型圧電素子を製造することができる。
 以下、本第1実施形態に係る円筒型圧電素子を適用した微小駆動機構について説明する。図6は、本第1実施形態に係る円筒型圧電素子を、細径SPM(Scanning Probe Microscope)プローブに適用した一例を示す斜視図である。図7は、本第1実施形態に係る円筒型圧電素子を微小ステージに適用した一例を示す斜視図である。
 すなわち、図6に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端側の中空部位(開口部位)に探針部材1001を配設し、且つ、他方端を支持部1000に対して固定している。このように構成することで、探針部材1001を被駆動体とする微小駆動機構(細径SPM(Scanning Probe Microscope)プローブ)が実現する。
 また、図7に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端面に平板1003を設け、且つ、他方端を支持部1000に対して固定している。このように構成することで微小ステージが実現し、例えばスキャナミラー等に用いることができる。
 以下、図8及び図9を参照して、共振現象を利用した駆動を行う場合の適用例を説明する。
 図8に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端側の中空部位(開口部位)に探針部材1001を配設し、且つ、他方端側の所定位置を支持部1000に対して固定している。このように構成することで、探針部材1001を被駆動体とする微小駆動機構(細径SPM(Scanning Probe Microscope)プローブ)が実現する。
 また、図9に示す例では、本第1実施形態に係る円筒型圧電素子10の一方端面に平板1003を設け、且つ、他方端側の所定位置を支持部1000に対して固定している。このように構成することで微小ステージが実現し、例えばスキャナミラー等に用いることができる。
 ここで、図8及び図9に示す例において、支持部1000で固定している位置は、円筒型圧電素子10と被駆動体(探針部材1001或いは平板1003)とから成る系の共振モードにおける節位置である。このように構成し、円筒型圧電素子10と被駆動体(探針部材1001或いは平板1003)とから成る系の共振周波数の駆動信号を各圧電活性化領域に印加することで、共振現象を利用してより大きな振幅を得ることができる。
[第2実施形態]
 以下、本発明の第2実施形態に係る円筒型圧電素子の製造方法について説明する。なお、説明の重複を避ける為、第1実施形態に係る円筒型圧電素子の製造方法との相違点を説明する。この相違点の一つは、外部電極形成ステップ及び分極ステップにおける処理である。
 図10は、本発明の第2実施形態に係る円筒型圧電素子の製造方法における“成型・焼成ステップ(ステップS1)”を示す図である。図11は、同製造方法における“外部電極形成ステップ(ステップS2)”を示す図である。図12は、同製造方法における“分極ステップ(ステップS3)”を示す図である。図13は、同製造方法における“切断・研磨除去ステップ(ステップS4)”を示す図である。図14は、同製造方法により製造された円筒型圧電素子の斜視図を示す図である。
 まず、第1実施形態と同様、“成型・焼成ステップ”において中空部位(貫通孔)3Hを備える円筒型圧電材料3を作成し(図10参照)、続いて“外部電極形成ステップ”において当該円筒型圧電材料3の外周面及び内周面に外部電極を設ける(図11参照)。この“外部電極形成ステップ”においては、円筒型圧電材料3の内周面に基準電極5-21を形成し、且つ、外周面に複数の駆動用電極と、分極用電極5-11と、本第2実施形態に特有の“折り返し電極5-31”と、を設ける。
 前記折り返し電極5-31は、当該円筒型圧電材料3のうち分極用電極5-11が設けられた側の端部とは逆側の端部において、当該円筒型圧電材料3の内周面の基準電極5-21と一体的に(電気的に導通して)形成されている。換言すれば、円筒型圧電材料3の内周面の基準電極5-21を外周面に導出して形成した電極が、折り返し電極5-31である。
 そして、分極ステップにおいては、折り返し電極5-31と分極用電極5-11との間に所定の電圧Vを印加する(図12参照)。従って、本第2実施形態に係る円筒型圧電素子の製造方法によれば、分極処理を、円筒型圧電材料3の外周面の外部電極のみを利用して行うことができる。つまり、分極処理のための電気的接続が容易となる(電気的接続構成が簡略となる)。
 上述の分極ステップを完了した後は、第1実施形態と同様に“切断・研磨除去ステップ”によって、円筒型圧電材料3のうち分極用電極5-11が形成されている部位を例えばダイシングやレーザ加工等によって切断し、或いは、分極用電極5-11を研磨によって除去する。これにより、図14に示す円筒型圧電素子10が完成する。
 ところで、図15に示すように、折り返し電極5-31を利用することで、複数本の円筒型圧電材料3を同時に分極処理することができる。図15は、複数本の円筒型圧電材料3を同時に分極処理する為の装置構成を示す図である。同図に示すように、互いに平行に2本の棒状電極110,120を配設し、それら棒状電極110,120間を橋渡しするように、棒状電極110,120上に複数本の円筒型圧電材料3を載置する。
 さらに、例えば絶縁性の弾性部材100等の押し付け部材によって、複数本の円筒型圧電材料3を上方から押さえる。なお、この押し付け部材による円筒型圧電材料3の押さえ付けは、単に位置固定の為であり、必ずしも必要ではない。
 そして、棒状電極110と棒状電極120との間に所定の電圧V(分極用電極)を印加することで、全ての円筒型圧電材料3を一括して分極処理することができる。図15に示す態様で分極処理することで、円筒型圧電材料3の内周面の基準電極に電圧を印加する為の治具が不要になり、更に位置決めも容易になる。
 ところで、図16は、円筒型圧電素子10を端面側から観た図である。図17及び図18は、図16に示すA-A´線における円筒型圧電素子10の断面矢視図である。図17に示す例では、円筒型圧電材料3の端面に特に何ら加工を施さない状態で、基準電極5-21と折り返し電極5-31とを設けている。図18に示す例では、円筒型圧電材料3の端面を面取り加工して面取り部3tを形成した後に、基準電極5-21と折り返し電極5-31とを設けている。
 図18に示すように構成することで、円筒型圧電素子10の端面の縁部位が例えば磨耗等によって削り取られてしまう等によって、基準電極5-21と折り返し電極5-31との電気的導通が無くなってしまうことを未然に防ぐことができる。
 以上説明したように、本第2実施形態によれば、第1実施形態に係る円筒型圧電素子の製造方法及び円筒型圧電素子と同様の効果を奏する上に、分極処理の為の電気的接続を円筒型圧電材料の外周面のみで行うことができる為、“分極ステップ”を更に簡略化することができる。
 なお、図14に示すように完成後の円筒型圧電素子10は折り返し電極5-31を備えているが、折り返し電極5-31を切断してしまっても勿論よい。しかしながら、折り返し電極5-31を残存させることで、当該円筒型圧電素子10の駆動時に内周面の基準電極5-21にプローブを接触させる必要がない。つまり、折り返し電極5-31を利用することで、円筒型圧電素子10の内周面の外部電極(基準電極5-21)を用いずに当該円筒型圧電素子10を駆動することが可能となる。
 以上、第1実施形態及び第2実施形態に基づいて本発明を説明したが、本発明は上述の例に限定されるものではなく、本発明の要旨の範囲内で、例えば次のような変形及び応用が可能なことは勿論である。
 さらに、上述した実施形態には種々の段階の発明が含まれており、開示した複数の構成要件の適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示す全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。
  3H…中空部位、 3…円筒型圧電材料、 3t…面取り部、 5-1,5-2…駆動用電極、 5-11…分極用電極、 5-21…基準電極、 5-31…折り返し電極、 10…円筒型圧電素子、 1000…支持部、 100…弾性部材、 1001…探針部材、 1003…平板、 110,120…棒状電極。

Claims (6)

  1.  円筒型圧電素子の製造方法であって、
     圧電材料を円筒型に成型して焼成した円筒型圧電材料を作成し、
     前記円筒型圧電材料の内周面に基準電極を設け、
     前記円筒型圧電材料の外周面に、周方向に所定の幅を持ち且つ軸方向には一方端から他方端へ亘る複数の駆動用電極を設け、
     前記円筒型圧電材料の外周面のうち、前記円筒型圧電材料の軸方向における一方端近傍部位に、前記軸方向について前記複数の駆動用電極に対して直列に且つ電気的に導通する態様で分極用電極を設け、
     前記分極用電極と前記基準電極との間に所定の電圧を印加し、当該円筒型圧電材料のうち前記複数の駆動用電極に対応する領域を分極し、
     前記円筒型圧電材料のうち前記分極用電極を除去する
     ことを特徴とする円筒型圧電素子の製造方法。
  2.  前記基準電極を前記内周面に設ける際には、さらに前記内周面から前記外周面の前記他方端近傍部位まで連続的に延出させて設ける
     ことを特徴とする請求項1に記載の円筒型圧電素子の製造方法。
  3.  前記分極は、第1の棒状電極と第2の棒状電極とを互いに略平行に配置し、前記第1の棒状電極上に前記分極用電極を設けた前記一方端近傍部位を載置し、前記第2の棒状電極上に前記基準電極が延出された前記外周面の前記他方端近傍部位を載置し、前記第1の棒状電極と前記第2の棒状電極との間に所定の電圧を印加することで行う
     ことを特徴とする請求項2に記載の円筒型圧電素子の製造方法。
  4.  円筒型圧電素子であって、
     当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
     当該円筒型圧電素子の内周面に設けられた基準電極と、
     前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
     前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
     を具備することを特徴とする円筒型圧電素子。
  5.  円筒型圧電素子と、
     前記円筒型圧電素子の一方端部を固定する固定部材と、
     前記円筒型圧電素子の他方端部に配設された被駆動部材と、
     を具備し、
     前記円筒型圧電素子は、
      当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
      当該円筒型圧電素子の内周面に設けられた基準電極と、
      前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
      前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
     を具備することを特徴とする微小駆動機構。
  6.  円筒型圧電素子と、
     前記円筒型圧電素子の一方端側の所定位置を固定する固定部材と、
     前記円筒型圧電素子の他方端部に配設された被駆動部材と、
     を具備し、
     前記所定位置は、前記円筒型圧電素子と前記被駆動部材とから成る系の共振モードにおける節位置であり、
     前記円筒型圧電素子は、
      当該円筒型圧電素子の外周面において周方向に略等間隔で設けられた複数の駆動電極と、
      当該円筒型圧電素子の内周面に設けられた基準電極と、
      前記外周面のうち当該円筒型圧電素子の軸方向における一方端近傍部位に設けられ、前記内周面の前記基準電極と電気的に導通している折り返し電極と、
      前記駆動電極と前記基準電極との間の分極された領域である複数の圧電活性化領域と、
     を具備することを特徴とする微小駆動機構。
PCT/JP2012/075689 2011-10-03 2012-10-03 円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構 WO2013051622A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/219,178 US9768374B2 (en) 2011-10-03 2014-03-19 Method of manufacturing cylindrical piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011219148A JP5780910B2 (ja) 2011-10-03 2011-10-03 円筒型圧電素子の製造方法
JP2011-219148 2011-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/219,178 Continuation US9768374B2 (en) 2011-10-03 2014-03-19 Method of manufacturing cylindrical piezoelectric element

Publications (1)

Publication Number Publication Date
WO2013051622A1 true WO2013051622A1 (ja) 2013-04-11

Family

ID=48043776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075689 WO2013051622A1 (ja) 2011-10-03 2012-10-03 円筒型圧電素子の製造方法、円筒型圧電素子、及び微小駆動機構

Country Status (3)

Country Link
US (1) US9768374B2 (ja)
JP (1) JP5780910B2 (ja)
WO (1) WO2013051622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715010B (zh) * 2019-04-03 2021-01-01 大陸商業成科技(成都)有限公司 壓電感測器及其製作方法及應用其的電子裝置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11849642B2 (en) * 2020-04-17 2023-12-19 Wisconsin Alumni Research Foundation 3D printed and in-situ poled flexible piezoelectric pressure sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265185A (ja) * 1988-08-30 1990-03-05 Tokin Corp 円環状圧電振動子の製造方法
JPH02113104U (ja) * 1989-02-23 1990-09-11
JPH05343759A (ja) * 1992-06-04 1993-12-24 Seiko Instr Inc 圧電モータ用圧電素子の製造方法
JPH07287022A (ja) * 1994-04-19 1995-10-31 Tokin Corp 顕微鏡用探針微動機構
JP2003046159A (ja) * 2001-07-27 2003-02-14 Japan Science & Technology Corp アクチュエータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3166101D1 (en) * 1980-02-07 1984-10-25 Toray Industries Piezoelectric polymer material, process for producing the same and an ultrasonic transducer utilizing the same
JP2993506B2 (ja) 1988-10-19 1999-12-20 株式会社東芝 アクチュエータ
JPH07106661A (ja) * 1993-09-29 1995-04-21 Tokin Corp 圧電セラミックの電気分極方法とその分極治具
JPH0924615A (ja) * 1995-07-11 1997-01-28 Minolta Co Ltd インクジェット記録装置に用いる円筒状圧電体の製造方法
JPH09327092A (ja) * 1996-06-05 1997-12-16 Murata Mfg Co Ltd 無指向性スピーカ
US5892318A (en) * 1997-01-02 1999-04-06 Motorola Inc. Piezoelectric transformer with multiple output
JP5339851B2 (ja) * 2007-11-26 2013-11-13 株式会社日立ハイテクサイエンス 変位計付圧電アクチュエータおよび圧電素子ならびにそれを用いた位置決め装置
US8957484B2 (en) 2008-02-29 2015-02-17 University Of Washington Piezoelectric substrate, fabrication and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265185A (ja) * 1988-08-30 1990-03-05 Tokin Corp 円環状圧電振動子の製造方法
JPH02113104U (ja) * 1989-02-23 1990-09-11
JPH05343759A (ja) * 1992-06-04 1993-12-24 Seiko Instr Inc 圧電モータ用圧電素子の製造方法
JPH07287022A (ja) * 1994-04-19 1995-10-31 Tokin Corp 顕微鏡用探針微動機構
JP2003046159A (ja) * 2001-07-27 2003-02-14 Japan Science & Technology Corp アクチュエータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715010B (zh) * 2019-04-03 2021-01-01 大陸商業成科技(成都)有限公司 壓電感測器及其製作方法及應用其的電子裝置

Also Published As

Publication number Publication date
JP5780910B2 (ja) 2015-09-16
JP2013080774A (ja) 2013-05-02
US9768374B2 (en) 2017-09-19
US20140203690A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5914355B2 (ja) 圧電アクチュエータ
KR0176729B1 (ko) 진동파작동기
US20140081299A1 (en) Micromachined Ultrasonic Scalpel with Embedded Piezoelectric Actuator
JP4758634B2 (ja) 多層セラミック音響変換器の製造方法
JP4704537B2 (ja) 超音波モータ及び超音波モータ付き電子機器
CN110098317B (zh) 层叠压电陶瓷部件和压电器件
JP2010252626A (ja) 圧電振動子、その製造方法及び圧電振動子を有する線形アクチュエータ
JP5780910B2 (ja) 円筒型圧電素子の製造方法
JP2009189219A (ja) 振動アクチュエータ、レンズ鏡筒、カメラ
CN110462485A (zh) 光扫描装置及其制造方法
US7825566B2 (en) Ultrasonic actuator and method for manufacturing piezoelectric deformation portion used in the same
WO2013054789A1 (ja) 圧電素子及び圧電アクチュエータ
DE102013209238B4 (de) MEMS-Struktur und Verfahren zum Herstellen derselben
DE102013222076A1 (de) Schallwandler und Herstellungsverfahren für einen Schallwandler
JP2015088615A (ja) 圧電素子
JP4497980B2 (ja) 圧電体およびその分極方法
JP2015087548A (ja) 圧電アクチュエータ
JP2015088623A (ja) 圧電素子およびその製造方法
JP2013179786A (ja) 圧電素子及び圧電アクチュエータ
JP2012238643A (ja) 圧電構造体
JP2001044524A (ja) 積層圧電体
JPH0677549A (ja) 圧電素子とその製造方法
JP2024090488A (ja) 筒型圧電素子の駆動方法
JP6194655B2 (ja) 液体吐出ヘッドの分極処理方法および液体吐出ヘッドの分極処理装置、並びに液体吐出ヘッドの製造方法
JP2022165945A (ja) 筒型圧電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838711

Country of ref document: EP

Kind code of ref document: A1