JP2005168281A - 積層圧電素子及び振動波駆動装置 - Google Patents

積層圧電素子及び振動波駆動装置 Download PDF

Info

Publication number
JP2005168281A
JP2005168281A JP2004299072A JP2004299072A JP2005168281A JP 2005168281 A JP2005168281 A JP 2005168281A JP 2004299072 A JP2004299072 A JP 2004299072A JP 2004299072 A JP2004299072 A JP 2004299072A JP 2005168281 A JP2005168281 A JP 2005168281A
Authority
JP
Japan
Prior art keywords
piezoelectric element
piezoelectric
laminated
layers
inactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004299072A
Other languages
English (en)
Other versions
JP2005168281A5 (ja
JP4697929B2 (ja
Inventor
Yutaka Maruyama
裕 丸山
Nobuyuki Kojima
信行 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004299072A priority Critical patent/JP4697929B2/ja
Priority to US10/985,374 priority patent/US7233096B2/en
Priority to CNB2004100929828A priority patent/CN100399598C/zh
Publication of JP2005168281A publication Critical patent/JP2005168281A/ja
Publication of JP2005168281A5 publication Critical patent/JP2005168281A5/ja
Application granted granted Critical
Publication of JP4697929B2 publication Critical patent/JP4697929B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/106Langevin motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • H10N30/505Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】 安定した出力を有する振動波駆動装置を量産可能とすると共に振動波駆動装置の性能を向上可能とした積層圧電素子及び振動波駆動装置を提供する。
【解決手段】 リニア型振動波モータを、振動体32とスライダ33から構成する。振動体32を構成する積層圧電素子30を、圧電不活性部36と圧電活性部37から構成すると共に、圧電不活性部37の上面に摩擦材31を接合する。摩擦材31を、スライダ33の摩擦材33−2に接触する接触部31−1、該接触部31−1と同じ厚さの部位31−2、薄板部31−3、31−4から構成する。振動体32に異なる2つの曲げ振動からなる複合振動を生成することで、振動体32を構成する積層圧電素子30の圧電不活性部37上面の2つの接触部31−1の表面に、楕円運動または円運動を発生させる。
【選択図】 図7

Description

本発明は、電気−機械エネルギ変換機能を有する複数の材料の層を積層した積層圧電素子及び振動波駆動装置に関する。
従来、電気的エネルギを機械的エネルギに変換する電気−機械エネルギ変換機能を有する代表的な材料である圧電材料は、様々な圧電素子を構成する材料として多種多様に用いられている。特に、最近では、多数層の圧電素子を積層して一体化し焼結した積層圧電素子が使われている。これは、積層化によって、単一の板状の圧電体のみから構成される圧電素子と比較し、低い印加電圧で大きな変形歪や大きな力が得られるためであり、更に、積層する一層の厚さを薄くすることができ、小型で高性能な積層圧電素子を容易に製造できるようになったためである。
例えば、振動波駆動装置としての振動波モータ、特に棒状に形成された振動波モータの振動体の一部を構成する積層電気−機械エネルギ変換素子としての積層圧電素子に関しては、各種の技術が提案されている(例えば、特許文献1、特許文献2、特許文献3参照)。また、振動波モータ以外の用途についても、積層圧電素子に関する技術が数多く提案されている。
上記のような積層圧電素子は、複数の圧電セラミックスからなる圧電材料の層である圧電層と、各圧電層の表面に設けられ、電極材料で形成された電極層(以下内部電極と称する)とから構成されており、圧電層と内部電極とを複数層重ねて積層化し、焼結後、分極処理を行い積層圧電素子全体が圧電性を有するようにしていた。即ち、積層圧電素子全体に複数の内部電極が配置され、圧電層は圧電性を有する圧電活性部となった積層圧電素子が一般的であった。
図9は、特許文献3に開示された棒状の振動波モータの振動体に用いられる積層圧電素子を示す分解斜視図及び斜視図である。
図9において、積層圧電素子40を構成する複数の圧電層42の表面に、内部電極43が設けられており、更に圧電層42の表面には、各内部電極43と接続されて圧電層42の外縁部まで延びる接続電極43a(図中黒色に塗りつぶしている部分)が形成されている。内部電極43は、外周が圧電層42の外周よりも内周側となるように配置されると共に、4分割に形成されており(AG、AG、BG、BG、A+、A−、B+、B−)、同一の層に形成された各内部電極43は互いに非導通となっている。
接続電極43aは、内部電極43に対して、圧電層42の一層おきに積層圧電素子40の軸方向で同一位相位置となるように形成されている。同一位相位置同士の接続電極43aは、積層圧電素子40の外周部に設けられた層間の導通を図る電極である外部電極44により接続されている。
積層圧電素子40を構成する最上層の圧電層表面の外周部周辺には、周方向に沿って複数の表面電極45が設けられており、接続電極43aの位相位置に合わせて設けられた外部電極44と接続されている。そして、この表面電極45を介して各内部電極43に直流電圧を印加し、後述の振動波モータの駆動が可能な分極極性になるように分極処理を行う。
更に、図10は、図9の積層圧電素子40を棒状の振動波モータ50の振動体51に組み込んだ例を示す断面図である。
図10において、中央部に貫通孔を有する積層圧電素子40は、表面電極45がフレキシブル回路基板52と接触すると共に、振動体51を構成する中空の金属部材53と金属部材54の間に配置されている。ボルト55を金属部材53側から挿入して金属部材54にねじ込むことにより、金属部材53と金属部材54の間に積層圧電素子40とフレキシブル回路基板52が挟み込まれた状態で固定される。フレキシブル回路基板52は、積層圧電素子40の外部電極44に接続された表面電極45と不図示の駆動回路に接続され、駆動用の高周波電圧が積層圧電素子40に印加される。
振動体51の軸方向一方の側には、ばね56とばね支持体57を介して、金属部材54の先端部と加圧されて接触するロータ58が配置されており、ロータ58と一体となり回転するギヤ59により振動波モータ50の回転出力を取り出すことができる。
棒状の振動波モータ50の駆動原理は、積層圧電素子40を組み込んだ振動体51の軸方向に対して直交する2つの曲げ振動を、時間的位相差を有して発生させ、振動体51を構成する金属部材54の先端部を駆動部として、金属部材54が首振りのような運動を行い、この金属部材54に加圧されて接触する接触部材であるロータ58が摩擦接触により回転することにある。
また、直線(リニア)駆動する振動波モータとして、従来、平板状の振動体を用いるものが提案されている(例えば、特許文献4、特許文献5参照)。
図11は、リニア駆動する振動波モータの構成を示す図であり、(a)は正面図、(b)は右側面図、(c)は平面図である。
図11において、振動体の一部を構成する金属部材61の一方の面には、縦振動と曲げ振動を同時に発生させる2つの圧電素子62、63が配置されている。また、金属部材61の他方の面には、2つの突起部64、65が形成されている。2つの圧電素子62、63は、接着剤により金属部材61に接着されている。
2つの圧電素子62、圧電素子63にそれぞれ高周波電圧A、高周波電圧Bを印加して、曲げ振動と縦振動との複合振動を合成することで、突起部64、65の先端に楕円または円運動を発生させることができる。また、2つの圧電素子62、63は、互いに極性は同一方向になるように分極され、上記の高周波電圧A、高周波電圧Bは、90度の時間的な位相差を有している。
この結果、突起部64、65の先端を固定部材66に対し加圧して接触させると、振動体の一部を構成する金属部材61は固定部材66に対して移動する。即ち、振動体に対して他の部材を加圧して接触させることで振動体との間に相対移動運動が形成され、リニア駆動が可能な振動波モータになる。ただし、この例では、圧電素子62、63は単一の板状の素子であり、積層圧電素子ではない。
特開平6−77550号公報 特開平6−120580号公報 特開平8−213664号公報 特許第3279020号 特許第3279021号
上述した振動波モータを小型化するほど、図10に示す振動波モータでは積層圧電素子40と金属部材53、54の加工誤差が、図11に示す振動波モータでは金属部材61と圧電素子62、63の加工誤差が、振動波モータ全体の大きさに比較して大きくなり易い。そのため、これらの加工誤差の積み重ねにより、安定した出力を有する振動波モータを量産することが困難であった。
また、圧電素子と金属部材の界面や接着面を完全に密着させることは難しい。そのため、圧電素子と金属部材の界面や接着面での振動減衰が生じ、振動波モータの性能を低下させていた。
本発明の目的は、安定した出力を有する振動波駆動装置を量産可能とすると共に振動波駆動装置の性能を向上可能とした積層圧電素子及び振動波駆動装置を提供することにある。
上述の目的を達成するために、本発明の積層圧電素子は、複数の層から構成される積層圧電素子において、電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を少なくとも一層又は複数層重ねた圧電不活性部とを積層して一体化すると共に、前記圧電不活性部の厚さを、前記積層圧電素子に複数の振動を発生可能な厚さとしたことを特徴とする。
同様に上述の目的を達成するために、本発明の積層圧電素子は、複数の層から構成される積層圧電素子において、電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を少なくとも一層又は複数層重ねた圧電不活性部とを積層して一体化すると共に、前記圧電不活性部に、前記積層圧電素子に発生可能な複数の振動の変位を拡大する変位拡大部を形成したことを特徴とする。
また、本発明の積層圧電素子は、前記積層圧電素子を円筒形状とし、前記圧電活性部の積層方向の両側に前記圧電不活性部を積層して一体化したことを特徴とする。
また、本発明の積層圧電素子は、前記圧電不活性部の一部に凹部を形成したことを特徴とする。
また、本発明の積層圧電素子は、前記複数の振動は、前記積層圧電素子の軸方向に交差する少なくとも2つの曲げ振動であることを特徴とする。
また、本発明の積層圧電素子は、前記積層圧電素子を平板形状とし、前記圧電活性部の積層方向の一方の側に前記圧電不活性部を積層して一体化したことを特徴とする。
また、本発明の積層圧電素子は、前記圧電不活性部の一部に凸部を形成したことを特徴とする。
また、本発明の積層圧電素子は、前記複数の振動は、複数の曲げ振動であることを特徴とする。
上述の目的を達成するために、本発明の振動波駆動装置は、前記積層圧電素子を備え、前記積層圧電素子を振動体とし、前記振動体に加圧されて接触する接触体を回転させることを特徴とする。
また、本発明の振動波駆動装置は、前記積層圧電素子を備え、前記積層圧電素子を振動体とし、前記振動体と前記振動体に加圧されて接触する接触体とを相対的に移動させることを特徴とする。
更に、本発明の積層圧電素子は、円筒形状の前記積層圧電素子を構成する前記圧電不活性部の外周部を周方向に沿って研削することで凹部を形成する、構成としてもよい。
更に、本発明の積層圧電素子は、平板形状の前記積層圧電素子を構成する前記圧電不活性部における前記圧電活性部との積層面とは反対側の面を研削することで複数の凸部を形成する、構成としてもよい。
更に、本発明の振動波駆動装置は、前記振動体と前記接触体との間に耐磨耗性を有する材料からなる部材を配設する、構成としてもよい。
また、上述の目的を達成するために、本発明の振動型駆動装置は、振動体に振動を発生させ、前記振動体に加圧されて接触する接触体を回転させる振動波駆動装置において、前記振動体が電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を少なくとも一層または複数層重ねた圧電不活性部とを積層して一体化した積層圧電素子で構成され、前記接触体が前記圧電不活性部に加圧されて接触することを特徴とする。
本発明によれば、積層圧電素子の圧電活性部と圧電不活性部とを積層して一体化すると共に、圧電不活性部の厚さを、積層圧電素子に複数の振動が発生可能な厚さとしているため、積層圧電素子自体で振動体を構成し複数の振動モードを発生させることが可能となる。この結果、従来のような積層圧電素子を挟み込んで固定するための金属部材を使用せず、また、圧電素子に複雑な形状の金属部材を接着剤で接着することも不要となる。これにより、従来のような圧電素子と金属部材の加工誤差の問題が生じることがなくなるため、安定した出力を有する振動波駆動装置を量産することが可能となる。
また、積層圧電素子の圧電活性部と圧電不活性部とを積層して一体化すると共に、圧電不活性部に、複数の振動の変位拡大部を形成するため、圧電材料は金属に比べ機械加工性が良く、微細加工も容易に行うことができるので、圧電不活性部の一部に凸部や凹部を加工することで小寸法でも高精度な振動体に形成することができる。これらの結果、振動波駆動装置の性能の向上が可能であり、更に、振動波駆動装置の製造工程の短縮を図ることができると共に、部品点数及び製造コストの低減も可能となる。
以下、本発明の実施の形態を図面に基づき説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る積層電気−機械エネルギ変換素子である積層圧電素子の構成を示す図であり、軸線Lから右半分は断面図、軸線Lから左半分は外観図である。図2は、積層圧電素子の製造の途中段階を示すと共にその積層構造を示す斜視図である。尚、以下では製造途中段階の積層圧電素子と製造後の積層圧電素子には便宜上同じ符号を付すものとする。
図1及び図2において、積層圧電素子1は、中央部に貫通孔が形成された円筒状の形状を有するものであり、電気的エネルギ(電気量)を機械的エネルギ(機械量)に変換する電気−機械エネルギ変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電性を有する圧電活性部3と、圧電活性部3の軸方向一方の側に配設され、電気−機械エネルギ変換機能を有する材料の層だけを複数層重ねた圧電性を有しない圧電不活性部4−1と、圧電活性部3の軸方向他方の側に配設され、電気−機械エネルギ変換機能を有する材料の層だけを複数層重ねた圧電性を有しない圧電不活性部4−2とから構成されている。
圧電活性部3は、複数の圧電層5から構成されている。複数の圧電層5の表面には、4分割(A+、A−、B+、B−)された内部電極6−1、4分割(AG、AG、BG、BG)された内部電極6−2がそれぞれ形成されると共に、各内部電極6−1、6−2と接続されて圧電層5の外縁部まで延びる接続電極6a(図中黒色に塗りつぶしている部分)がそれぞれ形成されている。内部電極6−1が形成された各圧電層5における接続電極6aは、それぞれ積層圧電素子1の軸方向で同一位相位置に形成され、内部電極6−2が形成された各圧電層5における接続電極6aは、それぞれ積層圧電素子1の軸方向で同一位相位置に形成されている。
更に、積層圧電素子1の軸方向で同一となる位相に位置する接続電極6aは、積層圧電素子1の外周部に配設された層間の導通を図る外部電極7により接続されている。外部電極7は、積層圧電素子1の軸方向で同位相位置に位置する接続電極6a毎に、積層圧電素子1の周方向に沿った状態で例えば8本形成されている。
圧電活性部3の各内部電極6−1は、従来例と同様に、4分割された内部電極A+、A−、B+、B−から構成されており、圧電活性部3の各内部電極6−2は、4分割された内部電極AG、AG、BG、BGから構成されている。内部電極A+、A−、B+、B−と、内部電極AG、AG、BG、BGは、積層圧電素子1の軸方向で対向している。そして、圧電活性部3は、第1層から最終層まで、内部電極6−2、6−1を形成した圧電層5を交互に積層している。
他方、圧電不活性部4−1と圧電不活性部4−2は、それぞれ、内部電極の無い少なくとも2層以上の一体化された圧電層5から構成されている。圧電不活性部4−1と圧電不活性部4−2の厚さは、積層圧電素子1の軸方向に直交する2つの曲げ振動を発生させることが可能な厚さに設定されている。この場合、圧電不活性部4−1、4−2の厚さが薄いと、曲げ振動を発生させることができない。圧電不活性部4−1と圧電不活性部4−2は、例えば、図1及び図2に示すように不均等な厚さとなっている。
ここで、本実施の形態の積層圧電素子1は、例えば、外径が約10mm、内径が約2.8mm、長さが約12mmであり、圧電活性部3の圧電層5の厚さは約90μm、内部電極6−1、6−2の厚さは約2〜3μmで、内部電極の層数は25層とした。また、外部電極7の長さは約2mm、幅は約1mm、厚さは約0.05mm、圧電不活性部4−1、4−2の圧電層5の厚さは同様に約90μmとした。ただし、圧電不活性部4−1、4−2は、更に厚い層を重ねることで層数を少なくするようにしても良い。
積層圧電素子1は、圧電層5となる圧電セラミックス粉末と有機バインダからなり、一定寸法の形状(例えば縦横約13mmの四角形)に切り出したグリーンシートを使用して、以下の製造方法で製造される。
最初に、図2に示すように、積層圧電素子1を構成する圧電不活性部4−1、4−2は、グリーンシートだけを所定枚数重ね、積層圧電素子1を構成する圧電活性部3は、内部電極6−1、6−2及び接続電極6aのパターンを銀・パラジウム粉末ペーストを用いてグリーンシート上にスクリーン印刷で形成し、該スクリーン印刷したグリーンシートの所定の枚数を順に重ね、これらを加熱しながら加圧して積層化し一体化する。
次に、図2に示すように、上記積層化した積層圧電素子1に対し、ドリル加工により、積層圧電素子1の内径に相当する位置に貫通孔を開け、その後、所定温度(例えば1100〜1200度C)の鉛雰囲気で焼成する。焼成後、両面ラップ加工を行い、積層圧電素子1の両端面を平滑化する。
次に、図1及び図2に示すように、積層圧電素子1の外径を、研削加工により円筒状に研削し、積層圧電素子1の外周部に接続電極6aを露出させる。その後、円筒形表面印刷用のスクリーン印刷機を使用し、積層圧電素子1の外周部の接続電極6aが露出した8個所に外部電極7を印刷する。印刷後は、所定温度(例えば約750度C)で加熱し、積層圧電素子1の外周部に外部電極7を焼き付ける。
次に、図1に示すように、積層圧電素子1の外周部(圧電不活性部4−1)に対し、機械(研削)加工により、外周方向に沿って削ることで環状の凹み部8(凹部)を形成し、また、積層圧電素子1の軸方向一方の端面側(圧電不活性部4−1)から内径を一部拡大するように削ることで凸部9を形成する。
ここで、凹み部8は、振動変位の拡大を目的として形成される。凹み部8を形成した部分は剛性的に弱い部分となるため、凹み部8より上の部分が振動しやすくなる。また、凸部9は、積層圧電素子1におけるロータ18と加圧されて接触する端面に部材(例えば耐摩耗性の良好な金属やセラミックス)を配設する際の位置決め用として形成される。
凹み部8は圧電不活性部4−1のみに形成される。圧電不活性部4−1は圧電活性部3と異なり電極が形成されていないため、制約を受けることなく形状の微調整を容易に行うことができる。
最後に、図2に示すように、内部電極6−1、6−2における4分割した各電極(A+、A−、B+、B−、AG、AG、BG、BG)に対し、特定の分極方向に分極処理を行う。具体的には、8本の外部電極7に金属コンタクトピンを押し当て、所定温度(例えば100〜150度C)のオイル中で、AG、BGをグランド(G)とし、内部電極A+、B+をプラス(+)とし、内部電極A−、B−をマイナス(−)として、それぞれ所定電圧(例えば300V)を印加して、約10分〜30分かけて分極処理を行う。
この結果、積層圧電素子1は、図2に示すように、電気的なグランドに相当する内部電極AG、BG、AG、BGに対し、内部電極A+、B+が(+)の極性に、内部電極A−、B−が(−)の極性に、異なるように分極される。
図3は、積層圧電素子1を組み込んだ棒状の振動波モータ11の構成を示す断面図である。
図3において、振動波モータ11(振動波駆動装置)は、積層圧電素子1を振動体10として用いている。振動体10は、ボルト12を積層圧電素子1の内径部に挿入し、ボルト12のフランジ部13とナット14により積層圧電素子1を固定することで構成されている。ボルト12のフランジ部13の外側には、振動波モータ11の上部構造であるロータ部が配設されている。ロータ部は、ばね16とばね支持体17を介して振動体10の端面に加圧されて接触したロータ18(接触体)と、ギヤ19を備えている。ロータ18は、ギヤ19と一体に構成されており、ロータ18の回転をギヤ19から取り出すことができる。
他方、振動体10としての積層圧電素子1に形成された各外部電極7(図2参照)の周囲には、フレキシブル回路基板15が巻き付けられており、フレキシブル回路基板15により各外部電極7と駆動回路(不図示)とを電気的に接続している。
振動波モータ11の実際の駆動は、振動体10としての積層圧電素子1における上述の極性を有すると共に、積層圧電素子1の径方向で対向する位置関係(AGとAG、BGとBG、A+とA−、B+とB−)にある2つの内部電極において、AG相、BG相はグランドとし、A+、A−をA相とし、B+、B−をB相として、A相に振動体10の固有振動数とほぼ一致した高周波電圧を印加し、B相にはA相と位相が90度異なる高周波電圧を印加することにより行う。
上記の高周波電圧の印加により、積層圧電素子1を構成する圧電活性部3のA+、A−が交互に厚み方向で伸縮し、同様に、圧電活性部3のB+、B−も厚み方向で伸縮する。圧電活性部3の伸縮動作を、該圧電活性部3の軸方向両側に積層され一体化された圧電不活性部4で曲げ振動に変えることにより、積層圧電素子1に対し、軸方向に直交する2つの曲げ振動を発生させることが可能となる。
ここで、従来例の積層圧電素子40(図9参照)は、厚み方向での伸縮しかできないが、金属部材53と金属部材54により積層圧電素子40を挟み込んで固定することで振動体51を構成することにより、2つの曲げ振動を発生させていた(尚、積層圧電素子40は、絶縁のために最上層と最下層の1層分は分極されていない圧電不活性層を有しているが、この層は薄いので厚み方向でのひとつの振動(伸縮)しかできない)。
これに対し、本実施の形態の積層圧電素子1は、従来例のように金属部材で積層圧電素子を挟み込んで固定する代わりに、圧電不活性部4−1、4−2を圧電活性部3に積層し一体化することで圧電不活性部4−1、4−2で圧電活性部3を挟み込んで固定しているので、積層圧電素子1自体を振動体10として、棒状の振動波モータ11を駆動するための上記2つの曲げ振動を発生させることが可能となる。この2つの曲げ振動は、振動体10としての積層圧電素子1の端面を駆動部として首振り運動を行わせることができ、この駆動部に加圧されて接触するロータ18は摩擦により回転する。
尚、本実施の形態では、振動体10としての積層圧電素子1におけるロータ18と加圧されて接触する端面には、耐摩耗性の良好な金属やセラミックスの小部品を配設することで、耐久性を向上させることも可能である。
以上説明したように、本実施の形態によれば、積層圧電素子1を、電気−機械エネルギ変換機能を有する材料の層と電極材料の層とを複数層重ねた圧電性を有する圧電活性部3と、電気−機械エネルギ変換機能を有する材料の層だけを複数層重ねた圧電性を有しない圧電不活性部4−1、4−2とから構成し、圧電不活性部4−1、4−2の厚さを、積層圧電素子1の軸方向に直交する2つの曲げ振動を発生可能な厚さに設定しているため、積層圧電素子自体で複数の振動モード(2つの曲げ振動のモード)を有することが可能となる。
これにより、振動波モータに積層圧電素子を挟み込んで固定するための金属部材を組み込むことが不要となる。また、ため、振動波モータの性能を悪くしていた金属部材間の界面の振動減衰の原因を取り除くことができる結果、振動減衰を非常に少なくすることが可能となり、振動波モータの性能を向上させることが可能となる。
また、振動波モータに金属部材を組み込むことが不要となるため、振動波モータの小型化も容易になり、振動波モータの性能の向上のみならず、振動波モータの製造工程の短縮を図ることができると共に、部品点数及びコストの低減も可能となる。
また、積層圧電素子1を構成する圧電不活性部4−1の外周部を機械加工することで凹み部8を配設しているため、振動変位の拡大など設計仕様への対応や変更を的確に行うことができるばかりでなく、圧電材料は金属に比べ加工性が良く、微細加工も容易に行うことができる。
上記のように、今後の新たな小型化及び高出力化を実現しようとする振動波モータにとって、性能面及び製造面にとって効果は大きい。
なお、本実施の形態では、積層圧電素子1の圧電不活性部4−1の外周部に形成した振動変位拡大用の凹み部8の形状を環状とした場合を例に挙げたが、凹み部8の形状は、振動変位の拡大が可能な範囲で任意の形状とすることができる。
[第2の実施の形態]
図4は、本発明の第2の実施の形態に係る積層圧電素子の構成を示す斜視図である。図5は、積層圧電素子の製造途中の段階を示すと共にその積層構造を示す斜視図である。尚、以下では製造途中段階の積層圧電素子と製造後の積層圧電素子には便宜上同じ符号を付すものとする。
図4及び図5において、振動体2は、後述の研削加工前は平板状の形状を有するものであり、圧電活性部26と、圧電不活性部27とから構成されている。圧電不活性部27は、一番上の第1層から所定層(例えば第20層)までが内部電極の無い圧電層22から構成されている。圧電活性部26は、所定層(例えば第21層)から最終層(例えば第30層)までが、2分割された内部電極23−1、23−2が形成された圧電層22と、全面に内部電極23−3が形成された圧電層22とが交互に重なり積層化されることで構成されている。
圧電活性部26と圧電不活性部27は、例えば同時に積層して一体化され焼成されるものであり、積層圧電素子20を構成している。圧電活性部26はユニモルフであり、圧電不活性部27の厚さは、積層圧電素子20において曲げ振動を発生させることが可能な厚さに設定されている。圧電不活性部27の厚さが薄いと、ユニモルフである圧電活性部26によって発生したエネルギを曲げ振動として取り出すことができない。
各圧電層22における、2分割された内部電極23−1、23−2と、全面の内部電極23−3は、それぞれ、スルーホール24−1、24−2、24−3を介し独立して電気的に繋がれており、最下層の圧電層裏面に配設される3つに分割された表面電極25と導通している。そして、後述の分極処理を行い、各圧電層22には所定の分極極性を与える。
図4に示すように、圧電不活性部27の上面には、2つの突起部21(凸部)が研削加工により削り出されることで形成されている。つまり、振動体2は、圧電活性部26及び圧電不活性部27を備えた積層圧電素子20だけから構成されている。ここで、圧電不活性部27の2つの突起部21は、振動変位の拡大を目的として形成される。
突起部21は圧電不活性部27のみに形成される。圧電活性部26は内部電極が形成されているので削る等の加工を行うことはできないが、圧電不活性部27は圧電活性部26と異なり電極が形成されていないため、形状の微調整を容易に行うことができる。
積層圧電素子20は、積層圧電素子20の最下面に配設される表面電極25をラップ加工で削り落とした後の面の所定の位置にフレキシブル回路基板を貼り付けることで、駆動回路(不図示)と接続を行うことができるようになっている。
例えば、積層圧電素子20の内部電極23−3をグランドとし、内部電極23−1、23−2に0度と180度の間の時間的な位相差を有する高周波電圧を印加すると、図6に示すような異なる2つの曲げ振動を時間的な位相を90度ずらして同時に発生させることができる。
図6は、振動体2に励起される2つの曲げ振動を示す図である。
図6において、図6(a)に示す曲げ振動は面外2次曲げ振動であり、図6(b)に示す振動は面外2次曲げ振動であり、これら2つの曲げ振動の共振周波数は略一致するように振動体2の形状が設計されている。2つの突起部21は面外2次曲げ振動の節近傍に配置されており、この振動により2つの突起部21の先端はX方向に変位する。また、2つの突起部21は面外1次曲げ振動の腹近傍に配置されており、この振動により2つの突起部21の先端はZ方向に変位する。これら異なる2つの曲げ振動からなる複合振動を生成することで、振動体2を構成する積層圧電素子20の圧電不活性部27の2つの突起部21の先端には、楕円運動または円運動を発生させることができる。
この結果、振動体2の突起部21の先端を固定部(不図示)に加圧して接触させると、該先端に発生した楕円運動または円運動により、振動体2は固定部に対し自走する。従って、振動体2に対して他の部材(接触体)を加圧して接触させることで、振動体2との間に相対移動運動が形成されるため、直線(リニア)駆動する振動波モータを構成することができる。
尚、本実施の形態では、振動体2としての積層圧電素子20の圧電不活性部27の2つの突起部21における他の部材と加圧されて接触する端面には、極く薄い耐摩耗性の良好な金属やセラミックスを配設することで、耐久性を向上させることも可能である。
ここで、本実施の形態の積層圧電素子20は、例えば、縦が20mm、幅が5mm、厚さが1.8mmであり、圧電層22の厚さは60μm、内部電極の厚さは1〜2μmであり、また、スルーホールの径は0.1mmである。また、圧電不活性部27の圧電層22は、より厚いシートを用いても良い。
積層圧電素子20の製造方法は、上記第1の実施の形態と基本的に同じであり、以下のような工程となる。
最初に、内部電極を形成していないグリーンシートと内部電極を形成したグリーンシートとを積層して一体化し、その後、所定温度(例えば1100〜1200度C)の鉛雰囲気で焼成する。
次に、図5に示すように、3本のスルーホールに繋がる表面電極25にそれぞれ金属ピンを押し当て、内部電極23−3をグランド(G)とし、内部電極23−1、23−2をプラス(+)として、所定温度(例えば100〜150度C)のオイル中で、所定電圧(例えば200V)を印加して、約10分〜30分かけて分極処理を行う。
最後に、上記の分極処理後、積層圧電素子20の両面ラップ加工を行うことで積層圧電素子20の上面及び下面を平滑化すると共に表面電極25を削り落とし、図4に示すように、積層圧電素子20の圧電不活性部27の面に研削加工により2つの凸部である突起部21を削り出す。尚、焼成後の工程は、研削加工を先に行ってから分極処理を行っても良い。
本実施の形態によれば、従来は金属部材である弾性体と圧電素子の貼り合わせにより2つの異なる曲げ振動を起こしていたが、積層圧電素子20として圧電活性部26に圧電不活性部27を積層し一体化すると共に、他の部材に加圧して接触させるための突起部21を圧電不活性部27の面を削り出すことで形成しているため、積層圧電素子20だけで振動波モータの振動体2として使用することができ、2つの異なる曲げ振動を同時に起こすことが可能となる。
また、従来のように、圧電素子と厚い金属部材との接着を行うことが不要となるため、振動波モータの性能を悪くしていた振動減衰の原因を取り除くことができる結果、振動減衰を非常に少なくすることが可能となり、振動波モータの性能を向上させることが可能となる。
また、金属部材を使用することが不要となるため、振動波モータの小型化も容易になり、振動波モータの性能の向上のみならず、振動波モータの製造工程の短縮を図ることができると共に、部品点数及びコストの低減も図ることが可能となる。
また、積層圧電素子20を構成する圧電不活性部27を研削加工することで突起部21を形成しているため、振動変位の拡大など設計仕様への対応や変更を的確に行うことができるばかりでなく、圧電材料は金属に比べ加工性が良く、微細加工も容易に行うことができる。
なお、本実施の形態では、積層圧電素子1の圧電不活性部27の上面に形成した振動変位拡大用の突起部21の形状を直方体状とし配設数を2つとした場合を例に挙げたが、突起部21の形状及び配設数は、振動変位の拡大が可能な範囲で任意の形状及び任意の配設数とすることができる。
次に、上記第2の実施の形態の変形例について説明する。
図7は、第2の実施の形態で説明した積層圧電素子の変形例である積層圧電素子を用いたリニア型振動波モータの構成を示す斜視図である。図7に示す積層圧電素子30は、図4、図6に示す積層圧電素子20と比較して、上面に突起部21が形成される代わりに、上面に平板上の摩擦材31が接着等で結合されている点が異なる。
図7において、リニア型振動波モータは、振動体32と、スライダ33から構成されている。振動体32を構成する積層圧電素子30は、平板状の形状を有するものであり、一番上の第1層から所定層(例えば第20層)までの内部電極の無い圧電層からなる圧電不活性部36と、所定層(例えば第21層)から最終層(例えば第30層)までが図5と同様な内部電極が形成された圧電層からなる圧電活性部37とから構成されている。
図4乃至図6に示す積層圧電素子20の圧電活性部26と圧電不活性部27と同様に、圧電活性部36と圧電不活性部37は、例えば同時に積層して一体化され焼成されるものであり、圧電不活性部37の厚さは、積層圧電素子30において曲げ振動を発生させることが可能な厚さに設定されている。圧電不活性部37の厚さが薄いと、ユニモルフである圧電活性部36によって発生したエネルギを曲げ振動として取り出すことができない。
圧電不活性部37の上面には、板状の摩擦材31が接合されている。摩擦材31は、高摩擦係数と摩擦耐久性を兼ね備える材料から形成されており、例えばSUS420J2の表面を窒化処理したものが用いられる。
摩擦材31は、均一の厚さである部位31−1、31−2と、これらの部位よりも薄く構成された薄板部31−3、31−4とから構成されている。摩擦材31の材料である板状のSUS420J2の表面にエッチング処理を施して厚みを減らすことで、薄板部31−3、31−4を形成し、その他の部位が31−1、31−2となる。31−1は、直列状に並んで配置された薄板部31−3と薄板部31−4の間に形成されて下記のスライダ33に対する接触部として作用する。
一方、スライダ33は、スライダ基部33−1と、これに接合された摩擦材33−2とから構成されている。スライダ33の摩擦材33−2が、摩擦材31の接触部31−1に加圧されて接触する。
振動体32の圧電不活性部37の上面に接合された摩擦材31の薄板部31−3、31−4は、接触部31−1よりも凹むように形成されているので、振動体32に振動を励起しても、薄板部31−3、31−4はスライダ33に接触しない。
振動体32を構成する積層圧電素子30の所定の位置にフレキシブル回路基板を貼り付けることで、駆動回路(不図示)と接続を行うことができるようになっている。積層圧電素子30の内部電極に位相差を有する高周波電圧を印加することで、図8に示すような異なる2つの曲げ振動を時間的な位相を90度ずらして同時に発生させることができる。
図8は、リニア型振動波モータの振動体32に励起される2つの曲げ振動を示す図である。
図8において、図8(a)に示す曲げ振動は図6(a)に示す曲げ振動と同様の面外2次曲げ振動であり、図8(b)に示す振動は図6(b)に示す曲げ振動と同様の面外1次曲げ振動であり、これら2つの曲げ振動の共振周波数が略一致するように振動体32の形状が設計されている。
振動体32を構成する積層圧電素子30の圧電不活性部37上面の摩擦材31の薄板部31−3、31−4間に形成された2つの接触部31−1は、図4の2つの突起部21と同様の位置に配置されている。従って、振動体32に上述した異なる2つの曲げ振動からなる複合振動を生成することで、振動体32を構成する積層圧電素子30の圧電不活性部37上面の2つの接触部31−1の表面には、楕円運動または円運動を発生させることができる。
この結果、振動体32の接触部31−1の表面をスライダ33に加圧して接触させると、該表面に発生した楕円運動または円運動により、スライダ33は振動体32に対して直線移動をする。従って、振動体32に対してスライダ33を加圧して接触させることで、振動体32との間に相対移動運動が形成されるため、直線(リニア)駆動する振動波モータを構成することができる。
ここで、図7に示す振動体32を構成する積層圧電素子30と摩擦材31は、縦(X方向)及び幅(Y方向)の寸法が略一致している。積層圧電素子30は、縦が5.5mm、幅が3.1mm、厚さが0.6mmである。また、摩擦材31の接触部31−1と部位31−2の厚さは0.1mmであり、薄板部31−3、31−4の厚さは0.05mmである。
上記変形例によっても、積層圧電素子30だけで振動波モータの積層圧電素子30として2つの異なる曲げ振動を同時に起こすことが可能となる。
また、金属部材を使用することが不要となるため、振動波モータの小型化も容易になり、振動波モータの性能の向上のみならず、振動波モータの製造工程の短縮を図ることができると共に、部品点数及びコストの低減も図ることが可能となる。
本発明の第1の実施の形態に係る積層圧電素子の構成を示す一部を切り欠いた断面図である。 積層圧電素子の製造の途中段階を示すと共にその積層構造を示す斜視図である。 積層圧電素子を組み込んだ棒状の振動波モータの構成を示す断面図である。 本発明の第2の実施の形態に係る積層圧電素子の構成を示す斜視図である。 積層圧電素子の製造途中の段階を示すと共にその積層構造を示す斜視図である。 本発明の第2の実施の形態に係る振動体に励起される2つの曲げ振動を示す図であり、(a)は面外2次曲げ振動を示す図、(b)は面外2次曲げ振動を示す図である。 本発明の第2の実施の形態の変形例に係る積層圧電素子を用いたリニア型振動波モータの構成を示す斜視図である。 リニア型振動波モータの振動体に励起される2つの曲げ振動を示す図であり、(a)は面外2次曲げ振動を示す図、(b)は面外1次曲げ振動を示す図である。 従来例に係る積層圧電素子を示す斜視図である。 積層圧電素子を組み込んだ棒状の振動波モータの構成を示す断面図である。 積層圧電素子を配置したリニア駆動する振動波モータの構成を示す図であり、(a)は正面図、(b)は右側面図、(c)は平面図である。
符号の説明
1、2、30 積層圧電素子
3、26、36 圧電活性部
4、27、37 圧電不活性部
5、22 圧電層
6、23 内部電極
7 外部電極
8 凹部
10、20、32 振動体
11 振動波モータ
18 ロータ
21 突起部
31 摩擦材
31−1 接触部
33 スライダ

Claims (11)

  1. 複数の層から構成される積層圧電素子において、
    電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を少なくとも一層又は複数層重ねた圧電不活性部とを積層して一体化すると共に、前記圧電不活性部の厚さを、前記積層圧電素子に複数の振動を発生可能な厚さとしたことを特徴とする積層圧電素子。
  2. 複数の層から構成される積層圧電素子において、
    電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を少なくとも一層又は複数層重ねた圧電不活性部とを積層して一体化すると共に、前記圧電不活性部に、前記積層圧電素子に発生可能な複数の振動の変位を拡大する変位拡大部を形成したことを特徴とする積層圧電素子。
  3. 前記積層圧電素子を円筒形状とし、前記圧電活性部の積層方向の両側に前記圧電不活性部を積層して一体化したことを特徴とする請求項1又は2記載の積層圧電素子。
  4. 前記圧電不活性部の一部に凹部を形成したことを特徴とする請求項3記載の積層圧電素子。
  5. 前記複数の振動は、前記積層圧電素子の軸方向に交差する少なくとも2つの曲げ振動であることを特徴とする請求項3又は4記載の積層圧電素子。
  6. 前記積層圧電素子を平板形状とし、前記圧電活性部の積層方向の一方の側に前記圧電不活性部を積層して一体化したことを特徴とする請求項1又は2記載の積層圧電素子。
  7. 前記圧電不活性部の一部に凸部を形成したことを特徴とする請求項6記載の積層圧電素子。
  8. 前記複数の振動は、複数の曲げ振動であることを特徴とする請求項6又は7記載の積層圧電素子。
  9. 前記請求項1乃至5の何れかに記載の積層圧電素子を備え、前記積層圧電素子を振動体とし、前記振動体に加圧されて接触する接触体を回転させることを特徴とする振動波駆動装置。
  10. 前記請求項1、2、6乃至8の何れかに記載の積層圧電素子を備え、前記積層圧電素子を振動体とし、前記振動体と前記振動体に加圧されて接触する接触体とを相対的に移動させることを特徴とする振動波駆動装置。
  11. 振動体に振動を発生させ、前記振動体に加圧されて接触する接触体を回転させる振動波駆動装置において、
    前記振動体が電気量を機械量に変換する変換機能を有する材料の層と複数に分割された電極材料の層とを複数層重ねた圧電活性部と、前記変換機能を有する材料の層を複数層重ねた圧電不活性部とを積層して一体化した積層圧電素子で構成され、前記接触体が前記圧電不活性部に加圧されて接触することを特徴とする振動波駆動装置。
JP2004299072A 2003-11-13 2004-10-13 積層圧電素子及び振動波駆動装置 Expired - Fee Related JP4697929B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004299072A JP4697929B2 (ja) 2003-11-13 2004-10-13 積層圧電素子及び振動波駆動装置
US10/985,374 US7233096B2 (en) 2003-11-13 2004-11-10 Multilayer piezoelectric element and vibration-wave drive device
CNB2004100929828A CN100399598C (zh) 2003-11-13 2004-11-12 多层压电元件和振动波驱动设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003383896 2003-11-13
JP2003383896 2003-11-13
JP2004299072A JP4697929B2 (ja) 2003-11-13 2004-10-13 積層圧電素子及び振動波駆動装置

Publications (3)

Publication Number Publication Date
JP2005168281A true JP2005168281A (ja) 2005-06-23
JP2005168281A5 JP2005168281A5 (ja) 2007-11-15
JP4697929B2 JP4697929B2 (ja) 2011-06-08

Family

ID=34575960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299072A Expired - Fee Related JP4697929B2 (ja) 2003-11-13 2004-10-13 積層圧電素子及び振動波駆動装置

Country Status (3)

Country Link
US (1) US7233096B2 (ja)
JP (1) JP4697929B2 (ja)
CN (1) CN100399598C (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186099A (ja) * 2004-12-27 2006-07-13 Canon Inc 積層圧電素子及び振動波駆動装置
JP2007281362A (ja) * 2006-04-11 2007-10-25 Canon Inc 積層圧電素子及びその製造方法、並びに振動波駆動装置
JP2010219464A (ja) * 2009-03-19 2010-09-30 Tdk Corp 積層型圧電素子
KR20110001033A (ko) * 2009-06-29 2011-01-06 삼성전자주식회사 초음파 모터 및 그 제조 방법
JP2011172466A (ja) * 2010-01-19 2011-09-01 Tdk Corp 圧電アクチュエータ
JP2011172465A (ja) * 2010-01-19 2011-09-01 Tdk Corp 圧電アクチュエータ
JP2014120753A (ja) * 2012-12-12 2014-06-30 Samsung Electro-Mechanics Co Ltd 圧電アクチュエータ及びそれを含む振動発生装置
DE102013107154A1 (de) * 2013-07-08 2015-01-22 Physik Instrumente (Pi) Gmbh & Co. Kg Antriebsvorrichtung
JP2016086540A (ja) * 2014-10-27 2016-05-19 キヤノン株式会社 超音波モータ及び超音波モータを用いた駆動装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072518B2 (ja) * 2004-06-09 2008-04-09 キヤノン株式会社 振動波駆動装置
KR100680307B1 (ko) * 2005-05-20 2007-02-07 삼성전기주식회사 압전 진동자 및 이를 구비한 초음파 모터
JP4756916B2 (ja) * 2005-05-31 2011-08-24 キヤノン株式会社 振動波モータ
JP2007274865A (ja) * 2006-03-31 2007-10-18 Casio Comput Co Ltd 圧電アクチュエータ、これを用いた搬送装置及び手ぶれ補正装置
US7786648B2 (en) * 2008-08-18 2010-08-31 New Scale Technologies Semi-resonant driving systems and methods thereof
US8908301B2 (en) 2009-06-03 2014-12-09 Nikon Corporation Vibration actuator, lens barrel, and camera
US8304960B2 (en) * 2009-10-29 2012-11-06 New Scale Technologies Methods for reducing power consumption of at least partially resonant actuator systems and systems thereof
KR101055553B1 (ko) * 2009-10-30 2011-08-08 삼성전기주식회사 압전모터
JP5627258B2 (ja) 2010-03-23 2014-11-19 キヤノン株式会社 振動型アクチュエータおよびその製造方法
JP5930595B2 (ja) * 2010-04-06 2016-06-08 キヤノン株式会社 振動型アクチュエータ、振動子及び振動子の製造方法
JP5665522B2 (ja) * 2010-12-20 2015-02-04 キヤノン株式会社 振動体及び振動型駆動装置
DE102013105024B3 (de) * 2013-05-16 2014-09-25 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
US10419653B2 (en) 2015-06-19 2019-09-17 Canon Kabushiki Kaisha Vibration drive device capable of generating click feeling and image pickup apparatus
JP7362366B2 (ja) * 2019-08-30 2023-10-17 キヤノン株式会社 振動型アクチュエータ、光学機器および電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344765A (ja) * 1992-06-11 1993-12-24 Olympus Optical Co Ltd 圧電モータおよびその駆動方法
JPH0795777A (ja) * 1993-09-22 1995-04-07 Canon Inc 振動波駆動装置
JPH08213664A (ja) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd 積層セラミックス圧電体素子
JPH11502677A (ja) * 1996-01-18 1999-03-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 複合圧電多層素子及びこのような素子の製造方法
JP2001094164A (ja) * 1999-09-24 2001-04-06 Taiheiyo Cement Corp 積層型圧電アクチュエータ
JP2002359985A (ja) * 2001-05-30 2002-12-13 Canon Inc 振動体および振動波駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191688A (en) * 1989-07-27 1993-03-09 Olympus Optical Co., Ltd. Method for producing a superior longitudinal vibrator
EP0584775B1 (en) 1992-08-25 1997-12-17 Canon Kabushiki Kaisha Production method of laminated piezoelectric device and polarization method thereof and vibration wave driven motor
US5698930A (en) 1993-11-15 1997-12-16 Nikon Corporation Ultrasonic wave motor and method of manufacture
JPH11340535A (ja) * 1998-05-29 1999-12-10 Kyocera Corp 積層型圧電アクチュエータ
DE19856201A1 (de) * 1998-12-05 2000-06-15 Bosch Gmbh Robert Piezoelektrischer Aktor
CN1297062C (zh) * 2001-03-27 2007-01-24 精工爱普生株式会社 压电致动器及其驱动电路
US6897598B2 (en) * 2002-03-15 2005-05-24 Kyocera Corporation Ultrasonic motor and guide apparatus having the same as driving source of movable body
JP4328113B2 (ja) * 2003-03-13 2009-09-09 オリンパス株式会社 超音波モータ
US7067958B2 (en) * 2004-02-17 2006-06-27 Piezomotor Uppsala Ab Wide frequency range electromechanical actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344765A (ja) * 1992-06-11 1993-12-24 Olympus Optical Co Ltd 圧電モータおよびその駆動方法
JPH0795777A (ja) * 1993-09-22 1995-04-07 Canon Inc 振動波駆動装置
JPH08213664A (ja) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd 積層セラミックス圧電体素子
JPH11502677A (ja) * 1996-01-18 1999-03-02 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 複合圧電多層素子及びこのような素子の製造方法
JP2001094164A (ja) * 1999-09-24 2001-04-06 Taiheiyo Cement Corp 積層型圧電アクチュエータ
JP2002359985A (ja) * 2001-05-30 2002-12-13 Canon Inc 振動体および振動波駆動装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186099A (ja) * 2004-12-27 2006-07-13 Canon Inc 積層圧電素子及び振動波駆動装置
JP2007281362A (ja) * 2006-04-11 2007-10-25 Canon Inc 積層圧電素子及びその製造方法、並びに振動波駆動装置
US7808162B2 (en) 2006-04-11 2010-10-05 Canon Kabushiki Kaisha Stacked piezoelectric element and vibration wave driving apparatus
JP2010219464A (ja) * 2009-03-19 2010-09-30 Tdk Corp 積層型圧電素子
KR20110001033A (ko) * 2009-06-29 2011-01-06 삼성전자주식회사 초음파 모터 및 그 제조 방법
KR101653826B1 (ko) 2009-06-29 2016-09-02 삼성전자주식회사 초음파 모터 및 그 제조 방법
JP2011172465A (ja) * 2010-01-19 2011-09-01 Tdk Corp 圧電アクチュエータ
JP2011172466A (ja) * 2010-01-19 2011-09-01 Tdk Corp 圧電アクチュエータ
JP2014120753A (ja) * 2012-12-12 2014-06-30 Samsung Electro-Mechanics Co Ltd 圧電アクチュエータ及びそれを含む振動発生装置
DE102013107154A1 (de) * 2013-07-08 2015-01-22 Physik Instrumente (Pi) Gmbh & Co. Kg Antriebsvorrichtung
DE102013107154B4 (de) * 2013-07-08 2020-09-10 Physik Instrumente (Pi) Gmbh & Co. Kg Antriebsvorrichtung
JP2016086540A (ja) * 2014-10-27 2016-05-19 キヤノン株式会社 超音波モータ及び超音波モータを用いた駆動装置
US10171008B2 (en) 2014-10-27 2019-01-01 Canon Kabushiki Kaisha Vibration wave motor and driving apparatus using the vibration wave motor

Also Published As

Publication number Publication date
JP4697929B2 (ja) 2011-06-08
CN1617366A (zh) 2005-05-18
CN100399598C (zh) 2008-07-02
US7233096B2 (en) 2007-06-19
US20050104476A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4697929B2 (ja) 積層圧電素子及び振動波駆動装置
US8749117B2 (en) Vibrating body of vibratory drive unit and vibratory drive unit
JP4881062B2 (ja) 積層圧電素子、その製造方法および振動波駆動装置
JP4891053B2 (ja) 超音波モータ
JP4652677B2 (ja) 超音波振動子及びそれを用いた超音波モータ
JP4328113B2 (ja) 超音波モータ
KR100276632B1 (ko) 초음파모터용 압전진동자, 그 장착방법 및 제조방법 및 정재파형 초음파모터
JPH07163162A (ja) 超音波振動子
JP2001352768A (ja) 積層電気−機械エネルギー変換素子および振動波駆動装置
US7825566B2 (en) Ultrasonic actuator and method for manufacturing piezoelectric deformation portion used in the same
JP2006288061A (ja) 電気−機械エネルギ変換素子、積層圧電素子、振動波駆動装置、及び積層圧電素子の製造方法
JP4871593B2 (ja) 振動子及び振動波駆動装置
CN110661445A (zh) 一种并联式三自由度压电谐振自致动机构及其激励方法
JP2006186099A (ja) 積層圧電素子及び振動波駆動装置
JP2008067539A (ja) 超音波アクチュエータ、及びその振動体の製造方法
JP4658530B2 (ja) 超音波振動子及びそれを用いた超音波モータ
JP5144097B2 (ja) 超音波モータ装置
JPH0412677A (ja) 積層型アクチュエータの製造方法
JP2005150351A (ja) 積層圧電素子、その製造方法、振動体、及び振動波駆動装置
JP5124429B2 (ja) 超音波モータ
JPH08163879A (ja) 超音波振動子および超音波モータ
JP2004335554A (ja) 積層電気−機械エネルギ変換素子の製造方法
JP2002353530A (ja) 積層電気−機械エネルギー変換素子及びその製造方法
JPH03251090A (ja) 圧電アクチュエータ
JP2010148279A (ja) 超音波モータ

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060419

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees