JP5746477B2 - モデル生成装置、3次元計測装置、それらの制御方法及びプログラム - Google Patents

モデル生成装置、3次元計測装置、それらの制御方法及びプログラム Download PDF

Info

Publication number
JP5746477B2
JP5746477B2 JP2010043060A JP2010043060A JP5746477B2 JP 5746477 B2 JP5746477 B2 JP 5746477B2 JP 2010043060 A JP2010043060 A JP 2010043060A JP 2010043060 A JP2010043060 A JP 2010043060A JP 5746477 B2 JP5746477 B2 JP 5746477B2
Authority
JP
Japan
Prior art keywords
reliability
dimensional
edge
model
geometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010043060A
Other languages
English (en)
Other versions
JP2011179908A (ja
Inventor
大輔 渡邊
大輔 渡邊
藤木 真和
真和 藤木
内山 晋二
晋二 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010043060A priority Critical patent/JP5746477B2/ja
Priority to US13/517,293 priority patent/US9355453B2/en
Priority to PCT/JP2011/054678 priority patent/WO2011105616A1/en
Publication of JP2011179908A publication Critical patent/JP2011179908A/ja
Application granted granted Critical
Publication of JP5746477B2 publication Critical patent/JP5746477B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models

Description

本発明は、3次元計測装置、その処理方法及びプログラムに関する。
近年、これまで人間が行なっていた複雑なタスクをロボットが代わりに行なうようになりつつある。複雑なタスクの代表例として、工業製品の組み立てが挙げられる。ロボットが自律的に組立作業を行なうために、ハンドなどのエンドエフェクタによって部品を把持する。部品を把持するには、把持の対象となる部品とロボットとの相対的な位置及び姿勢を計測する。そして、その計測結果に基づいて移動計画を策定し、アクチュエータを制御する必要がある。
また、複合現実感、いわゆるMR(Mixed Reality)技術においても、現実世界と仮想世界とをリアルタイム且つシームレスに融合させるため、位置及び姿勢の計測が必要である。これまで位置及び姿勢の計測は、カメラや距離センサを用いて行なわれており、その代表的な方法としては、2次元画像や距離画像を用いる手法が知られている。また、MR技術の分野では、ヘッドマウントディスプレイ(Head Mounted Display:以下、HMDと呼ぶ)に搭載されたカメラで撮像された画像を用いてHMDの位置及び姿勢の計測を行なう技術の研究がなされている。
非特許文献1には、2次元画像へのモデルフィッティングを行なうことにより、十分なテクスチャ情報を必要とせずに、物体の位置及び姿勢を計測する技術が開示されている。この技術では、2次元画像から検出される線分(エッジ)に対して物体の3次元幾何モデルを当てはめる。これにより、物体の位置及び姿勢を計測する。より具体的には、2次元画像全体からエッジ検出を行なった後、局所的な接続情報を用いて線分に分離する。そして、検出された線分の両側の端点と、物体の位置及び姿勢の概略値に基づく3次元幾何モデルの線分との画像上における距離の総和を最小にすべく、ガウス−ニュートン法を用いて物体の位置及び姿勢を計測する。
また、非特許文献2には、物体の位置及び姿勢の概略値に基づく3次元幾何モデルの線分の近傍のみでエッジ探索を行なう技術が開示される。この技術では、2次元画像全体からエッジを検出しないため、物体の位置及び姿勢の計測を迅速に行なえる。また、非特許文献2には、2次元画像から検出した各エッジに対して色のコントラストや他のエッジとの距離に応じたエッジの信頼度を求め、その信頼度に応じた重み付けを行なう技術についても言及されている。これにより、位置姿勢算出処理に対する各エッジの寄与率を変化させる。
また更に、特許文献1には、モデルフィッティングに利用する3次元幾何モデルの生成に関し、高確率で観測されるエッジのみを残して3次元幾何モデルを生成する技術が開示されている。この技術では、物体の3次元幾何モデルを異なる視点から観測した画像を複数生成し、当該複数の視点画像から共通に観測されたエッジのみを残す。これにより、エッジの観測可能性の高いモデルを生成する。
特開2007−20751号公報
D. G. Lowe, "Fitting parameterized three-dimensional models to images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, no.5, pp.441-450, 1991. T. Drummond and R. Cipolla, "Real-time visual tracking of complex structures," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.7, pp.932-946, 2002.
非特許文献1の技術は、画像からエッジが正しく検出され、また、画像から検出されたエッジと3次元幾何モデルのエッジとの対応関係が正しいことを前提としている。そのため、対象物体のテクスチャや形状変化を明瞭に示すエッジが常に安定して検出されるのであれば、物体の位置及び姿勢を精度良く計測できる。
しかし、物体の撮影時に撮影視点の移動が伴う場合、撮影した画像からエッジを安定的に検出することは難しい。撮影視点に依存して画像中における物体の色の見えが変化するため、通常、画像中で検出されるエッジもそれに伴って変化する。このような場合には、画像から検出されるエッジと3次元幾何モデルのエッジとの対応関係に誤りが生じ易くなり、非特許文献1の技術では、位置姿勢算出処理の精度が低下してしまう。
また、非特許文献2の技術では、リアルタイムでエッジの信頼度を算出するため、位置姿勢算出処理の処理負荷が高い。また、画像中の計測対象物体以外の背景領域からもエッジを検出するため、誤ったエッジをマッチングする危険性もある。
また更に、特許文献1の技術では、上述した通り、複数視点の画像から観測されたエッジを残すことにより、観測可能性の高いエッジのみを持つモデルを生成している。この技術では、観測可能性の高いエッジが3次元幾何モデル全体に均等且つ十分に分布していることを前提としている。
しかし、実際には、エッジの観測のされ易さは視点毎に大きく異なる。そのため、複数の視点において観測可能性の高いエッジのみを残すようにした場合、不十分な数のエッジしか得られない場合がある。また、観測可能性の高いエッジが多数残ったとしても、これらのエッジがモデルの一部分に偏ることも考えられる。このような場合、エッジの不足や偏りにより、位置姿勢算出処理の精度が低下する。
本発明は、上記課題に鑑みてなされたものであり、物体の位置及び姿勢の計測に際して、各エッジに信頼度を付与したモデルを用いて位置姿勢算出処理に対する各エッジの寄与度を変更するようにした技術を提供することを目的とする。
上記課題を解決するため、本発明の一態様は、
計測対象物体の位置及び姿勢の計測に際して実施される位置姿勢算出処理に用いられる3次元幾何モデルを生成するモデル生成装置であって、
前記計測対象物体を複数の異なる視点から観測した複数の視点画像を生成する視点画像生成手段と、
前記複数の視点画像各々から前記計測対象物体の画像特徴を検出する検出手段と、
前記3次元幾何モデルにおける幾何特徴各々に対して前記検出された前記計測対象物体の画像特徴を対応付け、その対応付け結果に基づいて前記3次元幾何モデルにおける幾何特徴各々の信頼度を算出する信頼度算出手段と、
前記幾何特徴各々の信頼度を前記3次元幾何モデルの当該幾何特徴に付与することにより信頼度付きモデルを生成する生成手段と
を具備することを特徴とする。
本発明によれば、撮像画像から検出されるエッジが視点変化に伴って変化した場合であっても、物体の位置及び姿勢の計測を精度良く行なえる。
本発明の一実施の形態に係わる3次元計測装置の構成の一例を示す図。 3次元幾何モデルの定義情報の一例を示す図。 図1に示す3次元計測装置100における処理の流れの一例を示すフローチャート。 視点画像の生成を模式的に示す図。 エッジリストデータの一例を示す図。 信頼度付きモデルの定義情報の一例を示す図。 図1に示す3次元計測装置100における処理の流れの一例を示すフローチャート。 エッジ検出方法の概要の一例を示す図。 図7のS205に示す位置姿勢算出処理の流れの一例を示すフローチャート。 投影像と画像から検出された2次元エッジとの関係の一例を示す図。 実施形態2に係わる3次元計測装置100における処理の流れの一例を示すフローチャート。 実施形態2に係わるエッジリストデータの一例を示す図。 実施形態3に係わる3次元計測装置100における処理の流れの一例を示すフローチャート。 信頼度付きモデルの定義情報の一例を示す図。 実施形態3に係わるエッジリストデータの一例を示す図。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
(実施形態1)
図1は、本発明の一実施の形態に係わる3次元計測装置の構成の一例を示す図である。
ここで、3次元計測装置100は、その機能的な構成として、モデル保持部110と、視点画像生成部120と、エッジ検出部130と、信頼度算出部140と、モデル生成部190とが具備される。また更に、3次元計測装置100には、機能的な構成として、概略値取得部150と、撮像部160と、エッジ検出部170と、位置姿勢算出部180とが具備される。
モデル保持部110は、計測対象となる物体(以下、計測対象物体、又は単に物体と呼ぶ場合もある)の3次元幾何モデルを保持する。3次元幾何モデルは、例えば、計測対象物体の形状を複数のエッジ(第1のエッジ)を用いて定義する。
より具体的には、3次元幾何モデルは、点の集合及び各点を結んで構成される線分の集合によって定義される。計測対象物体の3次元幾何モデル10は、図2(a)に示すように、点P1〜点P14の14点から構成される。点P1〜点P14は、図2(c)に示すように、3次元座標値により表される。また、計測対象物体の3次元幾何モデル10は、図2(b)に示すように、線分L1〜L16により構成されている。線分L1〜L16は、図2(d)に示すように、線分を構成する点のID(識別子)により表される。なお、ここでは図示を省略するが、3次元幾何モデルは、面の情報も保持する。各面は、各面を構成する頂点のIDにより表される。なお、本実施形態係わる3次元幾何モデルは、複数の線分(エッジ)を用いて計測対象物体の形状を定義している場合について説明する。
視点画像生成部120は、計測対象物体を異なる視点から観測した複数の視点画像を生成する。視点画像生成部120による複数の視点画像の生成は、モデル保持部110に保持された3次元幾何モデルを用いて行なわれる。
エッジ検出部130は、視点画像生成部120により生成された複数の視点画像各々から計測対象物体のエッジ(第2のエッジ)を検出する。
信頼度算出部140は、エッジ検出部130により検出された視点画像各々から検出された各エッジに基づいて、3次元幾何モデルにおける各線分(各エッジ)の信頼度を算出する。より具体的には、3次元幾何モデルにおけるエッジ各々(第1のエッジ各々)に対して、複数の視点画像各々から検出されたエッジ(第2のエッジ)を対応付け、その対応付け結果に基づいて3次元幾何モデルにおけるエッジ各々の信頼度を算出する。
モデル生成部190は、モデル保持部110に保持された3次元幾何モデルにおける各エッジに対して、信頼度算出部140により算出された信頼度を付与する。これにより、信頼度付きの3次元幾何モデル(以下、信頼度付きモデルと呼ぶ場合もある)を生成する。
概略値取得部150は、3次元計測装置100に対する物体の位置及び姿勢の概略情報(以下、概略値と呼ぶ)を入力する。本実施形態において、3次元計測装置100に対する物体の位置及び姿勢とは、撮像部160を基準とした物体の位置及び姿勢を示すが、必ずしも撮像部160を基準にする必要はない。例えば、撮像部160の座標系に対する物体の相対的な位置及び姿勢が既知であり、且つその位置及び姿勢が変化しないのであれば、3次元計測装置100におけるその他の部分を基準としてもよい。また、本実施形態においては、物体の位置及び姿勢の概略値として、3次元計測装置100が当該物体から過去(例えば、直前)に計測した計測値を用いる。物体の位置及び姿勢の概略値は、必ずしもこのような値である必要はない。例えば、過去に計測した物体の位置及び姿勢の計測値に対して時系列フィルタリング処理(例えば、線形フィルタ、カルマンフィルタ)を実施し、物体の運動速度や角速度を推定する。そして、その推定結果に基づいて物体の位置及び姿勢を予測した値を概略値としてもよい。また、センサから得られる物体の位置及び姿勢を概略値としてもよい。ここで、センサは、物体の位置及び姿勢を6自由度で計測できればよく、その方式(例えば、磁気式、光学式、超音波式)は、特に問わない。なお、物体の置かれているおおよその位置や姿勢が予め分かっているのであれば、その値を概略値として用いてもよい。物体の位置及び姿勢の概略値は、物体の位置及び姿勢の算出処理に用いられる。
撮像部160は、計測対象物体の画像を撮像する。撮像部160の内部パラメータ(カメラパラメータ:焦点距離、主点位置、レンズ歪みパラメータ)は、例えば、「Z. Zhang, “A flexible new technique for camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.11, pp.1330-1334, 2000」に開示される手法を用いて、事前に校正しておけばよい。
エッジ検出部170は、撮像部160により撮像された計測対象物体の画像(2次元画像)から画像特徴としてエッジ(第3のエッジ)を検出する。
位置姿勢算出部180は、エッジ検出部170により検出されたエッジ(第3のエッジ)に対して、信頼度付きモデルのエッジ(第1のエッジ)をフィッティングさせることにより計測対象物体の位置及び姿勢を計測(算出)する。位置姿勢算出部180は、信頼度付きモデルにおけるエッジ(第1のエッジ各々)に付与された信頼度に基づいて当該エッジ(第1のエッジ各々)を重み付けし、位置姿勢算出処理へのエッジ各々(第1のエッジ各々)の寄与度を変更する。
以上が、3次元計測装置100の構成の一例についての説明である。なお、上記説明した、3次元計測装置100には、コンピュータが内蔵されている。コンピュータには、CPU等の主制御手段、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等の記憶手段が具備される。また、コンピュータにはその他、キーボードやディスプレイ又はタッチパネル等の入出力手段、ネットワークカード等の通信手段等も具備されていてもよい。なお、これら各構成部は、バス等により接続され、主制御手段が記憶手段に記憶されたプログラムを実行することで制御される。
次に、図3を用いて、図1に示す3次元計測装置100における処理の流れの一例について説明する。ここでは、信頼度付きモデルを生成する際の処理の流れについて説明する。
[S101]
この処理が開始すると、3次元計測装置100は、視点画像生成部120において、計測対象物体を複数の異なる視点から観測した複数の視点画像をシミュレーションにより生成する。
ここで、図4を用いて、この視点画像の生成を模式的に説明する。まず、仮想カメラの姿勢が、例えば、カメラ31に示すように選択される。仮想カメラ31は、その選択された位置及び姿勢から観測したときの3次元幾何モデル10をCG(Computer Graphics)によりレンダリングし、当該視点からの3次元幾何モデル10の視点画像41を生成する。同様に、仮想カメラの姿勢が、例えば、カメラ32に示すように選択された場合には、仮想カメラ32の視点からの3次元幾何モデル10の視点画像42を生成する。
なお、位置姿勢算出処理において、信頼度付きモデルにおける各エッジの信頼度に応じて当該各エッジを重み付けする場合には、各視点画像と、撮像部160により撮像される画像とが類似している必要がある。光源条件や背景環境、対象物体のテクスチャなどはエッジ検出に大きく影響するため、これらの条件をできる限り類似させるような写実的レンダリングの利用が有効である。例えば、テクスチャ付き3次元幾何モデルの利用や、光源環境、背景環境など、撮像部160による画像の撮像時と同様の条件でのシミュレートを行なうことが望ましい。
仮想カメラの位置及び姿勢の選択は、例えば、ユーザによって定義された範囲で均一になされる。例えば、多面体により構成された対象物体を覆うことのできる所定の大きさのGeodesic domeを仮定し、多面体の各頂点から対象物体を眺めたときの各視点画像を取得する等が考えられる。なお、仮想カメラの位置及び姿勢の選択手法は、これに限られず、例えば、対象物体を覆うことのできる所定の大きさの球を仮定して地球儀のような緯度経度を割り当て、緯度方向、軽度方向に等間隔に視点を取る方法なども考えられる。
[S102]
3次元計測装置100は、エッジ検出部130において、各視点画像からエッジ(線分)を検出する。エッジの検出には、例えば、canny又はsobelのエッジフィルタを用いればよい。エッジ検出部130及びエッジ検出部170は、同じエッジ検出方法を採用するのが望ましい。なお、本実施形態においては、検出したエッジを画像上で等間隔に分割し、制御点を設定する。そして、画像上における制御点の座標とエッジ方向を示す2次元ベクトルとを用いて各エッジ(以下、2次元エッジと呼ぶ場合もある)を表現する。
[S103〜S105]
3次元計測装置100は、信頼度算出部140において、S102の処理で検出された各2次元エッジと、3次元幾何モデルの座標系との対応を求める。本実施形態においては、3次元幾何モデルに対して所定の大きさの三角形パッチモデルを生成し、3次元幾何モデル上で隣接する2つの三角形において法線のなす角が一定値以上のものを3次元幾何モデル上でのエッジとみなす。そして、2つの隣接する三角形における共通線分の中点の3次元座標と、線分の方向を示す3次元ベクトルとに基づいてエッジを3次元空間で表現する。以下、このエッジを3次元エッジと呼ぶ場合もある。
信頼度算出部140は、まず、各3次元エッジの制御点に対して制御点番号を割り当てる。そして、2次元エッジが、どの制御点番号の3次元エッジに該当するのかを探索する。これにより、2次元エッジと3次元エッジとを対応付ける。すなわち、視点画像から検出されたエッジと、3次元幾何モデルのエッジとを対応付ける。
本実施形態においては、3次元幾何モデルをレンダリングして得られるデプスバッファ、又はカメラパラメータに基づいて2次元エッジを3次元空間に射影する。これにより、2次元エッジの制御点とその向きとに基づいて3次元空間中の制御点の座標及びその向きを求める。2次元エッジを3次元空間へ射影することより得られた3次元のエッジを以下、3次元射影エッジと呼ぶ場合もある。
このとき、3次元射影エッジと3次元エッジとの制御点の距離及びベクトル法線のなす角度が小さく且つ閾値以下であれば、3次元射影エッジの生成元である2次元エッジを3次元エッジに対応付ける。
ここで、信頼度算出部140は、各視点画像にS101〜S104の処理を実施し、3次元幾何モデルにおける各エッジ(3次元エッジ)に対して、各視点画像から検出されたエッジ(3次元射影エッジ)が対応付けられた回数をカウントする。このカウント値は、エッジリストデータに保持される。
ここで、図5を用いて、エッジリストデータについて説明する。このリストには、3次元幾何モデルを構成するエッジ(3次元エッジ)に関する情報が保持される。
エッジリストデータには、各3次元エッジを識別する制御点番号と、制御点の3次元座標と、エッジの方向を示す3次元ベクトルと、異なる視点画像において当該3次元エッジが観測された回数を示すカウント値とを含む情報が保持される。カウント値の初期値は、例えば、「0」であり、3次元射影エッジ(2次元エッジ)に対応付けられると、その3次元エッジのカウント値は、「1」増加される。
ここで、同一の制御点番号を持つ3次元エッジは、別の視点画像においても同一のエッジを表している。そのため、3次元幾何モデルにおける各エッジに対して、全ての視点画像における各エッジを対応付けることにより、各3次元エッジ(3次元幾何モデルにおける各エッジ)が異なる視点において何度対応付けられたかをカウントできる。
[S106]
3次元計測装置100は、信頼度算出部140において、S103の処理で得られたエッジリストデータ(異なる視点画像での観測回数(カウント値)をエッジ毎に保持したデータ)を用いて、各3次元エッジの信頼度を算出する。全エッジ中の最大カウント値をCmax、最小カウント値をCmin、制御点番号iのエッジのカウント値をCとした場合、エッジの信頼度rは、「数1」により算出できる。
Figure 0005746477
[S107]
3次元計測装置100は、モデル生成部190において、モデル保持部110に保持された3次元幾何モデルにおける各エッジに対して、S105の処理で算出された信頼度を付与する。これにより、信頼度付きモデルが生成される。
図6は、信頼度付きモデルの定義情報の一例を示す図である。
信頼度付きモデルを構成する各エッジは、制御点番号により識別される。各エッジには、エッジ制御点の座標、エッジ方向を示すベクトル、0〜1の値により表される信頼度から構成される。以上のように信頼度付きモデル生成処理では、3次元幾何モデルを複数の異なる視点から観測した視点画像から同一のエッジが観測される回数をカウントし、そのカウント数に基づいて信頼度を算出する。これにより、信頼度を付与した信頼度付きモデルを生成する。
次に、図7を用いて、物体の位置及び姿勢を算出する際の処理の流れについて説明する。
[S201、S202]
3次元計測装置100は、まず、図3のS107の処理で生成された信頼度付きモデルをモデル保持部110から取得する。また、3次元計測装置100は、概略値取得部150において、3次元計測装置100に対する物体の位置及び姿勢の概略値を取得する。
[S203、S204]
次に、3次元計測装置100は、撮像部160において、計測対象物体の画像を撮像するとともに、エッジ検出部170において、当該撮像された画像から画像特徴としてエッジを検出する。
ここで、図8を用いて、本実施形態に係わるエッジ検出方法の概要の一例について説明する。エッジ検出では、まず、撮像された計測対象物体の画像(2次元画像)に対して、計測対象物体の位置及び姿勢の概略値に基づいて3次元幾何モデルを投影する。3次元幾何モデルにおけるエッジ(3次元エッジ)を2次元画像へ投影して得られるエッジ(投影像)を2次元投影エッジと呼ぶ。そして、各2次元投影エッジに対して等間隔に制御点を設定する。なお、2次元投影エッジは、制御点とその向きとにより表される。
2次元投影エッジの法線方向に平行で且つ制御点を通過する線分(以下、探索ライン)上から撮像画像(2次元画像)における計測対象物体のエッジを1次元探索する(図8(a))。エッジは、画素値の濃度勾配の極値となる(図8(b))。場合によっては、探索ライン上から複数のエッジが検出されることがある。この場合、本実施形態においては、「L. Vacchetti, V. Lepetit, and P. Fua, "Combining edge and texture information for real-time accurate 3D camera tracking," Proc. ISMAR04, pp.48-57, 2004」に開示された技術を用いる。すなわち、この文献に開示された方法を用いて複数検出されたエッジを仮説として保持する。このようにして2次元投影エッジ上における各制御点に対応したエッジを探索する。
[S205]
3次元計測装置100は、位置姿勢算出部180において、S204の処理で検出されたエッジ群を用いて、計測対象物体の位置及び姿勢を算出(計測)する。なお、この処理の詳細については後述するが、この処理は、3次元幾何モデルの各エッジの持つ信頼度に応じて当該各エッジを重み付けすることにより、位置姿勢算出処理への各エッジの寄与度を変更して行なわれる。
ここで、図9を用いて、図7のS205に示す位置姿勢算出処理の流れの一例について説明する。
この処理では、ガウス−ニュートン(Gauss-Newton)法により反復演算し、計測対象物体の位置及び姿勢(以下、6次元ベクトルsで表す)の概略値を補正する。これにより、計測対象物体の位置及び姿勢を求める。なお、位置姿勢算出処理は、ガウス−ニュートン法に限られない。例えば、より計算がロバストであるLevenberg−Marquardt法を用いてもよいし、よりシンプルな方法である最急降下法を用いてもよい。また、共役勾配法やICCG法など、他の非線形最適化計算手法を用いてもよい。
ここでは、2次元画像から検出されたエッジと、位置及び姿勢の概略値に基づいて画像上に投影される3次元幾何モデルのエッジとの距離の総和を最小化する。これにより、計測対象物体の位置及び姿勢を求める。より具体的には、1次のテイラー展開を用いて、2次元画像上での点及び直線の符号付距離をそれぞれ物体の位置及び姿勢の微小変化を示す1次関数として表現する。そして、符号付距離が0になるような位置及び姿勢の微小変化に関する線形の連立方程式を立式して解くことにより、物体の位置及び姿勢の微小変化を求め、この値の補正処理を繰り返す。
[S301]
3次元計測装置100は、位置姿勢算出部180において、まず、初期化処理を行なう。この初期化処理では、例えば、図7のS202の処理で得られた計測対象物体の位置及び姿勢の概略値を取得する。
[S302]
3次元計測装置100は、位置姿勢算出部180において、エッジの対応付けを行なう。具体的には、図7のS203の処理で撮像された計測対象物体の画像(2次元画像)に対して、計測対象物体の位置及び姿勢の概略値に基づいて3次元幾何モデルを投影する。これにより、3次元幾何モデルのエッジと、2次元画像上における計測対象物体のエッジとを対応付ける。
なお、3次元幾何モデルのエッジ上の各制御点に対応して計測対象物体のエッジ(2次元画像上のエッジ)が複数検出された場合には、以下のようにすればよい。すなわち、当該複数検出されたエッジのうち、投影された3次元幾何モデルのエッジ(2次元投影エッジ)に対して画像上で最も近いエッジを制御点に対応付ければよい。
[S303]
3次元計測装置100は、位置姿勢算出部180において、線形連立方程式を解くための係数行列と、誤差ベクトルの算出を行なう。ここで、係数行列の各要素は、S301の処理で取得した概略値の微小変化に対する一次の偏微分係数である。エッジについては、画像座標の偏微分係数を算出する。なお、誤差ベクトルは、2次元投影エッジと、画像から検出された2次元エッジとの画像上における距離を示す。
図10は、投影像(2次元投影エッジ)と、画像から検出された2次元エッジとの関係の一例を示す図である。この場合、画像の水平方向をu軸とし、垂直方向をv軸としている。ある制御点(2次元投影エッジを画像上で等間隔に分割した点)の画像上における座標を(u,v)と表す。当該制御点が属する線分(2次元投影エッジ)Lの画像上における傾きを(u軸に対する傾き)θと表す。傾きは、線分(2次元投影エッジ)の両端の3次元座標をsに基づいて画像上に投影し、その両端の座標を結んだ直線の傾きを示している。画像上における2次元投影エッジの法線ベクトルは(sinθ,−cosθ)となる。また、制御点と対応する点(対応点)の画像上における座標を(u’,v’)とする。ここで、対応点の座標(u’,v’)を通り、傾きがθである直線(破線)上の点(u,v)は、
Figure 0005746477
制御点の画像上における位置は、計測対象物体の位置及び姿勢により変化する。計測対象物体の位置及び姿勢は、6自由度である。すなわち、sは6次元ベクトルであり、計測対象物体の位置を表す3つの要素と、姿勢を表す3つの要素とからなる。姿勢を表す3つの要素は、例えば、オイラー角による表現や、方向が原点を通る回転軸を表し大きさが回転角を表す3次元ベクトルなどによって表現される。計測対象物体の位置及び姿勢により変化する点(制御点)の画像上での座標(u,v)は、(u,v)の近傍で1次のテイラー展開によって「数3」のように近似できる。但し、Δs(i=1,2,・・・,6)は、sの各成分の微小変化を表す。
Figure 0005746477
正しいsによって得られる制御点の画像上での位置は、「数2」が表す直線上にあると仮定できる。「数3」によって近似されるu、vを「数2」に代入することにより、「数4」が得られる。
Figure 0005746477
「数4」は、S302において対応付けされた全てのエッジについて成り立つ。そのため、「数5」に示すようなΔsに関する線形連立方程式が成り立つ。
Figure 0005746477
ここで、「数5」を「数6」のように表す。
Figure 0005746477
「数6」の線形連立方程式の係数行列Jを算出するため、偏微分係数を算出する。偏微分係数の算出は、例えば、「V. Lepetit and P. Fua, "Keypoint recognition using randomized trees," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, no.9, 2006」に開示される方法を用いればよい。
[S304]
続いて、3次元計測装置100は、位置姿勢算出部180において、「数6」をもとに、行列Jの一般化逆行列(J・J)−1・Jを用いて補正値Δsを求める。
ここで、エッジには、誤検出などによる外れ値が多いため、次に述べるようなロバスト推定手法を用いる。一般に、外れ値であるエッジでは、誤差「d−r」が大きくなる。そのため、「数5」、「数6」の連立方程式に対する寄与度が大きくなり、その結果得られる補正値Δsの精度が低下してしまう。そこで、誤差「d−r」の絶対値が大きいデータには、小さな重みを与え、誤差「d−r」の絶対値が小さいデータには、大きな重みを与える。重みは、例えば、「数7」に示すようなTukeyの関数により与える。
Figure 0005746477
なお、重みを与える関数は、Tukeyの関数である必要はなく、誤差の絶対値が大きいデータに対して小さな重みを与え、誤差の絶対値が小さいデータに対して大きな重みを与える関数であれば良い。そのため、例えば、Huberの関数などを用いてもよい。各エッジに対応する重みをwとし、ここで「数8」のように重み行列Wを定義する。
Figure 0005746477
重み行列Wは、対角成分以外は全て「0」の正方行列であり、対角成分には重みwが入る。本実施形態においては、「数8」の重み行列に加え、図3のS106の処理で算出された信頼度により確実性の高いエッジの寄与度を大きくする。これにより、位置姿勢算出処理の精度を向上させる。
ここで、3次元計測装置100は、位置姿勢算出部180において、図6に示す信頼度付きモデルを参照し、全ての2次元投影エッジに対応する信頼度を取得する。このとき、各エッジの信頼度をrとし、「数9」のように重み行列Wを定義する。
Figure 0005746477
重み行列Wは、対角成分以外は全て「0」の正方行列である。対角成分には、選択された視点における各エッジの信頼度rが入る。
重み行列W,Wを用いて、「数10」のように重み行列Wを定義する。
W=W・W (数10)
この重み行列Wを用いて、「数6」を「数11」のように変形する。
WJΔs=WE (数11)
「数12」のように「数11」を解くことにより補正値Δsを求める。
Δs=(JWJ)−1WE (数12)
[S305]
3次元計測装置100は、位置姿勢算出部180において、S304の処理で算出された補正値Δsにより、S301の処理で得られた位置及び姿勢の概略値を補正する。これにより、計測対象物体の位置及び姿勢を求める。
[S306]
3次元計測装置100は、位置姿勢算出部180において、計測対象物体の位置及び姿勢の計測値が収束しているか否かの判定を行なう。収束していれば、この処理は終了し、そうでなければ、再度、S302の処理に戻る。なお、収束しているか否かは、補正値Δsがほぼ0である場合や、誤差ベクトルの二乗和の補正前と補正後の差がほぼ0である場合に収束したと判定する。
以上説明したように実施形態1によれば、各エッジの信頼度が付与された3次元幾何モデル(信頼度付きモデル)を生成し、当該モデルを用いて位置姿勢算出処理を実施する。このとき、3次元幾何モデルにおける各エッジを当該各エッジに対応付けられた信頼度を用いて重み付けして位置姿勢算出処理を実施し、位置姿勢算出処理に対する各エッジの寄与度を変更する。
これにより、撮像画像から検出されるエッジが視点変化に伴って変化した場合であっても、計測対象物体の3次元情報(すなわち、計測対象物体の位置及び姿勢)の計測を精度良く行なえる。
また、計測対象物体の3次元幾何モデルにおける各エッジに対して信頼度を求めるため、撮像画像から検出されたエッジに対して信頼度を求める場合に比べて、背景領域などのエッジが混ざらない。そのため、信頼度の算出を高速化できるとともに、また、その値の確実性も高めることができる。また更に、3次元幾何モデルを用いて当該モデルにおける各エッジの信頼度を予め算出しておくため、位置姿勢算出処理における処理速度も低下させない。
[実施形態1の変形例−1]
上述した実施形態1では、3次元幾何モデルにおける各エッジの信頼度を用いて「数9」の重み行列を定義し、この重み行列により位置姿勢算処理に対する各エッジの寄与度を変更していたが、これ以外の方法で寄与度を変更してもよい。
例えば、「数7」の定数cの値をエッジの信頼度に基づいて変更しても良い。具体的には、対応する各エッジの信頼度が高ければcを大きく、信頼度が低ければcを小さく設定する。これにより、位置姿勢算出処理に対する各エッジの寄与度を変更できる。なお、この場合においては、「数10」で定義された重み行列Wは、「数13」のように定義する。これにより、信頼度の高いエッジほど重みを大きくすることができる。
W=W (数13)
[実施形態1の変形例−2]
上述した実施形態1では、写実的レンダリングの利用して複数の視点画像を生成する場合について説明したが、これに限られず、撮像部160により撮像される撮像画像と類似した画像を生成できるのであれば、別の手法を用いてもよい。例えば、ロボットアームの先端にカメラを取り付け、所望の位置及び姿勢にカメラを動かすことにより対象物体を撮像した画像を複数の視点画像としてもよい。この場合、撮像するカメラの内部パラメータ(焦点距離、主点位置、レンズ歪みパラメータ)は、撮像部160の内部パラメータと同様に、例えば、「Z. Zhang, “A flexible new technique for camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.11, pp.1330-1334, 2000」に開示される手法を用いて、事前に校正しておけばよい。
(実施形態2)
次に、実施形態2について説明する。実施形態2においては、各視点画像から検出されたエッジの信頼度を加味した信頼度付きモデルを生成する場合について説明する。
なお、実施形態2に係わる3次元計測装置100における機能的な構成は、実施形態1を説明した図1と同様の構成となるため、ここでは、その詳細な説明については省略する。
構成上における相違点としては、信頼度算出部140は、上述した機能の他、エッジ信頼度算出機能と、信頼度総和算出機能とを備えている。エッジ信頼度算出機能とは、複数の視点画像各々から検出されたエッジ各々(第2のエッジ各々)の信頼度を算出する機能である。
また、信頼度総和算出機能とは、3次元幾何モデルにおける各エッジ(3次元エッジ)に対して、各視点画像から検出されたエッジ(3次元射影エッジ)が対応付けられた際に、3次元射影エッジの信頼度を当該対応付けられた3次元エッジに付与する機能である。3次元エッジ各々に対して、3次元射影エッジが持つ信頼度を加算して付与する。これにより、最終的な3次元エッジ各々に付与する信頼度(第1のエッジ毎の信頼度)を算出する。
次に、実施形態1と相違する処理ついて説明する。相違する処理としては、信頼度付きモデルの生成処理(図3)が挙げられる。ここで、図11を用いて、実施形態2に係わる信頼度付きモデルの生成処理の流れについて説明する。
[S401]
この処理が開始すると、3次元計測装置100は、視点画像生成部120において、計測対象物体を複数の異なる視点から観測した複数の視点画像をシミュレーションにより生成する。この処理は、実施形態1と同様であるため、その詳細な説明については省略する。
[S402]
3次元計測装置100は、エッジ検出部130において、S401の処理で生成された各視点画像からエッジ(2次元エッジ)を検出する。そして、信頼度算出部140において、当該検出した2次元エッジの信頼度を算出する。
信頼度の算出では、まず、各2次元エッジの制御点に対し、エッジの法線方向に探索ラインを設定する。本実施形態においては、探索ラインの輝度勾配の変化率に基づいて2次元エッジの信頼度rを算出する。例えば、ある視点画像から検出された全ての2次元エッジにおける探索ライン方向の輝度勾配の最大変化率をgradmaxとし、最小変化率をgradminとする。また、参照エッジ(信頼度の算出対象となる2次元エッジ)における探索ライン方向の輝度勾配の変化率をgradとする。これにより、各2次元エッジの信頼度rを「数14」に示す関数を用いて求める。
Figure 0005746477
なお、本実施形態においては、2次元エッジの信頼度を輝度勾配により求める場合について説明するが、2次元エッジの信頼度の算出方法は、これに限られない。例えば、画像中に2次元エッジが密集する領域では、複数の2次元エッジが誤って検出され易い。そのため、その性質を利用して、参照エッジの制御点付近における2次元エッジの密度に応じて信頼度を算出ようにしても良い。この一例として、例えば、参照エッジの制御点を中心とする一定領域内における制御点の数が少ないものに高い信頼度を与えるような関数などが挙げられる。また、これ以外にも、参照エッジの制御点に対し、一番近い制御点との距離を求め、この距離の大きいものに高い信頼度を与えてもよい。信頼度の算出後、各2次元エッジは、上述の処理により求めた信頼度を保持する。
[S403〜S407]
次に、3次元計測装置100は、信頼度算出部140において、実施形態1と同様(S103)にして、3次元幾何モデルにおける3次元エッジに対して、S402で検出された2次元エッジを対応付ける。
ここで、信頼度算出部140は、S401〜S406の処理を繰り返し実施し、3次元幾何モデルにおける各エッジ(3次元エッジ)に対して、各視点画像から検出されたエッジ(3次元射影エッジ)が対応付けられた回数をカウントする。また、このとき、3次元幾何モデルにおける各エッジ(3次元エッジ)に対して、対応付けられた2次元エッジ(3次元射影エッジ)が持つ信頼度を加算する。このカウント値及び信頼度の値は、エッジリストデータに保持される。
ここで、図12を用いて、エッジリストデータについて説明する。このリストには、3次元幾何モデルを構成するエッジ(3次元エッジ)に関する情報が保持される。
エッジリストデータには、各3次元エッジを識別する制御点番号と、制御点の3次元座標と、エッジの方向を示す3次元ベクトルと、異なる視点画像において当該3次元エッジが観測された回数を示すカウント値とを含む情報が保持される。
また、実施形態2に係わるエッジデータリストには、各視点別信頼度の総和も保持される。各視点別信頼度の総和は、当該3次元エッジに対応付けられた2次元エッジが持つ信頼度の総和を示している。つまり、2次元エッジが対応付けられる度に、当該2次元エッジの持つ信頼度(「数14」により算出された信頼度)が、対応する3次元エッジに加算される。
[S408]
3次元計測装置100は、信頼度算出部140において、図12に示すエッジリストデータにおけるエッジ毎に、視点別信頼度の総和をカウント値で除算して平均化する。これにより、3次元幾何モデルにおける各エッジの信頼度を算出する。なお、位置姿勢算出処理においては、実施形態1と同様に、3次元幾何モデルの各エッジの持つ信頼度に応じて当該各エッジを重み付けすることにより、位置姿勢算出処理への各エッジの寄与度を変更して行なわれる。
以上説明したように実施形態2によれば、各視点画像から検出されたエッジの信頼度を加味した信頼度付きモデルを生成する。これにより、信頼度付きモデルにおける各エッジの信頼度に対して、各視点から検出されるエッジの精度をも反映させることができる。
(実施形態3)
次に、実施形態3について説明する。実施形態3においては、信頼度付きモデルの生成において、視点画像における各エッジの信頼度を算出する。そして、視点画像における各エッジと3次元幾何モデルにおける各エッジを対応付ける。これにより、信頼度付きモデルにおける各エッジは、複数の視点画像各々に応じた信頼度を持つ。すなわち、実施形態3に係わる3次元幾何モデルは、視点別に各エッジの信頼度を持つことになる。
なお、実施形態3に係わる3次元計測装置100における機能的な構成は、実施形態1を説明した図1と同様の構成となるため、ここでは、その詳細な説明については省略する。
構成上における相違点としては、信頼度算出部140は、上述した機能の他、エッジ信頼度算出機能と、視点別信頼度付与機能とを備えている。エッジ信頼度算出機能とは、複数の視点画像各々から検出されたエッジ各々(第2のエッジ各々)の信頼度を視点別に算出する機能である。より具体的には、視点画像各々から検出されたエッジ(第2のエッジ)の信頼度は、その検出元となる視点画像毎に分けられて別々に算出される。
また、視点別信頼度付与機能とは、3次元幾何モデルにおける各エッジ(3次元エッジ)に対して、各視点画像から検出されたエッジ(3次元射影エッジ)が対応付けられた際に、3次元エッジに対して3次元射影エッジの視点別の信頼度を付与する機能である。3次元エッジ各々に対して、3次元射影エッジにおける視点別の信頼度を付与することにより、最終的には、3次元エッジ各々に対して視点別の信頼度が付与される。
次に、実施形態1と相違する処理ついて説明する。相違する処理としては、信頼度付きモデルの生成処理と、位置姿勢算出処理とが挙げられる。
ここで、図13を用いて、実施形態3に係わる信頼度付きモデルの生成処理の流れの一例について説明する。なお、S501〜S504までの処理は、実施形態2を説明した図11のS401〜S404までの処理と同様の処理になるため、ここでは、S505以降の処理について説明する。
[S505〜S507]
S503の処理において、2次元エッジの信頼度を算出し、S504の処理において、3次元幾何モデルにおける3次元エッジに対して、S502で検出された2次元エッジに対応付けられる。S505で、3次元計測装置100は、信頼度算出部140において、2次元エッジと対応付けられた3次元エッジに対して、2次元エッジの保持する信頼度を付与する。S506において、未処理の視点画像があれば、S501に戻って次の視点画像に対して同様の処理を行う。S501〜S506の処理により、各3次元エッジに対して視点毎に異なる信頼度を付与する。
これにより、S507で視点別の信頼度付きモデルが生成される。すなわち、3次元幾何モデルにおける各エッジが視点別に複数の信頼度を持つ信頼度付きモデルが生成される。
ここで、図14を用いて、S507の処理により生成される視点別の信頼度付きモデルの一例について説明する。
信頼度付きモデルには、各3次元エッジを識別する制御点番号と、制御点の3次元座標と、エッジの方向を示す3次元ベクトルと、各視点における信頼度とを含む情報が保持される。各視点における信頼度は、視点0〜視点60まで設けられており、この場合、61個の視点画像に対して信頼度が算出されていることになる。なお、各視点画像を生成した時のカメラ視点には、一意に識別できる視点番号を割り当てておく。
ここで、物体の位置及び姿勢を算出する際の処理について簡単に説明する。実施形態3においては、視点別の信頼度付きモデルの中から撮像部160により撮像される撮像画像の視点に最も近い視点の信頼度を取得する。この取得は、計測対象物体の位置及び姿勢の概略値に基づいて行なう。より具体的には、各視点画像を生成した視点の中から、その視点ベクトルと、概略値における視点ベクトルとのなす角度が最小のものを選択する。その後、選択された視点における信頼度を用いて、上述した実施形態1同様に、3次元幾何モデルの各エッジの持つ信頼度に応じて当該各エッジを重み付けすることにより、位置姿勢算出処理への各エッジの寄与度を変更する。
以上説明したように実施形態3によれば、各視点に対応して信頼度を持つ視点別の信頼度付きモデルを生成する。これにより、視点に依存した各エッジの信頼度を位置姿勢算処理に対する各エッジの寄与度に反映させられるため、物体の位置及び姿勢の計測をより精度良く行なえる。
[実施形態3の変形例−1]
上述した実施形態3では、各視点画像を生成した視点の中から、その視点ベクトルと、概略値における視点ベクトルとのなす角度が最小のものを選択することにより、視点別に保持された信頼度の中からいずれかの信頼度を取得していたが、これに限られない。
例えば、各視点画像を生成した視点の中から、その視線ベクトルと、概略値における視線ベクトルとのなす角度が小さいものから順に3つ選択し、エッジ毎に3視点の信頼度を平均化して信頼度を算出してもよい。これ以外にも、例えば、選択された3視点と、3視点の重心との距離に基づいて重み付けすることにより信頼度を算出してもよい。
[実施形態3の変形例−2]
上述した実施形態3では、3次元エッジの制御点に対して制御点番号を割り当て、2次元エッジがどの3次元エッジに該当するかを探索することにより、2次元エッジと3次元エッジとを対応付けていたが、これ以外の方法で対応付けを行なってもよい。例えば、各視点画像から検出された2次元エッジに対して検出番号を割り当て、この2次元エッジに対して3次元エッジを対応付けてもよい。そして、2次元エッジに対応付けられた3次元エッジに対して2次元エッジの信頼度を付与する。
図15は、このように構成した場合に、各2次元エッジを保持するエッジリストデータの一例を示す図である。このエッジリストデータは、視点別に生成される。
エッジリストデータには、検出番号と、制御点座標と、エッジ方向ベクトルと、信頼度とを含む情報を保持する。この視点別のエッジリストデータは、全視点について求める。なお、各視点により検出されるエッジの数は異なるので、エッジデータリストにおけるエッジの数は視点別に異なってくる。
以上が本発明の代表的な実施形態の例であるが、本発明は、上記及び図面に示す実施形態に限定することなく、その要旨を変更しない範囲内で適宜変形して実施できるものである。
例えば、上述した実施形態1〜3では、モデル生成処理と、位置姿勢算出処理とを同じ装置で行なう場合について説明したが、これに限られない。例えば、モデル生成処理は、第1の装置(モデル生成装置)で行ない、位置姿勢算出処理は、第2の装置(3次元計測装置)で行なうように構成してもよい。
なお、本発明は、例えば、システム、装置、方法、プログラム若しくは記憶媒体等としての実施態様を採ることもできる。具体的には、複数の機器から構成されるシステムに適用しても良いし、また、一つの機器からなる装置に適用しても良い。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給する。そして、そのシステム或いは装置のコンピュータ(又はCPUやMPU、GPU等)がプログラムを読み出して実行する処理である。

Claims (16)

  1. 計測対象物体の位置及び姿勢の計測に際して実施される位置姿勢算出処理に用いられる3次元幾何モデルを生成するモデル生成装置であって、
    前記計測対象物体を複数の異なる視点から観測した複数の視点画像を生成する視点画像生成手段と、
    前記複数の視点画像各々から前記計測対象物体の画像特徴を検出する検出手段と、
    前記3次元幾何モデルにおける幾何特徴各々に対して前記検出された前記計測対象物体の画像特徴を対応付け、その対応付け結果に基づいて前記3次元幾何モデルにおける幾何特徴各々の信頼度を算出する信頼度算出手段と、
    前記幾何特徴各々の信頼度を前記3次元幾何モデルの当該幾何特徴に付与することにより信頼度付きモデルを生成する生成手段と
    を具備することを特徴とするモデル生成装置。
  2. 前記信頼度算出手段は、
    前記幾何特徴各々に対して前記画像特徴が対応付けられた回数をカウントするカウント手段
    を具備し、
    前記カウント手段によるカウント値に基づいて前記幾何特徴各々の信頼度を算出する
    ことを特徴とする請求項1記載のモデル生成装置。
  3. 前記信頼度算出手段は、
    前記画像特徴各々の信頼度を算出する算出手段と、
    前記幾何特徴各々に対して前記画像特徴が対応付けられた回数をカウントするカウント手段と、
    前記幾何特徴に対して前記画像特徴が対応付けられた際に、前記画像特徴に対して算出された信頼度を当該対応付けられた前記幾何特徴に加算することにより前記幾何特徴毎に信頼度の総和を算出する信頼度総和算出手段と
    を具備し、
    前記カウント手段によるカウント値で前記信頼度総和算出手段により算出された信頼度の総和を除算することにより、前記幾何特徴各々の信頼度を算出する
    ことを特徴とする請求項1記載のモデル生成装置。
  4. 前記信頼度算出手段は、前記画像特徴各々の信頼度を算出する第2の信頼度算出手段を有し、
    該第2の信頼度算出手段により、前記画像特徴の検出元である前記視点画像に基づいて前記画像特徴各々の信頼度を視点別に算出し、
    前記生成手段は、
    前記幾何特徴に対して前記画像特徴が対応付けられた際に、前記画像特徴に対して算出された前記視点別の信頼度を当該対応付けられた前記幾何特徴に対して付与することにより、前記視点別の信頼度が付与された前記信頼度付きモデルを生成する
    ことを特徴とする請求項1記載のモデル生成装置。
  5. 前記計測対象物体の概略の位置及び姿勢を示す概略値を取得する取得手段と、
    前記取得手段により取得された前記概略値に基づいて前記信頼度付きモデルにおける前記幾何特徴各々に付与された前記視点別に付与された信頼度からいずれかの視点の信頼度を選択し、該選択した視点の信頼度に基づいて当該幾何特徴各々を重み付けする重み付け手段と、
    を更に具備することを特徴とする請求項4記載のモデル生成装置。
  6. 前記信頼度算出手段は、
    前記画像特徴における輝度勾配に基づいて信頼度を算出する
    ことを特徴とする請求項3から5のいずれか1項に記載のモデル生成装置。
  7. 前記信頼度算出手段は、
    前記画像特徴の検出元である前記視点画像における前記画像特徴の密度に基づいて信頼度を算出する
    ことを特徴とする請求項3から5のいずれか1項に記載のモデル生成装置。
  8. 請求項1乃至7のいずれか1項に記載のモデル生成装置によって生成された信頼度付きモデルであって、計測対象物体の形状を複数の幾何特徴を用いて定義し且つ当該幾何特徴各々に対して信頼度を付与した信頼度付きモデルを保持する保持手段と、
    前記計測対象物体が撮像された撮像画像から画像特徴を検出する検出手段と、
    前記検出された画像特徴と、前記保持手段に保持された前記信頼度付きモデルにおける幾何特徴とを対応付け、該対応付け結果に基づいて位置姿勢算出処理を実施する位置姿勢算出手段と
    を具備することを特徴とする3次元計測装置。
  9. 前記信頼度付きモデルにおける前記幾何特徴各々に付与された前記信頼度に基づいて当該幾何特徴各々を重み付けする重み付け手段を更に具備し、
    前記位置姿勢算出手段は、
    前記検出された画像特徴と、前記重みづけされた幾何特徴とを対応付けることを特徴とする請求項8に記載の3次元計測装置。
  10. 前記幾何特徴は、エッジまたは点であることを特徴とする請求項1乃至7のいずれか1項に記載のモデル生成装置。
  11. 前記幾何特徴は、エッジまたは点であることを特徴とする請求項に記載の3次元計測装置。
  12. 計測対象物体の形状を複数の幾何特徴を用いて定義する3次元幾何モデルを保持し、該3次元幾何モデルを用いて位置姿勢算出処理を実施することにより該計測対象物体の位置及び姿勢を計測する3次元計測装置であって、
    前記計測対象物体を複数の異なる視点から観測した複数の視点画像を生成する視点画像生成手段と、
    前記複数の視点画像各々から前記計測対象物体の幾何特徴に対応する画像特徴として検出する検出手段と、
    前記幾何特徴各々に対して前記画像特徴を対応付け、その対応付け結果に基づいて前記幾何特徴各々の信頼度を算出する信頼度算出手段と、
    前記算出された信頼度に基づいて、前記計測対象物体を撮像した撮像画像から検出された画像特徴と、前記幾何特徴とを対応付けることにより、該対応付け結果に基づいて前記位置姿勢算出処理を実施する位置姿勢算出手段と
    を具備することを特徴とする3次元計測装置。
  13. 計測対象物体の位置及び姿勢の計測に際して実施される位置姿勢算出処理に用いられる3次元幾何モデルを生成するモデル生成装置の制御方法であって、
    視点画像生成手段が、前記計測対象物体を複数の異なる視点から観測した複数の視点画像を生成する工程と、
    検出手段が、前記複数の視点画像各々から前記計測対象物体の画像特徴を検出する工程と、
    信頼度算出手段が、前記3次元幾何モデルにおける幾何特徴各々に対して前記検出された前記計測対象物体の画像特徴を対応付け、その対応付け結果に基づいて前記3次元幾何モデルにおける幾何特徴各々の信頼度を算出する工程と、
    生成手段が、前記幾何特徴各々の信頼度を前記3次元幾何モデルの当該幾何特徴に付与することにより信頼度付きモデルを生成する工程と
    を含むことを特徴とするモデル生成装置の制御方法。
  14. 請求項13に記載のモデル生成装置の制御方法によって生成された信頼度付きモデルであって、計測対象物体の形状を複数の幾何特徴を用いて定義し且つ当該幾何特徴各々に対して信頼度を付与した信頼度付きモデルを保持する保持手段を備える3次元計測装置の制御方法であって、
    検出手段が、前記計測対象物体が撮像された撮像画像から画像特徴を検出する工程と、
    位置姿勢算出手段が、前記検出された画像特徴と、前記保持手段に保持された前記信頼度付きモデルにおける幾何特徴とを対応付け、該対応付け結果に基づいて位置姿勢算出処理を実施する工程と
    を含むことを特徴とする3次元計測装置の制御方法。
  15. 請求項13に記載のモデル生成装置の制御方法の各工程をコンピュータに実行させるためのプログラム。
  16. 請求項14に記載の3次元計測装置の制御方法の各工程をコンピュータに実行させるためのプログラム。
JP2010043060A 2010-02-26 2010-02-26 モデル生成装置、3次元計測装置、それらの制御方法及びプログラム Active JP5746477B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010043060A JP5746477B2 (ja) 2010-02-26 2010-02-26 モデル生成装置、3次元計測装置、それらの制御方法及びプログラム
US13/517,293 US9355453B2 (en) 2010-02-26 2011-02-23 Three-dimensional measurement apparatus, model generation apparatus, processing method thereof, and non-transitory computer-readable storage medium
PCT/JP2011/054678 WO2011105616A1 (en) 2010-02-26 2011-02-23 Three-dimensional measurement apparatus, model generation apparatus, processing method thereof, and non-transitory computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043060A JP5746477B2 (ja) 2010-02-26 2010-02-26 モデル生成装置、3次元計測装置、それらの制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2011179908A JP2011179908A (ja) 2011-09-15
JP5746477B2 true JP5746477B2 (ja) 2015-07-08

Family

ID=44507007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043060A Active JP5746477B2 (ja) 2010-02-26 2010-02-26 モデル生成装置、3次元計測装置、それらの制御方法及びプログラム

Country Status (3)

Country Link
US (1) US9355453B2 (ja)
JP (1) JP5746477B2 (ja)
WO (1) WO2011105616A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297403B2 (ja) 2010-02-26 2013-09-25 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法、プログラムおよび記憶媒体
JP5430456B2 (ja) 2010-03-16 2014-02-26 キヤノン株式会社 幾何特徴抽出装置、幾何特徴抽出方法、及びプログラム、三次元計測装置、物体認識装置
JP5612916B2 (ja) 2010-06-18 2014-10-22 キヤノン株式会社 位置姿勢計測装置、その処理方法、プログラム、ロボットシステム
JP5671281B2 (ja) 2010-08-20 2015-02-18 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測装置の制御方法及びプログラム
JP5938201B2 (ja) * 2011-12-06 2016-06-22 キヤノン株式会社 位置姿勢計測装置、その処理方法及びプログラム
JP6004809B2 (ja) * 2012-03-13 2016-10-12 キヤノン株式会社 位置姿勢推定装置、情報処理装置、情報処理方法
JP6045178B2 (ja) * 2012-04-13 2016-12-14 キヤノン株式会社 計測装置、計測方法及びプログラム
JP6323993B2 (ja) 2012-08-28 2018-05-16 キヤノン株式会社 情報処理装置、情報処理方法、及びコンピュータプログラム
KR102056664B1 (ko) * 2012-10-04 2019-12-17 한국전자통신연구원 센서를 이용한 작업 방법 및 이를 수행하는 작업 시스템
CN104871236B (zh) * 2012-12-21 2018-02-02 索尼公司 显示控制设备和方法
US9025823B2 (en) 2013-03-12 2015-05-05 Qualcomm Incorporated Tracking texture rich objects using rank order filtering
JP6429450B2 (ja) 2013-10-31 2018-11-28 キヤノン株式会社 情報処理装置、情報処理方法
JP6253368B2 (ja) 2013-11-25 2017-12-27 キヤノン株式会社 三次元形状計測装置およびその制御方法
JP6351243B2 (ja) * 2013-11-28 2018-07-04 キヤノン株式会社 画像処理装置、画像処理方法
US9305345B2 (en) * 2014-04-24 2016-04-05 General Electric Company System and method for image based inspection of an object
JP6317618B2 (ja) * 2014-05-01 2018-04-25 キヤノン株式会社 情報処理装置およびその方法、計測装置、並びに、作業装置
JP6562197B2 (ja) * 2014-06-20 2019-08-21 パナソニックIpマネジメント株式会社 画像処理方法および画像処理システム
JP6374812B2 (ja) * 2015-03-12 2018-08-15 セコム株式会社 三次元モデル処理装置およびカメラ校正システム
JP6352208B2 (ja) * 2015-03-12 2018-07-04 セコム株式会社 三次元モデル処理装置およびカメラ校正システム
JP6452508B2 (ja) * 2015-03-17 2019-01-16 オリンパス株式会社 3次元形状測定装置
JP6584139B2 (ja) * 2015-05-25 2019-10-02 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
JP6380685B2 (ja) * 2015-10-01 2018-08-29 三菱電機株式会社 寸法計測装置
US10154179B2 (en) 2015-12-14 2018-12-11 Bocam Llc System, method, and apparatus for discretely recording an event from the perspective of an event participant
JP6677522B2 (ja) * 2016-02-15 2020-04-08 キヤノン株式会社 情報処理装置、情報処理装置の制御方法およびプログラム
JP6740033B2 (ja) * 2016-06-28 2020-08-12 キヤノン株式会社 情報処理装置、計測システム、情報処理方法及びプログラム
JP6938201B2 (ja) * 2017-04-26 2021-09-22 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
US10788830B2 (en) * 2017-07-28 2020-09-29 Qualcomm Incorporated Systems and methods for determining a vehicle position
FI129042B (en) * 2017-12-15 2021-05-31 Oy Mapvision Ltd Computer vision system with a computer-generated virtual reference object
US10957072B2 (en) 2018-02-21 2021-03-23 Cognex Corporation System and method for simultaneous consideration of edges and normals in image features by a vision system
JP7119606B2 (ja) * 2018-06-11 2022-08-17 オムロン株式会社 計測システムおよび計測方法
CN109166175A (zh) * 2018-08-22 2019-01-08 重庆环漫科技有限公司 一种3d开发的边缘融合程序中平均分布控制点的方法
JP7180283B2 (ja) * 2018-10-30 2022-11-30 富士通株式会社 画像処理装置及び画像処理方法
US11389965B2 (en) * 2019-07-26 2022-07-19 Mujin, Inc. Post-detection refinement based on edges and multi-dimensional corners

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454409A (ja) * 1990-06-25 1992-02-21 Nippon Telegr & Teleph Corp <Ntt> 物体の姿勢推定方法およびその装置
JPH0486957A (ja) * 1990-07-31 1992-03-19 Fuji Facom Corp 立体物外観形状データの入力方法
JPH06194138A (ja) * 1992-12-24 1994-07-15 Nippon Telegr & Teleph Corp <Ntt> 物体の姿勢推定方法およびその装置
JPH0814860A (ja) * 1994-06-30 1996-01-19 Toshiba Corp モデル作成装置
JP3526616B2 (ja) 1994-06-20 2004-05-17 沖電気工業株式会社 データ検索装置
JPH085333A (ja) * 1994-06-21 1996-01-12 Kobe Steel Ltd 3次元位置姿勢認識装置
JP2000003447A (ja) * 1998-06-15 2000-01-07 Ricoh Co Ltd 物体形状及びカメラ・パラメータの推定方法、三次元データ入力装置、並びに、記録媒体
JP2002063567A (ja) * 2000-08-23 2002-02-28 Nec Corp 物体位置姿勢推定装置及びその方法並びそれを用いた特徴点位置抽出方法及び画像照合方法
JP3796449B2 (ja) 2002-01-31 2006-07-12 キヤノン株式会社 位置姿勢決定方法および装置並びにコンピュータプログラム
JP4136859B2 (ja) 2003-01-10 2008-08-20 キヤノン株式会社 位置姿勢計測方法
JP4599184B2 (ja) 2005-02-02 2010-12-15 キヤノン株式会社 指標配置計測方法、指標配置計測装置
JP4727327B2 (ja) 2005-07-14 2011-07-20 新明和エンジニアリング株式会社 可動ガラリおよびこれを備えた消火対象区画の消火システム
JP4914039B2 (ja) 2005-07-27 2012-04-11 キヤノン株式会社 情報処理方法および装置
JP5063023B2 (ja) 2006-03-31 2012-10-31 キヤノン株式会社 位置姿勢補正装置、位置姿勢補正方法
JP2007098567A (ja) * 2006-09-25 2007-04-19 Hitachi Ltd 自律制御型ロボットおよびその制御装置
JP5403861B2 (ja) * 2006-11-06 2014-01-29 キヤノン株式会社 情報処理装置、情報処理方法
JP4898464B2 (ja) * 2007-01-17 2012-03-14 キヤノン株式会社 情報処理装置および方法
JP5248806B2 (ja) * 2007-04-25 2013-07-31 キヤノン株式会社 情報処理装置、情報処理方法
JP4960754B2 (ja) * 2007-04-25 2012-06-27 キヤノン株式会社 情報処理装置、情報処理方法
JP5013961B2 (ja) * 2007-05-21 2012-08-29 キヤノン株式会社 位置姿勢計測装置及びその制御方法
JP5058686B2 (ja) * 2007-06-14 2012-10-24 キヤノン株式会社 情報処理方法及び情報処理装置
JP5083715B2 (ja) * 2008-03-10 2012-11-28 株式会社Ihi 三次元位置姿勢計測方法および装置
JP5111210B2 (ja) 2008-04-09 2013-01-09 キヤノン株式会社 画像処理装置、画像処理方法
JP2010134649A (ja) 2008-12-03 2010-06-17 Canon Inc 情報処理装置、その処理方法及びプログラム
JP5290864B2 (ja) 2009-05-18 2013-09-18 キヤノン株式会社 位置姿勢推定装置及び方法
JP5247590B2 (ja) 2009-05-21 2013-07-24 キヤノン株式会社 情報処理装置及びキャリブレーション処理方法
JP5548482B2 (ja) 2010-02-26 2014-07-16 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法、プログラム及び記憶媒体
JP5496008B2 (ja) 2010-08-06 2014-05-21 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法、およびプログラム

Also Published As

Publication number Publication date
US20120262455A1 (en) 2012-10-18
US9355453B2 (en) 2016-05-31
JP2011179908A (ja) 2011-09-15
WO2011105616A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5746477B2 (ja) モデル生成装置、3次元計測装置、それらの制御方法及びプログラム
JP5548482B2 (ja) 位置姿勢計測装置、位置姿勢計測方法、プログラム及び記憶媒体
JP5624394B2 (ja) 位置姿勢計測装置、その計測処理方法及びプログラム
JP5612916B2 (ja) 位置姿勢計測装置、その処理方法、プログラム、ロボットシステム
JP5671281B2 (ja) 位置姿勢計測装置、位置姿勢計測装置の制御方法及びプログラム
JP4859205B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP6573354B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP5111210B2 (ja) 画像処理装置、画像処理方法
JP5036260B2 (ja) 位置姿勢算出方法及び装置
US20180066934A1 (en) Three-dimensional measurement apparatus, processing method, and non-transitory computer-readable storage medium
JP5393318B2 (ja) 位置姿勢計測方法及び装置
JP6271953B2 (ja) 画像処理装置、画像処理方法
JP6594129B2 (ja) 情報処理装置、情報処理方法、プログラム
JP6370038B2 (ja) 位置姿勢計測装置及び方法
JP6324025B2 (ja) 情報処理装置、情報処理方法
WO2016199605A1 (ja) 画像処理装置および方法、並びにプログラム
JP6922348B2 (ja) 情報処理装置、方法、及びプログラム
JP5976089B2 (ja) 位置姿勢計測装置、位置姿勢計測方法、およびプログラム
JP2014053018A (ja) 情報処理装置、情報処理装置の制御方法及びプログラム
JP2011174891A (ja) 位置姿勢計測装置、位置姿勢計測方法、及びプログラム
JP5938201B2 (ja) 位置姿勢計測装置、その処理方法及びプログラム
US20240083038A1 (en) Assistance system, image processing device, assistance method and non-transitory computer-readable storage medium
JP6766229B2 (ja) 位置姿勢計測装置及び方法
JP2011174878A (ja) 位置姿勢計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R151 Written notification of patent or utility model registration

Ref document number: 5746477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151