JP5678693B2 - 画像投影装置 - Google Patents

画像投影装置 Download PDF

Info

Publication number
JP5678693B2
JP5678693B2 JP2011017533A JP2011017533A JP5678693B2 JP 5678693 B2 JP5678693 B2 JP 5678693B2 JP 2011017533 A JP2011017533 A JP 2011017533A JP 2011017533 A JP2011017533 A JP 2011017533A JP 5678693 B2 JP5678693 B2 JP 5678693B2
Authority
JP
Japan
Prior art keywords
light
red
illumination
digital micromirror
micromirror device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011017533A
Other languages
English (en)
Other versions
JP2012159556A (ja
Inventor
澤井 靖昌
靖昌 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011017533A priority Critical patent/JP5678693B2/ja
Priority to US13/362,960 priority patent/US8864315B2/en
Publication of JP2012159556A publication Critical patent/JP2012159556A/ja
Application granted granted Critical
Publication of JP5678693B2 publication Critical patent/JP5678693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Description

本発明は画像投影装置に関するものであり、更に詳しくは、表示素子としてデジタル・マイクロミラー・デバイス(digital micromirror device)を備え、その画像表示面を照明するための光源として例えばレーザ光源を備えたカラー画像投影装置に関するものである。
画像投影装置に搭載される表示素子として、デジタル・マイクロミラー・デバイスが知られている。デジタル・マイクロミラー・デバイスは、複数の微小なミラーから成る画像表示面を有しており、その画像表示面で各ミラー面の傾きを制御して、照明光を強度変調することにより画像を形成する。デジタル・マイクロミラー・デバイスの各画素のON/OFFは、例えば、画像表示面の各辺に対して45°の角度をなす回転軸を中心とする±12°のミラー面の回動により表現される。
上記デジタル・マイクロミラー・デバイスの高精細化が近年進められている。このため、デジタル・マイクロミラー・デバイスの高精細化により画素ピッチが細かくなると、それに伴う回折の影響が無視できなくなる。つまり、画素ピッチが小さくなるとデジタル・マイクロミラー・デバイスが回折格子として作用し、回折角に相当する分だけ反射光が広がって、光の伝達効率が低下してしまう。特にレーザ光源を用いた場合には、その影響が大きく表れることになる。
デジタル・マイクロミラー・デバイスでの回折の影響を低減する技術としては、特許文献1で提案されている加工用レーザ照射装置が挙げられる。そのレーザ照射装置では、回折による光の伝達効率の低下を防ぐために、デジタル・マイクロミラー・デバイスの画像表示面を対物レンズの光軸に対して所定角度傾けており、幾何的な反射角と回折角とを合わせることで、回折の影響を抑えることを可能としている。
特開2010−44272号公報
しかし、特許文献1に記載の技術を画像投影装置に適用することは困難である。画像投影装置では、画面全体の結像状態を適正にする必要があるため、回折の影響が抑えられるほどデジタル・マイクロミラー・デバイスを傾けることは困難だからである。このため、デジタル・マイクロミラー・デバイスでの回折の影響を考慮した画像投影装置は未だ提案されていない。
本発明はこのような状況に鑑みてなされたものであって、その目的は、投影光学系に対する光量伝達ロスが少なく、かつ、高品質の投影像が得られる画像投影装置を提供することにある。
上記目的を達成するために、第1の発明の画像投影装置は、青,緑,赤の各色の照明光を出射する光源装置と、各色の照明光を画像表示面で強度変調することにより各色の画像を形成するデジタル・マイクロミラー・デバイスと、各色の画像を拡大投影する投影光学系と、を備え、以下の条件式(1)及び(3)を満たすことを特徴とする。
FP≦1/〔2・sin[sin-1{1/(2・FI)}+Δ]〕 …(1)
FP≧1/〔2・sin[sin -1 {1/(2・FI)}+(√5・λR)/(√2・d)+γ]〕 …(3)
ただし、デジタル・マイクロミラー・デバイスの画像表示面において各画素を構成するミラー面を画素面とし、その画素面で照明光軸上の光線が鏡面反射されることによって生じた反射光を鏡面反射光とし、
青の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を青色光の回折角βBとし、
緑の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を緑色光の回折角βGとし、
赤の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を赤色光の回折角βRとすると、
Δ:回折角βB,βG,βRのうち最も大きい回折角であり、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
d:デジタル・マイクロミラー・デバイスの画素ピッチ、
λR:赤色光の波長、
γ:鏡面反射光が画像表示面の法線と成す角度、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
である。
第2の発明の画像投影装置は、上記第1の発明において、前記光源装置が、照明光として青色のレーザ光を出射する青色レーザ光源と、照明光として緑色のレーザ光を出射する緑色レーザ光源と、照明光として赤色のレーザ光を出射する赤色レーザ光源と、を有することを特徴とする。
第3の発明の画像投影装置は、上記第1又は第2の発明において、以下の条件式(2)を満たすことを特徴とする。
FP≦1/〔2・sin[sin-1{1/(2・FI)}+λR/(√2・d)+γ]〕 …(2)
ただし、
d:デジタル・マイクロミラー・デバイスの画素ピッチ、
λR:赤色光の波長、
γ:鏡面反射光が画像表示面の法線と成す角度、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
である。
の発明の画像投影装置は、上記第1〜第3のいずれか1つの発明において、γ=0であることを特徴とする。
第1の発明では、最も鏡面反射条件に近い偶数次の回折光が青・緑・赤のいずれにおいても投影光学系を通過するように、条件式(1)が設定されている。つまり条件式(1)では、青・緑・赤の各色の照明光がデジタル・マイクロミラー・デバイスで回折されることにより生じた回折光のうち、鏡面反射光に最も近くエネルギーが高い回折光を投影光学系で拾えるように、投影光学系のFナンバーを設定しているので、デジタル・マイクロミラー・デバイスでの光量伝達を効率良く行うことができる。例えばレーザー光を照明系として用いた場合、照明光のFナンバーは比較的大きく取れるので、投影光学系のFナンバーを少々より小さくしても、それに起因する問題はほとんど生じない。この構成ではパーシャルコヒーレント照明になるため投影光学系の限界解像力は低くなるが、コヒーレント照明で解像できる周波数以下ではMTF(Modulation Transfer Function)は高くなる。したがって、投影光学系に対する光量伝達ロスが少なく、かつ、高品質の投影像が得られる画像投影装置を実現することができる。
第2の発明では、光源装置が青色レーザ光源,緑色レーザ光源及び赤色レーザ光源を有する構成になっているため、例えばシネマ用光源として十分な明るさの照明が可能である。デジタル・マイクロミラー・デバイスの高精細化により画素ピッチが細かくなると、それに伴う回折の影響は特にレーザ光を用いた場合に無視できなくなるほど大きくなるが、条件式(1)を満たす構成になっているため、投影光学系に対する光量伝達ロスは少なくて済む。なお、光源装置にLED(light emitting diode)光源を用いたり、白色光源(キセノンランプ等)を射出光の波長帯域の狭いカラーホイールに組み合わせて用いたりした場合でも、光量伝達ロスを効果的に抑制することが可能である。
第3の発明では、照明光軸を含む断面において、赤色の鏡面反射光が奇数次の回折光と同じ角度になった場合の最も鏡面反射光に近い回折光が投影光学系を通過する条件を、投影光学系のFナンバーの上限値としている。つまり条件式(2)では、例えばレーザ光源を用いた場合でも、主要な回折散乱光を投影光学系で拾えるように、投影光学系のFナンバーを設定しているので、デジタル・マイクロミラー・デバイスでの光量伝達を効率良く行うことができる。最も鏡面反射光に近い回折光が、最も鏡面反射光から離れた条件となり、最も鏡面反射条件に近い偶数次の回折光が、青・緑・赤のいずれにおいても投影光学系を通過することになる。なお、条件式(2)を満たす投影光学系のFナンバーは、条件式(1)を満たす場合よりも小さいか又は同じになる。
投影光学系のFナンバーをあまり小さくしても、製造の困難さの増加に比べて、投影光学系を通過するエネルギーはさほど増えなくなる。そこで第の発明では、これ以上Fナンバーを小さくしても効果があまり出ない、というFナンバーの下限値を条件式(3)で設定している。条件式(3)を満たせば、軽量・コンパクトでありながら安価で光量伝達効率の良い画像投影装置を得ることができる。第の発明では、照明光軸を含む断面において、赤色の鏡面反射光が奇数次の回折光と同じ角度になった場合の最も鏡面反射光に近い4つの回折光の次に鏡面反射光に近い8つの回折光が投影光学系を通過する条件を、投影光学系のFナンバーの下限値としている。つまり条件式(3)では、少なくとも回折光の80%以上のエネルギーが投影光学系を通過するので、これ以上Fナンバーを小さくしても光量伝達効率改善の効果は小さい。
の発明によれば、照明光軸上の光線が画素面で反射されて生じる鏡面反射光は、画像表示面に対して垂直であり(すなわちγ=0)、投影光軸と一致するため、投影光学系のFナンバーを大きくすることができる。鏡面反射光が投影光軸に対して角度を持つ場合(すなわちγ≠0)、光量伝達効率を維持しようとすると、投影光学系のFナンバーをその分小さくする必要が生じて、投影光学系の大型化や高価格化に繋がることになる。
デジタル・マイクロミラー・デバイスの画像表示面とそれにより生じる回折パターンを示す図。 デジタル・マイクロミラー・デバイスをブレーズド回折格子と見立てたときの照明光,鏡面反射光及び回折光を模式的に示す断面図。 照明光の波長が532nmの場合の各次数の回折光の分布を示す図。 照明光の波長が635nmの場合の各次数の回折光の分布を示す図。 照明光の波長が635nmで鏡面反射光軸に奇数次の回折光が一致する場合の各次数の回折光の分布を示す図。 画像投影装置の一実施の形態を示す側面図。 画像投影装置の一部を成すカラープリズムユニットを示す正面図。 レーザ光源ユニットの一部を成す半導体レーザアレイを示す平面図。 レーザ光源ユニットの一部を成すコリメータレンズアレイを示す平面図。 レーザ光源ユニットの一部を成す青帯域PBSミラーの偏光分離特性を示すグラフ。 レーザ光源ユニットの一部を成す緑帯域PBSミラーの偏光分離特性を示すグラフ。 レーザ光源ユニットの一部を成す赤帯域PBSミラーの偏光分離特性を示すグラフ。
以下、本発明に係る画像投影装置の実施の形態等を、図面を参照しつつ説明する。なお、実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。
《デジタル・マイクロミラー・デバイスによる回折の説明(図1〜図5)》
図1(A)に示すように、デジタル・マイクロミラー・デバイス10は、画像表示面10aにおいて各画素を構成するミラー面を画素面10bとして有している。各画素面10bは正方形状であり、対角に回転軸を持ち±12°傾斜してON/OFFを表示する。照明光は、回転軸に直交する斜め45°方向(つまり、画像表示面10aが構成する矩形の画像表示領域の各辺に対して45°の方向)から画像表示面10aに入射するが、このときデジタル・マイクロミラー・デバイス10は回折格子として作用し、図1(B)に示すように回折反射によって回折パターンが形成される。つまり、画素の配列方向である左右上下方向(x−y方向)に回折次数に応じた回折光が生じることになる。
デジタル・マイクロミラー・デバイス10を画素面10bの回転軸方向から(すなわち、回転軸に直交する断面で)見ると、図2に示すようなブレーズド回折格子に見立てることができる。このとき、デジタル・マイクロミラー・デバイス10の画像表示面10a(Na:画像表示面10aの法線)に対する照明光Liの入射角をαとし、デジタル・マイクロミラー・デバイス10の画素面10b(Nb:画素面10bの法線)の傾斜角をθとすると、鏡面反射光Lrの鏡面反射角γは、式:γ=α−2・θで表される。また、画素ピッチをdとし、波長をλとし、回折次数をmとすると、回折光Ldの回折角βは、式:β=sin-1{sinα−m・λ/(√2・d)}で表される。
このとき、照明光Liの入射方向(すなわち画素対角方向)での回折次数mと回折光Ld(図2)の分布は、図3に示すようになる。図3(A)は、デジタル・マイクロミラー・デバイス10を正面から見たときの回折の様子を示しており、図3(B)は、画素面10bの回転軸と直交する断面から見た回折の様子を示している。回折次数mが奇数のとき、照明光Liの鏡面反射光軸Xr上に奇数次の回折光Ldは存在せず、鏡面反射光軸Xrに一致し得るのは偶数次の回折光Ldである。回折光Ldはそれぞれの回折条件に対応したエネルギーを持って反射し、画素に対する照明光Liの鏡面反射と一致する場合、その回折条件の回折光Ldにエネルギーが集中する。つまり、鏡面反射方向と偶数次の回折方向が一致するγ=βのとき、エネルギーがその方向に集中して効率良く反射される。
図3は、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=24°、波長λ=532nmの場合の回折の様子を示している。この場合、偶数次の回折光軸(すなわち8次の回折光(m=8))と鏡面反射光軸Xrが非常に近く、その差は0.5°ほどである。8次の回折光はほぼ鏡面反射方向に反射しており、その鏡面反射光軸Xrに最も近い回折光(塗りつぶしの丸)に95%以上のエネルギーが集中する。その他の回折次数の光束は、ほとんどエネルギーを持たず、回折の影響をあまり受けずに反射している。
一方、図4は、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=24°、波長λ=635nmの場合の回折の様子を示している。図4(A)は、デジタル・マイクロミラー・デバイス10を正面から見たときの回折の様子を示しており、図4(B)は、画素面10bの回転軸と直交する断面から見た回折の様子を示している。図4(B)では、奇数次の回折光軸(すなわち7次の回折光(m=7))と鏡面反射光軸Xrが近く、その差は0.5°である。しかし、図4(A)から分かるように、鏡面反射光軸Xrの近くには奇数次の回折光が存在しないので、最も鏡面反射光軸Xrに近いのは偶数次である6次の回折光(m=6)となっている。このとき、鏡面反射光軸Xrに近い鏡面反射から2.9°離れた6次の回折光が28.3%のエネルギーを持ち、2つの7次の回折光は鏡面反射から3.4°離れて、それぞれ15.3%ほどのエネルギーを持ち、鏡面反射から3.9°離れた8次の回折光が8.3%のエネルギーを持つことになる。
以上のように、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=24°の場合、波長λ=532nmでは、鏡面反射光軸Xr方向からほとんど拡散せず反射するが、波長λ=635nmでは、回折により鏡面反射光軸Xrから拡散して反射する。このように、波長によっては回折によりエネルギーをもつ光束の進行方向が広がってしまう。カラー表示のための赤・緑・青の各波長に対し効率良く投影光学系でスクリーンに投影するためには、その最も拡がった光束を捉えるだけの明るいFナンバーにすればよい。回折光は、鏡面反射光軸Xrに近いほどより多くのエネルギーを持つ。よって効率良く投影光学系で光量伝達させるには、少なくともこの鏡面反射光軸Xrに最も近い偶数次の回折光が投影光学系を通過することが重要である。
図2において、青・緑・赤の色光に関し、鏡面反射角γに最も近い偶数次の回折光Ldの回折角βのうち、絶対値の最も大きなβをΔとする。例えば、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=24°で、青色レーザの波長λB=445nm、緑色レーザの波長λG=532nm(図3の条件)、赤色レーザの波長λR=635nm(図4の条件)である画像投影装置の場合、偶数次の回折角βは以下の表1に示すようになる。
Figure 0005678693
表1から分かるように、波長445nmでは10次の−0.5°、波長532nmでは8次の0.5°、波長635nmでは6次の2.9°が、それぞれ鏡面反射光軸Xrに最も近い回折光である。そのうち絶対値の最も大きな回折角は、赤色の波長635nmの2.9°である。したがって、Δ=2.9°であり、この回折光をスクリーンまで伝達することができるように投影光学系のFナンバーを設定すればよい。
ここで、照明光のFナンバーをFIとすると、照明光の拡がり角θIは、主光線に対して、式:θI=sin-1{1/(2・FI)}で表すことができ、投影光学系のFナンバーをFPとすると、投影光学系が捉えることのできる角度θPは、式:θP=sin-1{1/(2・FP)}で表すことができる。角度θPは少なくともθI+Δ以上であれば、鏡面反射光軸Xrに最も近い回折光を取り込むことができるため、かなりのエネルギーを捉えることができる。つまり、式:θP≧θI+Δから得られる以下の条件式(1)を満たせばよい。条件式(1)を満たすことにより、デジタル・マイクロミラー・デバイス10での回折角に相当する分、照明光のFナンバーに対し、投影光学系のFナンバーを小さくし、光量伝達ロスを少なくすることが可能となる。
θP≧θI+Δ
sin-1{1/(2・FP)}≧sin-1{1/(2・FI)}+Δ
1/(2・FP)≧sin[sin-1{1/(2・FI)}+Δ]
FP≦1/〔2・sin[sin-1{1/(2・FI)}+Δ]〕 …(1)
したがって、画像投影装置は以下の条件式(1)を満たすことが好ましい。
FP≦1/〔2・sin[sin-1{1/(2・FI)}+Δ]〕 …(1)
ただし、デジタル・マイクロミラー・デバイスの画像表示面において各画素を構成するミラー面を画素面とし、その画素面で照明光軸上の光線が鏡面反射されることによって生じた反射光を鏡面反射光とし、
青の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を青色光の回折角βBとし、
緑の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を緑色光の回折角βGとし、
赤の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を赤色光の回折角βRとすると、
Δ:回折角βB,βG,βRのうち最も大きい回折角であり、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
である。
例えば、FI=3.0とすると、Δ=2.9°から、
1/〔2・sin[sin-1{1/(2・FI)}+Δ]〕=2.3
である。したがって、FP≦2.3であれば、投影光学系でのエネルギー伝達を効率良く行うことができる。
鏡面反射光軸Xrに最も近い偶数次の回折光を取り込むことが重要であるが、偶数次の回折光が最も鏡面反射光軸Xrから離れるのは、鏡面反射光軸Xrに奇数次の回折光が図2に示す断面から見て一致する場合である。このときエネルギーの分散は大きいが、そのとき近接する偶数次の回折光を取り込むことができると、かなりのエネルギーを投影光学系で捉えることができる。
今、奇数次の回折角をβ2k+1、偶数次の回折角をβ2・kとすると、
sinβ2・k+1=sinα−(2・k+1)・λ/(√2・d)
sinβ2・k=sinα−(2・k)・λ/(√2・d)
が成立し、β≒0で近似すると、その差δは、
δ=β2・k−β2・k+1≒λ/(√2・d)
となる。
偶数次の回折光が鏡面反射光軸Xrから離れたときの値であるδは、波長λと画素ピッチdによるので、青・緑・赤に同じピッチのデジタル・マイクロミラー・デバイス10を使う場合や、同じ単一のデジタル・マイクロミラー・デバイス10を色時分割表示して使う場合には、波長λの大きい赤色のδが最も大きくなるので、赤の波長λRのときのδ分を投影光学系で取り込むことができればよい。
角度θPが少なくともθI+δ+γ以上であれば、近接する偶数次の回折光を取り込むことができるため、かなりのエネルギーを捉えることができる。つまり、式:θP≧θI+δ+γから得られる以下の条件式(2)を満たせばよい。
θP≧θI+δ+γ
sin-1{1/(2・FP)}≧sin-1{1/(2・FI)}+λR/(√2・d)+γ
1/(2・FP)≧sin[sin-1{1/(2・FI)}+λR/(√2・d)+γ]
FP≦1/〔2・sin[sin-1{1/(2・FI)}+λR/(√2・d)+γ]〕 …(2)
したがって、画像投影装置は以下の条件式(2)を満たすことが好ましい。
FP≦1/〔2・sin[sin-1{1/(2・FI)}+λR/(√2・d)+γ]〕 …(2)
ただし、
d:デジタル・マイクロミラー・デバイスの画素ピッチ、
λR:赤色光の波長、
γ:鏡面反射光が画像表示面の法線と成す角度、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
である。
先と同様に、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=24°、緑色レーザの波長λG=532nm、赤色レーザの波長λR=635nm、青色レーザの波長λB=445nmで、FI=3.0の場合を考える。δ≒λ/(√2・d)は、青色でδ≒2.38°、緑色でδ≒2.85°、赤色でδ≒3.40°となり、奇数次と偶数次の回折角の差は、波長λが大きい赤色の場合が最も大きくなる。よって、赤色の波長条件で偶数次の回折光を取り込めると、他の色の偶数次の回折光も取り込むことができ、かなりのエネルギーを捉えることができる。
また、このとき、δ≒λ/(√2・d)=3.40°、γ=0°となるので、FI=3.0のとき、
1/〔2・sin[sin-1{1/(2・FI)}+λ/(√2・d)+γ]〕=2.22
である。したがって、FP≦2.22であれば、投影光学系でのエネルギー伝達を効率良く行うことができる。
また、照明光Liの入射角αが異なる同様の条件のとき、すなわち、画素ピッチd=7.56μm、画素傾斜角θ=12°、照明光Liの入射角α=26°、青色レーザの波長λB=445nm、緑色レーザの波長λG=532nm、赤色レーザの波長λR=635nm、FI=3.0の場合、赤の波長のδは同じくδ≒λ/(√2・d)=3.40°で、このときのγは、γ=26−2×12=2°となる。したがって、
1/〔2・sin[sin-1{1/(2・FI)}+λ/(√2・d)+γ]〕=1.93
である。効率良く投影光学系でエネルギー伝達を行うには、FP≦1.93とする必要があり、鏡面反射光軸Xrがデジタル・マイクロミラー・デバイス10の表示面法線Naと角度差を持った分、明るい投影光学系にする必要がある。
図5に、鏡面反射光軸Xrに奇数次の回折光が図2に示す断面から見て一致する場合の回折の状態であって、画素ピッチd=5.52μm、画素傾斜角θ=12°、照明光Liの入射角α=24°、波長λ=635nmの場合の回折の様子を示す。図5(A)は、デジタル・マイクロミラー・デバイス10を正面から見たときの回折の様子を示しており、図5(B)は、画素面10bの回転軸と直交する断面から見た回折の様子を示している。
小さい一点鎖線上の4つの回折光(塗りつぶしの丸)は、それぞれ16.4%のエネルギーを持ち、この4つの回折光を取り込むことで、65%のエネルギーを取り込むことができる。このときδ=0.635/(√2・5.52)≒4.66°、γ=0°であり、例えば、照明光のFナンバー=5とすると、θI=sin-1{1/(2・5)}≒5.74°であるから、θP≧10.4°、すなわち、FP≧1/{2・sin(10.4°)}≒2.77となる。
大きい一点鎖線上の8つの回折光(白抜きの丸)は、それぞれ1.8%のエネルギーを持ち、この8つの回折光まで取り込むことで、80%のエネルギーを取り込むことができる。大きい一点鎖線の角度範囲は、図5(A)に示すように概略√5・δであり、この範囲の回折光を取り込む投影光学系のFナンバーは、一般式で表すと、
FP=1/〔2・sin[sin-1{1/(2・FI)}+(√5・λ)/(√2・d)+γ]〕
となる。
図5に示す例においては、√5・δ≒10.42°となるので、同様に、照明光のFナンバー=5とすると、θI=sin-1{1/(2・5)}≒5.74°、γ=0°であるから、この大きい一点鎖線までの回折光を取り込む投影光学系の角度は、θP≒16.16°、すなわち、FP=1/{2・sin(16.16°)}≒1.8となる。これより外側の回折光まで取り込もうとすると、更に6.5°も投影光学系の取り込み角を増やさなければならないが、そうしても6%程度しかエネルギーは増えず、投影光学系は大きく、重く、高価格になり、また、設計も難しくなり、あまり効率的とは言えない。よって、投影光学系の取り込み範囲は、図5(A)に示す大きい一点鎖線の範囲までに抑えるのが望ましい。
したがって、画像投影装置は以下の条件式(3)を満たすことが好ましい。
FP≧1/〔2・sin[sin-1{1/(2・FI)}+(√5・λR)/(√2・d)+γ]〕 …(3)
ただし、
d:デジタル・マイクロミラー・デバイスの画素ピッチ、
λR:赤色光の波長、
γ:鏡面反射光が画像表示面の法線と成す角度、
FI:照明光のFナンバー、
FP:投影光学系のFナンバー、
である。
《画像投影装置の実施の形態(図6〜図12)》
図6に、画像投影装置の実施の形態を示す。この画像投影装置20は、レーザ光源ユニット4,コンデンサレンズ5,照明光学系7,TIR(Total Internal Reflection)プリズムユニット8,カラープリズムユニット9,デジタル・マイクロミラー・デバイス10,投影光学系11等で構成されており(AX1:照明光軸,AX2:投影光軸)、図6では画像投影装置20の全体構成をDMD画素の回転軸に平行な方向から見た状態で示している。レーザ光源ユニット4は、半導体レーザアレイ1(図8),コリメータレンズアレイ2(図9),光路合成用ミラー3等で構成されている。照明光学系7は、ロッドインテグレータ7a,集光レンズ7b,リレー光学系7c,折り返しミラー7d,エントランスレンズ7e等で構成されている。また、TIRプリズムユニット8は、第1プリズム8a,第2プリズム8b等で構成されている。
図7はカラープリズムユニット9をDMD画素の回転軸と直交する上面側から見た状態で示している。図7から分かるように、カラープリズムユニット9は、赤プリズム9R,緑プリズム9G,青プリズム9B等で構成されており、デジタル・マイクロミラー・デバイス10として、赤用,緑用,青用のデジタル・マイクロミラー・デバイス10R,10G,10Bが設けられている。
レーザ光源ユニット(光源装置)4には、波長445nmの青色半導体レーザアレイ(青色レーザ光源)1Bs,1Bpと、波長532nmの緑色半導体レーザアレイ(緑色レーザ光源)1Gs,1Gpと、波長635nmの赤色半導体レーザアレイ(赤色レーザ光源)1Rs,1Rpと、の3種類の半導体レーザアレイ1が搭載されており、青色用のミラー3Bs,3Bpと、緑色用のミラー3Gs,3Gpと、赤色用のミラー3Rs,3Rpと、の6種類の光路合成用ミラー3が搭載されている。半導体レーザアレイ1を構成している半導体レーザは、光路合成用ミラー3に対する偏光特性が各色で揃うように配列されている。また、半導体レーザは一方向に光束の放射角の広がりが大きいので、図8に示すように、放射角の広がりに対応して一方向に広めのピッチで配置されている。コリメータレンズアレイ2は、図9に示すように、半導体レーザアレイ1の配列に対応した開口形状で形成されている。
レーザ光源ユニット4には、各色の半導体レーザアレイ1が2つずつ、計6個の半導体レーザアレイ1Rs,1Rp;1Gs,1Gp;1Bs,1Bpが用いられており、各色の2つの半導体レーザアレイ1は互いに偏光方向が直交する関係で配置されている。つまり、青のP偏光の半導体レーザアレイ1Bp,青のS偏光の半導体レーザアレイ1Bs,緑のP偏光の半導体レーザアレイ1Gp,緑のS偏光の半導体レーザアレイ1Gs,赤のP偏光の半導体レーザアレイ1Rp,赤のS偏光の半導体レーザアレイ1Rsが、順に並んで配置されている。
半導体レーザアレイ1から射出した光束は、コリメータレンズアレイ2で略平行光束となった後、光路合成用ミラー3に入射する。青のP偏光の光束は青反射ミラー3Bpで反射され、図10に示す特性(実線:S偏光,破線:P偏光)を持つ青帯域PBS(polarizing beam splitter)ミラー3Bsで青のS偏光の光束と合成されて青色光になる。青色光は、緑反射青透過ミラー3Gpで緑のP偏光の光束と合成され、さらに、図11に示す特性(実線:S偏光,破線:P偏光)を持つ緑帯域PBS青透過ミラー3Gsで緑のS偏光と合成されてシアン色光になる。シアン色光は、赤反射緑青透過ミラー3Rpで赤のP偏光の光束と合成され、さらに、図12に示す特性(実線:S偏光,破線:P偏光)を持つ赤帯域PBS緑青透過ミラー3Rsで赤のS偏光と合成されて白色光になる。合成された白色光は、コンデンサレンズ5で集光されてロッドインテグレータ7aに入射する。なお、合成された白色光をファイバーに入射させて、ファイバーを経由してロッドインテグレータ7aに入射させてもよい。
本構成のレーザ光源ユニット4には、多数個の半導体レーザがレーザ光源として用いられているので、スペックルが軽減されるという効果がある。不良レーザがあって途中で発光しないレーザがあってもその影響は小さく、継続した使用が可能であるため、メンテナンス性も良い。発光波長のバラツキがあっても平均化され、各色の光源ブロックごとでの色再現性の差が少ないという効果もある。
光路合成用ミラー3では、ダイクロイックミラー及びPBSミラーを用いて色合成と偏光合成を行っており、見掛けの光源数は1/6になるため(ブロック数:6)、光学系のNA(numerical aperture)を大きくせずに明るい光源が得られる。また、レーザ光をコリメータレンズアレイ2で略平行光にしてからダイクロイックミラーやPBSミラーに入射させているので、入射角分布範囲も小さく効率よく偏光合成・色合成を行うことができる。なお、レーザ光源としては、本構成にかかわらず、様々な構成が一般的に知られているので、それらの構成を用いてもよい。
ロッドインテグレータ7aに入射した光は、ここで内面反射を繰り返し、均一な光量分布となって他端の射出面より射出する。ロッドインテグレータ7aの射出面直後には集光レンズ7bが配置されており、更に後方にはリレー光学系7cが配置されている。ロッドインテグレータ7aから射出した光は、集光レンズ7bで効率良くリレー光学系7cに導かれ、折り返しミラー7dを経て、TIRプリズムユニット8の入射側に配置されたエントランスレンズ7eを介して、TIRプリズムユニット8からカラープリズムユニット9を経てデジタル・マイクロミラー・デバイス10を照明する。
デジタル・マイクロミラー・デバイス10の画像表示面10aでは、照明光の強度変調により2次元画像が形成される。デジタル・マイクロミラー・デバイス10の画素は、画像表示面10aが構成する矩形の画像表示領域の各辺に対して45°の角度をなす回転軸を有しており、その軸回りに例えば±12°回動することにより、ON/OFFを表現する。ON状態のマイクロミラー(画素面10b)で反射した光のみがTIRプリズムユニット8,カラープリズムユニット9及び投影光学系11を通過することができるため、デジタル・マイクロミラー・デバイス10の表示画像がスクリーン(不図示)上に拡大投影されることになる。
TIRプリズムユニット8は、それぞれ略三角柱状の第1プリズム8aと第2プリズム8bとから成っており、各プリズム斜面間にエアギャップ層8dが設けてある。このTIRプリズムユニット8によって、デジタル・マイクロミラー・デバイス10に対する入力光と出力光との分離が行われる。照明光学系7から射出した照明光は、第1プリズム8aに入射し、エアギャップ層8dを形成する斜面に全反射条件を満たす角度で入射し、全反射してカラープリズムユニット9に入射する。
照明光は、カラープリズムユニット9で赤,緑,青の各色に分解される。カラープリズムユニット9は、図7に示すように、略三角柱状の青プリズム9B及び赤プリズム9R、並びにブロック状の緑プリズム9Bが、順次組み合わされている。
青プリズム9Bと赤プリズム9Rとの間には、青色光を反射する青ダイクロイック面DB、及びそれに隣接してエアギャップ層9dが設けられている。このエアギャップ層9dは投影光軸AX2に対し傾斜しており、投影光軸AX2とエアギャップ層9dの法線を含む面は、TIRプリズムユニット8のエアギャップ層8dと投影光軸AX2を含む面と直交している。
また、赤プリズム9Rと緑プリズム9Gとの間には、赤色光を反射する赤ダイクロイック面DR、及びそれに隣接してエアギャップ層9dが設けられている。このエアギャップ層9dも投影光軸AX2に対し傾斜しており、投影光軸AX2とエアギャップ層9dの法線を含む面は、同様にTIRプリズムユニット8のエアギャップ層8dの法線と投影光軸AX2を含む面と直交している。傾斜方向は、青プリズム9Bと赤プリズム9Rによるエアギャップ層9dの傾き方向とは逆方向である。
青プリズム9Bの入射出面9eより入射した照明光は、青ダイクロイック面DBで青色光が反射され、他の緑色光及び赤色光は透過する。青ダイクロイック面DBで反射された青色光は、青プリズム9Bの入射出面9eにより全反射され、青プリズム9B側面である青入射出面SBより射出して、青用デジタル・マイクロミラー・デバイス10Bを照明する。青ダイクロイック面DBを透過した緑色光と赤色光のうち、赤色光は赤ダイクロイック面DRで反射され、緑色光は透過する。赤ダイクロイック面DRで反射された赤色光は、青ダイクロイック面DBに隣接して設けられたエアギャップ層9dにより全反射され、赤プリズム9R側面である赤入射出面SRより射出して、赤用デジタル・マイクロミラー・デバイス10Rを照明する。赤ダイクロイック面DRを透過した緑色光は、緑プリズム9G側面である緑入射出面SGより射出して、緑用デジタル・マイクロミラー・デバイス10Gを照明する。
青用デジタル・マイクロミラー・デバイス10Bで反射された青色の投影光は、青入射出面SBに入射して青プリズム9Bの入射出面9eで全反射された後、青ダイクロイック面DBで反射される。また、赤用デジタル・マイクロミラー・デバイス10Rで反射された赤色の投影光は、赤入射出面SRに入射して、青ダイクロイック面DBに隣接して設けられたエアギャップ層9dにより全反射された後、赤ダイクロイック面DRで反射され、更に青ダイクロイック面DBを透過する。さらに、緑用デジタル・マイクロミラー・デバイス10Gで反射された緑色の投影光は、緑入射出面SGに入射して、赤ダイクロイック面DR及び青ダイクロイック面DBを透過する。
そして、これら赤色,青色,及び緑色の各投影光は、同一光軸に合成され、青プリズム9Bの入射出面9eから射出して、TIRプリズムユニット8に入射する。TIRプリズムユニット8に入射した投影光は、ここでは全反射条件を満たさないのでエアギャップ層8dを透過し、投影光学系11によってスクリーンに投影される。このとき投影光学系11のFナンバーは、デジタル・マイクロミラー・デバイス10での回折による拡がりも考慮して、捉えることができるように設定されているので、各色とも効率良くスクリーンに投影することができる。
この実施の形態では3板式を採用しているが、単板式を採用してもよい。その場合、同様の投影光学系11のFナンバーで構成すればよい。単板式の場合は、カラープリズムユニット9が無く、赤・緑・青の半導体レーザアレイ1を時間順次で発光させる。順次切り替わる色光に合わせてデジタル・マイクロミラー・デバイス10に対応する色光の画像が表示され、スクリーンに投影される。人の目では認識できないほど色光の切り替えを高速で行うことにより、カラー画像として認識させることが可能となる。なお、光源装置にLED光源を用いたり、白色光源(キセノンランプ等)を射出光の波長帯域の狭いカラーホイール(ロッドインテグレータ7aの入射面近傍に配置される。)に組み合わせて用いたりした場合でも、光量伝達ロスを効果的に抑制することが可能である。
1 半導体レーザアレイ
1Bs,1Bp 青色半導体レーザアレイ(青色レーザ光源)
1Gs,1Gp 緑色半導体レーザアレイ(緑色レーザ光源)
1Rs,1Rp 赤色半導体レーザアレイ(赤色レーザ光源)
2 コリメータレンズアレイ
3 光路合成用ミラー
4 レーザ光源ユニット(光源装置)
5 コンデンサレンズ
7 照明光学系
7a ロッドインテグレータ
7b 集光レンズ
7c リレー光学系
7d 折り返しミラー
7e エントランスレンズ
8 TIRプリズムユニット
8a 第1プリズム
8b 第2プリズム
8d エアギャップ層
9 カラープリズムユニット
9B 青プリズム
9G 緑プリズム
9R 赤プリズム
9d エアギャップ層
SB 青入出射面
SG 緑入出射面
SR 赤入出射面
10 デジタル・マイクロミラー・デバイス
10a 画像表示面
10b 画素面
10R 赤用のデジタル・マイクロミラー・デバイス
10G 緑用のデジタル・マイクロミラー・デバイス
10B 青用のデジタル・マイクロミラー・デバイス
11 投影光学系
20 画像投影装置
Li 照明光
Lr 鏡面反射光
Ld 回折光
Na 画像表示面の法線
Nb 画素面の法線
AX1 照明光軸
AX2 投影光軸
Xr 鏡面反射光軸

Claims (4)

  1. 青,緑,赤の各色の照明光を出射する光源装置と、各色の照明光を画像表示面で強度変調することにより各色の画像を形成するデジタル・マイクロミラー・デバイスと、各色の画像を拡大投影する投影光学系と、を備え、以下の条件式(1)及び(3)を満たすことを特徴とする画像投影装置;
    FP≦1/〔2・sin[sin-1{1/(2・FI)}+Δ]〕 …(1)
    FP≧1/〔2・sin[sin -1 {1/(2・FI)}+(√5・λR)/(√2・d)+γ]〕 …(3)
    ただし、デジタル・マイクロミラー・デバイスの画像表示面において各画素を構成するミラー面を画素面とし、その画素面で照明光軸上の光線が鏡面反射されることによって生じた反射光を鏡面反射光とし、
    青の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を青色光の回折角βBとし、
    緑の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を緑色光の回折角βGとし、
    赤の照明光軸上の光線がデジタル・マイクロミラー・デバイスで回折されることによって生じた回折光のうち、前記鏡面反射光に最も近い進行方向の回折光が、前記画像表示面の法線と成す角度を赤色光の回折角βRとすると、
    Δ:回折角βB,βG,βRのうち最も大きい回折角であり、
    FI:照明光のFナンバー、
    FP:投影光学系のFナンバー、
    d:デジタル・マイクロミラー・デバイスの画素ピッチ、
    λR:赤色光の波長、
    γ:鏡面反射光が画像表示面の法線と成す角度、
    FI:照明光のFナンバー、
    FP:投影光学系のFナンバー、
    である。
  2. 前記光源装置が、照明光として青色のレーザ光を出射する青色レーザ光源と、照明光として緑色のレーザ光を出射する緑色レーザ光源と、照明光として赤色のレーザ光を出射する赤色レーザ光源と、を有することを特徴とする請求項1記載の画像投影装置。
  3. 以下の条件式(2)を満たすことを特徴とする請求項1又は2記載の画像投影装置;
    FP≦1/〔2・sin[sin-1{1/(2・FI)}+λR/(√2・d)+γ]〕 …(2)
    ただし、
    d:デジタル・マイクロミラー・デバイスの画素ピッチ、
    λR:赤色光の波長、
    γ:鏡面反射光が画像表示面の法線と成す角度、
    FI:照明光のFナンバー、
    FP:投影光学系のFナンバー、
    である。
  4. γ=0であることを特徴とする請求項1〜3のいずれか1項に記載の画像投影装置。
JP2011017533A 2011-01-31 2011-01-31 画像投影装置 Active JP5678693B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011017533A JP5678693B2 (ja) 2011-01-31 2011-01-31 画像投影装置
US13/362,960 US8864315B2 (en) 2011-01-31 2012-01-31 Image projection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017533A JP5678693B2 (ja) 2011-01-31 2011-01-31 画像投影装置

Publications (2)

Publication Number Publication Date
JP2012159556A JP2012159556A (ja) 2012-08-23
JP5678693B2 true JP5678693B2 (ja) 2015-03-04

Family

ID=46577107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017533A Active JP5678693B2 (ja) 2011-01-31 2011-01-31 画像投影装置

Country Status (2)

Country Link
US (1) US8864315B2 (ja)
JP (1) JP5678693B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453525B (zh) * 2012-04-11 2014-09-21 Hon Hai Prec Ind Co Ltd 投影機光源結構
JP6208942B2 (ja) * 2012-12-28 2017-10-04 キヤノン株式会社 プロジェクター
CN105190405B (zh) 2013-03-15 2019-08-30 图像影院国际有限公司 针对调制器衍射效应优化的投影仪
US9712794B2 (en) 2013-06-13 2017-07-18 Nec Display Solutions, Ltd. Projector including image forming units and first and second optical systems
US10122977B2 (en) 2013-06-13 2018-11-06 Nec Display Solutions, Ltd. Projector including first and second optical systems
JP6318670B2 (ja) * 2014-02-10 2018-05-09 セイコーエプソン株式会社 プロジェクター
WO2017129467A1 (en) * 2016-01-26 2017-08-03 Philips Lighting Holding B.V. Laser illumination system and projection system incorporating such laser illumination system
US20180207725A1 (en) * 2017-01-23 2018-07-26 The Chinese University Of Hong Kong System and method for fabricating 3d metal structure
JP6637938B2 (ja) * 2017-10-04 2020-01-29 アイマックス シアターズ インターナショナル リミテッド 変調器回折効果に最適化された投影器
CN111796475B (zh) * 2019-04-09 2022-03-08 成都理想境界科技有限公司 一种光源合束模组、投影显示装置及投影显示设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230258A (ja) * 1996-02-22 1997-09-05 Sanyo Electric Co Ltd 投写型映像表示装置
JP3415403B2 (ja) 1997-09-01 2003-06-09 シャープ株式会社 映像表示装置
JP2003315791A (ja) * 2002-04-23 2003-11-06 Olympus Optical Co Ltd 投影型映像表示装置
US8238019B2 (en) * 2003-11-01 2012-08-07 Silicon Quest Kabushiki-Kaisha Projection apparatus with coherent light source
JP2005173357A (ja) * 2003-12-12 2005-06-30 Canon Inc 色分離合成装置及びそれを有する映像投影装置
US9778477B2 (en) 2007-03-02 2017-10-03 Alcatel-Lucent Usa Inc. Holographic MEMS operated optical projectors
JP5474312B2 (ja) 2007-06-20 2014-04-16 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置及びその制御方法
JP5239237B2 (ja) * 2007-07-19 2013-07-17 コニカミノルタアドバンストレイヤー株式会社 画像投影装置
JP5137488B2 (ja) * 2007-07-25 2013-02-06 オリンパス株式会社 レーザ照射装置およびそれを用いたレーザ加工システム
JP2010044272A (ja) 2008-08-14 2010-02-25 Omron Corp レーザ照射装置

Also Published As

Publication number Publication date
JP2012159556A (ja) 2012-08-23
US20120194787A1 (en) 2012-08-02
US8864315B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5678693B2 (ja) 画像投影装置
JP6783545B2 (ja) 照明装置及びこれを用いた投射型表示装置
US9201295B2 (en) High efficiency LED optical engine for a digital light processing (DLP) projector and method of forming same
KR101321631B1 (ko) 집광 광학계 및 투사형 화상 표시 장치
JP5720586B2 (ja) 画像投映装置
JP5954845B2 (ja) 照明光学系、照明光学系の色むら改善方法、プロジェクターおよびプロジェクターシステム
JP2004070018A (ja) 投写装置の照明光学系構造及び投写装置
WO2012014797A1 (ja) 照明装置および表示装置
JP2004053949A (ja) 光源装置及び投写型表示装置
JP2015082025A (ja) 光源装置および投射型表示装置
JP2011248327A (ja) 照明装置及びそれを備えた投写型表示装置
JP2021071691A (ja) 光源装置及び画像投射装置
JP5644481B2 (ja) 画像投影装置
WO2018211886A1 (ja) 投射型表示装置
CN111830774A (zh) 光源装置以及投射型显示装置
JP2009237565A (ja) 投射型画像表示装置
JP5239237B2 (ja) 画像投影装置
US8085471B2 (en) Light integrating device for an illumination system and illumination system using the same
JP2008070769A (ja) 光源ユニット、照明装置およびプロジェクタ装置
JP5515200B2 (ja) 照明光学系及びプロジェクタ装置
JP4843949B2 (ja) 照明装置及びプロジェクタ
JP6711705B2 (ja) 照明装置およびこれを用いた投射型表示装置
JP4715167B2 (ja) 照明装置、画像表示装置及びプロジェクタ
JP2006018162A (ja) 照明装置及びプロジェクタ
JP7108901B2 (ja) 照明装置及び投写型表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5678693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150