JP5668768B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP5668768B2
JP5668768B2 JP2013034702A JP2013034702A JP5668768B2 JP 5668768 B2 JP5668768 B2 JP 5668768B2 JP 2013034702 A JP2013034702 A JP 2013034702A JP 2013034702 A JP2013034702 A JP 2013034702A JP 5668768 B2 JP5668768 B2 JP 5668768B2
Authority
JP
Japan
Prior art keywords
output
air
lean
fuel ratio
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013034702A
Other languages
English (en)
Other versions
JP2014163274A (ja
Inventor
正英 岡田
正英 岡田
秤谷 雅史
雅史 秤谷
松田 好史
好史 松田
純久 小田
純久 小田
辻 宏彰
宏彰 辻
登喜司 伊藤
登喜司 伊藤
勇夫 中島
勇夫 中島
敏宏 加藤
敏宏 加藤
裕也 吉川
裕也 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013034702A priority Critical patent/JP5668768B2/ja
Priority to PCT/JP2014/000289 priority patent/WO2014129108A1/ja
Priority to US14/769,956 priority patent/US10072593B2/en
Priority to CN201480010025.8A priority patent/CN105189991B/zh
Publication of JP2014163274A publication Critical patent/JP2014163274A/ja
Application granted granted Critical
Publication of JP5668768B2 publication Critical patent/JP5668768B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気通路に酸素センサが設けられた内燃機関の制御装置に関する。
一般に、触媒を利用した排気浄化システムを備える内燃機関では、排気中有害成分の触媒による浄化を高効率で行うため、内燃機関で燃焼される混合気の空気と燃料との混合割合、すなわち空燃比のコントロールが欠かせない。こうした空燃比の制御を行うため、そのような内燃機関では、排気通路の触媒つまり触媒浄化装置の上下流側に排気中の酸素濃度に応じた出力を生じるセンサを設け、これらの出力に基づいて空燃比を目標空燃比に追従させるように空燃比フィードバック制御が実施されている。例えば、触媒の上流側にはいわゆる広域空燃比センサが設けられ、その下流側にはいわゆる酸素センサが設けられる。
一般的な酸素センサは、その検出素子の内面を大気に曝すと共にその外面を排気に曝すように排気通路に配置され、大気と排気との酸素分圧、要するに酸素濃度に差が生じると、酸素濃度の高い側から低い側へ酸素イオンが検出素子内部を流れるので起電力を発生する。しかし、酸素センサの検出素子に欠損が生じると、つまり素子割れが生じると、検出素子内部に排気が流入することになり、検出素子内外の酸素濃度に差が生じなくなる。その結果、いわゆる排気中に酸素が多くなるリーン燃焼時と同様の出力を酸素センサは出す。つまり、検出素子に欠損が生じると、酸素センサがリーン燃焼時と同様の出力を生じる程度が増す。そこで、酸素センサのリーン側の出力傾向の度合いに基づいて、酸素センサの検出素子に欠損異常があることを検知することが可能である。
このように酸素センサの検出素子に欠損異常があるときは、一般にその出力は排気の酸素濃度に応じたものでないので、当該酸素センサの出力に単に基づいて上記空燃比制御を行うと、エミッションが悪化してしまう。特に、このような酸素センサは、上で述べたように、リーン燃焼時と同様の出力を生じやすいので、空燃比制御では、酸素センサの出力に基づいて空燃比を過度にリッチ化させるような補正が行われる可能性がある。
例えば、特許文献1は、このようなエミッション悪化を防止するための空燃比制御装置を開示する。この装置は、排気浄化触媒の下流側に設けられた酸素センサの出力値の出現頻度分布がリーン側に変移した程度が大きいほど異常可能性が高いと判定し、異常可能性の程度に応じて空燃比のリッチ化を抑制する方向に空燃比制御に対する補正量に限界を設定する構成を有する。
特開2005−36742号公報
ところで、近年の排気規制のさらなる強化により、酸素センサの欠損異常の判定基準(検出基準)を引き上げることが必要とされている。
一方、酸素センサがリーン燃焼時と同様の出力を生じる程度が高まるときは、酸素センサの検出素子に欠損異常があるときに限られない。複数の気筒を有する内燃機関つまりいわゆる多気筒内燃機関においては、気筒間空燃比ばらつきの度合いが高いときに、排気通路に設けられた酸素センサはリーン燃焼時と同様の出力を生じる傾向にある。一般に、このような内燃機関では、通常全気筒に対して同一の制御量を用いて空燃比制御を行うため、空燃比制御を実行したとしても実際の空燃比が気筒間でばらつくことがある。このときばらつきの程度が小さければ、空燃比フィードバック制御で吸収可能であり、また触媒でも排気中有害成分を浄化処理可能なので、エミッションに影響を与えず、特に問題とならない。しかし、例えば一部の気筒の燃料噴射系や吸気バルブの動弁機構が故障するなどして、気筒間の空燃比が大きくばらつくと、排気中の水素成分の影響により空燃比センサは空燃比が理論空燃比よりもリッチであるときと同様の出力を出す傾向が強く、空燃比制御により空燃比がリーン側へ変移し易い。よって、これに起因して、酸素センサの出力がリーン燃焼時と同様の出力を生じる程度が増す。したがって、酸素センサのリーン側の出力傾向の度合いに基づいて酸素センサの検出素子に欠損異常があることを検知する構成を備える内燃機関では、気筒間空燃比ばらつきの度合いが高いときに、酸素センサの検出素子に欠損異常が生じていると誤検出する虞がある。特に、酸素センサの欠損異常の判定基準を引き上げることで、その誤検出の可能性がさらに高まり得る。
このように気筒間空燃比ばらつきの度合いが高いときに、酸素センサに欠損異常がないにもかかわらず、それが生じていると誤検出されるような状況下では、特許文献1に示すような空燃比制御装置を備えた内燃機関では、それに応じて空燃比制御に対する補正量に限界が設定される可能性がある。このような限界の設定は、エミッションの改善に寄与し得ない。
そこで、本発明は、以上の事情に鑑みて創案され、その目的は、排気通路の排気浄化触媒の下流側に設けられた酸素センサの出力に基づいてより好適に空燃比制御を行うことにある。
本発明の一の態様によれば、
排気通路の排気浄化触媒の上流側に設けられた空燃比センサの出力に基づいて空燃比制御を実行する空燃比制御手段であって、該排気浄化触媒の下流側に設けられた酸素センサの出力に基づいて設定される補正量により該空燃比制御に対する補正を実行する空燃比制御手段と、
該酸素センサの出力に基づいて該酸素センサの出力傾向を表す値を算出する出力傾向値算出手段であって、所定時間における、理論空燃比よりもリーン側の所定リーン領域でのリーン出力傾向を表すリーン傾向値および理論空燃比よりもリッチ側の所定リッチ領域でのリッチ出力傾向を表すリッチ傾向値を算出する出力傾向値算出手段と、
該出力傾向値算出手段により算出された該リーン傾向値に基づき該所定リーン領域でのリーン出力傾向の度合いが所定リーン度合い以上であるか否かを判定すると共に該出力傾向値算出手段により算出された該リッチ傾向値に基づき該所定リッチ領域でのリッチ出力傾向の度合いが所定リッチ度合い未満であるか否かを判定する判定手段と、
該判定手段により該所定リーン領域でのリーン出力傾向の度合いが該所定リーン度合い以上でありかつ該所定リッチ領域でのリッチ出力傾向の度合いが該所定リッチ度合い未満であると判定されたとき、該酸素センサの出力がリーン側に変移した程度が大きいほど、空燃比のリッチ化を抑制する方向に空燃比制御に対する該補正に限界を設定する限界設定手段と
を備える、内燃機関の制御装置が提供される。
好ましくは、該限界設定手段は、該出力傾向値算出手段により算出されたリーン傾向値を、該酸素センサの出力がリーン側に変移した程度を表す値として用い、該リーン傾向値に基づいて該補正に限界を設定する。
該酸素センサの素子温度を検出する温度検出手段がさらに備えられる場合、該出力傾向値算出手段は、該温度検出手段により検出された該酸素センサの素子温度が該所定リッチ領域のリーン側境界値と対応関係にある所定温度以下であるときの該酸素センサの出力に基づいて、少なくともリッチ傾向値を算出するとよい。あるいは、該酸素センサの素子温度を検出する温度検出手段が備えられる場合、該温度検出手段により検出された該酸素センサの素子温度に基づいて、該所定リッチ領域のリーン側境界値を設定するリッチ領域設定手段がさらに備えられてもよい。
上記構成を有する本発明によれば、所定リーン領域での出力傾向の度合いが所定リーン度合い以上でありかつ所定リッチ領域での出力傾向の度合いが所定リッチ度合い未満であると判定されたとき、酸素センサの出力がリーン側に変移した程度が大きいほど、空燃比のリッチ化を抑制する方向に空燃比制御に対する上記補正に限界が設定される。したがって、酸素センサに異常が生じているときが適切に判別され、そのとき、酸素センサの出力に基づいて、好適に、空燃比制御を行うことが可能になる。
本発明の第1実施形態に係る内燃機関の概略図である。 触媒前センサの出力特性を示すグラフである。 触媒後センサの出力特性を示すグラフである。 触媒後センサである酸素センサの概念構造を示す模式図である。 図4の酸素センサの出力波形例を示すグラフである。 インバランス割合と排気通路へ排出される水素量との関係を表したグラフである。 第1実施形態の空燃比制御の処理のフローチャートである。 第1実施形態のガード値の設定処理のフローチャートである。 触媒後センサの検出素子に欠損異常があるときのその出力の変化例を示すグラフである。 主空燃比制御に対する補正に、触媒後センサの異常の程度に応じた限界を設定する領域を示す図である。 ガード値のリーン出力割合に対する変化を示すグラフである。 触媒後センサの検出素子の温度とこのセンサの出力電圧との関係例を示すグラフである。 触媒後センサの検出素子の温度とこのセンサの検出素子のインピーダンス抵抗との関係例を示すグラフである。 第3実施形態のガード値の設定処理のフローチャートである。
以下、本発明の実施形態を添付図面に基づき説明する。まず、第1実施形態について説明する。
図1は、本第1実施形態に係る内燃機関の概略図である。内燃機関(以下、エンジン)1は、シリンダブロックを含むエンジン本体2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、気筒内でピストンを往復移動させることにより動力を発生する。本実施形態のエンジン1は自動車用の多気筒内燃機関であり、より具体的には直列4気筒の火花点火式内燃機関すなわちガソリンエンジンである。ただし、本発明が適用可能な内燃機関はこのようなものに限られず、複数の気筒を有する内燃機関であれば気筒数、形式等は特に限定されない。なお、エンジン1は図示しないが車に搭載されている。
図示しないが、エンジン1のシリンダヘッドには吸気ポートを開閉する吸気弁と、排気ポートを開閉する排気弁とが気筒ごとに配設されており、各吸気弁および各排気弁はカムシャフトによって開閉させられる。シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ4が気筒ごとに取り付けられている。また、シリンダヘッドには、燃焼室3内に直接燃料を噴射するインジェクタ(燃料噴射弁)5が気筒ごとに配設されている。
各気筒の吸気ポートは気筒毎の枝管6を介して吸気集合室であるサージタンク7に接続されている。サージタンク7の上流側には吸気管8が接続されており、吸気管8の上流端にはエアクリーナ9が設けられている。そして吸気管8には、上流側から順に、吸入空気量を検出するための吸入空気量検出手段としてのエアフローメータ10と、電子制御式のスロットルバルブ11とが組み込まれている。吸気ポート、枝管6、サージタンク7および吸気管8は、それぞれ吸気通路12の一部を形成する。
一方、各気筒の排気ポートは排気マニホールド13に接続される。排気マニホールド13は、その上流部をなす気筒毎の枝管13aと、その下流部をなす排気集合部13bとからなる。排気集合部13bの下流側には排気管14が接続されている。排気ポート、排気マニホールド13および排気管14はそれぞれ排気通路15の一部を形成する。排気管14にはいわゆる三元触媒である排気浄化触媒つまり触媒浄化装置16が取り付けられている。
触媒16の上流側および下流側にそれぞれ排気中の酸素濃度に応じた出力を生じるセンサ17、18が設置されている。触媒16の上流側のセンサ(上流側センサ)17は、ここでは触媒前センサ17と称され、触媒16の下流側のセンサ(下流側センサ)18は、ここでは触媒後センサ18と称される。これら触媒前センサ17および触媒後センサ18は、触媒16の直前および直後の位置の排気通路に設置され、それぞれ排気中の酸素濃度に基づく出力を発生する。
なお本第1実施形態では、触媒後センサ18の下流側にも、触媒16と同様の三元触媒からなる排気浄化触媒つまり触媒浄化装置19が取り付けられている。
上述の点火プラグ4、インジェクタ5、スロットルバルブ11等は、制御装置つまり制御手段として構成された電子制御ユニット(以下、ECU)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ10、触媒前センサ17、触媒後センサ18のほか、エンジン1のクランク角を検出するためのクランク角センサ21、アクセル開度を検出するためのアクセル開度センサ22、エンジン1が搭載された車の速度つまり車速を検出するための車速センサ23、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの出力に基づいて、所望のエンジン出力が得られるように、点火プラグ4、インジェクタ5、スロットルバルブ11等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。なおスロットル開度はアクセル開度に応じた開度に制御され、アクセル開度が大きくなるほどスロットル開度も大きくなる。
このように、ECU20は、燃料噴射制御手段、点火制御手段、吸入空気量制御手段等のそれぞれの機能を担う。そして、以下の説明から明らかなように、ECU20は、空燃比制御手段、出力傾向値算出手段、判定手段(リーン判定手段およびリッチ判定手段)、および、限界設定手段の各機能を担う。
そして、ECU20は、エアフローメータ10からの出力信号に基づき、単位時間当たりの吸入空気の量すなわち吸入空気量を検出する。ECU20は、クランク角センサ21からのクランクパルス信号に基づき、クランク角自体を検出すると共にエンジン1の回転数を検出する。ここで「回転数」とは単位時間当たりの回転数のことをいい、回転速度と同義である。そして、ECU20は、通常、吸入空気量およびエンジン回転速度つまりエンジン運転状態に基づいて、予め記憶装置に記憶するデータ等を用いて、燃料噴射量(または燃料噴射時間)を設定する。そして、その燃料噴射量に基づいて、インジェクタ5からの燃料の噴射が制御される。
ところで、触媒前センサ17はいわゆる広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能である。図2に触媒前センサ17の出力特性を示す。図示するように、触媒前センサ17は、空燃比(触媒前空燃比A/Ff)に比例した大きさの電圧信号Vfを出力する。空燃比がストイキ(理論空燃比、例えばA/F=14.6)であるときの出力電圧はVreff(例えば約3.3V)である。
他方、触媒後センサ18はいわゆる酸素(O)センサからなり、ストイキを境に出力値が急変する特性を持つ。図3に触媒後センサ18の出力特性を示す。図示するように、空燃比(触媒後空燃比A/Fr)がストイキであるときの出力電圧、すなわちストイキ相当値はVrefr(例えば0.45V)である。触媒後センサ18の出力電圧は所定の範囲(例えば0〜1V)内で変化する。概して空燃比がストイキよりリーンのとき、触媒後センサ18の出力電圧Vrはストイキ相当値Vrefrより低くなり、空燃比がストイキよりリッチのとき、触媒後センサ18の出力電圧Vrはストイキ相当値Vrefrより高くなる。
触媒16、19はそれぞれ三元触媒からなり、それぞれに流入する排気の空燃比A/Fがストイキ近傍のときに排気中の有害成分であるNOx、HCおよびCOを同時に浄化する。この三者を同時に高効率で浄化できる空燃比の幅(ウィンドウ)は比較的狭い。
そこで、エンジン1の通常運転時、上流側の触媒16に流入する排気の空燃比をストイキ近傍に制御するための空燃比制御(ストイキ制御)がECU20により実行される。この空燃比制御では、触媒前センサ17の出力に基づいて空燃比制御(以下、主空燃比制御)が実行され、触媒後センサ18の出力に基づいて設定される補正量により主空燃比制御に対する補正が実行される。主空燃比制御では、触媒前センサ17の出力に基づいて検出された排気の空燃比が所定の目標空燃比であるストイキになるように混合気の空燃比(具体的には燃料噴射量)がフィードバック制御される。そして、触媒後センサ18の出力に基づいて検出された排気の空燃比がストイキになるように主空燃比制御に対する補正が行われる。このような補正は、ここでは、主空燃比制御に対して補助空燃比制御と称され得る。ただし、本実施形態において、上記所定の目標空燃比つまり空燃比の基準値(目標値)はストイキであり、このストイキに相当する燃料噴射量(ストイキ相当量という)が燃料噴射量の基準値(目標値)である。但し、空燃比および燃料噴射量の基準値は他の値とすることもできる。なお、空燃比制御においては、各気筒に対し同一の制御量が一律に用いられる。
そして、上記空燃比制御では、触媒後センサ18の出力に基づく上記補正に限界が設定される。この限界は、後で詳しく述べられる触媒後センサ18の異常の程度に応じて設定され、上記補正量に制限ガードを設けることを意味する。
ここで、触媒後センサ18の構成とその異常に関して説明する。酸素センサである触媒後センサ18は、ここでは、固体電解質を用いた筒型酸素センサとして構成されている。この触媒後センサ18は、図4(a)にその概念構造を示すように、排気通路15内に突出するように配設された筒型の検出素子18aを備えている。検出素子18aは、その内面が大気(空気)に露呈するとともに、その外面が、センサカバー18bを通して流れ過ぎる排気に曝される。また検出素子18aは、その一部の断面構造を図4(b)に示すように、内外の表面に電極が被覆された固体電解質により形成されている。固体電解質は、酸素がイオン化した状態でその内部を移動可能な固形物質を指し、ここではジルコニアが利用されている。なお、固体電解質は他の材料から構成されてもよい。
さて、そうした検出素子18aを介して隔てられたその内側の大気と外側の排気との酸素分圧、要するに酸素濃度に差が生じると、その差を縮小すべく、酸素濃度の高い側(通常は大気側)の酸素がイオン化して固体電解質を通り、酸素濃度の低い側(通常は排気側)へと移動する。この酸素の移動に応じて検出素子18aの内外表面の電極で電子の移動が生じ、その結果、検出素子に起電力が発生する。こうしてこの触媒後センサ18は、大気と排気との酸素分圧つまり酸素濃度の差に応じた電圧を出力する。
一方、排気の酸素濃度は、燃焼された混合気の空燃比に応じて変化する。例えば、ストイキ、あるいはそれよりもリッチな空燃比で燃焼した混合気の場合、混合気の酸素がほぼ完全に燃焼し尽くされるため、その排気の酸素濃度はほぼ零となる。またストイキよりもリーンな空燃比の場合には、燃焼時に酸素が余る。そのため、空燃比がリーンとなるほど、排気中の酸素濃度は高くなる。これに対して、大気の酸素濃度は、常にほぼ一定である。したがって、大気の酸素濃度を基準とした排気の酸素濃度に応じたセンサ18の出力電圧により、エンジン1で燃焼された混合気の空燃比を把握できる。これは、既に、図3を参照しつつ説明した通りである。
さて、こうした酸素センサである触媒後センサ18において、図4(c)に示すように、検出素子18aに欠損つまり素子割れ18cが生じて検出素子18aの内外が連通すると、検出素子外部の排気がその内部に侵入するようになる。その結果、検出素子18aの内外の酸素濃度の差が無くなって触媒後センサ18は起電力を発生しなくなる。つまり、触媒後センサ18にこのような異常が生じると、触媒後センサ18は、リーン燃焼時と同様の出力を生じるようになる。そして、一般に、触媒後センサ18にそのような異常の程度が増すにしたがい、触媒後センサ18の出力電圧は小さくなり、空燃比がリーン側に変移しているような出力を生じる。
ここで、図5に触媒後センサ18の出力電圧の変化の一例を、車速と共に表す。図5に表されているように、正常な触媒後センサ18からの出力電圧は、ストイキ相当電圧よりも低い低電圧領域、例えば0.2V以下かつ0V以上の領域にあるときと、ストイキ相当電圧よりも高い高電圧領域、例えば0.6V以上かつ1V以下の高電圧領域にあるときとを繰り返すように変化する。これに対して、異常なここでは素子割れが生じている触媒後センサ18からの出力電圧は、概して、ストイキ相当電圧よりも低い低電圧領域にあり、特にその中でも低い電圧領域、例えば0.05V以下(好ましくは0V以上)の電圧領域にあり、ストイキ相当電圧以上であることはほとんどない。
このように、触媒後センサ18の異常の程度が増すほど、触媒後センサ18はリーン燃焼時と同様の出力を出す傾向が強まり、例えば0.05V以下の電圧を出力する頻度が高まる。つまり、触媒後センサ18の異常の程度と、触媒後センサ18の出力がリーン側に変移した程度とは相関関係がある。
一方、気筒間空燃比ばらつきの度合いが高いときにも、触媒後センサ18はリーン燃焼時と同様の出力を出す傾向が強まり得る。これを以下に説明する。
例えば全気筒のうちの一部の気筒(特に1気筒)において、インジェクタ5の故障等が発生し、気筒間に空燃比のばらつき(インバランス:imbalance)が発生することがある。例えば、インジェクタ5の閉弁不良により#1気筒の燃料噴射量が他の#2,#3,#4気筒の燃料噴射量よりも多くなり、#1気筒の空燃比が他の#2,#3,#4気筒の空燃比よりも大きくリッチ側にずれる場合である。このときでも、前述の空燃比フィードバック制御により比較的大きな補正量を与えれば、触媒前センサ17に供給されるトータルガス(合流後の排気)の空燃比をストイキに制御できる場合がある。しかし、気筒別に見ると、#1気筒がストイキより大きくリッチ、#2,#3,#4気筒がストイキよりリーンであり、全体のバランスとしてストイキとなっているに過ぎない。
また、燃焼室に供給される燃料は炭素と水素との化合物である。したがって、燃焼に供される混合気の空燃比がストイキよりもリッチ側の空燃比であると、HC、CO、Hなどの未燃物が中間生成物として生成される。そして、リッチ側の空燃比であるほど、それら未燃物が酸素と結合する、つまり酸化燃焼する確率が急激に小さくなる。この結果、リッチ側の空燃比であるほど、それら未燃物が燃焼室から排出される量が増す。これは、気筒間空燃比ばらつきの度合いが大きくなる場合でも同様であり、図6に示される。
図6は、リッチ側の空燃比またはインバランス割合に対する、水素の排出量の変化を示すグラフである。インバランス割合(%)とは、気筒間空燃比のばらつき度合いつまりインバランス度合いを表す一つのパラメータである。すなわち、インバランス割合とは、全気筒のうちある1気筒のみが燃料噴射量ずれを起こしている場合に、その燃料噴射量ずれを起こしている気筒(インバランス気筒)の燃料噴射量がどれくらいの割合で、燃料噴射量ずれを起こしていない気筒(バランス気筒)の燃料噴射量からずれているかを示す値である。インバランス割合をIB、インバランス気筒の燃料噴射量をQib、バランス気筒の燃料噴射量つまり基準燃料噴射量をQsとすると、IB=(Qib−Qs)/Qs×100で表される。インバランス割合IBまたはその絶対値が大きいほど、インバランス気筒のバランス気筒に対する燃料噴射量ずれが大きく、気筒間空燃比ばらつきの度合いは大きい。したがって、図6から、気筒間空燃比ばらつきの度合いが大きくなるほど、水素の排出量が増すことが分かる。
一方、空燃比センサである触媒前センサ17は、一般に拡散抵抗層を備え、その拡散抵抗層を通過して触媒前センサ17の排気側電極層(検出素子表面)に到達した酸素の量(酸素濃度または酸素分圧)に応じた出力を発生する。しかし、触媒前センサ17の出力は、さらに、拡散抵抗層を通過した未燃物の量(濃度または分圧)にも応じたものである。
水素は、HC、COなどに比べて小さい分子である。したがって、水素は他の未燃物に比べて、触媒前センサ17の拡散抵抗層を拡散し易い。つまり、その拡散抵抗層において、水素の優先的な拡散が発生する。
気筒間空燃比ばらつきの度合いが大きくなると、この水素の優先的な拡散に起因して、触媒前センサ17の出力は、真の空燃比よりもリッチ側の空燃比に対応するものになる。したがって、真の空燃比よりもリッチ側の空燃比が触媒前センサ17により検出されるので、上記空燃比フィードバック制御により、気筒間空燃比ばらつきが無いまたはほとんど無い場合に比べて、より大きなリーン側への補正が行われる。したがって、酸素センサである触媒後センサ18は、リーンに偏った出力を生じる傾向が強まる。
この傾向は、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも多い場合はもとより、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合でも同様である。インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合には、インバランス気筒の燃料噴射量の不足分を補うように、空燃比フィードバック制御により他のバランス気筒の燃料噴射量が増やされる。したがって、バランス気筒からは、気筒関空燃比ばらつきが無いまたはほとんど無い場合に比べて、多くの水素が排出される。この水素に起因して、触媒前センサ17は、真の空燃比よりもリッチ側の空燃比に応じた出力を生じる傾向が高まる。したがって、インバランス気筒の燃料噴射量がバランス気筒の燃料噴射量よりも少ない場合も、同様に、上記空燃比フィードバック制御が行われる結果、酸素センサである触媒後センサ18は、リーンに偏った出力を生じる傾向が強まる。
このように、気筒間空燃比ばらつきの度合いが高いときにも、触媒後センサ18はリーン燃焼時と同様の出力を出す傾向が強まり得る。
一方、上で述べたように、気筒間に空燃比のばらつきが発生しているとき、気筒別に見ると、例えばインバランス気筒の空燃比はストイキより大きくリッチにずれ、他のバランス気筒の空燃比はストイキよりリーンである。したがって、気筒間に空燃比のばらつきが発生しているときには、触媒後センサ18は、正常であれば、上で述べたようにリーン燃焼時と同様の出力を出す傾向を強めるが、他方でリッチ燃焼時と同様の出力も出す。
以上述べたように、触媒後センサ18の検出素子18aに欠損異常など異常が生じたとき、この触媒後センサ18はリーン燃焼時と同様の出力を出す傾向を強め、リッチ燃焼時と同様の出力を生じることが少ない。これに対して、例えば気筒間空燃比ばらつきの度合いが高いとき、触媒後センサ18は、正常であればつまり明らかな異常が無ければ、リーン燃焼時と同様の出力を出す傾向を強めるが、リッチ燃焼時と同様の出力もある程度の割合で生じる。そこで、ここでは、ストイキよりもリーン側の所定リーン領域およびリッチ側の所定リッチ領域での触媒後センサ18の出力出現傾向(以下、出力傾向)を監視し、それらの傾向に基づいて触媒後センサ18の異常の程度を的確に見積もる。そして、触媒後センサ18に異常があるとき、その異常の程度に応じて、触媒前センサ17の出力に基づく主空燃比制御に対する補正に限界を設定し、過度のリッチ化補正を抑制する、好ましくは防ぐようにする。以下に、この空燃比制御を具体的に説明する。
図7および図8のフローチャートに基づいて、空燃比制御をさらに説明する。なお、図7のフローに基づく処理は、エンジン運転中にECU20により繰り返し実行され、具体的にはクランクシャフトの一定回転毎に繰り返し実行される。また、図8のフローに基づく処理も、エンジン運転中にECU20により繰り返し実行される。
空燃比制御処理が開始されると、ステップS701では、まず酸素センサである触媒後センサ18による主空燃比制御の補正を行うべき条件(以下、補正前提条件)が成立しているか否かが判定される。この補正前提条件は、例えば、エンジン冷却水温が規定値以上であること、エンジン1の始動が完了していること、始動後増量、暖機増量、パワー増量、触媒過熱防止のためのOTP増量などの燃料増量が実行中でなく、かつこのような増量が終了してから規定時間が経過していること、燃料カットが実行中でなく、かつ燃料カットが終了してから規定時間が経過していること、および、エンジン1の始動後、触媒後センサ18の出力が少なくとも一度反転(リーン出力からリッチ出力、またはその逆の変化をしたこと、すなわち触媒後センサ18が活性化したと判断されたこと)したこと、である。そして、これらが全て成立したとき、補正前提条件が成立したと判定される。
ステップS701で補正前提条件が成立したので肯定判定されると、次ぐステップS703で、触媒後センサ18の出力に基づいて仮の補正量(以下、仮補正量)dVftが算出される。この仮補正量は既知の種々の手法または演算方法を用いて算出されることができる。ここでは、その一例が示される。
まず、基準電圧Vrefrと取得した触媒後センサ18の出力電圧Vrとの差から偏差ΔVrが算出される(ΔVr←Vrefr−Vr)。次にこの偏差ΔVrに基づいて積分値SUMおよびなまし積分値ASUMが算出される。積分値SUMについては、前回算出時の値である積分値SUMに偏差ΔVrを加算することで算出される(SUM←SUM + ΔVr)。なまし積分値ASUMは、積分値SUMの短周期の変動を抑制した平均値的な値を示すものであり、前回算出時の値であるなまし積分値ASUMを用いて、積分値SUMの加重平均値として求められる(ASUM←{(n−1)・ASUM + SUM}/n、ただし、nは、例えば1以上の値が設定されている。)。なお、加重平均値以外の処理でもよく、積分値SUMの変動を緩和した平均値的な値としてなまし積分値ASUMが得られればよい。なお、積分値SUMおよびなまし積分値ASUMはそれぞれ初期状態ではゼロにされている。
積分値SUMおよびなまし積分値ASUMが算出されると、次に触媒後センサ18の出力偏差ΔVrの変化量dΔVrが前回算出時の出力偏差ΔVrに対して算出される。そして、それら算出した値を用いて、式(1)に基づいて、触媒前センサ17の出力電圧Vfを補正するための仮補正量dVftが算出される。
dVft←KP・ΔVr +KI・SUM+KD・dΔVr・・・(1)
ただし、各係数KP、KI、KDは予め実験により設定された値である。
一方、補正前提条件が成立していないのでステップS701で否定判定されると、ステップS705で、仮補正量dVftとして、以前の補正前提条件成立時に算出されている最新のなまし積分値ASUMに所定の係数KIを乗じることで算出されている値が読み込まれる(dVft←KI・ASUM)。なお、ステップS705にいたったとき、以前の補正前提条件成立時に算出されている最新のなまし積分値ASUMが読み出されて、それに所定の係数KIが乗じられて、仮補正量dΔVftが算出されてもよい。
ステップS703またはステップS705で仮補正量dΔVftが求められると、ステップS707で、この仮補正量dΔVftに対してガード処理が施されて、触媒前センサ17の出力電圧Vfを補正するための補正量dVfが算出される。ガード処理は、図8のフローチャートに基づいて定められたガード値に基づいて実行される。なお、このガード値は、以下の説明から明らかになるように、上記主空燃比制御に対する、触媒後センサ18の出力に基づいて設定される補正量である仮補正量に限界を設定するように定められる。
ここで、図8のフローチャートに基づいてガード値の設定処理について説明する。
まず、ステップS801では、触媒前センサ18の異常の程度に応じてガード値を設定するための前提条件(以下、異常前提条件)が成立しているか否かが判定される。ここで異常前提条件とは、触媒後センサ18の出力に基づいて触媒後センサ18自身の出力異常が判定できる状態にあるかを判定するための条件である。ここでは異常前提条件として、触媒後センサ18の活性化が完了していること、燃料カットからの復帰後に規定時間経過していること、吸入空気量が規定値以上に大きいこと、および、アイドル状態ではないことの全てが満たされることが設定されている。しかし、異常前提条件はこれ以外であってもよい。なお、燃料カットからの復帰後に規定時間経過していることが異常前提条件に含まれる理由は、燃料カットからの復帰後に燃料カットによる影響が無くなるまで待機するためである。また、吸入空気量が規定値以上に大きいことおよびアイドル状態ではないことが異常前提条件に含まれる理由は、触媒後センサ18の検出素子に欠損異常があるつまり素子割れが生じているときにそれが明確にその出力に現れるようにするために排気の背圧を十分に高めるためである。
ステップS801で異常前提条件が成立しているので肯定判定されると、ステップS803でモニタカウンタが1だけ加算される。モニタカウンタは初期状態ではゼロに設定されている。なお、ステップS801で否定判定されると、当該ルーチンは終了する。
次ぐステップS805では、今回のルーチンに際して取得した触媒後センサ18の出力電圧がリーン判定電圧未満か否かが判定される。リーン判定電圧は、触媒後センサ18の異常の程度が増すほど、特に欠損異常の程度が増すほど、触媒後センサ18が生じる出力が含まれるようになるストイキよりもリーン側の電圧領域のリッチ側境界値として設定されている。なお、この電圧領域は0V以上かつリーン判定電圧未満の領域であり、本発明の所定リーン領域に相当する。ここでは、リーン判定電圧は0.05Vと設定されているが、この以外の値であってもよい。そして、ステップS805で肯定判定されると、ステップS807でリーンカウンタが1だけ増やされる。
これに対して、ステップS805で触媒後センサ18の出力電圧がリーン判定電圧以上であるので否定判定されると、ステップS809で触媒後センサ18の出力電圧がリッチ判定電圧を超えるか否かが判定される。リッチ判定電圧は、触媒後センサ18の異常の程度が増すほど、触媒後センサ18が生じる出力が含まれないようになるストイキよりもリッチ側の電圧領域のリーン側境界値として設定されている。なお、この電圧領域は1V以下かつリッチ判定電圧を超える領域であり、本発明の所定リッチ領域に相当する。ここでは、リッチ判定電圧は0.70Vと設定されているが、この以外の値であってもよい。そして、ステップS809で肯定判定されると、ステップS811でリッチカウンタが1だけ増やされる。なお、ステップS805およびステップS809では、電圧値に代えて、電圧値に対応する空燃比の値が用いられてもよい。
ここで図9に示す場合を例にステップS805からS811をさらに説明する。図9は、触媒後センサ18に明らかな欠損異常が生じている場合のその出力電圧の変化例を示す。概ね、触媒後センサ18の出力は0.05V未満であるが、ときどきピークを示すように高くなる。このような現象は、例えば、燃料カットを行ったことに伴い生じ得る。
例えば、図9のt1時点で取得した触媒後センサ18の出力は0.05V未満であるので、ステップS805で肯定判定されて、ステップS807でリーンカウンタが1だけ増やされる。また、図9のt2時点で取得した触媒後センサ18の出力は0.05V以上かつ0.7V以下であるので、ステップS805およびステップS809で否定判定されて、リーンカウンタもリッチカウンタも増やされない。
こうして、ステップS807でリーンカウンタが1だけ増やされるか、ステップS811でリッチカウンタが1だけ増やされるが、あるいはステップS809で否定判定されると、ステップS813でモニタカウンタが所定値以上か否かが判定される。この判定は、触媒後センサ18の異常の程度をより適切に見積もるために設定されているモニタ時間が経過したか否かの判定に相当する。例えば、モニタ時間は数十秒である。
ステップS813でモニタカウンタが所定値未満であるので否定判定されると該ルーチンを終了する。これに対して、モニタカウンタが所定値以上であるのでステップS813で肯定判定されると、ステップS815でリーンカウンタの値がリーン所定値以上かつリッチカウンタの値がリッチ所定値未満か否かが判定される。
ステップS815では、リーンカウンタの値は所定時間であるモニタ時間における所定リーン領域での出力傾向を表すリーン傾向値として用いられ、リッチカウンタの値は所定時間であるモニタ時間における所定リッチ領域での出力傾向を表すリッチ傾向値として用いられる。そして、リーンカウンタの値がリーン所定値以上であるか否かを判定することは所定リーン領域での出力傾向の度合いが所定リーン度合い以上であるか否かを判定することに相当し、リッチカウンタの値がリッチ所定値未満であるか否かを判定することは所定リッチ領域での出力傾向の度合いが所定リッチ度合い未満であるか否かを判定することに相当する。
ここで、図10に、リーンカウンタとリッチカウンタとに対してステップS815で肯定判定される領域Aがあわされている。領域Aは、リーン所定値L1とリッチ所定値R1により定められている。図9に示す場合は、上で述べたようにリーンカウンタおよびリッチカウンタがそれぞれカウントされ、領域A内に位置する1つのプロット(図示せず)が得られ、ステップS815で肯定判定される。なお、気筒間空燃比ばらつきの程度が大きく、かつ、触媒後センサ18に異常がないとき、例えば図10の領域B内に位置するプロットが1つ得られ、ステップS815で否定判定される。
なお、ステップS815で、リーンカウンタの値の代わりにリーン出力割合(単位:%)(リ−ン出力割合=リーンカウンタ/ステップS813の所定値×100)がリーン傾向値として用いられ、リッチカウンタの値の代わりにリッチ出力割合(単位:%)(リッチ割合=リッチカウンタ/ステップS813の所定値×100)がリッチ傾向値として用いられることもできる。この場合、これらのリーン出力割合およびリッチ出力割合を算出するステップが、ステップS813とステップS815との間に設けられ、ステップS815でのリーン所定値およびリッチ所定値はこれらに対応した値となる。図10は、リーン出力割合およびリッチ出力割合に対して領域Aが表されていると解されることもでき、リーン所定値L1は、例えば5%〜10%であり得る。
ステップS815で肯定判定されると、ステップS817で、リーンカウンタに基づきリッチ側ガード値dVgrd(+)が算出される。ステップS817に至る場合、上で述べたように、触媒後センサ18に異常があるときであり、それはリーン燃焼時と同様の出力を出す傾向が強いので、そのままの出力を用いて空燃比制御を行うと空燃比をリッチ化する補正が促されてしまう。そこで、ここでは、空燃比のリッチ化を抑制する方向にリッチ側ガード値dVgrd(+)が初期値から変更されて設定される。つまりステップS817に至ることで予め設定されているリッチ側ガード値dVgrd(+)の変更が許可される。
これに対して、ステップS815で否定判定されると、ステップS819で、初期状態で設定されている、正常時用のリッチ側ガード値が読み込まれて設定される。ステップS819に至る場合、触媒後センサ18は正常または実質的に正常である。つまりステップS819に至ることで予め設定されているリッチ側ガード値dVgrd(+)の変更が禁止される。
そして、ステップS817またはS819を経ると、ステップS821に至り、モニタカウンタ、リーンカウンタ、リッチカウンタがリセットされる。つまりこれらのカウンタはゼロにされる。これにより、該ルーチンは終了する。
ここで図11に基づいてリッチ側ガード値dVgrd(+)の設定についてさらに説明する。ただし、図11の値は、上で詳しく述べたようにして空燃比制御において仮補正量dΔVftが算出される場合に関する。
図11は、ガード値dVgrdの変化をリーン出力割合(リーン割合)に基づいて表している。ガード値はリッチ側ガード値dVgrd(+)とリーン側ガード値dVgrd(−)とがある。図11の割合L2は、図10のリーン所定値L1に対応し、同じまたは実質的に同じである。本実施形態では、リッチ側ガード値dVgrd(+)として初期状態では0.3Vが設定されていて、リーン側ガード値dVgrd(−)として初期状態では−0.3Vが設定されている。
ステップS815でリーンカウンタの値がリーン所定値以上かつリッチカウンタの値がリッチ所定値未満であるので肯定判定されると、図11に表したようなデータまたはそれに相当する演算式に基づいてリッチ側ガード値dVgrd(+)が初期値(0.3V)から変更される。具体的には、まず、それまでに求めたリーンカウンタをステップS813の所定値で割り、それに100をかけることで、リーン出力割合が求められる。そして、このリーン出力割合で図11に表したようなデータを検索するまたはそれに相当する演算式に基づいて演算をすることで、リッチ側ガード値dVgrd(+)が算出される(ステップS817)。なお、図11のデータは、リーン出力割合が大きいほど、つまり酸素センサである触媒後センサ18の出力がリーン側に変移した程度が大きいほど、空燃比制御における空燃比のリッチ化を抑制する方向にリッチ側ガード値を変更設定するように定められている。
これに対して、ステップS815でリーンカウンタがリーン所定値以上かつリッチカウンタがリッチ所定値未満でないので否定判定されると、上で述べたようにリッチ側ガード値dVgrd(+)の変更は禁止され、リッチ側ガード値dVgrd(+)として初期値(0.3V)が設定される(ステップS819)。
なお、図11から明らかなように、リーン側ガード値dVgrd(−)は、リーン出力割合にかかわらず、つまり触媒前センサ18の異常の程度にかかわらず、初期値に設定される。これは、触媒前センサ18で欠損異常などの異常があったとき、上で述べたように、一般に、その出力は小さくなるからである。
さて、このように設定されるガード値に基づいて、上で述べた仮補正量に対してガード処理が施される。図7に戻り、ステップS703またはステップS705で仮補正量dΔVftが求められて、ステップS707に至ると、この仮補正量dΔVftに対してガード処理が施されて、触媒前センサ17の出力電圧Vfを補正するための補正量dVfが算出決定される。ガード処理では、仮補正量が正かそれ以外か(または負かそれ以外か)に応じて、リッチ側ガード値dVgrd(+)およびリーン側ガード値dVgrd(−)のいずれかを用いて行われる。
算出された仮補正量dΔVftが正である場合、その場合には、そのときに設定されているリッチ側ガード値dVgrd(+)よりも仮補正量dVftが大きいか否かが判定される。そして、リッチ側ガード値dVgrd(+)よりも仮補正量dVftが大きいとき、リッチ側ガード値dVgrd(+)が、触媒前センサ17の出力電圧Vfを補正するための補正量dVfとして算出設定される。これに対して、仮補正量dVftがリッチ側ガード値dVgrd(+)以下であるとき、仮補正量dVftがそのまま補正量dVfとして設定される。
一方、算出された仮補正量dΔVftが正でない場合、その場合には、そのときに設定されているリーン側ガード値dVgrd(−)よりも仮補正量dVftが小さいか否かが判定される。そして、リーン側ガード値dVgrd(−)よりも仮補正量dVftが小さいとき、リーン側ガード値dVgrd(−)が、触媒前センサ17の出力電圧Vfを補正するための補正量dVfとして算出設定される。これに対して、仮補正量dVftがリーン側ガード値dVgrd(−)以上であるとき、仮補正量dVftがそのまま補正量dVfとして設定される。
このように、ガード処理を施すことにより、触媒前センサ17の出力電圧Vfを補正するための補正量dVfがガード値dVgrd内(dVgrd(−)≦dVf≦dVgrd(+))に設定される。このようにして、空燃比制御に対する触媒後センサ18に出力に基づく上記補正に限界が設定される。
そして、ステップS707で触媒前センサ17の出力電圧Vfを補正するための補正量dVfが決定されると、ステップS709で、補正量dVfを用いて触媒前センサ17の出力電圧Vfが補正されて、制御用電圧値Vcが算出される。ここでは、補正量dVfを触媒前センサ17の出力電圧Vfに加算することで制御用電圧値Vcが算出される(Vc←Vf+dVf)。
そしてステップS711で、算出された制御用電圧値Vcに基づいて、フィードバック演算により、エアフローメータ10の出力に基づいて検出されている吸入空気量に対して目標空燃比が達成される燃料噴射量つまり燃料噴射時間が算出される。これにより、混合気の空燃比がフィードバック制御される。
以上述べたように、まず、所定時間における所定リーン領域および所定リッチ領域での出力傾向を表す値、具体的には上記リーンカウンタ(またはリーン出力割合)およびリッチカウンタ(またはリッチ出力割合)を算出し、それらに基づいて触媒後センサ18の異常の程度が見積もられる。そして、触媒後センサ18の異常の程度がある程度以上であると判定されたとき(ステップS815で肯定判定)、触媒後センサ18の異常の程度に応じて、具体的にはリーン出力割合に基づいて触媒後センサ18の出力がリーン側に変移した程度が大きいほど、空燃比のリッチ化を抑制する方向に空燃比制御に対する補正に限界が設定される。したがって、仮に気筒間空燃比ばらつきの程度が大きく、触媒後センサ18が正常な場合、触媒後センサ18に異常があると誤って判断されることを抑制することができ、上記空燃比制御により好適に空燃比を目標空燃比に追従させることができる。
なお、第1実施形態では、ステップS815でリーンカウンタの値がリーン所定値以上かつリッチカウンタの値がリッチ所定値未満でないので否定判定されたとき、ステップS819でリッチ側ガード値dVgrd(+)の変更は禁止され、リッチ側ガード値dVgrd(+)として初期値が設定された。しかし、ステップS815で否定判定されたとき、ガード値の設定が全く行われず、上記ステップS707のガード処理ステップは省略されるまたは実質的に省略されることも可能である。この場合、ステップS703またはステップS705で算出された仮補正量がそのまま補正量dVfとして用いられ得る。
次に、本発明に係る第2実施形態が説明される。第2実施形態が適用されたエンジンの構成は概ね上記エンジン1と同じであるので、その説明は省略する。なお、以下では、第2実施形態における第1実施形態との異なる点に関して主に説明する。
一般に酸素センサの出力特性つまりリッチ側の出力特性は、酸素センサの検出素子の温度に依存する。そこで、本第2実施形態では、触媒後センサ18の検出素子が正常な場合にはリッチ燃焼時の排気に対して十分な出力を生じ得る温度を有するときの、その触媒後センサ18の出力に基づいて、その出力傾向を調べる。具体的には、本第2実施形態では、ステップS801の異常前提条件に「触媒後センサ18の検出素子の温度が所定温度以下であること」を加えている。そして、そのために、ECU20は、酸素センサである触媒後センサ18の検出素子の温度(素子温度)を検出する(推定する)温度検出手段としての機能も担う。
触媒後センサ18は図示しないがヒータ(加熱手段)を備えている。ECU20は、ヒータのON、OFFの切り替えタイミングおよびON時間をモニタすると共に、エアフローメータ10の出力またはそれに基づく吸入空気量(または排気流量)をモニタする。そして、これらに基づいて予め実験に基づいて設定しているデータを検索したり、演算したりすることで、ECU20は触媒後センサ18の検出素子の温度を検出する。なお、触媒後センサ18の検出素子の温度を求めるために、さらに種々のセンサの出力を用いることができる。例えば、ECU20は、ヒータのON、OFFの切り替えタイミングおよびON時間のモニタ結果並びにエアフローメータ10の出力に加えて、さらにアクセル開度センサ22の出力に基づいて、触媒後センサ18の検出素子の温度を求めてもよい。
触媒後センサ18の素子温度とリッチ燃焼時の触媒後センサ18のセンサ出力電圧(保障値)との関係を図12に示す。図12に示すように触媒後センサ18の素子温度が高くなるにしたがい、リッチ燃焼時の触媒後センサ18の出力が低下するという特性を触媒後センサ18は有する。一方、本第2実施形態では、空燃比制御のガード値の設定処理において、第1実施形態と同様に、ステップS809でのリッチ判定値は0.7Vである。0.7Vの出力は、図12では850℃に対応する。それ故、ステップS801の異常前提条件にさらに加えられた「触媒後センサ18の検出素子の温度が所定温度以下であること」の所定温度は、ステップS809のリッチ判定値と対応関係にある温度である、850℃に設定されている。ただし、所定温度は、この場合、850℃未満の他の温度であってもよい。
以上述べたように、本第2実施形態では、空燃比制御のガード値の設定処理におけるステップS801において、触媒後センサ18の活性化が完了していること、燃料カットからの復帰後に規定時間経過していること、吸入空気量が規定値以上に大きいこと、および、アイドル状態ではないことの全てが満たされることに加えて、検出された触媒前センサ18の検出素子の温度が850℃以下であることが成立するとき、肯定判定される。逆に、それらの条件のうちの1つでも成立しないとき、ステップS801では否定される。なお、第2実施形態でのこれら以外の演算処理または制御は、第1実施形態で説明したのと同じであるので、説明を省略する。
このように第2実施形態では、触媒後センサ18の検出素子の温度も考慮されるので、より適切に、ステップS811でリッチカウンタを更新することができる。したがって、触媒後センサ18の異常の程度をより適切に評価することができる。
なお、リッチカウンタの更新つまりカウントには、触媒後センサ18の検出素子の温度がこのように考慮されるが、リーンカウンタの更新には触媒後センサ18の検出素子の温度が考慮されなくてもよい。ただし、好ましくは、第2実施形態のように、リッチカウンタおよびリーンカウンタの両方の更新に、触媒後センサ18の検出素子の温度が考慮される。
なお、触媒後センサ18の検出素子の温度の検出は、これ以外の方法でなされてもよい。例えば、触媒後センサ18に定期的に強制的に電圧をかけて、そのときの検出素子での電流値を検出し、それに基づいて抵抗値(素子インピーダンス)を算出する機能(つまり回路)をECU20は有することができる。この場合、図13に表すようなデータを検索することで、または、そのデータに基づく演算を行うことで触媒後センサ18の素子温度が算出される。なお、図13には、素子温度が高くなるにしたがい、素子インピーダンスが低下する関係が示されている。
次に、本発明に係る第3実施形態が説明される。第3実施形態が適用されたエンジンの構成は概ね上記エンジン1と同じであるので、その説明は省略する。なお、以下では、第3実施形態における第2実施形態との異なる点に関して主に説明する。
第2実施形態では空燃比制御のガード値の設定処理におけるステップS809でのリッチ判定値を0.7Vに固定した。しかし、第3実施形態では、そのリッチ判定値を可変としている。
第3実施形態の空燃比制御のガード値の設定処理を、図14に基づいて説明する。ただし、ステップS1401〜S1407、S1411〜S1423は、図8のフローチャートのステップS801〜S821に対応するので、これらの説明は概ね省略される。
ステップS1405で触媒後センサ18の出力電圧がリーン判定電圧以上であるので否定判定されると、ステップS1409で、リッチ判定電圧が算出される。リッチ判定電圧は、第2実施形態において説明したように検出される触媒後センサ18の検出素子の温度に基づいて、図12に表すようなデータを検索することで、または、そのデータに基づく演算を行うことで算出される。そして、次ぐステップS1411で触媒後センサ18の出力電圧がステップS1409で算出されたリッチ判定電圧を超えているか否かが判定される。
このように第3実施形態では、触媒後センサ18の検出素子の温度に基づいてリッチ判定電圧(所定リッチ領域のリーン側境界値)が算出されて設定されるので、より適切に、ステップS1413でリッチカウンタを更新することができる。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。
1 内燃機関(エンジン)
10 エアフローメータ
15 排気通路
16 排気浄化触媒
17 触媒前センサ(空燃比センサ)
18 触媒後センサ(酸素センサ)
20 電子制御ユニット(ECU)

Claims (4)

  1. 排気通路の排気浄化触媒の上流側に設けられた空燃比センサの出力に基づいて空燃比制御を実行する空燃比制御手段であって、該排気浄化触媒の下流側に設けられた酸素センサの出力に基づいて設定される補正量により該空燃比制御に対する補正を実行する空燃比制御手段と、
    前記酸素センサの出力に基づいて該酸素センサの出力傾向を表す値を算出する出力傾向値算出手段であって、所定時間における、理論空燃比よりもリーン側の所定リーン領域でのリーン出力傾向を表すリーン傾向値および理論空燃比よりもリッチ側の所定リッチ領域でのリッチ出力傾向を表すリッチ傾向値を算出する出力傾向値算出手段と、
    該出力傾向値算出手段により算出された前記リーン傾向値に基づき前記所定リーン領域でのリーン出力傾向の度合いが所定リーン度合い以上であるか否かを判定すると共に前記出力傾向値算出手段により算出された前記リッチ傾向値に基づき前記所定リッチ領域でのリッチ出力傾向の度合いが所定リッチ度合い未満であるか否かを判定する判定手段と、
    該判定手段により前記所定リーン領域でのリーン出力傾向の度合いが前記所定リーン度合い以上でありかつ前記所定リッチ領域でのリッチ出力傾向の度合いが前記所定リッチ度合い未満であると判定されたとき、前記酸素センサの出力がリーン側に変移した程度が大きいほど、空燃比のリッチ化を抑制する方向に空燃比制御に対する前記補正に限界を設定する限界設定手段と
    を備える、内燃機関の制御装置。
  2. 前記限界設定手段は、前記出力傾向値算出手段により算出されたリーン傾向値を、前記酸素センサの出力がリーン側に変移した程度を表す値として用い、該リーン傾向値に基づいて前記補正に限界を設定する、請求項1に記載の内燃機関の制御装置。
  3. 前記酸素センサの素子温度を検出する温度検出手段をさらに備え、
    前記出力傾向値算出手段は、該温度検出手段により検出された前記酸素センサの素子温度が前記所定リッチ領域のリーン側境界値と対応関係にある所定温度以下であるときの該酸素センサの出力に基づいて、少なくともリッチ傾向値を算出する、
    請求項1または2に記載の内燃機関の制御装置。
  4. 前記酸素センサの素子温度を検出する温度検出手段と、
    該温度検出手段により検出された前記酸素センサの素子温度に基づいて、前記所定リッチ領域のリーン側境界値を設定するリッチ領域設定手段と
    をさらに備える、
    請求項1または2に記載の内燃機関の制御装置。
JP2013034702A 2013-02-25 2013-02-25 内燃機関の制御装置 Expired - Fee Related JP5668768B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013034702A JP5668768B2 (ja) 2013-02-25 2013-02-25 内燃機関の制御装置
PCT/JP2014/000289 WO2014129108A1 (ja) 2013-02-25 2014-01-21 内燃機関の制御装置
US14/769,956 US10072593B2 (en) 2013-02-25 2014-01-21 Control device of internal combustion engine
CN201480010025.8A CN105189991B (zh) 2013-02-25 2014-01-21 内燃发动机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034702A JP5668768B2 (ja) 2013-02-25 2013-02-25 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2014163274A JP2014163274A (ja) 2014-09-08
JP5668768B2 true JP5668768B2 (ja) 2015-02-12

Family

ID=51390917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034702A Expired - Fee Related JP5668768B2 (ja) 2013-02-25 2013-02-25 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US10072593B2 (ja)
JP (1) JP5668768B2 (ja)
CN (1) CN105189991B (ja)
WO (1) WO2014129108A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648706B2 (ja) * 2013-04-19 2015-01-07 トヨタ自動車株式会社 内燃機関の空燃比制御装置
WO2018063973A1 (en) * 2016-09-27 2018-04-05 Cummins Inc. System and methods for combustion control in multi-cylinder opposed piston engines

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845489A (en) * 1995-11-08 1998-12-08 Denso Corporation Abnormality detector for air-fuel ratio control system
JP3733660B2 (ja) * 1996-10-03 2006-01-11 日産自動車株式会社 内燃機関における酸素センサの劣化診断装置
DE60116158T2 (de) * 2000-02-23 2006-06-29 Nissan Motor Co. Ltd. Luft-Kraftstoff-Verhältnis-Steuerungssystem
US6588200B1 (en) * 2001-02-14 2003-07-08 Ford Global Technologies, Llc Method for correcting an exhaust gas oxygen sensor
JP4682463B2 (ja) 2001-07-04 2011-05-11 トヨタ自動車株式会社 酸素センサの異常診断装置
JP4182833B2 (ja) * 2003-07-16 2008-11-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4294530B2 (ja) * 2004-03-31 2009-07-15 富士重工業株式会社 エンジンの空燃比制御装置
JP4353070B2 (ja) * 2004-10-27 2009-10-28 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4496549B2 (ja) 2008-02-27 2010-07-07 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5136226B2 (ja) 2008-06-04 2013-02-06 日産自動車株式会社 エンジンの空燃比センサシフト故障診断装置
JP4578544B2 (ja) 2008-07-07 2010-11-10 三菱電機株式会社 内燃機関の制御装置
CN102439279B (zh) * 2009-05-21 2014-06-18 丰田自动车株式会社 内燃机的空燃比控制装置
CN102892998B (zh) * 2010-05-13 2014-02-05 丰田自动车株式会社 内燃机的控制装置
JP5616274B2 (ja) * 2011-03-31 2014-10-29 本田技研工業株式会社 空燃比制御装置
JP5761340B2 (ja) * 2011-05-19 2015-08-12 トヨタ自動車株式会社 空燃比センサの補正装置

Also Published As

Publication number Publication date
JP2014163274A (ja) 2014-09-08
US10072593B2 (en) 2018-09-11
CN105189991A (zh) 2015-12-23
CN105189991B (zh) 2018-04-24
WO2014129108A1 (ja) 2014-08-28
US20160003181A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP4877610B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5024676B2 (ja) 触媒劣化抑制装置
JP4836021B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置及びその方法
JP4320744B2 (ja) 内燃機関の制御装置
JP4240132B2 (ja) 内燃機関の制御装置
JP2009281328A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2009074388A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5278454B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5278466B2 (ja) 気筒間空燃比ばらつき異常検出装置
JP3887903B2 (ja) 内燃機関の空燃比制御装置
JP2013011222A (ja) 内燃機関の制御装置
WO2015170449A1 (ja) 内燃機関の排出ガス浄化装置
JP4737482B2 (ja) 内燃機関の触媒劣化検出装置
JP5668768B2 (ja) 内燃機関の制御装置
JP4844587B2 (ja) 触媒劣化診断装置
JP5783202B2 (ja) 内燃機関の異常検出装置
JP2007255232A (ja) 内燃機関の空燃比制御装置
JP2012132392A (ja) 気筒間空燃比ばらつき異常検出装置
JP2010255490A (ja) 触媒異常診断装置
JP4069924B2 (ja) 排出ガス浄化用触媒劣化検出装置
JP5361803B2 (ja) 燃料噴射制御装置
JP2020045814A (ja) 内燃機関の燃料噴射制御装置
JP4483657B2 (ja) 内燃機関の燃料噴射量制御装置
JP4161390B2 (ja) 内燃機関の空燃比制御装置
JP3972925B2 (ja) 内燃機関の触媒劣化検出装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees